JP2003221677A - Zinc-base plated steel sheet - Google Patents

Zinc-base plated steel sheet

Info

Publication number
JP2003221677A
JP2003221677A JP2002022330A JP2002022330A JP2003221677A JP 2003221677 A JP2003221677 A JP 2003221677A JP 2002022330 A JP2002022330 A JP 2002022330A JP 2002022330 A JP2002022330 A JP 2002022330A JP 2003221677 A JP2003221677 A JP 2003221677A
Authority
JP
Japan
Prior art keywords
zinc
steel sheet
corrosion resistance
water
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002022330A
Other languages
Japanese (ja)
Inventor
Seiji Nakajima
清次 中島
Yoichi Tobiyama
洋一 飛山
Chiaki Kato
千昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002022330A priority Critical patent/JP2003221677A/en
Publication of JP2003221677A publication Critical patent/JP2003221677A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zinc-base plated steel sheet superior in a sliding property, corrosion resistance after electrophoretically coated, corrosion resistance after triple-coated, and water-resistant secondary adhesion. <P>SOLUTION: The zinc-base plated steel sheet has a zinc-base plated layer formed on the surface of a steel sheet, and a solid lubricating film which contains particles of tetrahydrate of iron dizinc phosphate with an average particle diameter of 3 μm or less, in a coating mass of 0.05-2.0 g/m<SP>2</SP>, on the surface of the zinc-base plated layer. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、摺動性、電着塗装
後の耐食性、三コート後の耐食性及び耐水二次密着性に
優れた亜鉛系めっき鋼板に関する。 【0002】 【従来の技術】溶融亜鉛めっき鋼板や電気亜鉛めっき鋼
板のような亜鉛系めっき鋼板は、優れた耐食性を有する
ことから、自動車、家電、建材などの分野において広く
から使用されている。しかしながら、亜鉛系めっき鋼板
は、冷延鋼板と比較するとプレス成形性に劣っているた
め、従来から、亜鉛系めっき鋼板のプレス成形性を改善
する方法について種々の提案がなされている。 【0003】例えば、特開昭62−192597号公報
には、亜鉛系めっき層の上層に、鉄系の硬質めっきを施
し、表面の硬度を上昇させることにより、めっきとダイ
スとのかじりを防止する方法が提案されている。また、
特開平4−176878号公報には、亜鉛系めっき層の
上層に、P(リン)やB(ホウ素)などの酸素酸塩と、
金属酸化物とからなる皮膜を形成し、プレス成形におけ
る摺動性を改善し、これによりプレス成形性を改善する
方法が提案されている。 【0004】さらに、亜鉛系めっき鋼板のプレス成形性
を改善する従来技術としては、特開昭62−19259
7号公報や特開平4−176878号公報に開示された
技術のほかに、浸漬や塗布などの方法によってリン酸亜
鉛皮膜を亜鉛系めっき鋼板の上層に被覆したプレフォス
処理鋼板と呼ばれる鋼板が知られている。 【0005】 【発明の解決しようとする課題】しかしながら、これら
従来の亜鉛系めっき鋼板のプレス成形性を改善する方法
にあっては、以下の問題点があった。すなわち、特開昭
62−192597号公報に開示された方法の場合、亜
鉛系めっき層の上層に鉄系硬質めっきを施す必要がある
が、この鉄系硬質めっきを施すとコスト高となるため、
近年の自動車メーカーにおける材料コストダウン要求を
満足しない。 【0006】また、特開平4−176878号公報に開
示された方法の場合、プレス成形における摺動性は改善
するものの、電着塗装後の耐食性の劣化を招くという問
題があった。これを具体的に説明すると、自動車の車体
に適用される亜鉛系めっき鋼板の処理工程は、通常、プ
レス工程、溶接工程、アルカリ脱脂工程、化成処理工
程、塗装工程のような順序で行われる。このうちのアル
カリ脱脂工程では、自動車メーカーにおける各ラインに
よって種々の脱脂薬剤が使用されており、その使用条
件、すなわち脱脂液の温度、浸漬温度、スプレ−時間、
pHなどの条件が様々である。また、亜鉛系めっき鋼板
が同じラインを通過した場合でも、脱脂液が当たる部位
と当たらない部位とが存在する。このため、亜鉛系めっ
き層の上層にアルカリ可溶性の皮膜が施されていたとし
ても、皮膜が完全に溶解することなく、その一部または
大部分が残存するのが実状である。ここで、特開平4−
176878号公報に開示された方法の場合には、残存
した皮膜成分が、後の化成処理工程で亜鉛系めっき鋼板
の表面に形成される化成処理結晶の成分であるリン酸亜
鉛四水和物(ホパイト:Zn3 (PO4 2 ・4H
2 O)とは全く異質の成分であるため、皮膜残存部にお
いては、化成処理工程によって正常な形態を有し且つ均
一で緻密な化成処理結晶が生成しない。その結果、特開
平4−176878号公報に開示された方法の場合に
は、電着塗装後の耐蝕性の劣化が招かれるのである。 【0007】さらに、浸漬や塗布などの方法によってリ
ン酸亜鉛皮膜を亜鉛系めっき鋼板の上層に被覆したプレ
フォス処理鋼板の場合も、電着塗装後の耐食性の劣化を
招くという問題があった。これを具体的に説明すると、
プレフォス処理鋼板のリン酸亜鉛皮膜は、亜鉛めっき系
層との反応をともなって形成されるため、5〜10μm
程度の粗大な鱗片状のリン酸亜鉛結晶で覆われており、
アルカリ脱脂工程によってもほとんど溶解し難いもので
ある。したがって、リン酸皮膜の一部がたとえリン酸亜
鉛四水和物であったとしても、化成処理工程において
は、新たな化成処理結晶はほとんど形成されない。自動
車メーカーにおける化成処理工程で使用される化成処理
工程で使用される化成処理剤は、通常、電着塗装後の耐
食性を確保するためにニッケルイオンやマンガンイオン
などの成分が適量配合されたものであるため、新たな化
成処理結晶が形成されないことが、電着塗装後の耐食性
の著しい劣化を招くのである。 【0008】さらに近年においては、自動車の車体外板
を構成する大型パネルの一体成形化が進んでおり、従来
における自動車の車体内板用亜鉛系めっき鋼板に対する
摺動性及び電着塗装後の耐食性に対する要求に加え、車
体外板用に必要な三コート(電着塗装、中塗り塗装、上
塗り塗装を指す)後の耐食性及び耐水二次密着性に対す
る要求が切望されてきている。 【0009】しかしながら、亜鉛系めっき鋼板において
は、三コート後の耐食性及び耐水二次密着性が冷延鋼板
よりも劣っているという問題があった。この理由として
は、亜鉛系めっき鋼板の表面に形成される化成処理結晶
が、冷延鋼板の表面に形成されるリン酸二亜鉛−鉄四水
和物(フォスフォフィライト:Zn2 Fe(PO4 2
・4H2 O)と比べて、耐アルカリ性に劣り、環境によ
り体積変化を起こして皮膜密着性を劣化させるリン酸亜
鉛四水和物からなるためであると考えられている。 【0010】ここで、上述した特開昭62−19259
7号公報に開示された方法の場合には、その鉄系めっき
層の上層に形成される化成処理結晶が、冷延鋼板の場合
と同様のリン酸二亜鉛−鉄四水和物であるが、上述した
ように、自動車メーカーのコストダウン要求に対応する
ことは困難であった。以上述べたように、従来において
は、良好なプレス成形性を有し、自動車の車体内板及び
車体外板に適用可能な電着塗装後の耐食性、三コート後
の耐食性及び耐水二次密着性を全て満足すると共に、安
価に実現可能な亜鉛系めっき鋼板は知られていなかっ
た。 【0011】そこで、本発明は上述の問題点に鑑みてな
されたものであり、本発明の目的は、摺動性、電着塗装
後の耐食性、三コート後の耐食性及び耐水二次密着性に
優れた亜鉛系めっき鋼板を提供することにある。 【0012】 【課題を解決するための手段】本発明者らは、亜鉛系め
っき鋼板のプレス成形性を改善する目的で、摺動性改善
効果を有する種々の固体潤滑皮膜について鋭意検討を行
ってきた。その結果、亜鉛系めっき鋼板の摺動性を改善
する固体潤滑皮膜について種々見いだすことができた。 【0013】しかし、その一方で、ほとんどの固体潤滑
皮膜がアルカリ脱脂後に残存し、正常な化成処理結晶が
形成されず、結果的に電着塗装後の耐食性、三コート後
の耐食性及び耐水二次密着性の劣化を招くことを知見し
た。そこで、本発明者らは、アルカリ脱脂液に対する溶
解性の高い固体潤滑皮膜についての検討も行った。実際
の自動車メーカーでのアルカリ脱脂処理を考慮した結
果、すなわち、種々のアルカリ脱脂薬剤について、脱脂
液の温度、浸漬温度、スプレー時間、pHなどを変化さ
せ、さらに脱脂液の当たる部位と当たらない部位に相当
する条件について調査を行った結果、固体潤滑皮膜を完
全に溶解することはほぼ不可能であることが判明した。
この理由は、たとえ固体潤滑皮膜が亜鉛系めっき層との
反応によって形成されたものでなくても、亜鉛系めっき
層の凹部、或いはプレス成形時に生じたクラック内に入
り込んだ皮膜が完全に除去されないためであると考えら
れる。 【0014】次に、本発明者らは、自動車メーカーでの
化成処理工程において亜鉛系めっき鋼板の上面に形成さ
れる化成処理結晶と同種の成分であるリン酸亜鉛を、固
体潤滑皮膜として活用することに着目して検討を行っ
た。その結果、リン酸亜鉛粒子の構造や平均粒子径によ
って電着塗装後の耐食性、三コート後の耐食性及び耐水
二次密着性が著しく異なることを新たに知見した。 【0015】すなわち、リン酸亜鉛には、リン酸亜鉛四
水和物(ホパイト:Zn3 (PO42 ・4H2 O)、
リン酸亜鉛二水和物(Zn3 (PO4 2 ・2H
2 O)、リン酸亜鉛一水和物(Zn3 (PO4 2 ・H
2 O)、リン酸亜鉛無水和物(Zn 3 (PO4 2 )の
構造のものが存在し、摺動性改善効果についてはいずれ
のものにも認められるが、リン酸二亜鉛−鉄四水和物
は、電着塗装後の耐食性、三コート後の耐食性及び耐水
二次密着性についても良好であることを新たに知見し
た。これは、リン酸二亜鉛−鉄四水和物が、冷延鋼板上
に形成される化成処理結晶の成分と全く同質のものであ
るため、アルカリ脱脂後に残存したリン酸二亜鉛−鉄四
水和物がその後の化成処理反応における結晶核となり、
結晶構造を継承した化成処理反応が進み、均一で緻密な
化成処理結晶が形成されるためであると考えられる。 【0016】また、リン酸二亜鉛−鉄四水和物粒子の平
均粒子径によっても、電着塗装後の耐食性、三コート後
の耐食性及び耐水二次密着性が大きく異なり、平均粒子
径が3μm以下の場合には、残存した粒子が結晶核とし
て作用するため、均一で緻密な化成処理結晶が形成さ
れ、電着塗装後の耐食性、三コート後の耐食性及び耐水
二次密着性が良好であり、一方、平均粒子径が3μmを
超えると、結晶核としての作用が消失するため、緻密な
化成処理結晶が形成されず、電着塗装後の耐食性、三コ
ート後の耐食性及び耐水二次密着性が不良となることを
知見した。 【0017】以上の知見に基づき、良好な摺動性、電着
塗装後の耐食性、三コート後の耐食性及び耐水二次密着
性を全て良好とするために、本発明は、鋼板の表面に亜
鉛系めっき層が形成された亜鉛系めっき鋼板であって、
前記亜鉛系めっき層の表面に、平均粒子径3μm以下の
リン酸二亜鉛−鉄四水和物粒子を含有し、且つ、付着量
が0.05〜2.0g/m2 の固体潤滑皮膜を有するこ
とを特徴としている。 【0018】この亜鉛系めっき鋼板によれば、亜鉛系め
っき鋼板の摩擦係数を小さく抑制できて摺動性が良好に
なるとともに、電着塗装後の耐食性、三コート後の耐食
性及び耐水二次密着性をともに良好なものとすることが
できる。 【0019】 【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。本発明の実施形態における亜鉛系めっき鋼
板は、鋼板の表面に亜鉛系めっき層が形成されており、
この亜鉛系めっき層の表面に固体潤滑皮膜を有してい
る。この固体潤滑皮膜は、平均粒子径が3μm以下のリ
ン酸二亜鉛−鉄四水和物粒子を含有し、亜鉛系めっき層
への付着量が0.05〜2.0g/m2 で調整されてい
る。 【0020】ここで、リン酸二亜鉛−鉄四水和物粒子を
含有する固体潤滑皮膜としたのは、前述の通り、リン酸
二亜鉛−鉄四水和物粒子が摺動性を改善するのみなら
ず、化成処理反応の結晶核となって電着塗装後の耐食
性、三コート後の耐食性及び耐水二次密着性を改善する
効果の双方を有しているからである。この固体潤滑皮膜
は、少なくともリン酸二亜鉛−鉄四水和物粒子が含有さ
れていればよく、その全てがリン酸二亜鉛−鉄四水和物
粒子から構成されていても、他の成分が含有されていて
もよい。特に、摺動性を改善する効果及び化成処理反応
の結晶核となって電着塗装後の耐食性、三コート後の耐
食性及び耐水二次密着性を改善する効果の両者を向上さ
せるためには、皮膜中にリン酸二亜鉛−鉄四水和物粒子
を50質量%以上含有することが好ましい。 【0021】固体潤滑皮膜中に含有される他の成分と
は、特に限定されないが、例えば、摺動性を改善する効
果を有する無機化合物や有機化合物、また、固体潤滑皮
膜の成膜性及びめっき層との密着性を改善する効果を有
する無機化合物や有機化合物、さらに、処理液の安定性
を改善する効果を有する界面活性剤などの有機化合物等
々が挙げられる。 【0022】また、平均粒子径が3μm以下のリン酸二
亜鉛−鉄四水和物粒子を含有することとしたのは、前述
の通り、リン酸二亜鉛−鉄四水和物粒子径が3μm以下
であれば、アルカリ脱脂後に残存した粒子が化成処理反
応の結晶核として作用するため、均一で緻密な化成処理
結晶が形成され、電着塗装後の耐食性、三コート後の耐
食性及び耐水二次密着性を良好にすることができるから
である。一方、リン酸二亜鉛−鉄四水和物粒子の平均粒
子径が3μmを超えると、結晶核としての作用が消失す
るため、緻密な化成処理結晶が形成されず、電着塗装後
の耐食性、三コート後の耐食性及び耐水二次密着性が不
良となる。また、リン酸二亜鉛−鉄四水和物粒子の平均
粒子径の下限値については、摺動性、電着塗装後の耐食
性、三コート後の耐食性及び耐水二次密着性に悪影響を
与えないため、特に規定されないが、0.001μm未
満の粒子を製造する場合には大幅な製造コストの増加と
なるため、平均粒子径は0.001μm以上が好まし
い。より好ましくは、0.01〜3μmの範囲である。
なお、リン酸二亜鉛−鉄四水和物粒子の平均粒子径の測
定は、市販の粒子径分布測定装置を用いて行えばよく、
例えば、レーザー回折・散乱式粒子径分布測定装置を用
いることができる。このとき、粒子径が小さい側からの
累積度数分布が50%のときの粒子径を平均粒子径とす
る。 【0023】さらに、リン酸二亜鉛−鉄四水和物粒子を
含有する固体潤滑皮膜の付着量を0.05〜2.0g/
2 としたのは、付着量が0.05g/m2 未満では摺
動性の改善効果が不十分であり、一方、付着量が2.0
g/m2 を超えると摺動性の改善効果が飽和して製造コ
ストの増加となるからである。このため、固体潤滑皮膜
の付着量は0.05〜2.0g/m2 の範囲とする必要
があり、好ましくは、0.1〜2.0g/m2 とするの
がよい。 【0024】なお、本発明の実施形態における亜鉛系め
っき層は、亜鉛を主成分とするめっき層であればよく、
亜鉛系めっき鋼板として、例えば、溶融亜鉛めっき鋼
板、合金化溶融亜鉛めっき鋼板、Al,Mg,Siなど
を一種又は二種以上含有する溶融亜鉛系めっき鋼板、電
気亜鉛めっき鋼板、Ni,Fe,Coなどを一種又は二
種以上含有する電気亜鉛合金めっき鋼板などが挙げられ
る。 【0025】次に、本実施形態における亜鉛系めっき鋼
板の製造方法について説明する。まず、鋼板の表面に亜
鉛系めっき処理を行う。その後、亜鉛系めっき処理によ
り形成される亜鉛系めっき層の表面に、平均粒子径3μ
m以下のリン酸二亜鉛−鉄四水和物粒子を含有する処理
液を、塗布・乾燥後の付着量が0.05〜2.0g/m
2 となる量を塗布した後、所定温度で加熱・乾燥させれ
ばよい。 【0026】なお、亜鉛系めっき鋼板の製造方法は、亜
鉛系めっき層の表面に、平均粒子径3μm以下のリン酸
二亜鉛−鉄四水和物粒子を含有し、付着量が0.05〜
2.0g/m2 の固形潤滑皮膜を形成できるものであれ
ば、これに限定されない。また、処理液の塗布方法とし
ては、ロールコーターを用いたり、またはスプレーや浸
漬処理後にロール絞りを行う方法などが例示される。ま
た、加熱・乾燥は、水分を蒸発させるのに必要な条件で
行えばよく、100℃以下の加熱乾燥でも十分である。 【0027】 【実施例】本発明の効果を以下の実施例によって検証す
る。素材である亜鉛系めっき鋼板として、板厚0.8m
mの普通鋼を原板として合金化溶融亜鉛めっき(目付
量:45g/m2 、Fe含有量:10重量%、Al含有
量:0.2%、残部:Zn)を形成した合金化溶融亜鉛
めっき鋼板を用い、次の条件でこの合金化溶融亜鉛めっ
き鋼板の表面(亜鉛系めっき層の表面)に固体潤滑皮膜
を形成した。 【0028】すなわち、実施例1〜10として、亜鉛系
めっき層の表面に、表1に示す平均粒子径のリン酸二亜
鉛−鉄四水和物粒子を20質量%、及びノニオン系界面
活性剤を0.3質量%含有した水分処理液を、ロールコ
ーターを用いて、塗布・乾燥後の付着量が表1に示す量
となるように塗布した後、80℃で乾燥した。一方、比
較例1〜7として、亜鉛系めっき層の表面に、表1に示
す平均粒子径のリン酸二亜鉛−鉄四水和物粒子、リン酸
亜鉛四水和物粒子を20質量%、及びノニオン系界面活
性剤を0.3質量%含有した水分処理液を、ロールコー
ターを用いて、塗布・乾燥後の付着量が表1に示す量と
なるように塗布した後、80℃で乾燥した。 【0029】以上のように、表面に固形潤滑皮膜を形成
した亜鉛系めっき鋼板の摺動性、電着塗装後の耐食性、
三コート後の耐食性及び耐水二次密着性を以下の方法に
より評価した。摺動性は、無塗油状態における平面摺動
試験(面圧:9.8MPa、摺動距離:100mm、摺
動速度:10mm/s)を行ったときの摩擦係数(μ)
を測定し、以下の基準に基づき評価した。 (評価基準) ◎:摩擦係数0.13μ未満 ○:摩擦係数0.13μ以上、0.15μ未満 ×:摩擦係数0.15μ以上 また、電着塗装後の耐食性は、化成処理及び電着塗装を
施した試験板について、塩水噴霧試験により評価した。
ここで、化成処理工程は、アルカリ脱脂(日本パーカラ
イジング(株)製FC−L4460、43℃、浸漬時間
120秒)、水洗(室温、スプレー時間30秒)、表面
調整(日本パーカライジング(株)製PL−4040、
室温、スプレー時間30秒)、化成処理(日本パーカラ
イジング(株)製PB−L3020、43℃、浸漬時間
120秒)、水洗(室温、スプレー時間30秒)、及び
熱風乾燥の手順で行った。また、化成処理を施した試験
板の表面に、電着塗料として関西ペイント(株)製GT
−10LFを用い、クーロン制御により、膜厚が20μ
mとなるように電着塗装を行い、175℃×25分の条
件で焼き付け乾燥を行った。このようにして作製した試
験板にクロスカットを入れ、塩水噴霧試験(JIS Z
2371)を行った。塩水噴霧試験を480時間行っ
た後の試験板について、以下のクロスカット部の電着塗
膜のふくれの基準により、電着塗装後の耐食性を評価し
た。 (評価基準) ◎:片側最大ふくれ幅3mm未満 ○:片側最大ふくれ幅3mm以上、4mm未満 ×:片側最大ふくれ幅4mm以上 さらに、3コート後の試験板の作製は、上述の電着塗装
が施された亜鉛系めっき鋼板の表面に、中塗り塗料とし
て関西ペイント(株)製TP−65を用いて、膜厚が4
0μmとなるように塗装を行い、140℃×20分の焼
き付け乾燥を行った後、上塗り塗料として関西ペイント
(株)製ネオ6000を用いて、膜厚40μmとなるよ
うに塗装し、140℃×20分の焼き付け乾燥を行うこ
とで作製した。 【0030】そして、三コート後の耐食性は、上述の三
コート後の試験板にクロスカットを入れた後、塩水噴霧
(35℃、2時間)、乾燥(60℃、2時間)、湿潤
(50℃、相対湿度95%、4時間)のサイクルからな
るサイクル複合試験を一カ月行った後、以下のクロスカ
ット部の塗膜ふくれの基準に基づき評価した。 (評価基準) ◎:片側最大ふくれ幅4mm未満 ○:片側最大ふくれ幅4mm以上、5mm未満 ×:片側最大ふくれ幅5mm以上 また、三コート後の耐水二次密着性は、三コート後の試
験板を40℃の脱イオン水中に240時間浸漬した後、
2mm角ゴバン目状に塗膜をカットした後テープ剥離試
験を行い、以下の基準に基づき評価した。 (評価基準) ◎:塗膜残存率100% ○:塗膜残存率80%以上100%未満 ×:塗膜残存率80%未満 【0031】 【表1】 【0032】表1に示すように、本発明の要件を満たす
実施例1〜10にあっては、亜鉛系めっき鋼板の摩擦係
数を小さく抑制できて摺動性が良好であるとともに、電
着塗装後の耐食性、三コート後の耐食性及び耐水二次密
着性についても良好な結果が得られた。一方、皮膜付着
量が0.03g/m2 と少ない比較例1にあっては、電
着塗装後の耐食性、三コート後の耐食性及び耐水二次密
着性は良好であるが、摩擦係数が大きく摺動性について
良好な結果が得られていない。 【0033】また、リン酸二亜鉛−鉄四水和物粒子の平
均粒子径が大きい比較例2及び比較例3にあっては、摺
動性について良好な結果が得られているが、電着塗装後
の耐食性、三コート後の耐食性及び耐水二次密着性につ
いては良好な結果が得られていない。これは、リン酸二
亜鉛−鉄四水和物粒子の平均粒子径が3μmを超える
と、結晶核としての作用が消失するため、均一かつ緻密
な化成処理結晶が形成されないためであると考えられ
る。 【0034】さらに、リン酸亜鉛四水和物を含有した比
較例4〜7においては、摺動性及び電着塗装後の耐食性
については良好な結果が得られているが、三コート後の
耐食性及び耐水二次密着性については良好な結果が得ら
れていない。これは、アルカリ脱脂後に残存したリン酸
亜鉛四水和物がその後の化成処理反応における結晶核と
ならず、均一で緻密な化成処理結晶が形成されないため
であると考えられる。 【0035】 【発明の効果】以上説明したように、本発明における亜
鉛系めっき鋼板は、亜鉛系めっき層の表面に、平均粒子
径が3μm以下のリン酸二亜鉛−鉄四水和物粒子を含有
し、且つ、付着量が0.05〜2.0g/m2 の固体潤
滑皮膜を有するので、亜鉛系めっき鋼板の摺動性が良好
になるとともに、電着塗装後の耐食性、三コート後の耐
食性及び耐水二次密着性を全て良好なものとすることが
できる。
DETAILED DESCRIPTION OF THE INVENTION [0001] TECHNICAL FIELD The present invention relates to slidability, electrodeposition coating
Corrosion resistance after 3 coats, corrosion resistance after 3 coats and water-resistant secondary adhesion
It relates to excellent galvanized steel sheet. [0002] [Prior Art] Hot-dip galvanized steel sheet and electrogalvanized steel
Galvanized steel sheet like sheet has excellent corrosion resistance
Therefore, it is widely used in the fields of automobiles, home appliances, building materials, etc.
Used from. However, galvanized steel sheet
Is inferior in press formability to cold rolled steel sheets.
To improve press formability of galvanized steel sheet
Various proposals have been made on how to do this. For example, Japanese Patent Application Laid-Open No. 62-192597
Hard iron plating on the zinc plating layer.
Plating and die by increasing the surface hardness
There has been proposed a method for preventing galling with heat. Also,
Japanese Patent Application Laid-Open No. 4-176878 discloses a zinc-based plating layer.
In the upper layer, oxyacid salts such as P (phosphorus) and B (boron)
Form a film consisting of metal oxide and press molding
Improve slidability, thereby improving press formability
A method has been proposed. Further, the press formability of galvanized steel sheet
As a prior art for improving the image quality, Japanese Patent Application Laid-Open No. 62-19259
No. 7 and Japanese Patent Application Laid-Open No. 4-176778.
In addition to technology, phosphorous acid
Prefos with lead coating coated on the top layer of galvanized steel sheet
BACKGROUND ART A steel sheet called a treated steel sheet is known. [0005] SUMMARY OF THE INVENTION However, these
Method to improve press formability of conventional galvanized steel sheet
Has the following problems. That is,
In the case of the method disclosed in JP-A-62-192597,
Iron-based hard plating must be applied to the upper layer of the lead-based plating layer
However, applying this iron-based hard plating increases the cost,
In response to recent demand for material cost reduction by automakers
Not satisfied. Further, Japanese Patent Application Laid-Open No. 4-176778 discloses
In the case of the method shown, the slidability in press forming is improved
But the corrosion resistance after electrodeposition coating deteriorates.
There was a title. To explain this concretely, the body of a car
The processing steps for galvanized steel sheets applied to
Process, welding process, alkaline degreasing process, chemical conversion treatment
The steps are performed in the same order as in the painting process. Al of these
In the potting degreasing process, each line of an automobile manufacturer
Therefore, various degreasing agents are used, and their use conditions
Conditions, namely the temperature of the degreasing solution, the immersion temperature, the spray time,
Conditions such as pH are various. Also, galvanized steel sheet
Even when the slush passes through the same line,
And a part that does not hit. For this reason, zinc-based
If an alkali-soluble film was applied to the upper layer
Even if the film does not completely dissolve,
In fact, most of them remain. Here, Japanese Unexamined Patent Publication No.
In the case of the method disclosed in Japanese Patent No. 176878,
The coating components that have been converted to galvanized steel
Phosphorous acid, a component of the chemical conversion treatment crystals formed on the surface of
Lead tetrahydrate (hopite: ZnThree(POFour)Two・ 4H
TwoO) is a component completely different from that of O).
In other words, it has a normal morphology and is
First, no dense chemical conversion treated crystals are produced. As a result,
In the case of the method disclosed in Japanese Unexamined Patent Publication No.
The reason is that the corrosion resistance is deteriorated after the electrodeposition coating. [0007] Further, by a method such as dipping or coating,
Zinc phosphate coating coated on the top layer of galvanized steel sheet
In the case of fossed steel sheets, deterioration of corrosion resistance after electrodeposition coating
There was a problem of inviting. To explain this concretely,
Zinc phosphate coating on pre-foss treated steel sheet is galvanized
5 to 10 μm because it is formed with a reaction with the layer
Covered with roughly scale-like zinc phosphate crystals,
Almost insoluble even in alkaline degreasing process
is there. Therefore, part of the phosphoric acid film
Even if it is lead tetrahydrate,
, Almost no new chemical conversion treated crystals are formed. Automatic
Chemical conversion treatment used in the chemical conversion process at car manufacturers
Chemical conversion treatment agents used in the process are usually resistant to electrodeposition coating.
Nickel ions and manganese ions to ensure food quality
And other components are mixed in appropriate amounts.
The absence of pre-processed crystals means corrosion resistance after electrodeposition coating
This leads to significant deterioration of. [0008] More recently, car body skins have been developed.
Integral molding of large panels that make up
Of galvanized steel sheet for car interior panel in China
In addition to the requirements for slidability and corrosion resistance after electrodeposition coating,
Three coats required for external body panels (electrodeposition coating, intermediate coating,
Coating resistance) and corrosion resistance after water coating
There is a long-felt need. However, zinc-coated steel sheets
Is a cold-rolled steel sheet with corrosion resistance and water-resistant secondary adhesion after three coats
There was a problem that it was inferior. For this reason
Is a chemical conversion treatment crystal formed on the surface of galvanized steel sheet.
Is formed on the surface of cold rolled steel sheet
Japanese (phosphophyllite: ZnTwoFe (POFour) Two
・ 4HTwoInferior in alkali resistance to O)
Phosphorous acid, which causes a change in volume and deteriorates film adhesion
It is believed that this is because it is composed of lead tetrahydrate. Here, the above-mentioned Japanese Patent Application Laid-Open No. 62-19259 is disclosed.
In the case of the method disclosed in Japanese Patent Publication No. 7, the iron-based plating
When the chemical conversion treatment crystal formed on the upper layer is a cold rolled steel sheet
Dizinc phosphate-iron tetrahydrate similar to
To meet the cost reduction demands of automakers
It was difficult. As mentioned above,
Has good press-formability,
Corrosion resistance after electrodeposition coating applicable to car body skin, after three coats
Corrosion resistance and water-resistant secondary adhesion
Zinc-coated steel sheet is not known
Was. The present invention has been made in view of the above problems.
It is an object of the present invention to provide a sliding property and an electrodeposition coating.
Corrosion resistance after 3 coats, corrosion resistance after 3 coats and water-resistant secondary adhesion
It is to provide an excellent galvanized steel sheet. [0012] Means for Solving the Problems The present inventors have developed a zinc-based material.
To improve the press formability of steel sheet
Intensive studies on various solid lubricating films
I came. As a result, the slidability of galvanized steel sheets has been improved.
Various types of solid lubricating films can be found. However, on the other hand, most solid lubrication
The film remains after alkali degreasing, and normal chemical conversion treatment crystals
Not formed, resulting in corrosion resistance after electrodeposition coating, after three coats
Corrosion resistance and water-resistant secondary adhesion deteriorated.
Was. Therefore, the present inventors have proposed a solution for alkaline degreasing solution.
A solid lubricating film with high resolvability was also studied. Actual
In consideration of alkaline degreasing treatment by Japanese automakers
Fruit, ie, various alkaline degreasing agents,
Changes in liquid temperature, immersion temperature, spray time, pH, etc.
Equivalent to the area that the degreasing solution hits and the area that does not hit
As a result of an investigation on the conditions for
It proved almost impossible to completely dissolve.
The reason is that even if the solid lubricating film
Zinc plating, even if not formed by reaction
Into the recesses in the layer or cracks created during press forming.
It is thought that the embedded film was not completely removed.
It is. [0014] Next, the present inventors have been working with automobile manufacturers.
Formed on the upper surface of galvanized steel sheet during the chemical conversion process
Zinc phosphate, which is the same component as
Investigation focused on utilization as a body lubrication film
Was. As a result, the structure and average particle size of zinc phosphate particles
Corrosion resistance after electrodeposition coating, corrosion resistance and water resistance after three coats
It was newly found that the secondary adhesion was significantly different. That is, the zinc phosphate includes zinc tetraphosphate.
Hydrate (hopite: ZnThree(POFour)Two・ 4HTwoO),
Zinc phosphate dihydrate (ZnThree(POFour)Two・ 2H
TwoO), zinc phosphate monohydrate (ZnThree(POFour)Two・ H
TwoO), anhydrous zinc phosphate (Zn Three(POFour)Two)of
There is a structure with
But also zinc diphosphate-iron tetrahydrate
Means corrosion resistance after electrodeposition coating, corrosion resistance after three coats and water resistance
Newly found that secondary adhesion is also good
Was. This is because dizinc phosphate-iron tetrahydrate is deposited on a cold rolled steel sheet.
Of the same quality as the components of the chemical conversion-treated crystal
Dizinc phosphate-iron tetraphosphate remaining after alkaline degreasing
The hydrate becomes a crystal nucleus in the subsequent chemical conversion reaction,
The chemical conversion reaction that inherits the crystal structure progresses,
It is considered that a chemical conversion treatment crystal is formed. In addition, the average particle size of dizinc phosphate-iron tetrahydrate particles
Corrosion resistance after electrodeposition coating, after three coats
Corrosion resistance and water-resistant secondary adhesion differ greatly,
When the diameter is 3 μm or less, the remaining particles serve as crystal nuclei.
Work to form uniform and dense chemical conversion crystals.
Corrosion resistance after electrodeposition coating, corrosion resistance after three coats and water resistance
The secondary adhesion is good, while the average particle size is 3 μm.
If it exceeds, the action as a crystal nucleus disappears,
No chemical conversion treatment crystals are formed, corrosion resistance after electrodeposition coating,
Corrosion resistance and water-resistant secondary adhesion after coating
I learned. Based on the above findings, good sliding properties and electrodeposition
Corrosion resistance after painting, corrosion resistance after three coats and water resistance secondary adhesion
In order to improve all the properties, the present invention
A zinc-based plated steel sheet having a lead-based plating layer formed thereon,
On the surface of the zinc-based plating layer, an average particle diameter of 3 μm or less
Contains dizinc phosphate-iron tetrahydrate particles and has an attached amount
Is 0.05 to 2.0 g / mTwoWith a solid lubricating film of
It is characterized by. According to the galvanized steel sheet, the zinc-based
The friction coefficient of the plated steel can be suppressed to a small value, and the sliding property is good.
Corrosion resistance after electrodeposition coating, corrosion resistance after three coats
To improve both water resistance and water-resistant secondary adhesion
it can. [0019] Embodiments of the present invention will be described below.
Will be explained. Galvanized steel according to an embodiment of the present invention
The plate has a zinc-based plating layer formed on the surface of the steel plate,
The zinc-based plating layer has a solid lubricating film on the surface.
You. This solid lubricating film has an average particle size of 3 μm or less.
Containing zinc zincate-iron tetrahydrate particles, zinc-based plating layer
0.05 to 2.0 g / mTwoAdjusted in
You. Here, dizinc phosphate-iron tetrahydrate particles are
The solid lubricating film contained was, as mentioned above, phosphoric acid
If dizinc-iron tetrahydrate particles only improve slidability
Corrosion resistance after electrodeposition coating
The water resistance, corrosion resistance after three coats and water-resistant secondary adhesion
This is because it has both effects. This solid lubricating film
Contains at least dizinc phosphate-iron tetrahydrate particles.
As long as all of them are dizinc phosphate-iron tetrahydrate
Even if it is composed of particles, it contains other components
Is also good. In particular, the effect of improving slidability and chemical conversion reaction
Corrosion nucleation after electrodeposition coating,
Improved both corrosion and water-resistant secondary adhesion
In order to achieve this, dizinc phosphate-iron tetrahydrate particles
Is preferably contained in an amount of 50% by mass or more. With other components contained in the solid lubricating film
Is not particularly limited, for example, an effect of improving slidability.
Inorganic and organic compounds with fruit, solid lubricating skin
Effective for improving film forming properties and adhesion to plating layers
Inorganic and organic compounds, and the stability of processing solutions
Compounds such as surfactants that have the effect of improving
And others. Further, diphosphate having an average particle size of 3 μm or less is used.
The reason for containing zinc-iron tetrahydrate particles is as described above.
As shown, dizinc phosphate-iron tetrahydrate particle size is 3 μm or less
If this is the case, particles remaining after alkali degreasing
Uniform and dense chemical conversion treatment to act as a suitable crystal nucleus
Crystals are formed, corrosion resistance after electrodeposition coating, and after 3 coats
Corrosion resistance and water-resistant secondary adhesion can be improved.
It is. On the other hand, the average particle size of dizinc phosphate-iron tetrahydrate particles
When the diameter exceeds 3 μm, the function as a crystal nucleus disappears.
Therefore, a dense chemical conversion treatment crystal is not formed, and after electrodeposition coating
Corrosion resistance after three coats and water-resistant secondary adhesion
It will be good. The average of the dizinc phosphate-iron tetrahydrate particles
Regarding the lower limit of particle size, the sliding property, corrosion resistance after electrodeposition coating
Adverse effect on corrosion resistance, corrosion resistance after three coats and water-resistant secondary adhesion
Not specified, but not specified, but less than 0.001 μm
When producing full particles, the production cost increases significantly.
Therefore, the average particle diameter is preferably 0.001 μm or more.
No. More preferably, it is in the range of 0.01 to 3 μm.
The measurement of the average particle size of the dizinc phosphate-iron tetrahydrate particles was performed.
The determination may be performed using a commercially available particle size distribution analyzer.
For example, use a laser diffraction / scattering particle size distribution analyzer.
Can be. At this time, from the side where the particle diameter is small
The particle size when the cumulative frequency distribution is 50% is defined as the average particle size.
You. Further, dizinc phosphate-iron tetrahydrate particles are
The amount of the solid lubricating film contained is 0.05 to 2.0 g /
mTwoThe reason is that the adhesion amount is 0.05 g / mTwoLess than
The effect of improving the mobility was insufficient, while the adhesion amount was 2.0
g / mTwoIf the ratio exceeds the limit, the effect of improving the
This is because the strike increases. For this reason, solid lubricating film
Is 0.05 to 2.0 g / mTwoMust be in the range
And preferably 0.1 to 2.0 g / mTwoTo be
Is good. The zinc-based material according to the embodiment of the present invention
The plating layer may be a plating layer containing zinc as a main component,
As galvanized steel sheet, for example, hot-dip galvanized steel
Sheet, galvannealed steel sheet, Al, Mg, Si, etc.
Galvanized steel sheet containing one or more
Galvanized steel sheet, Ni, Fe, Co, etc.
Or more containing galvanized steel sheet
You. Next, the zinc-based plated steel in the present embodiment
A method for manufacturing a plate will be described. First, the surface of the steel sheet
Perform lead-based plating. After that, by zinc-based plating
The average particle size of 3μ
m or less containing dizinc phosphate-iron tetrahydrate particles
The coating amount of the liquid after application and drying is 0.05 to 2.0 g / m
TwoAfter applying the amount, heat and dry at a predetermined temperature.
Just fine. The method of manufacturing a zinc-coated steel sheet is as follows.
Phosphoric acid with an average particle size of 3 μm or less
Contains dizinc-iron tetrahydrate particles, the amount of adhesion is 0.05 to
2.0g / mTwoCan form a solid lubricating film of
However, it is not limited to this. In addition, the method of applying the treatment liquid
Using a roll coater, spraying or dipping
A method of performing roll squeezing after the soaking process is exemplified. Ma
Heating and drying must be performed under conditions necessary to evaporate water.
Heating and drying at 100 ° C. or less is sufficient. [0027] EXAMPLES The effects of the present invention will be verified by the following examples.
You. 0.8m thick zinc coated steel sheet
alloyed hot-dip galvanizing using ordinary steel of m
Amount: 45 g / mTwo, Fe content: 10% by weight, Al content
Amount: 0.2%, balance: alloyed molten zinc formed with Zn)
Using galvanized steel sheet, this alloyed hot-dip zinc
Solid lubricating film on the surface of steel sheet (surface of zinc-based plating layer)
Was formed. That is, in Examples 1 to 10, zinc-based
On the surface of the plating layer, a phosphorous acid having an average particle diameter shown in Table 1 was added.
20% by mass of lead-iron tetrahydrate particles and a nonionic interface
Water treatment solution containing 0.3% by mass of activator
The amount of adhesion after coating and drying is indicated in Table 1
And dried at 80 ° C. On the other hand, the ratio
As Comparative Examples 1 to 7, the surface of the zinc-based plating layer is shown in Table 1.
Dizinc phosphate-iron tetrahydrate particles having an average particle size of
20% by mass of zinc tetrahydrate particles and nonionic surfactant
Water treatment solution containing 0.3% by mass of a surfactant
The amount of adhesion after coating and drying was measured using the
After being applied in such a manner, it was dried at 80 ° C. As described above, a solid lubricating film is formed on the surface.
Slidability of coated galvanized steel sheet, corrosion resistance after electrodeposition coating,
Corrosion resistance and water-resistant secondary adhesion after three coats by the following method
More evaluated. Slidability is flat sliding in oil-free state
Test (surface pressure: 9.8 MPa, sliding distance: 100 mm, sliding
Dynamic velocity: 10 mm / s) Friction coefficient (μ)
Was measured and evaluated based on the following criteria. (Evaluation criteria) :: Coefficient of friction less than 0.13μ :: Coefficient of friction of 0.13μ or more and less than 0.15μ ×: friction coefficient of 0.15μ or more In addition, the corrosion resistance after electrodeposition coating depends on chemical treatment and electrodeposition coating.
The test plate subjected to the evaluation was evaluated by a salt spray test.
Here, the chemical conversion treatment step is an alkaline degreasing (Nippon Parka)
Ising Co., Ltd. FC-L4460, 43 ° C, immersion time
120 seconds), water washing (room temperature, spray time 30 seconds), surface
Adjustment (PL-4040 manufactured by Nippon Parkerizing Co., Ltd.
Room temperature, spray time 30 seconds), chemical conversion treatment (Nippon Parkara)
Ising Co., Ltd. PB-L3020, 43 ° C, immersion time
120 seconds), water wash (room temperature, spray time 30 seconds), and
It performed by the procedure of hot-air drying. In addition, a test with chemical conversion treatment
On the surface of the board, GT made by Kansai Paint Co., Ltd.
Using -10 LF and Coulomb control, the film thickness is 20μ
m and electrodeposition coating at 175 ° C for 25 minutes
It was baked and dried. The test fabricated in this way
A cross cut was placed on the test plate, and a salt spray test (JIS Z
  2371). 480 hours salt spray test
The test plate after the
Evaluate corrosion resistance after electrodeposition coating based on film blistering criteria
Was. (Evaluation criteria) :: Maximum blister width on one side less than 3 mm ○: Maximum blister width on one side is 3 mm or more and less than 4 mm ×: Maximum blister width 4 mm or more on one side Furthermore, the production of the test plate after 3 coats is performed by the electrodeposition coating described above.
The surface of zinc-coated galvanized steel sheet
Using TP-65 manufactured by Kansai Paint Co., Ltd.
Paint to a thickness of 0 μm and bake at 140 ° C for 20 minutes.
After drying, apply Kansai Paint as top coat
Using Neo 6000 manufactured by Co., Ltd., the film thickness will be 40 μm.
Paint and bake and dry at 140 ° C for 20 minutes.
And was produced. The corrosion resistance after the three coats is
After putting a cross cut on the test plate after coating, spray with salt water
(35 ° C, 2 hours), dry (60 ° C, 2 hours), wet
(50 ° C, 95% relative humidity, 4 hours)
After conducting a combined cycle test for one month,
The evaluation was made based on the criteria for the blistering of the coating film in the cut portion. (Evaluation criteria) :: Maximum blister width on one side is less than 4 mm :: Maximum blister width on one side is 4 mm or more and less than 5 mm ×: One side maximum blister width 5 mm or more The water-resistant secondary adhesion after the three coats
After immersing the test plate in deionized water at 40 ° C. for 240 hours,
After peeling the coating film into a 2mm square gobang, tape peeling test
An evaluation was performed based on the following criteria. (Evaluation criteria) :: 100% remaining coating film :: 80% or more and less than 100% of the remaining film ratio ×: Less than 80% of the remaining coating film [0031] [Table 1] As shown in Table 1, the requirements of the present invention are satisfied.
In Examples 1 to 10, the friction coefficient of the zinc-based plated steel sheet was
The number can be suppressed to a small value, and the slidability is good.
Corrosion resistance after coating, corrosion resistance after three coats, and water resistance secondary density
Good results were also obtained for the adhesion. On the other hand, film adhesion
0.03g / mTwoIn Comparative Example 1 with a small
Corrosion resistance after coating, corrosion resistance after three coats and water tightness
Good adhesion, but large friction coefficient.
Good results have not been obtained. The average particle size of dizinc phosphate-iron tetrahydrate particles
In Comparative Examples 2 and 3 having a large average particle diameter,
Good results have been obtained for the mobility, but after electrodeposition coating
Corrosion resistance after three coats and water-resistant secondary adhesion
However, good results have not been obtained. This is diphosphate
Average particle size of zinc-iron tetrahydrate particles exceeds 3 μm
And the function as a crystal nucleus disappears, so it is uniform and dense
Is considered to be because no
You. Furthermore, the ratio containing zinc phosphate tetrahydrate
In Comparative Examples 4 to 7, slidability and corrosion resistance after electrodeposition coating
Good results are obtained, but after three coats
Good results were obtained for corrosion resistance and water-resistant secondary adhesion.
Not. This is due to the phosphoric acid remaining after alkaline degreasing.
Zinc tetrahydrate becomes a nucleus in the subsequent chemical conversion reaction.
No uniform and dense chemical conversion crystals are formed
It is considered to be. [0035] As described above, the present invention has the following advantages.
Lead-based steel sheets have an average particle size on the surface of the zinc-based plating layer.
Contains dizinc phosphate-iron tetrahydrate particles having a diameter of 3 μm or less
And the adhesion amount is 0.05 to 2.0 g / mTwoSolid moisture
Good lubricity of galvanized steel sheet due to having lubricating film
And corrosion resistance after electrodeposition coating, and after 3 coats
Good corrosion resistance and secondary adhesion
it can.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 千昭 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4K026 AA07 AA13 BA04 BA12 BB07 BB08 CA16 CA23 CA26 DA02 4K044 AA02 AB02 BA10 BA17 BB03 BB11 BC02 BC04 CA11 CA16 CA42 CA53    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Chiaki Kato             1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba             Iron Research Institute F term (reference) 4K026 AA07 AA13 BA04 BA12 BB07                       BB08 CA16 CA23 CA26 DA02                 4K044 AA02 AB02 BA10 BA17 BB03                       BB11 BC02 BC04 CA11 CA16                       CA42 CA53

Claims (1)

【特許請求の範囲】 【請求項1】 鋼板の表面に亜鉛系めっき層が形成され
た亜鉛系めっき鋼板であって、 前記亜鉛系めっき層の表面に、平均粒子径が3μm以下
のリン酸二亜鉛−鉄四水和物粒子を含有し、且つ、付着
量が0.05〜2.0g/m2 の固体潤滑皮膜を有する
ことを特徴とする亜鉛系めっき鋼板。
Claims: 1. A galvanized steel sheet having a zinc-based plating layer formed on the surface of a steel sheet, wherein the zinc-based plating layer has a surface having a mean particle diameter of 3 μm or less. A galvanized steel sheet containing zinc-iron tetrahydrate particles and having a solid lubricating film having an adhesion amount of 0.05 to 2.0 g / m 2 .
JP2002022330A 2002-01-30 2002-01-30 Zinc-base plated steel sheet Pending JP2003221677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002022330A JP2003221677A (en) 2002-01-30 2002-01-30 Zinc-base plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002022330A JP2003221677A (en) 2002-01-30 2002-01-30 Zinc-base plated steel sheet

Publications (1)

Publication Number Publication Date
JP2003221677A true JP2003221677A (en) 2003-08-08

Family

ID=27745352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002022330A Pending JP2003221677A (en) 2002-01-30 2002-01-30 Zinc-base plated steel sheet

Country Status (1)

Country Link
JP (1) JP2003221677A (en)

Similar Documents

Publication Publication Date Title
JP5230428B2 (en) Water-based treatment liquid for Sn-based plated steel sheet having excellent corrosion resistance and paint adhesion and method for producing surface-treated steel sheet
JP5060807B2 (en) Hot-dip hot-dip galvanized steel sheet, hot-dip galvanized steel sheet, and hot-press formed material
US6555249B1 (en) Surface treated steel sheet and method for production thereof
KR100605354B1 (en) Zinc-Based Metal Plated Steel Sheet and Method for Production thereof
JP2000144444A (en) Production of surface treated steel sheet excellent in corrosion resistance
JP3872621B2 (en) Galvanized steel sheet for automobile bodies
JP2002363764A (en) Coating surface preparation agent, surface preparation method, metallic material, machining method and metallic product
US6376092B1 (en) Surface-treated steel sheet and manufacturing method thereof
JP2003221677A (en) Zinc-base plated steel sheet
JP2000309880A (en) Corrosion resistant surface treated steel sheet
JP2003221676A (en) Zinc-based plated steel sheet
JP2004197143A (en) Galvanized steel plate
JPH09170084A (en) Galvanized steel sheet excellent in press formability and its production
JP3882586B2 (en) Surface-treated steel sheet with excellent corrosion resistance and formability and method for producing the same
JP2003253458A (en) Zinc galvanized steel sheet and its manufacturing method
JP3845445B2 (en) High corrosion-resistant surface-treated steel sheet and manufacturing method thereof
JP3898122B2 (en) Method for producing corrosion-resistant galvanized steel sheet
JP2002206173A (en) Surface treated steel sheet having excellent corrosion resistance and formability, and its manufacturing method
JP3449283B2 (en) Galvanized steel sheet excellent in press formability and its manufacturing method
JP2003221678A (en) Zinc-base plated high-tension steel sheet
JP2002371371A (en) Phosphate treated galvanized steel sheet superior in front and back discrimination properties
JP2000313967A (en) Surface treated steel sheet excellent in corrosion resistance
JP3330078B2 (en) Manufacturing method of pre-coated aluminum strip with excellent formability
JP2003201575A (en) Method of producing phosphate-treated galvanized steel sheet having excellent workability
JP2000328258A (en) High corrosion resistance surface treated steel sheet and its production