JP2003221676A - Zinc-based plated steel sheet - Google Patents

Zinc-based plated steel sheet

Info

Publication number
JP2003221676A
JP2003221676A JP2002022329A JP2002022329A JP2003221676A JP 2003221676 A JP2003221676 A JP 2003221676A JP 2002022329 A JP2002022329 A JP 2002022329A JP 2002022329 A JP2002022329 A JP 2002022329A JP 2003221676 A JP2003221676 A JP 2003221676A
Authority
JP
Japan
Prior art keywords
zinc
steel sheet
zinc phosphate
corrosion resistance
chemical conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002022329A
Other languages
Japanese (ja)
Inventor
Seiji Nakajima
清次 中島
Yoichi Tobiyama
洋一 飛山
Chiaki Kato
千昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002022329A priority Critical patent/JP2003221676A/en
Publication of JP2003221676A publication Critical patent/JP2003221676A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zinc-based plated steel sheet superior in a sliding property, and in corrosion resistance after electrophoretically coated. <P>SOLUTION: The zinc-base plated steel sheet has a zinc-base plated layer formed on the surface of a steel sheet, and a solid lubricating film which contains particles of zinc phosphate tetrahydrate with an average particle diameter of 3 μm or less, in a coating mass of 0.05-2.0 g/m<SP>2</SP>, on the surface of the zinc-base plated layer. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、摺動性および電着
塗装後の耐食性に優れた亜鉛系めっき鋼板に関する。 【0002】 【従来の技術】溶融亜鉛めっき鋼板や電気亜鉛めっき鋼
板のような亜鉛系めっき鋼板は、優れた耐食性を有する
ことから、自動車、家電、建材等の分野において広くか
ら使用されている。しかしながら、亜鉛系めっき鋼板
は、冷延鋼板と比較するとプレス成形性に劣っているた
め、従来から、亜鉛系めっき鋼板のプレス成形性を改善
する方法について種々の提案がなされている。 【0003】例えば、特開昭62−192597号公報
には、亜鉛系めっき層の上層に鉄系の硬質めっきを施
し、表面の硬度を上昇させることにより、めっきとダイ
スのかじりを防止する方法が提案されている。また、特
開平4−176878号公報には、めっき層の表面にP
やBの酸素酸塩と金属酸化物からなる皮膜を形成して、
プレス成形における摺動性を改善し、これによりプレス
成形性を改善する方法が提案されている。 【0004】さらに、亜鉛系めっき鋼板のプレス成形性
を改善する従来技術としては、特開昭62−19259
7号公報や特開平4−176878号公報に開示された
技術のほかに、浸漬や塗布などの方法によってリン酸亜
鉛皮膜を亜鉛系めっき鋼板にの上層に被覆したプレフォ
ス処理鋼板と呼ばれる鋼板が知られている。 【0005】 【発明が解決しようとする課題】しかしながら、これら
従来の亜鉛系めっき鋼板のプレス成形性を改善する方法
にあっては、以下の問題点があった。即ち、特開昭62
−192597号公報に開示された方法の場合、亜鉛系
めっき層の上層に鉄系硬質めっきを施す必要があるが、
この鉄系硬質めっきを施すとコスト高となるため、近年
の自動車メーカーにおける材料コストダウン要求を満足
しない。 【0006】また、特開平4−176878号公報に開
示された方法の場合、プレス成形における摺動性は改善
するものの、電着塗装後の耐食性の劣化を招くという問
題があった。これを具体的に説明すると、自動車の車体
に使用される亜鉛系めっき鋼板の処理工程は、通常、プ
レス工程、溶接工程、アルカリ脱脂工程、化成処理工
程、塗装工程のような順序で行われる。このうちのアル
カリ脱脂工程では、自動車メーカーにおける各ラインに
よって種々の脱脂薬剤が使用されており、その使用条
件、すなわち脱脂液の温度、浸漬時間、スプレー時間、
pHなどの条件が様々である。また、亜鉛系めっき鋼板
が同じラインを通過した場合でも、脱脂液が当たる部位
と当たらない部位とが存在する。このため、亜鉛系めっ
き層の上層にアルカリ可溶性の皮膜が施されていたとし
ても、皮膜が完全に溶解することはなく、その一部又は
大部分が残存するのが実情である。ここで、特開平4−
176878号公報に開示された方法の場合には、残存
した皮膜成分が、後の化成処理工程で亜鉛系めっき鋼板
の表面に形成される化成処理結晶の成分であるリン酸亜
鉛四水和物(ホパイト:Zn3 (Po4 2 ・4H
2 O)とは全く異質の成分であるため、皮膜残存部にお
いては、化成処理工程によって正常な形態を有しかつ均
一で緻密な化成処理結晶が生成しない。その結果、特開
平4−176878号公報に開示された方法の場合に
は、電着塗装後の耐食性の劣化が招かれるのである。 【0007】さらに、浸漬や塗布などの方法によってリ
ン酸亜鉛皮膜を亜鉛系めっき鋼板の上層に被覆したプレ
フォス処理鋼板の場合も、電着塗装後の耐食性の劣化を
招くという問題があった。これを具体的に説明すると、
プレフォス処理鋼板のリン酸亜鉛皮膜は、亜鉛めっき層
との反応をともなって形成されるため、5μm〜10μ
m程度の粗大な鱗片状のリン酸亜鉛結晶で覆い尽くされ
ており、アルカリ脱脂によってもほとんど溶解し難いも
のである。従って、リン酸亜鉛皮膜の一部がたとえリン
酸亜鉛四水和物であったとしても、化成処理工程におい
ては、新たな化成処理結晶はほとんど形成されない。自
動車メーカーにおける化成処理工程で使用される化成処
理剤は、通常、電着塗装後の耐食性を確保するためにニ
ッケルイオンやマンガンイオンなどの成分が適量配合さ
れたものであるため、新たな化成処理結晶が形成されな
いことが、電着塗装後の耐食性の著しい劣化を招くので
ある。 【0008】以上述べたように、従来においては、良好
なプレス成形性を有し、かつ電着塗装後の耐食性に優れ
た亜鉛系めっき鋼板は知られていなかった。従って、本
発明は上述の問題点に鑑みてなされたものであり、その
目的は、摺動性および電着塗装後の耐食性に優れた亜鉛
系めっき鋼板を提供することにある。 【0009】 【課題を解決するための手段】本発明者らは、亜鉛系め
っき鋼板のプレス成形性を改善する目的で、摺動性改善
効果を有する固形潤滑潤滑皮膜について鋭意検討を行っ
てきた。その結果、亜鉛系めっき鋼板の摺動性を改善す
る固形潤滑皮膜について種々見出すことができた。 【0010】しかし、その一方で、ほとんどの固形潤滑
皮膜がアルカリ脱脂後に残存し、正常な化成処理結晶が
形成されず、結果的に電着塗装後の耐食性の劣化を招く
ことを知見した。そこで、本発明者らは、アルカリ脱脂
液に対する溶解性の高い固形潤滑皮膜についての検討も
行った。実際の自動車メーカーでのアルカリ脱脂処理を
考慮した結果、即ち、種々のアルカリ脱脂薬剤につい
て、脱脂液の温度、浸漬時間、スプレー時間、pHなど
を変化させ、さらに脱脂液の当たる部位と当たらない部
位に相当する条件について調査を行った結果、固形潤滑
皮膜を完全に溶解することはほぼ不可能であることが判
明した。この理由は、たとえ固形潤滑皮膜が亜鉛系めき
層との反応によって形成されたものでなくとも、亜鉛系
めっき層の凹部、あるいはプレス成形時に生じたクラッ
ク内に入り込んだ皮膜が完全には除去されないためと考
えられる。 【0011】次に、本発明者らは、自動車メーカーでの
化成処理工程による化成処理結晶と同種の成分であるリ
ン酸亜鉛を、固形潤滑皮膜として活用することに着目し
て検討を行った。その結果、従来技術として知られてい
るプレフォス処理では、亜鉛めっき層との反応をともな
って皮膜が形成されるため、5μm〜10μm程度の粗
大なリン酸亜鉛結晶が亜鉛系めっき鋼板の表面を覆い尽
くし、アルカリ脱脂後にもその粗大なリン酸亜鉛結晶が
残存し、その後の化成処理において新たな化成処理結晶
がほとんど形成されず、このため、電着塗装後の耐食性
に劣ることを明らかにした。 【0012】そこで、本発明者らは、リン酸亜鉛粒子を
含有する処理液を、表面に亜鉛系めっき層が形成された
亜鉛系めっき鋼板上に塗布、乾燥して皮膜を形成する方
法について検討を行った。その結果、リン酸亜鉛粒子の
構造や平均粒子径によって電着塗装後の耐食性が著しく
異なることを新たに知見した。すなわち、リン酸亜鉛に
は、リン酸亜鉛四水和物(ホパイト:Zn3 (Po4
2 ・4H2 O)、リン酸亜鉛二水和物(Zn3 (P
4 2 ・2H2 O)、リン酸亜鉛一水和物(Zn
3 (Po4 2 ・H2 O)、リン酸亜鉛無水物(Zn3
(Po4 2 )の構造のものが存在し、摺動性改善効果
についてはいずれの構造のものにも認められるが、リン
酸亜鉛四水和物は電着塗装後の耐食性に悪影響を及ぼさ
ないことを知見した。これは、リン酸亜鉛四水和物が、
自動車メーカーでの化成処理工程で形成される化成処理
結晶の成分と全く同質のものであるため、アルカリ脱脂
後に残存したリン酸亜鉛四水和物がその後の化成処理反
応における結晶核となり、結晶構造を継承した化成処理
反応が進み、均一で緻密な化成処理結晶が形成されるた
めと考えられる。 【0013】また、リン酸亜鉛四水和物粒子の平均粒子
径によっても電着塗装後の耐食性が大きく異なり、平均
粒子径が3μm以下の場合には、残存した粒子が結晶核
として作用するため、均一で緻密な化成処理結晶が形成
され、電着塗装後の耐食性が良好であるが、平均粒子径
が3μmを超えると、結晶核としての作用が消失するた
め、緻密な化成処理結晶が形成されず、電着塗装後の耐
食性が不良となることを知見した。 【0014】以上の知見に基づき、良好な摺動性と電着
塗装後の耐食性が両立するために、本発明は、鋼板の表
面に亜鉛系めっき層が形成された亜鉛系めっき鋼板であ
って、前記亜鉛系めっき層の表面に、平均粒子径が3μ
m以下のリン酸亜鉛四水和物粒子を含有し、且つ付着量
が0.05〜2.0g/ m2 の固形潤滑皮膜を有するこ
とを特徴としている。 【0015】この亜鉛系めっき鋼板によれば、亜鉛系め
っき鋼板の摩擦係数を小さく抑制できて摺動性が良好に
なると共に、電着塗装後の耐食性を良好なものとするこ
とができる。 【0016】 【発明の実施の形態】次に本発明の実施形態を説明す
る。本発明の実施形態における亜鉛系めっき鋼板は、鋼
板の表面に亜鉛系めっき層が形成されてあり、この亜鉛
系めっき層の表面に固形潤滑皮膜を有している。この固
形潤滑皮膜は、平均粒子径が3μm以下のリン酸亜鉛四
水和物粒子を含有し、亜鉛系めっき層への付着量が0.
05〜2.0g/ m2 で調整されている。 【0017】ここで、リン酸亜鉛四水和物粒子を含有す
る固形潤滑皮膜としたのは、前述の通り、リン酸亜鉛四
水和物粒子が摺動性を改善する効果のみならず、化成処
理反応の結晶核となって電着塗装後の耐食性を改善する
効果の双方を有しているからである。なお、この固形潤
滑皮膜は、リン酸亜鉛四水和物粒子を含有すればよく、
リン酸亜鉛四水和物粒子を皮膜中に50質量%以上含有
することが好ましい。リン酸亜鉛四水和物粒子は、摺動
性改善効果及び化成処理反応の結晶核となって電着塗装
後の耐食性を改善する効果の両者を有しているため、皮
膜中に50質量%以上含有することが好ましく、皮膜が
すべてリン酸亜鉛四水和物粒子で構成されていてもよ
い。 【0018】固形潤滑皮膜中に含有されるリン酸亜鉛四
水和物粒子以外の他の成分としては、何ら限定されるも
のではないが、例えば、摺動性改善効果を有する無機化
合物や有機化合物、皮膜の成膜性及びめっき層との密着
性を改善する効果を有する無機化合物や有機化合物、及
び処理液の安定性を改善する効果を有する界面活性剤な
どの有機化合物などが例示される。 【0019】また、平均粒子径が3μm以下のリン酸亜
鉛四水和物粒子を含有することとしたのは、前述の通
り、リン酸亜鉛四水和物粒子の平均粒子径が3μm以下
であれば、アルカリ脱脂後に残存した粒子が化成処理反
応の結晶核として作用するため、均一で緻密な化成処理
結晶が形成され、電着塗装後の耐食性を良好にすること
ができるからである。一方、リン酸亜鉛四水和物粒子の
平均粒子径が3μmを超えると、結晶核としての作用が
消失するため、緻密な化成処理結晶が形成されず、電着
塗装後の耐食性が不良となる。また、リン酸亜鉛四水和
物粒子の平均粒子径の下限値については、摺動性及び電
着塗装後の耐食性に悪影響を与えないため、特に規定さ
れないが、0.001μm未満の粒子を製造する場合に
は大幅な製造コストの増加となるため、平均粒子径は
0.001μm以上が好ましい。より好ましくは、リン
酸亜鉛四水和物粒子の平均粒子径は0.01〜3μmの
範囲である。なお、リン酸亜鉛四水和物粒子の平均粒子
径の測定は、市販の粒子径分布測定装置を用いて行えば
よく、例えば、レーザー回析・散乱式粒子径分布測定装
置を用いることができる。このとき、粒子径が小さい側
からの累積度数分布が50%のときの粒子径を平均粒子
径とする。 【0020】さらに、リン酸亜鉛四水和物粒子を含有す
る固形潤滑皮膜の付着量を0.05〜2.0g/ m2
したのは、前記付着量が0.05g/ m2 未満では摺動
性の改善効果が不十分であり、その一方、前記付着量が
2.0g/ m2 を超えると摺動性改善効果が飽和して製
造コストの増加となるためである。前記付着量は、0.
1〜2.0g/ m2 の範囲とすることがより好ましい。 【0021】なお、本発明の実施形態における亜鉛系め
っき鋼板の亜鉛系めっき層は、亜鉛を主成分とするめっ
き層であればよく、亜鉛系めっき鋼板として、例えば、
合金化溶融亜鉛めっき鋼板、溶融亜鉛めっき鋼板、A
l,Mg,Siなどを1種又は2種以上含有する溶融亜
鉛系めっき鋼板、電気亜鉛めっき鋼板、Ni,Fe,C
oなどを1種又は2種以上含有する電気亜鉛合金めっき
鋼板などが例示される。 【0022】次に、亜鉛系めっき鋼板の製造方法につい
て説明すると、先ず、鋼板の表面に亜鉛系めっき処理を
行う。その後、亜鉛系めっき処理により形成される亜鉛
系めっき層の表面に、平均粒子径が3μm以下のリン酸
亜鉛四水和物粒子を含有する処理液を、塗布・乾燥後の
付着量が0.05〜2.0g/ m2 となる量を塗布した
後、所定温度で加熱・乾燥させればよい。 【0023】なお、亜鉛系めっき鋼板の製造方法は、亜
鉛系めっき層の表面に、平均粒子径が3μm以下のリン
酸亜鉛四水和物粒子を含有し、付着量が0.05〜2.
0g/ m2 の固形潤滑皮膜を形成できるものであれば、
これに限定されない。また、処理液の塗布方法として
は、ロールコーターを用いたり、またはスプレーや浸漬
処理後にロール絞りを行う方法などが例示される。ま
た、加熱・乾燥は、水分を蒸発させるのに必要な条件で
行えばよいが、100℃を超える温度で長時間の乾燥を
行った場合、リン酸亜鉛四水和物の一部が脱水反応によ
りリン酸亜鉛二水和物の形態に変化する場合があるた
め、100℃以下の温度で加熱・乾燥を行うことが望ま
しい。 【0024】 【実施例】本発明の効果を以下の実施例によって検証す
る。素材である亜鉛系めっき鋼板として、板厚0.8m
mの普通鋼を原板として合金化溶融亜鉛めっき(目付
量:45g/ m2 、亜鉛めっき層組成 Fe含有率:1
0質量%、Al含有率:0.2質量%、残部:亜鉛)を
形成した合金化溶融亜鉛めっき鋼板を用い、次の条件で
この合金化溶融亜鉛めっき鋼板の表面(亜鉛系めっき層
の表面)に固形潤滑皮膜を形成した。 【0025】即ち、実施例1〜10として、亜鉛系めっ
き層の表面に、表1に示す平均粒子径のリン酸亜鉛四水
和物粒子を20質量%、およびノニオン系界面活性剤を
0.3質量%含有した水分処理液を、ロールコーターを
用いて、塗布・乾燥後の付着量が表1に示す量となる様
に塗布した後、80℃で乾燥した。一方、比較例1〜1
1として、亜鉛系めっき層の表面に、表1に示す平均粒
子径のリン酸亜鉛四水和物粒子、リン酸亜鉛二水和物粒
子又はリン酸亜鉛無水物粒子を20質量%、およびノニ
オン系界面活性剤を0.3質量%含有した水分処理液
を、ロールコーターを用いて、塗布・乾燥後の付着量が
表1に示す量となる様に塗布した後、80℃で乾燥し
た。 【0026】以上のように表面に固形潤滑皮膜を形成し
た亜鉛系めっき鋼板の摺動性、及び電着塗装後の耐食性
を以下の方法により評価した。摺動性は、無塗油状態で
平面摺動試験(面圧:9.8MPa、摺動距離:100
mm、摺動速度:10mm/ s)を行ったときの摩擦係
数(μ)を測定し、以下の基準により評価した。 【0027】 ◎:摩擦係数0.13未満 ○:摩擦係数0.13以上0.15未満 ×:摩擦係数0.15以上 また、電着塗装後の耐食性は、化成処理及び電着塗装を
施した試験板について、塩水噴霧試験により評価した。
ここで、化成処理工程は、アルカリ脱脂(日本パーカラ
イジング株式会社製のFC−L4460を用い、温度4
3℃で、浸漬時間を120秒として行った)、水洗(室
温で、スプレー時間を30秒として行った)、表面調整
(日本パーカライジング株式会社製のPL−4040を
用い、室温で、スプレー時間を30秒として行った)、
化成処理(日本パーカライジング株式会社製のPB−L
3020を用い、温度43℃で、浸漬時間を120秒と
して行った)、水洗(室温で、スプレー時間を30秒と
して行った)、及び熱風乾燥の手順で行った。また、化
成処理を施した試験板の表面に、電着塗料として関西ペ
イント株式会社製のGT−10LFを用いて、クーロン
制御により膜厚が20μmとなるように電着塗装を行
い、175℃×25分の条件で焼き付け乾燥を行った。
このようにして作製した試験板にクロスカットを入れ、
塩水噴霧試験(JIS Z 2371)を行った。塩水
噴霧試験を480時間行った後の試験板について、以下
のクロスカット部の電着塗膜のふくれの基準により電着
塗装後の耐食性を評価した。 【0028】 ◎:片側最大ふくれ幅4mm未満 ○:片側最大ふくれ幅4mm以上5mm未満 ×:片側最大ふくれ幅5mm以上 摺動性及び電着塗装後の耐食性の評価結果を表1に示
す。 【0029】 【表1】 【0030】表1を参照すると、本発明の要件を満たす
実施例1〜10にあっては、亜鉛系めっき鋼板の摩擦係
数を小さく抑制できて摺動性が良好で、かつ電着塗装後
の耐食性についても良好な結果が得られた。一方、皮膜
付着量が0.03g/ m2 と少ない比較例1にあって
は、電着塗装後の耐食性は良好であるが、摩擦係数が大
きく摺動性について良好な結果が得られていない。 【0031】また、リン酸亜鉛四水和物粒子の平均粒子
径の大きい比較例2及び3にあっては、摺動性について
良好な結果が得られているが、電着塗装後の耐食性につ
いて良好な結果が得られていない。これは、リン酸亜鉛
四水和物粒子の平均粒子径が3μmを超えると、結晶核
としての作用が消失するため、緻密な化成処理結晶が形
成されないからと考えられる。 【0032】さらに、リン酸亜鉛二水和物粒子を含有し
た比較例4〜7にあっては、摺動性について良好な結果
が得られているが、電着塗装後の耐食性について良好な
結果が得られていない。また、リン酸亜鉛無水和物粒子
を含有した比較例8〜11にあっても、摺動性について
良好な結果が得られているが、電着塗装後の耐食性につ
いて良好な結果が得られていない。これらは、リン酸亜
鉛二水和物及びリン酸亜鉛無水和物が、化成処理工程で
形成される化成処理結晶の成分(リン酸亜鉛四水和物)
と異質のものであるため、アルカリ脱脂後に残存したリ
ン酸亜鉛二水和物及びリン酸亜鉛無水和物がその後の化
成処理反応における結晶核とならず、均一で緻密な化成
処理結晶が形成されないためと考えられる。 【0033】 【発明の効果】以上説明したように、本発明に係る亜鉛
系めっき鋼板は、亜鉛系めっき層の表面に、平均粒子径
が3μm以下のリン酸亜鉛四水和物粒子を含有し、且つ
付着量が0.05〜2.0g/ m2 の固形潤滑皮膜を有
するので、亜鉛系めっき鋼板の摩擦係数を小さく抑制で
きて摺動性が良好になると共に、電着塗装後の耐食性を
良好なものとすることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a galvanized steel sheet having excellent slidability and corrosion resistance after electrodeposition coating. [0002] Galvanized steel sheets, such as hot-dip galvanized steel sheets and electrogalvanized steel sheets, have excellent corrosion resistance and are widely used in the fields of automobiles, home appliances, building materials and the like. However, galvanized steel sheets are inferior in press formability as compared with cold-rolled steel sheets, and various proposals have been made on methods for improving the press formability of galvanized steel sheets. For example, Japanese Patent Application Laid-Open No. 62-192597 discloses a method for preventing galling between plating and a die by applying iron-based hard plating on a zinc-based plating layer and increasing the surface hardness. Proposed. Also, Japanese Patent Application Laid-Open No. H4-176878 discloses that a P
Or a film made of oxyacid salt of B and metal oxide,
There has been proposed a method for improving the slidability in press molding and thereby improving the press moldability. Further, as a prior art for improving the press formability of a galvanized steel sheet, Japanese Patent Application Laid-Open No. 62-19259 discloses a technique.
In addition to the technology disclosed in Japanese Patent Application Laid-Open No. 7-176, and Japanese Patent Application Laid-Open No. 4-176778, there is known a steel plate called a pre-foss-treated steel plate in which a zinc phosphate coating is coated on a zinc-based coated steel plate by a method such as dipping or coating. Have been. [0005] However, the conventional methods for improving the press formability of galvanized steel sheets have the following problems. That is, JP
In the case of the method disclosed in -192597, it is necessary to apply iron-based hard plating to the upper layer of the zinc-based plating layer.
This iron-based hard plating increases the cost, and thus does not satisfy the recent demand for material cost reduction by automobile manufacturers. In the case of the method disclosed in Japanese Patent Application Laid-Open No. 4-176878, although the slidability in press molding is improved, there is a problem that the corrosion resistance after electrodeposition coating is deteriorated. More specifically, the processing steps of a galvanized steel sheet used for an automobile body are generally performed in the order of a pressing step, a welding step, an alkali degreasing step, a chemical conversion step, and a painting step. In the alkaline degreasing process, various degreasing agents are used by each line in an automobile manufacturer.
Conditions such as pH are various. Further, even when the zinc-based plated steel sheet passes through the same line, there are a portion to which the degreasing solution is applied and a portion to which the degreasing solution is not applied. For this reason, even if an alkali-soluble film is applied to the upper layer of the zinc-based plating layer, the film does not completely dissolve, and part or most of the film remains. Here, Japanese Unexamined Patent Publication No.
In the case of the method disclosed in Japanese Patent No. 176878, zinc phosphate tetrahydrate (a component of a chemical conversion treatment crystal formed on the surface of a galvanized steel sheet in a subsequent chemical conversion treatment step) hopeite: Zn 3 (Po 4) 2 · 4H
Since 2O) is a completely different component, the chemical conversion treatment step does not produce a uniform and dense chemical conversion treatment crystal in the remaining portion of the film. As a result, in the case of the method disclosed in Japanese Patent Application Laid-Open No. 4-176878, deterioration of corrosion resistance after electrodeposition coating is caused. [0007] Further, in the case of a pre-foss-treated steel sheet in which a zinc phosphate coating is coated on a zinc-based plated steel sheet by a method such as immersion or coating, there is a problem that the corrosion resistance after electrodeposition coating is deteriorated. To explain this concretely,
Since the zinc phosphate film of the pre-foss-treated steel sheet is formed along with the reaction with the galvanized layer, 5 μm to 10 μm
It is covered with coarse scale-like zinc phosphate crystals of about m, and is hardly dissolved even by alkali degreasing. Therefore, even if a part of the zinc phosphate film is zinc phosphate tetrahydrate, new chemical conversion treated crystals are hardly formed in the chemical conversion treatment step. The chemical conversion agent used in the chemical conversion process at automakers is usually a new chemical conversion treatment because components such as nickel ions and manganese ions are mixed in an appropriate amount to ensure corrosion resistance after electrodeposition coating. The absence of crystals leads to significant degradation of corrosion resistance after electrodeposition coating. As described above, a zinc-coated steel sheet having good press-formability and excellent corrosion resistance after electrodeposition coating has not been known. Accordingly, the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a galvanized steel sheet having excellent slidability and corrosion resistance after electrodeposition coating. Means for Solving the Problems The present inventors have intensively studied a solid lubricating lubricating film having a sliding property improving effect for the purpose of improving the press formability of a galvanized steel sheet. . As a result, various types of solid lubricating films that improve the sliding properties of zinc-based plated steel sheets could be found. [0010] On the other hand, however, it has been found that most of the solid lubricating film remains after degreasing with alkali and normal chemical conversion treatment crystals are not formed, resulting in deterioration of corrosion resistance after electrodeposition coating. Then, the present inventors also examined a solid lubricating film having high solubility in an alkaline degreasing solution. The result of considering the alkali degreasing treatment at the actual automobile manufacturer, that is, the temperature, immersion time, spray time, pH, etc. of the degreasing liquid for various alkali degreasing chemicals, and further, the parts that do not hit the degreasing liquid As a result of investigating conditions equivalent to the above, it was found that it was almost impossible to completely dissolve the solid lubricating film. The reason is that even if the solid lubricating film is not formed by the reaction with the zinc-based plating layer, the concave portion of the zinc-based plating layer, or the film that has entered cracks generated during press molding is not completely removed. It is thought that it is. [0011] Next, the present inventors have focused on the use of zinc phosphate, which is the same kind of component as a chemical conversion treatment crystal in a chemical conversion treatment step in an automobile manufacturer, as a solid lubricating film, and studied. As a result, in the pre-foss treatment known as the prior art, a film is formed with a reaction with the zinc plating layer, so that coarse zinc phosphate crystals of about 5 μm to 10 μm cover the surface of the zinc-based plated steel sheet. Exhausted, the coarse zinc phosphate crystals remained even after alkali degreasing, and almost no new chemical conversion-treated crystals were formed in the subsequent chemical conversion treatment, which revealed that the corrosion resistance after electrodeposition coating was poor. Therefore, the present inventors studied a method of applying a treatment solution containing zinc phosphate particles on a zinc-based plated steel sheet having a zinc-based plating layer formed on its surface and drying it to form a film. Was done. As a result, it was newly found that the corrosion resistance after electrodeposition coating significantly differs depending on the structure and average particle diameter of zinc phosphate particles. That is, zinc phosphate includes zinc phosphate tetrahydrate (hopite: Zn 3 (Po 4 )).
2 · 4H 2 O), zinc phosphate dihydrate (Zn 3 (P
o 4) 2 · 2H 2 O ), zinc phosphate monohydrate (Zn
3 (Po 4 ) 2 .H 2 O), anhydrous zinc phosphate (Zn 3
(Po 4 ) 2 ) exists, and the effect of improving the slidability is recognized in any of the structures. However, zinc phosphate tetrahydrate adversely affects the corrosion resistance after electrodeposition coating. I found that there is no. This is because zinc phosphate tetrahydrate
Since it is exactly the same as the components of the chemical conversion crystals formed in the chemical conversion process at the automobile manufacturer, the zinc phosphate tetrahydrate remaining after alkali degreasing becomes the crystal nucleus in the subsequent chemical conversion reaction, and the crystal structure It is considered that a chemical conversion treatment reaction inheriting the above is progressed, and a uniform and dense chemical conversion treatment crystal is formed. Further, the corrosion resistance after electrodeposition coating greatly varies depending on the average particle size of zinc phosphate tetrahydrate particles. When the average particle size is 3 μm or less, the remaining particles act as crystal nuclei. A uniform and dense chemical conversion treatment crystal is formed, and the corrosion resistance after electrodeposition coating is good. However, when the average particle diameter exceeds 3 μm, the action as a crystal nucleus disappears, so that a fine chemical conversion treatment crystal is formed. However, it was found that the corrosion resistance after electrodeposition coating was poor. Based on the above findings, in order to achieve both good sliding properties and corrosion resistance after electrodeposition coating, the present invention relates to a zinc-based plated steel sheet having a zinc-based plating layer formed on the surface of a steel sheet. The surface of the zinc-based plating layer has an average particle diameter of 3 μm.
m or less, and has a solid lubricating film having an adhesion amount of 0.05 to 2.0 g / m 2 . According to the galvanized steel sheet, the coefficient of friction of the galvanized steel sheet can be suppressed to a small value, so that the slidability is improved and the corrosion resistance after the electrodeposition coating can be improved. Next, an embodiment of the present invention will be described. The zinc-based plated steel sheet in the embodiment of the present invention has a zinc-based plated layer formed on the surface of the steel sheet, and has a solid lubricating film on the surface of the zinc-based plated layer. This solid lubricating film contains zinc phosphate tetrahydrate particles having an average particle size of 3 μm or less, and has an adhesion amount to the zinc-based plating layer of 0.
It is adjusted in the range of 0.5 to 2.0 g / m 2 . The reason why the solid lubricating film containing the zinc phosphate tetrahydrate particles is used is that the zinc phosphate tetrahydrate particles not only have the effect of improving the slidability, but also have a chemical conversion property. This is because it has both effects of improving the corrosion resistance after the electrodeposition coating by forming a crystal nucleus of the treatment reaction. Incidentally, this solid lubricating film may contain zinc phosphate tetrahydrate particles,
It is preferable that zinc phosphate tetrahydrate particles are contained in the coating in an amount of 50% by mass or more. Zinc phosphate tetrahydrate particles have both the effect of improving slidability and the effect of improving the corrosion resistance after electrodeposition coating by forming crystal nuclei in a chemical conversion reaction, so that 50% by mass It is preferable to contain the above, and the coating may be entirely composed of zinc phosphate tetrahydrate particles. The component other than the zinc phosphate tetrahydrate particles contained in the solid lubricating film is not limited at all, and may be, for example, an inorganic compound or an organic compound having a sliding property improving effect. Examples thereof include inorganic compounds and organic compounds having an effect of improving the film-forming properties of a film and adhesion to a plating layer, and organic compounds such as a surfactant having an effect of improving the stability of a processing solution. Further, the reason why zinc phosphate tetrahydrate particles having an average particle diameter of 3 μm or less are contained as described above is that zinc phosphate tetrahydrate particles have an average particle diameter of 3 μm or less. If, for example, the particles remaining after the alkali degreasing act as crystal nuclei for the chemical conversion reaction, uniform and dense chemical conversion crystals are formed, and the corrosion resistance after electrodeposition coating can be improved. On the other hand, when the average particle diameter of the zinc phosphate tetrahydrate particles exceeds 3 μm, the action as crystal nuclei disappears, so that a dense chemical conversion treated crystal is not formed, and the corrosion resistance after electrodeposition coating becomes poor. . The lower limit of the average particle size of the zinc phosphate tetrahydrate particles is not particularly limited because it does not adversely affect the slidability and the corrosion resistance after electrodeposition coating. In this case, the production cost is greatly increased, so that the average particle size is preferably 0.001 μm or more. More preferably, the average particle size of the zinc phosphate tetrahydrate particles is in the range of 0.01 to 3 μm. The average particle size of the zinc phosphate tetrahydrate particles may be measured using a commercially available particle size distribution measuring device, for example, a laser diffraction / scattering type particle size distribution measuring device can be used. . At this time, the particle size when the cumulative frequency distribution from the smaller particle size side is 50% is defined as the average particle size. Furthermore, the reason why the adhesion amount of the solid lubricating film containing the zinc phosphate tetrahydrate particles is set to 0.05 to 2.0 g / m 2 is that if the adhesion amount is less than 0.05 g / m 2 , This is because the effect of improving the slidability is insufficient. On the other hand, if the amount of adhesion exceeds 2.0 g / m 2 , the effect of improving the slidability is saturated and the production cost increases. The amount of adhesion is 0.
More preferably, it is in the range of 1 to 2.0 g / m 2 . In the embodiment of the present invention, the zinc-based plated layer of the zinc-based plated steel sheet may be a plated layer containing zinc as a main component.
Alloyed hot-dip galvanized steel sheet, hot-dip galvanized steel sheet, A
Hot-dip galvanized steel sheet, electro-galvanized steel sheet, Ni, Fe, C containing one or more kinds of l, Mg, Si, etc.
Examples thereof include an electro-zinc alloy-plated steel sheet containing one or more kinds of o and the like. Next, a method of manufacturing a galvanized steel sheet will be described. First, a zinc-based plating treatment is performed on the surface of the steel sheet. Thereafter, a treatment liquid containing zinc phosphate tetrahydrate particles having an average particle diameter of 3 μm or less is applied to the surface of the zinc-based plating layer formed by the zinc-based plating treatment so that the adhesion amount after application and drying is 0. After applying an amount of 0.5 to 2.0 g / m 2 , heating and drying may be performed at a predetermined temperature. In the method for producing a zinc-based plated steel sheet, zinc phosphate tetrahydrate particles having an average particle diameter of 3 μm or less are contained on the surface of the zinc-based plating layer, and the amount of adhesion is 0.05 to 2.0.
If it can form a solid lubricating film of 0 g / m 2 ,
It is not limited to this. Examples of the method of applying the treatment liquid include a method of using a roll coater, or a method of performing roll squeezing after spraying or dipping. Heating and drying may be performed under conditions necessary for evaporating water. However, when drying is performed at a temperature exceeding 100 ° C. for a long time, a part of zinc phosphate tetrahydrate causes a dehydration reaction. Therefore, it is desirable to perform heating and drying at a temperature of 100 ° C. or less because the form may change to the form of zinc phosphate dihydrate. EXAMPLES The effects of the present invention will be verified by the following examples. 0.8m thick zinc coated steel sheet
hot-dip galvanizing (basis weight: 45 g / m 2 , galvanized layer composition Fe content: 1)
0% by mass, Al content: 0.2% by mass, balance: zinc) formed on the surface of this galvannealed steel sheet (the surface of the galvanized layer) under the following conditions: ), A solid lubricating film was formed. That is, in Examples 1 to 10, 20% by mass of zinc phosphate tetrahydrate particles having an average particle diameter shown in Table 1 and 0.2% of a nonionic surfactant were added to the surface of the zinc-based plating layer. The water treatment liquid containing 3% by mass was applied using a roll coater so that the amount of adhesion after application and drying was as shown in Table 1, and then dried at 80 ° C. On the other hand, Comparative Examples 1 to 1
As No. 1, 20% by mass of zinc phosphate tetrahydrate particles, zinc phosphate dihydrate particles, or zinc phosphate anhydrous particles having an average particle size shown in Table 1 on a surface of a zinc-based plating layer; A water treatment liquid containing 0.3% by mass of the surfactant was applied using a roll coater so that the amount of adhesion after application and drying was as shown in Table 1, and then dried at 80 ° C. The slidability of the galvanized steel sheet having a solid lubricating film formed on the surface as described above and the corrosion resistance after electrodeposition coating were evaluated by the following methods. The slidability was measured in a flat sliding test (oil pressure: 9.8 MPa, sliding distance: 100) with no oil applied.
mm, sliding speed: 10 mm / s), the friction coefficient (μ) was measured, and evaluated according to the following criteria. :: Coefficient of friction of less than 0.13 :: Coefficient of friction of 0.13 or more and less than 0.15 ×: Coefficient of friction of 0.15 or more The corrosion resistance after electrodeposition coating was subjected to chemical conversion treatment and electrodeposition coating. The test plates were evaluated by a salt spray test.
Here, in the chemical conversion treatment step, alkali degreasing (using FC-L4460 manufactured by Nippon Parkerizing Co., Ltd., at a temperature of 4
At 3 ° C., the immersion time was 120 seconds), water washing (at room temperature, spray time was 30 seconds), surface conditioning (using PL-4040 manufactured by Nippon Parkerizing Co., Ltd.) 30 seconds),
Chemical treatment (PB-L manufactured by Nippon Parkerizing Co., Ltd.
Using 3020, the temperature was 43 ° C., the immersion time was 120 seconds, the washing was performed at room temperature, the spray time was 30 seconds, and the hot air drying was performed. Further, the surface of the test plate subjected to the chemical conversion treatment was subjected to electrodeposition coating using GT-10LF manufactured by Kansai Paint Co., Ltd. as an electrodeposition coating so that the film thickness became 20 μm by coulomb control, and 175 ° C. Baking and drying were performed for 25 minutes.
Put a cross cut on the test plate produced in this way,
A salt spray test (JIS Z 2371) was performed. For the test plate after the salt spray test was performed for 480 hours, the corrosion resistance after the electrodeposition coating was evaluated according to the following criteria for the blistering of the electrodeposition coating film in the cross cut portion. ◎: Maximum blister width on one side is less than 4 mm. ○: Maximum blister width on one side is 4 mm or more and less than 5 mm. X: Maximum blister width on one side is 5 mm or more. [Table 1] Referring to Table 1, in Examples 1 to 10 satisfying the requirements of the present invention, the coefficient of friction of the galvanized steel sheet can be suppressed to be small, the slidability is good, and after the electrodeposition coating, Good results were also obtained for corrosion resistance. On the other hand, in Comparative Example 1 in which the coating amount was as small as 0.03 g / m 2 , the corrosion resistance after the electrodeposition coating was good, but the friction coefficient was large and good results were not obtained regarding the sliding property. . In Comparative Examples 2 and 3, in which the average particle size of the zinc phosphate tetrahydrate particles was large, good results were obtained with respect to the slidability, but the corrosion resistance after electrodeposition coating was not improved. Good results have not been obtained. This is presumably because, when the average particle size of the zinc phosphate tetrahydrate particles exceeds 3 μm, the action as crystal nuclei disappears, so that dense chemical conversion-treated crystals are not formed. Furthermore, in Comparative Examples 4 to 7 containing zinc phosphate dihydrate particles, good results were obtained with respect to slidability, but good results were obtained with respect to corrosion resistance after electrodeposition coating. Is not obtained. Also in Comparative Examples 8 to 11 containing zinc phosphate anhydrate particles, good results were obtained for the sliding properties, but good results were obtained for the corrosion resistance after electrodeposition coating. Absent. These are components (Zinc phosphate tetrahydrate) of a chemical conversion treatment crystal in which zinc phosphate dihydrate and zinc phosphate anhydrate are formed in the chemical conversion treatment step.
The zinc phosphate dihydrate and zinc phosphate anhydrate remaining after alkali degreasing do not become crystal nuclei in the subsequent chemical conversion reaction, and uniform and dense chemical conversion treated crystals are not formed. It is thought that it is. As described above, the zinc-based plated steel sheet according to the present invention contains zinc phosphate tetrahydrate particles having an average particle diameter of 3 μm or less on the surface of the zinc-based plated layer. And a solid lubricating film having an adhesion amount of 0.05 to 2.0 g / m 2 , so that the coefficient of friction of the zinc-based plated steel sheet can be suppressed to a small value, thereby improving the slidability and the corrosion resistance after the electrodeposition coating. Can be improved.

フロントページの続き (72)発明者 加藤 千昭 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4J038 AA011 HA411 MA14 NA03 NA11 PC02 4K026 AA02 AA07 AA12 AA13 AA22 BA04 BB07 BB08 BB09 CA16 CA23 CA39 DA02 DA11 4K044 AA02 AB02 BA10 BA17 BA21 BB03 BC02 BC05 CA11 CA18 CA53 CA62 Continuation of front page    (72) Inventor Chiaki Kato             1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba             Iron Research Institute F term (reference) 4J038 AA011 HA411 MA14 NA03                       NA11 PC02                 4K026 AA02 AA07 AA12 AA13 AA22                       BA04 BB07 BB08 BB09 CA16                       CA23 CA39 DA02 DA11                 4K044 AA02 AB02 BA10 BA17 BA21                       BB03 BC02 BC05 CA11 CA18                       CA53 CA62

Claims (1)

【特許請求の範囲】 【請求項1】 鋼板の表面に亜鉛系めっき層が形成され
た亜鉛系めっき鋼板であって、 前記亜鉛系めっき層の表面に、平均粒子径が3μm以下
のリン酸亜鉛四水和物粒子を含有し、且つ付着量が0.
05〜2.0g/ m2 の固形潤滑皮膜を有することを特
徴とする亜鉛系めっき鋼板。
Claims 1. A zinc-coated steel sheet having a zinc-based plating layer formed on the surface of a steel sheet, wherein the zinc-based plating layer has a zinc phosphate having an average particle diameter of 3 μm or less on the surface of the zinc-based plating layer. It contains tetrahydrate particles and has an adhesion amount of 0.1.
Zinc-plated steel sheet characterized by having a solid lubricant coating of 05~2.0g / m 2.
JP2002022329A 2002-01-30 2002-01-30 Zinc-based plated steel sheet Pending JP2003221676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002022329A JP2003221676A (en) 2002-01-30 2002-01-30 Zinc-based plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002022329A JP2003221676A (en) 2002-01-30 2002-01-30 Zinc-based plated steel sheet

Publications (1)

Publication Number Publication Date
JP2003221676A true JP2003221676A (en) 2003-08-08

Family

ID=27745351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002022329A Pending JP2003221676A (en) 2002-01-30 2002-01-30 Zinc-based plated steel sheet

Country Status (1)

Country Link
JP (1) JP2003221676A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249661A (en) * 2008-04-03 2009-10-29 Sumitomo Metal Ind Ltd Hot-dip galvannealed steel sheet, its manufacturing method, and zinc phosphate treatment liquid
JP2013067790A (en) * 2011-09-07 2013-04-18 Nippon Paint Co Ltd Electrodeposition coating composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249661A (en) * 2008-04-03 2009-10-29 Sumitomo Metal Ind Ltd Hot-dip galvannealed steel sheet, its manufacturing method, and zinc phosphate treatment liquid
JP2013067790A (en) * 2011-09-07 2013-04-18 Nippon Paint Co Ltd Electrodeposition coating composition

Similar Documents

Publication Publication Date Title
JP5446057B2 (en) Zinc-based galvanized steel sheet for chemical conversion treatment, method for producing the same, and chemical conversion treated steel sheet
US6555249B1 (en) Surface treated steel sheet and method for production thereof
JPH0488196A (en) Galvanized steel sheet excellent in press workability and chemical conversion treating property
JP2003055777A (en) Chromate-free treated hot dip zinc - aluminum alloy plated steel sheet having excellent weldability and corrosion resistance
JP3872621B2 (en) Galvanized steel sheet for automobile bodies
JP2002363764A (en) Coating surface preparation agent, surface preparation method, metallic material, machining method and metallic product
JP3828675B2 (en) Surface-treated steel sheet with excellent corrosion resistance and workability and method for producing the same
JP2003221676A (en) Zinc-based plated steel sheet
US7160631B2 (en) Zinc-based coated steel sheet having excellent anti-peeling property, frictional property, and anti-galling property and method of manufacturing the same
JP2004197143A (en) Galvanized steel plate
JP3900070B2 (en) Non-chromic treatment of galvanized steel sheet
JP3449283B2 (en) Galvanized steel sheet excellent in press formability and its manufacturing method
JP2003221678A (en) Zinc-base plated high-tension steel sheet
JP4354851B2 (en) Antirust treatment liquid for steel plate and antirust treatment method
JP2001303263A (en) Surface-coated metallic sheet and method for manufacturing the same
JP2002371371A (en) Phosphate treated galvanized steel sheet superior in front and back discrimination properties
JP3903904B2 (en) Surface-treated steel sheet with excellent paintability
JP3600759B2 (en) Phosphate-treated galvanized steel sheet excellent in workability and method for producing the same
JP4344155B2 (en) Surface-treated galvanized steel sheet and surface treatment liquid
JP2003221677A (en) Zinc-base plated steel sheet
JP3704766B2 (en) Galvanized steel sheet with excellent press formability
JP2000313967A (en) Surface treated steel sheet excellent in corrosion resistance
JP2002212757A (en) Galvanized steel sheet having excellent corrosion resistance after working and production method therefor
JP2004052021A (en) Galvanized steel sheet and method of producing the same
JP2001073163A (en) Galvanized steel sheet excellent in pitting corrosion resistance