JP3902419B2 - Arc welding method and arc welding apparatus - Google Patents

Arc welding method and arc welding apparatus Download PDF

Info

Publication number
JP3902419B2
JP3902419B2 JP2001141510A JP2001141510A JP3902419B2 JP 3902419 B2 JP3902419 B2 JP 3902419B2 JP 2001141510 A JP2001141510 A JP 2001141510A JP 2001141510 A JP2001141510 A JP 2001141510A JP 3902419 B2 JP3902419 B2 JP 3902419B2
Authority
JP
Japan
Prior art keywords
weld
weld bead
welding
cooling
arc welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001141510A
Other languages
Japanese (ja)
Other versions
JP2002336965A (en
Inventor
隆夫 熊坂
光雄 加藤
章弘 佐藤
邦夫 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001141510A priority Critical patent/JP3902419B2/en
Publication of JP2002336965A publication Critical patent/JP2002336965A/en
Application granted granted Critical
Publication of JP3902419B2 publication Critical patent/JP3902419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はアーク溶接方法に係わり、特に溶接ビード部と該熱影響部の残留応力を低減するのに好適なアーク溶接方法及びアーク溶接装置に関する。
【0002】
【従来の技術】
従来のアーク溶接においては、溶接トーチと溶接母材との間にアークを発生させ溶接母材上に溶融池を形成し、該溶融池が凝固した溶接ビード部と該溶融池と接触する部分に形成された熱影響部と溶接母材とを熱輻射及び周囲媒体である空気の自然対流により冷却させ常温に戻していた。又、特開昭55−73477号公報、特開昭58−205687号公報、特開昭60−187478号公報においては、大気中の溶接を行う際に水冷を行いクロム炭化物の析出を防止する方法が提案されている。
【0003】
更に、水中溶接においては、水を排除した気相空間にてアークを発生させた後、溶接ビード部と熱影響部と溶接母材とを周囲媒体である水と接触させることに水の自然対流により冷却し水温まで戻していた。このような水中アーク溶接に関連するものに、特開平10−34374号公報などがある。
【0004】
【発明が解決しようとする課題】
しかし、特開昭55−73477号公報、特開昭58−205687号公報、特開昭60−187478号公報においては、クロム炭化物の析出を防止するため650℃〜1200℃に加熱されている時間を短縮するようにしたものであり、残留応力を引張り応力から圧縮応力にするための方法については開示されていなかった。
【0005】
又、特開平10−34374号公報は水中ブラズマ溶接により残留応力を低減するものであるが、気泡の発生などにより溶接品質が損なわれたり、ビードに隣接する熱影響部に局部的な引張り残留応力(残留応力のピーク)が残存するケースがあった。引張り残留応力を有する溶接部を使用した製品は、比較的短期間に亀裂や応力腐食割れを生じやすい欠点がある。
【0006】
本発明の目的は、製品の使用中の亀裂や応力腐食割れ防止し、製品の寿命を長くし、かつ性能に対する信頼性を向上したアーク溶接方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明では、溶接ビード部の断面の深さ寸法をD、幅寸法をWとすれば、溶接ビード部の断面のアスペクト比(D/W)が0.5以上の溶接ビードを形成し、凝固させた直後の溶接ビード部とこれに隣接する熱影響部とに冷却媒体を噴射させて急冷し、表面が圧縮残留応力を有する溶接部を形成し、前述の目的を達成することにある。
【0008】
【発明の実施の形態】
(第1の実施例)
図1(A),(B)に本発明の第1の実施例を示す。本発明の第1の実施例は、溶接装置例えばアーク溶接装置に冷却媒体を噴出する噴射ノズル6を用い、気中で溶接をする場合である。
【0009】
溶接トーチ1に保持される電極2と溶接母材3との間にアークを発生させ溶接母材3上に溶接池5を形成し、溶接池5を凝固させ溶接ビート部4を形成するものにおいて、溶接ビード4は溶接ビードの深さ寸法をDとし、幅寸法をWとすれば、アスペクト比(D/W)が0.5以上となる溶接条件にて溶接ビード部4を形成し、冷却媒体10例えば水は溶接トーチ1近傍に配置した冷却ヘッド8から噴出させ溶接局部4Cに流動させるようにして、溶接局部4Cを急冷し、図1(B)に示す溶接ビード部4を形成する。ここで溶接局部4Cは溶融池が凝固した直後の溶接ビード部4と溶融池5と隣接する熱的影響部4Aとを指すものである。
【0010】
入熱5〜20KJ/cmより望ましくは、8〜17KJ/cmの溶接ビード部4において、アスペクト比(D/W)が0.5以上となるような深溶け込み溶接は、次の方法により実現できる。DCアークの場合はシールドガスとして、アルゴンに2〜10%の水素を混合した混合ガスを用いてビードオン溶接を行うか、シールドガスとして、アルゴンを用い活性フラックスを溶接部に塗布しビードオン溶接を行うことで実現できる。又、パルスアークの場合はパルスピーク電流値を高く(300〜600A)設定し、5〜30KHzの高周波パルス溶接でビードオン溶接を行うことによりシールドに混合する水素を低減できる利点がある。
【0011】
冷却媒体10は、冷却媒体供給装置9により配管7を経て電極2の周囲に設置された噴射ノズル6を有する冷却ヘッド8に供給される。又、冷却ヘッド8は溶接トーチ1に固定され、溶接トーチ1と同一速度で移動する。
【0012】
冷却ヘッド8としては、1本の噴射ノズル6を用いて構成し、溶融池5が凝固した直後の溶接ビード部4と溶融池6に隣接する部分に形成された熱影響部4Aとを冷却する例を示したが、2本、又は、複数の噴射ノズル6を用いて溶融池6が凝固した直後の溶接ビード部4と溶融池6に隣接する部分に形成された熱影響部4Aとを冷却するようにしても良い。
【0013】
又、冷却媒体10(例えば、水)が飛散し水しぶきなどでアーク空間を乱したり、電極2を濡らしたり、溶融池6で過度の蒸気を発生させたりすることを防止するには、電極2と冷却ヘッド8との間に冷却媒体10を遮蔽する水排除隔壁14を設け、アーク空間から冷却媒体10を遮蔽するようにし、冷却ヘッド8と反対側の水排除隔壁14の前面にシールドガス16の出口部15を設ける。
【0014】
シールドガス16に出口部15を設けないと、水排除隔壁14の後方から流出するシールドガス16により噴射冷却を行う噴流10に乱れが発生したり、又冷却ヘッド8と同側の水排除隔壁14側面に出口部15を設けると、シールドガス16の流れにより、溶接ビード断面に偏りが発生する傾向があるからである。
【0015】
更に、図2に示すように、噴射ノズル6は母材3面に対して30度〜50度の範囲で傾斜させて配置することが望ましい。傾斜角度θが20度以下の場合は冷却開始位置が溶融池6から遠くなり急冷効果が少なくなり、60度以上の場合は水排除隔壁21と母材3との隙間から衝突噴流が進入しアークを乱すようになるからである。
【0016】
冷却媒体として、水の他に、難燃性オイル、フロリナート、液体窒素などが使用できるが、噴射冷却の熱伝達率が5〜50KW/m2℃より望ましくは、水を用い噴射冷却の熱伝達率が10〜30KW/m2℃となるように噴射時の流速や流量を設定すると良い。噴射冷却の熱伝達率が10KW/m2℃未満の場合、後述する反転温度差が充分に形成されず残留応力の極大部を圧縮にすることができない。
【0017】
又、噴射冷却時の流速や流量を高くすれば、熱伝達率を増大できるが、流速や流量を高くし過ぎるとアークを乱し溶接品質が悪化する傾向があるからである。即ち、水噴射冷却時の流速が0.8〜8m/sec、より望ましくは、1〜5m/secとなるように噴射時の流量を設定すると良い。
【0018】
更に、水温を0〜5℃程度の低温状態にしたり、不凍液を混合させたり不凍効果のある物質を溶解させ氷点以下にし、流速や流量を極力高くせずに常温の場合よりも冷却作用(熱伝達率)を高めることが望ましい。
【0019】
このような構成で、母材の厚さ12mmのSUS304を入熱11KJ/cm,溶接速度100mm/minにおいて、1例として図3(B),(C),(D)に示す複数の溶接ビード部4を形成した。SUS304以外の母材の材質としてSUS316、インコネル600等を用いても良い。溶接ビード部4のビード断面形状のアスペクト比D/Wは、(B)=0.3,(C)=0.5,(D)=1.0であり、ビードオン溶接を行い、冷却媒体として水を使用し、冷却ヘッド8として1本の矩形噴射ノズル6(開口幅20mm、開口高さ2mm)を配置し、母材面に対して40度の角度で約5l/min噴流を供給し、冷却をした。尚、噴流の流速は約2.0m/sであり、噴流の熱伝達率は約13〜20KW/m2℃と推定される。
【0020】
このような施工を行い、アスペクト比と残留応力との関係を求めた結果を図4(A),(B)に示す。図4(A)は母材3に溶接ビード部4を形成した状況を示し、溶接ビード部4の中心部0からY方向に順次離れた時の残留応力を測定した特性図を図4(B)に示す。図4(B)の特性図は図3(B),(C),(D)に示す複数の溶接ビード部4に水噴射した場合と自然冷却の場合とを示した。図4(B)の特性図の溶接局部における残留応力の極大値つまりピーク値を合成した特性図を図5に示した。図5においてはアスペクト比(D/W)が0.4の場合の残留応力ピーク値も追加した。
【0021】
図5の特性図から明らかなように、水噴射冷却時の残留応力のビード方向成分(σx)は、アスペクト比が0.3以下の溶接ビード部4は、溶接線近傍の熱的影響部つまり溶接局部4Cにおいて、ピークが約+100MPa以上の引張残留応力値を有している。
【0022】
またアスペクト比が0.4以上の溶接ビード部4は、溶接線近傍の熱的影響部つまり溶接局部4Cにおいて、0から約−140MPaを有する圧縮残留応力となる。更にこれらの詳細を図5により説明する。
【0023】
即ち、図5から明らかなように、アスペクト比が0.3以下の溶接ビード部4を有する製品においては、引張残留応力値を有しており、この溶接ビード部4を使用した製品は比較的短期間に亀裂や応力腐食割れを生じやすい欠点がある。
【0024】
又アスペクト比が0.4以上0.5未満の溶接ビード部4は、溶接局部4Cの応力ピークは約0〜−120MPaの圧縮残留応力となるが、アスペクト比が少し変化しただけで、引張残留応力値が大幅に変化し、アスペクト比が0.4以上0.5未満の溶接ビード部4を有する製品例えばSUS304に繰り返し負荷疲労試験をすると、破損限界値がばらつき性能の安定した製品を製作することができない。
【0025】
これに対して、本発明のアスペクト比が0.5以上の溶接ビード部4を有する製品においては、アスペクト比が多少変化しても常に圧縮残留応力が略−120〜−140MPaとなり、略一定値の圧縮残留応力となり、アスペクト比が0.5以上の溶接ビード部4を有する製品例えばSUS304に繰り返し負荷を与えて疲労試験をすると、破損限界値が略一定した性能の安定した製品を製作することができると共に、亀裂や応力腐食割れが生じにくくなるので、製品の寿命が長くなり、製品の信頼性が向上した。
【0026】
又、図6に溶接ビード部4の図3(B),(C),(D)及び図4(A)のビード表面温度3Aと内部温度3Bに関する時間と温度との関係を示す変化曲線である。ビード表面温度3Aと内部温度3Bとは、ビード直下で高温となる位置(図3の(D)参照)の温度として定義した。図6において、溶融池形成直後に水噴射冷却を行った場合のビード表面温度3Aとビード内部温度3Bに関する冷却曲線を図6の太線で示した。又、ビード内部温度3Bとビード表面温度3Aとの温度差(=内部温度−ビード表面温度)を反転温度差と定義した。
【0027】
図6から、アスペクト比が0.3の場合の反転温度差は小さいが、アスペクト比が(0.5),(1.0)と大きくなる程、反転温度差が大きくなることが判る。即ち、アスペクト比が0.3の場合にはビード表面の温度が低下すると、内部に形成される高温部は板内部の浅い部分(表面より3〜4mmの位置)にあるため表面温度と共に低下する。その結果、内部温度3Bの方がビード表面温度3Aより少し高い温度状態を保持するに過ぎない。
【0028】
他方、アスペクト比が(0.5),(1.0)の場合、ビード中心表面の温度が急速に低下しても、ビード直下の高温部は板内部の深い部分(表面より4〜6mmの位置)にあるため、内部温度低下の度合いは表面より遅く緩やかになる。その結果、内部温度3Bがビード表面温度3Aより高くなる反転温度差が大きく形成されるようになる。
【0029】
又、図5と図6の結果を対比すると、板表面の残留応力を圧縮残留応力にするには、上記した反転温度差を充分大きく形成する必要があることが判った。又、上記した施工を行なっても、溶接部において気泡の発生などにより溶接品質が損なわれることはなかった。
【0030】
尚、図示はしてないが、溶接トーチ1と冷却ヘッド8を固定し、溶接母材3を移動させるように構成しても、上記した効果と同等な効果が得られることは言うまでも無い。
(第2の実施例)
図7に本発明の第2の実施例を示す。本発明の第2の実施例は水排除隔壁14を用い、水中17で溶接を行なう場合である。
【0031】
溶接トーチ1に保持される電極2と溶接母材3との間に発生するアークの周辺にシールドガス16による水排除(気相)空間を形成し、水中17の溶接母材3上に溶融池5を形成し水中溶接を行うものにおいて、溶接ビード部4のアスペクト比(D/W)が0.5以上となる溶接条件にて溶接ビードを形成し、冷却媒体10である水を冷却ヘッド8から噴出させ、溶接局部を急冷するようにしたものである。
【0032】
本発明において、電極周辺に配置される水排除隔壁14は、断面形状が円形の場合、直径を溶融池5の長さとほぼ同等以上で約3倍の範囲に設定され、更に、水排除隔壁14の溶接進行方向の前面にはシールドガスの出口部15が設けられている。従って、本発明においては、従来使用されている隔壁断面直径(溶融池長さの5〜8倍)と比較して水排除隔壁14の断面直径を小さくしたので、水排除(気相)空間での温度降下が少なくなり、より高温の状態の溶接母材(表面及び内部)を急冷できる効果がある。
【0033】
その結果、溶接ビード部4表面の温度を溶接ビード直下の母材内部の温度より低くし、反転温度差を大きくすることができる。更に、水排除隔壁14の溶接進行方向の前面にシールドガスの出口部15を設けたので、実施例1と同様な効果に加えて、溶接進行方向の後方からのシールドガスの排出に伴う気泡により、溶接進行方向の後方の冷却を妨げることがない利点がある。
【0034】
又、実施例1と同様な傾斜角、開口部の噴射ノズル6を有する冷却ヘッドを水排除隔壁14の周辺に配置し、噴射ノズル6により水噴流を溶接局部に流動させ水噴射冷却を行うことにより、水の自然対流による冷却(熱伝達率約1〜5KW/m2℃)よりも冷却作用(熱伝達率)を高くすることができる。
【0035】
又、冷却媒体10として水を用いる場合、周囲の水24より低い温度の状態、例えば、0〜10℃程度の低温状態にしたり、不凍液を混合させたり不凍効果のある物質を溶解させ氷点以下にすることにより、周囲の水24よりも冷却作用を高めることが望ましい。
【0036】
この構成で、厚さ12mmのSUS304を入熱12KJ/cm、溶接速度100mm/minにおいて、複数のビード形状つまりアスペクト比=(0.3),(0.5),(1.0)のビードオン溶接を行い、冷却媒体として水を使用し、冷却ヘッド8として1本の矩形噴射ノズル6(開口幅20mm、開口高さ2mm)を配置し、母材面に対して40度の角度で約10l/min噴流を供給し、冷却した。尚、噴流の流速は約4.2m/sであり、噴流の熱伝達率は約18〜28KW/m2℃と推定される。
【0037】
このような施工を行い、アスペクト比と残留応力との関係を求めたところ、溶接ビード部のアスペクト比(D/W)が0.5以上の溶接ビード部4を形成し、上記した水噴射冷却を行なうことにより、水中溶接においても、板表面の残留応力を圧縮残留応力にできることが判った。又、溶接部においては、気泡の発生などにより溶接品質が損なわれることはなかった。
(第3の実施例)
図8(A),(B)に本発明の第3の実施例を示す。本発明の第3の実施例は各層を1パスで行う狭開先の多層突合せ溶接を行なう場合である。特に、図8(A),(B)に示すように、狭い開先,即ち、溶接母材3に開先底部3Cを有する溝18を形成する。この溝18に1パスで溶接を行い、先ず開先底部3Cを溶接させ最下段溶接層を形成する。更に各層を1パスにより最下段溶接層例えば3Cの上に順次第2溶接層18A、第3溶接層18Bの如く積重ねて、最上段溶接層18Nを形成後、最上段溶接層18Nの上に本発明による溶接ビード部の断面のアスペクト比(D/W)が0.5以上の溶接ビード部4を行い最終溶接層18Zを形成する。溶接ビード部の断面のアスペクト比(D/W)が0.5以上の溶接ビード4を形成し、凝固した直後の溶接ビード部とこれに隣接する熱影響部とに冷却媒体を噴射させ急冷するようにしたものである。
【0038】
そして、最終溶接層18Zとその熱影響部の表面残留応力を圧縮残留応力にするか、又は極めて低い引張残留応力に抑制するので、本発明による溶接ビード部4を使用した分だけ各溶接層での亀裂、応力腐食割れを抑制することが出来るようになり、本発明を使用した製品の性能の信頼性を向上することができる。
【0039】
前述において各層を1パスで順次肉盛りを行う狭開先溶接は、開先幅(ルート幅)を狭く設定し,アークの指向性を高めたTIG溶接を用い溶加ワイヤを供給しながら溶接を行なうことにより実現できる。例えば、板厚20mm、開先形状としては、ルート幅4〜6mm、開先角3度、ルートフェース1〜3mm、ルートギャップ0mmに対し、パルスTIG溶接において、入熱5〜15KJ/cm、溶接速度80〜150mm/min、パルスピーク電流値を高く(300〜600A)設定し、300〜700Hzの中周波パルスTIGで溶接を行うか、5〜30KHzの高周波パルスTIGで溶接を行うことで可能であることを見出した。
【0040】
又、DC−TIG溶接を用いる場合は、開先幅(ルート幅)及び開先角を上記より大きくし、シールドガスとしてアルゴンに2〜10%の水素を混合した混合ガスを用いて施工することで可能である。
【0041】
又、溶接ビード部のアスペクト比(D/W)が0.5以上となるような深溶け込み溶接は、実施例1と同様な方法で実現できる。例えば、DC−TIGを用い、シールドガスとしてアルゴンに2〜10%の水素を混合した混合ガスを用いてビードオン溶接を行うか、シールドガスとしてアルゴンを用い活性フラックスを溶接部に塗布しビードオン溶接を行えば良い。
【0042】
厚さ20mmのSUS304板の多層突合せ溶接において、狭開先部のルート幅を5mmとし、先ず、図8(A)に示すように、DC−TIGを用いて各層の肉盛りを1パスで行った後、図8(B)に示すように、溶接ビード部の断面のアスペクト比(D/W)が0.5乃至1.0の最終層を形成しつつ、凝固した高温状態の溶接ビード部と隣接する熱影響部に水を噴射させて急冷した。又、比較のため、DC−TIGを用いて溶接ビード断面のアスペクト比(D/W)が0.3の最終層を形成し同様な施工を行った。
【0043】
冷却ヘッド8として1本の矩形噴射ノズル6(開口幅20mm、開口高さ2mm)を配置し母材面に対して40度の角度で約5l/min噴流を供給して、冷却をした。尚、噴流の流速は約2.0m/sであり、噴流の熱伝達率は約13〜20KW/m2℃と推定される。
【0044】
このような施工を行い、アスペクト比と残留応力との関係を求めたところ、溶接ビード部4のアスペクト比(D/W)が0.5以上の溶接ビード4を形成し、上記した水噴射冷却を行なうことにより、多層突合せ溶接部においても、表面の残留応力を圧縮残留応力にできることが判った。又、溶接部においては、気泡の発生などにより溶接品質が損なわれることはなかった。
【0045】
尚、前述の実施例ではアスペクト比(D/W)が(0.5),(1.0)の場合しか説明していないが、アスペクト比(D/W)が0.5以上である(1.5),(2.0)〜等にも適用できることは云うまでもない。
【0046】
【発明の効果】
以上のように、本発明によれば、圧縮残留応力を有する溶接ビード部を使用した製品は、使用中に亀裂や応力腐食割れを生じにくくなり、アスペクト比(D/W)を0.5以上にした分だけ製品の寿命が長くなると共に、製品の性能に対する信頼性が向上した。
【図面の簡単な説明】
【図1】本発明の実施例であるアーク溶接の概略構成を示した斜視図。
【図2】図1に使用した噴射ノズルからの冷却媒体を溶接母材に噴射する冷却ヘッド部分の構成図。
【図3】図1により形成した溶接ビード部の断面図。
【図4】図3の溶接ビード部におけるビード方向の残留応力分布を示す分布図。
【図5】図4の溶接ビード部における残留応力のビード方向成分を示す分布図。
【図6】図3の溶接ビード部における熱的影響部の残留応力の温度と時間との関係を示す特性図。
【図7】本発明の他の実施例として示した水中アーク溶接の概略斜視図。
【図8】本発明の他の実施例として開先溶接部を示す斜視図。
【符号の説明】
1…溶接トーチ、2…電極、3…母材、3C…開先底部、4…溶接ビード部、5…溶融池、6…噴射ノズル、7…流体供給配管、8…冷却ヘッド、9…冷却媒体供給装置、10…冷却媒体、11…溶接ビード断面、12…溶接ビード断面、13…溶接ビード断面、14…水排除隔壁、15…出口部、16…シールドガス、17…水中、18…溝(開先部)、18A…第2溶接層、18B…第3溶接層、18N…最上溶接層。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an arc welding method, and more particularly to an arc welding method and an arc welding apparatus suitable for reducing residual stress in a weld bead portion and the heat affected zone.
[0002]
[Prior art]
In conventional arc welding, an arc is generated between a welding torch and a weld base material to form a molten pool on the weld base material, and the weld bead portion solidified by the molten pool is in contact with the molten pool. The formed heat-affected zone and the weld base material were cooled to normal temperature by heat radiation and natural convection of air as the surrounding medium. In JP-A-55-73477, JP-A-58-205687, and JP-A-60-187478, a method of preventing precipitation of chromium carbide by performing water cooling when welding in the atmosphere. Has been proposed.
[0003]
Furthermore, in underwater welding, after an arc is generated in a gas phase space from which water has been removed, natural convection of water is used to bring the weld bead, heat affected zone, and weld base material into contact with the surrounding medium water. The water was cooled down to the water temperature. Japanese Patent Application Laid-Open No. 10-34374 and the like relate to such underwater arc welding.
[0004]
[Problems to be solved by the invention]
However, in JP-A-55-73477, JP-A-58-205687, and JP-A-60-187478, the time of heating to 650 ° C. to 1200 ° C. to prevent the precipitation of chromium carbides. The method for changing the residual stress from the tensile stress to the compressive stress has not been disclosed.
[0005]
Japanese Patent Laid-Open No. 10-34374 reduces residual stress by underwater plasma welding, but the weld quality is impaired by the generation of air bubbles, etc., or the local tensile residual stress in the heat affected zone adjacent to the bead. There was a case where (the peak of residual stress) remained. A product using a weld having a tensile residual stress has a drawback that cracks and stress corrosion cracks are likely to occur in a relatively short period of time.
[0006]
An object of the present invention is to provide an arc welding method that prevents cracks and stress corrosion cracking during use of a product, prolongs the life of the product, and improves the reliability of performance.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, if the depth dimension of the cross section of the weld bead portion is D and the width dimension is W, the aspect ratio (D / W) of the cross section of the weld bead portion is 0.5 or more. The weld bead immediately after solidification and the heat-affected zone adjacent thereto are jetted with a cooling medium and rapidly cooled to form a weld having a surface having compressive residual stress. Is to achieve.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
1A and 1B show a first embodiment of the present invention. The first embodiment of the present invention is a case where welding is performed in the air by using an injection nozzle 6 for ejecting a cooling medium to a welding apparatus, for example, an arc welding apparatus.
[0009]
An arc is generated between the electrode 2 held by the welding torch 1 and the weld base material 3 to form a weld pool 5 on the weld base material 3, and the weld pool 5 is solidified to form a weld beat portion 4. When the weld bead 4 has a depth dimension of D and a width dimension of W, the weld bead 4 is formed under welding conditions where the aspect ratio (D / W) is 0.5 or more, and is cooled. The medium 10 such as water is jetted from the cooling head 8 disposed in the vicinity of the welding torch 1 and is caused to flow to the welding local part 4C, thereby rapidly cooling the welding local part 4C to form the weld bead part 4 shown in FIG. Here, the weld local part 4C indicates the weld bead part 4 immediately after the molten pool solidifies and the thermally affected part 4A adjacent to the molten pool 5.
[0010]
More preferably, deep penetration welding with an aspect ratio (D / W) of 0.5 or more can be realized by the following method in the weld bead portion 4 having a heat input of 5 to 20 KJ / cm, more preferably 8 to 17 KJ / cm. . In the case of DC arc, bead-on welding is performed using a mixed gas in which 2 to 10% hydrogen is mixed in argon as a shielding gas, or active flux is applied to a welded portion using argon as a shielding gas and bead-on welding is performed. This can be achieved. In the case of a pulsed arc, there is an advantage that the hydrogen mixed into the shield can be reduced by setting the pulse peak current value to a high value (300 to 600 A) and performing bead-on welding by high frequency pulse welding at 5 to 30 KHz.
[0011]
The cooling medium 10 is supplied to the cooling head 8 having the injection nozzle 6 installed around the electrode 2 through the pipe 7 by the cooling medium supply device 9. The cooling head 8 is fixed to the welding torch 1 and moves at the same speed as the welding torch 1.
[0012]
The cooling head 8 is configured by using one injection nozzle 6 and cools the weld bead portion 4 immediately after the molten pool 5 is solidified and the heat affected zone 4A formed in a portion adjacent to the molten pool 6. Although an example has been shown, the weld bead portion 4 immediately after the molten pool 6 is solidified using two or a plurality of injection nozzles 6 and the heat affected zone 4A formed in a portion adjacent to the molten pool 6 are cooled. You may make it do.
[0013]
Further, in order to prevent the cooling medium 10 (for example, water) from being scattered and disturbing the arc space by spraying water, wetting the electrode 2, or generating excessive vapor in the molten pool 6, the electrode 2 The cooling medium 10 is provided between the cooling head 8 and the cooling medium 8 so as to shield the cooling medium 10 from the arc space. An outlet portion 15 is provided.
[0014]
If the outlet 15 is not provided in the shield gas 16, the jet 10 for jet cooling is disturbed by the shield gas 16 flowing out from the rear of the water exclusion partition 14, or the water exclusion partition 14 on the same side as the cooling head 8. This is because if the outlet portion 15 is provided on the side surface, the weld bead cross section tends to be biased by the flow of the shield gas 16.
[0015]
Furthermore, as shown in FIG. 2, it is desirable that the injection nozzle 6 be disposed to be inclined within a range of 30 to 50 degrees with respect to the surface of the base material 3. When the inclination angle θ is 20 degrees or less, the cooling start position is far from the molten pool 6 and the rapid cooling effect is reduced. When the inclination angle θ is 60 degrees or more, an impinging jet enters from the gap between the water exclusion partition wall 21 and the base material 3 and arc. It will be disturbed.
[0016]
In addition to water, flame retardant oil, fluorinate, liquid nitrogen, or the like can be used as a cooling medium, but the heat transfer rate of jet cooling is more preferably 5 to 50 KW / m 2 ° C, and water is preferably used for heat transfer of jet cooling. It is preferable to set the flow rate and flow rate during injection so that the rate is 10 to 30 kW / m 2 ° C. When the heat transfer coefficient of the jet cooling is less than 10 KW / m 2 ° C, the reversal temperature difference described later is not sufficiently formed, and the maximum residual stress cannot be compressed.
[0017]
Further, if the flow rate and flow rate during jet cooling are increased, the heat transfer rate can be increased, but if the flow rate and flow rate are excessively increased, the arc is disturbed and the welding quality tends to deteriorate. That is, the flow rate at the time of injection may be set so that the flow velocity at the time of water jet cooling is 0.8 to 8 m / sec, more preferably 1 to 5 m / sec.
[0018]
Furthermore, the water temperature is lowered to about 0 to 5 ° C., antifreeze is mixed, or an antifreeze substance is dissolved to bring it below the freezing point. It is desirable to increase the heat transfer coefficient.
[0019]
With such a configuration, a SUS304 having a base material thickness of 12 mm is subjected to a heat input of 11 KJ / cm and a welding speed of 100 mm / min. As an example, a plurality of weld beads shown in FIGS. 3 (B), (C) and (D) Part 4 was formed. SUS316, Inconel 600, or the like may be used as a base material other than SUS304. The aspect ratio D / W of the bead cross-sectional shape of the weld bead portion 4 is (B) = 0.3, (C) = 0.5, (D) = 1.0, and bead-on welding is performed as a cooling medium. Water is used, one rectangular injection nozzle 6 (opening width 20 mm, opening height 2 mm) is disposed as the cooling head 8, and a jet of about 5 l / min is supplied at an angle of 40 degrees with respect to the base material surface, Cooled down. The flow velocity of the jet is about 2.0 m / s, and the heat transfer coefficient of the jet is estimated to be about 13 to 20 KW / m 2 ° C.
[0020]
The results of performing such construction and determining the relationship between the aspect ratio and the residual stress are shown in FIGS. 4 (A) and 4 (B). FIG. 4A shows a state in which the weld bead portion 4 is formed on the base material 3, and a characteristic diagram obtained by measuring the residual stress when the weld bead portion 4 is sequentially separated from the central portion 0 in the Y direction is shown in FIG. ). The characteristic diagram of FIG. 4 (B) shows the case where water is injected to the plurality of weld beads 4 shown in FIGS. 3 (B), 3 (C) and 3 (D) and the case of natural cooling. FIG. 5 shows a characteristic diagram obtained by synthesizing the maximum value, that is, the peak value, of the residual stress in the weld local area in the characteristic diagram of FIG. 4 (B). In FIG. 5, the residual stress peak value when the aspect ratio (D / W) is 0.4 is also added.
[0021]
As apparent from the characteristic diagram of FIG. 5, the bead direction component (σx) of the residual stress during water jet cooling is that the weld bead portion 4 having an aspect ratio of 0.3 or less is a thermally affected portion in the vicinity of the weld line. In the weld local part 4C, the peak has a tensile residual stress value of about +100 MPa or more.
[0022]
Further, the weld bead portion 4 having an aspect ratio of 0.4 or more becomes a compressive residual stress having a value of 0 to about −140 MPa in the thermally affected portion in the vicinity of the weld line, that is, the weld local portion 4C. These details will be described with reference to FIG.
[0023]
That is, as is apparent from FIG. 5, the product having the weld bead portion 4 having an aspect ratio of 0.3 or less has a tensile residual stress value, and the product using the weld bead portion 4 is relatively There is a drawback that cracks and stress corrosion cracks are likely to occur in a short time.
[0024]
In the weld bead portion 4 having an aspect ratio of 0.4 or more and less than 0.5, the stress peak of the weld local portion 4C is a compressive residual stress of about 0 to -120 MPa. When a load fatigue test is repeatedly performed on a product having a weld bead portion 4 having an aspect ratio of 0.4 or more and less than 0.5, for example, SUS304, a product having a stable failure performance with varying failure limit values is manufactured. I can't.
[0025]
On the other hand, in the product having the weld bead portion 4 having an aspect ratio of 0.5 or more according to the present invention, even if the aspect ratio slightly changes, the compressive residual stress is always about −120 to −140 MPa, which is a substantially constant value. When a fatigue test is performed by repeatedly applying a load to a product having a weld bead portion 4 having an aspect ratio of 0.5 or more, for example, SUS304, a stable product having a performance with a substantially constant failure limit value is manufactured. In addition, the cracks and stress corrosion cracking are less likely to occur, thus extending the product life and improving the product reliability.
[0026]
FIG. 6 is a change curve showing the relationship between the time and temperature of the bead surface temperature 3A and the internal temperature 3B of the weld bead portion 4 of FIGS. 3 (B), 3 (C), (D) and 4 (A). is there. The bead surface temperature 3 </ b> A and the internal temperature 3 </ b> B were defined as temperatures at a position (see FIG. 3D) where the temperature becomes high immediately below the bead. In FIG. 6, the cooling curve regarding the bead surface temperature 3A and the bead internal temperature 3B when water jet cooling is performed immediately after the formation of the molten pool is indicated by the thick line in FIG. Further, a temperature difference between the bead internal temperature 3B and the bead surface temperature 3A (= internal temperature−bead surface temperature) was defined as an inversion temperature difference.
[0027]
FIG. 6 shows that the reversal temperature difference is small when the aspect ratio is 0.3, but the reversal temperature difference increases as the aspect ratio increases to (0.5) and (1.0). That is, when the aspect ratio is 0.3, when the temperature of the bead surface is lowered, the high temperature portion formed inside is in a shallow portion (position of 3 to 4 mm from the surface) inside the plate, so that the temperature decreases with the surface temperature. . As a result, the internal temperature 3B only maintains a slightly higher temperature state than the bead surface temperature 3A.
[0028]
On the other hand, when the aspect ratio is (0.5) or (1.0), even if the temperature of the bead center surface rapidly decreases, the high-temperature part directly under the bead is a deep part inside the plate (4 to 6 mm from the surface). The position of the internal temperature decreases more slowly than the surface. As a result, a large reversal temperature difference is formed at which the internal temperature 3B becomes higher than the bead surface temperature 3A.
[0029]
Further, comparing the results shown in FIGS. 5 and 6, it was found that the above reversal temperature difference needs to be sufficiently large in order to make the residual stress on the plate surface a compressive residual stress. Moreover, even if the above-described construction was performed, the welding quality was not impaired by the generation of bubbles in the welded part.
[0030]
Although not shown, it goes without saying that even if the welding torch 1 and the cooling head 8 are fixed and the welding base material 3 is moved, the same effect as described above can be obtained. .
(Second embodiment)
FIG. 7 shows a second embodiment of the present invention. The second embodiment of the present invention is a case where welding is performed in water 17 using a water exclusion partition 14.
[0031]
A water exclusion (gas phase) space is formed by the shielding gas 16 around the arc generated between the electrode 2 held by the welding torch 1 and the welding base material 3, and the molten pool is formed on the welding base material 3 in the water 17. 5, the welding bead is formed under the welding conditions in which the aspect ratio (D / W) of the weld bead portion 4 is 0.5 or more, and water as the cooling medium 10 is cooled with the cooling head 8. It is made to erupt from, and the welding local part is cooled rapidly.
[0032]
In the present invention, when the cross-sectional shape of the water-excluding partition wall 14 arranged around the electrode is circular, the diameter is set to be approximately equal to or more than the length of the molten pool 5 and about three times as long as the water-excluding partition wall 14. A shield gas outlet 15 is provided in front of the welding progress direction. Therefore, in the present invention, since the cross-sectional diameter of the water exclusion partition 14 is made smaller than the partition cross-sectional diameter conventionally used (5 to 8 times the molten pool length), in the water exclusion (gas phase) space. There is an effect that the temperature drop of the steel can be reduced and the welding base material (surface and inside) at a higher temperature can be rapidly cooled.
[0033]
As a result, the temperature of the surface of the weld bead portion 4 can be made lower than the temperature inside the base material immediately below the weld bead, and the inversion temperature difference can be increased. Further, since the shield gas outlet 15 is provided on the front surface of the water exclusion partition wall 14 in the welding progress direction, in addition to the same effect as that of the first embodiment, air bubbles due to the discharge of the shield gas from the rear in the welding progress direction. There is an advantage that cooling behind the welding direction is not hindered.
[0034]
In addition, a cooling head having an injection nozzle 6 with an inclination angle and an opening similar to that in the first embodiment is disposed around the water exclusion partition wall 14, and the water jet is caused to flow to the welding local area by the injection nozzle 6 to perform water injection cooling. Thus, the cooling action (heat transfer coefficient) can be made higher than the cooling by natural convection of water (heat transfer coefficient of about 1 to 5 KW / m 2 ° C).
[0035]
When water is used as the cooling medium 10, the temperature is lower than that of the surrounding water 24, for example, a low temperature of about 0 to 10 ° C., an antifreeze solution is mixed, or a substance having an antifreeze effect is dissolved to below the freezing point. Therefore, it is desirable to enhance the cooling effect as compared with the surrounding water 24.
[0036]
With this configuration, SUS304 having a thickness of 12 mm has a plurality of bead shapes, that is, bead-on with an aspect ratio = (0.3), (0.5), (1.0) at a heat input of 12 KJ / cm and a welding speed of 100 mm / min. Welding is performed, water is used as a cooling medium, one rectangular injection nozzle 6 (opening width 20 mm, opening height 2 mm) is disposed as the cooling head 8, and approximately 10 l at an angle of 40 degrees with respect to the base material surface. A / min jet was supplied and cooled. The flow velocity of the jet is about 4.2 m / s, and the heat transfer coefficient of the jet is estimated to be about 18 to 28 KW / m 2 ° C.
[0037]
When such a construction was performed and the relationship between the aspect ratio and the residual stress was determined, the weld bead portion 4 having an aspect ratio (D / W) of the weld bead portion of 0.5 or more was formed, and the water jet cooling described above was performed. It was found that the residual stress on the plate surface can be made a compressive residual stress even in underwater welding. Further, in the welded portion, the welding quality was not impaired by the generation of bubbles.
(Third embodiment)
8A and 8B show a third embodiment of the present invention. The third embodiment of the present invention is a case in which narrow gap multilayer butt welding is performed in which each layer is formed in one pass. In particular, as shown in FIGS. 8A and 8B, a narrow groove, that is, a groove 18 having a groove bottom portion 3C is formed in the welding base material 3. The groove 18 is welded in one pass, and the groove bottom portion 3C is first welded to form the lowest weld layer. Further, each layer is sequentially stacked on the lowermost weld layer, for example, 3C, like the second weld layer 18A and the third weld layer 18B in one pass to form the uppermost weld layer 18N, and then the uppermost weld layer 18N. The weld bead portion 4 having an aspect ratio (D / W) of a cross section of the weld bead portion according to the invention of 0.5 or more is performed to form the final weld layer 18Z. A weld bead 4 having a cross-sectional aspect ratio (D / W) of 0.5 or more is formed in the weld bead portion, and a cooling medium is injected into the weld bead portion immediately after solidification and the heat-affected zone adjacent thereto to rapidly cool the weld bead portion. It is what I did.
[0038]
And since the surface residual stress of the final weld layer 18Z and its heat-affected zone is made a compressive residual stress or suppressed to an extremely low tensile residual stress, the weld bead 4 according to the present invention is used for each weld layer by the amount used. Cracks and stress corrosion cracks can be suppressed, and the reliability of the performance of the product using the present invention can be improved.
[0039]
In the above-mentioned narrow groove welding in which each layer is sequentially built up in one pass, welding is performed while supplying a filler wire using TIG welding with a narrow groove width (root width) and improved arc directivity. It can be realized by doing. For example, the plate thickness is 20 mm, the groove shape is 4 to 6 mm, the groove angle is 3 degrees, the root face is 1 to 3 mm, and the root gap is 0 mm. In pulse TIG welding, the heat input is 5 to 15 KJ / cm. This is possible by setting the speed 80 to 150 mm / min, setting the pulse peak current value high (300 to 600 A), and performing welding with a medium frequency pulse TIG of 300 to 700 Hz, or welding with a high frequency pulse TIG of 5 to 30 KHz. I found out.
[0040]
In addition, when using DC-TIG welding, the groove width (root width) and the groove angle are made larger than the above, and construction is performed using a mixed gas in which 2 to 10% hydrogen is mixed with argon as a shielding gas. Is possible.
[0041]
Further, deep penetration welding in which the aspect ratio (D / W) of the weld bead portion is 0.5 or more can be realized by the same method as in the first embodiment. For example, DC-TIG is used, and bead-on welding is performed using a mixed gas in which 2 to 10% hydrogen is mixed with argon as the shielding gas, or active flux is applied to the weld using argon as the shielding gas and bead-on welding is performed. Just do it.
[0042]
In multi-layer butt welding of a 20 mm thick SUS304 plate, the root width of the narrow groove portion is set to 5 mm, and first, as shown in FIG. 8 (A), each layer is built up in one pass using DC-TIG. After that, as shown in FIG. 8B, the weld bead portion solidified at a high temperature while forming a final layer having a cross-sectional aspect ratio (D / W) of 0.5 to 1.0. Water was sprayed to the heat-affected zone adjacent to and rapidly cooled. For comparison, a final layer having a weld bead cross-sectional aspect ratio (D / W) of 0.3 was formed using DC-TIG, and the same construction was performed.
[0043]
One rectangular spray nozzle 6 (opening width 20 mm, opening height 2 mm) was arranged as the cooling head 8 and cooled by supplying a jet of about 5 l / min at an angle of 40 degrees with respect to the base material surface. The flow velocity of the jet is about 2.0 m / s, and the heat transfer coefficient of the jet is estimated to be about 13 to 20 KW / m 2 ° C.
[0044]
After performing such construction and determining the relationship between the aspect ratio and the residual stress, the weld bead 4 having an aspect ratio (D / W) of the weld bead portion 4 of 0.5 or more is formed, and the water jet cooling described above is performed. It has been found that the residual stress on the surface can be changed to the compressive residual stress even in the multi-layer butt weld. Further, in the welded portion, the welding quality was not impaired by the generation of bubbles.
[0045]
In the above-described embodiment, only the case where the aspect ratio (D / W) is (0.5) or (1.0) has been described, but the aspect ratio (D / W) is 0.5 or more ( Needless to say, the present invention can also be applied to 1.5), (2.0) to etc.
[0046]
【The invention's effect】
As described above, according to the present invention, a product using a weld bead portion having a compressive residual stress is less likely to cause cracking or stress corrosion cracking during use, and has an aspect ratio (D / W) of 0.5 or more. The life of the product has been extended by the amount that has been selected, and the reliability of the product performance has been improved.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a schematic configuration of arc welding according to an embodiment of the present invention.
2 is a configuration diagram of a cooling head portion that injects a cooling medium from an injection nozzle used in FIG. 1 onto a welding base material.
3 is a cross-sectional view of a weld bead portion formed according to FIG.
4 is a distribution diagram showing a residual stress distribution in the bead direction in the weld bead portion of FIG. 3;
5 is a distribution diagram showing a bead direction component of residual stress in the weld bead portion of FIG. 4;
6 is a characteristic diagram showing the relationship between temperature and time of residual stress in a thermally affected part in the weld bead part of FIG. 3;
FIG. 7 is a schematic perspective view of underwater arc welding shown as another embodiment of the present invention.
FIG. 8 is a perspective view showing a groove weld as another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Welding torch, 2 ... Electrode, 3 ... Base material, 3C ... Groove bottom part, 4 ... Weld bead part, 5 ... Molten pool, 6 ... Injection nozzle, 7 ... Fluid supply piping, 8 ... Cooling head, 9 ... Cooling Medium supply device, 10 ... cooling medium, 11 ... weld bead cross section, 12 ... weld bead cross section, 13 ... weld bead cross section, 14 ... water exclusion partition, 15 ... outlet portion, 16 ... shield gas, 17 ... underwater, 18 ... groove (Groove part), 18A ... second weld layer, 18B ... third weld layer, 18N ... uppermost weld layer.

Claims (6)

アーク溶接により溶接母材上に溶融池を形成し凝固させた溶接ビード部と前記溶接ビード部に隣接する熱影響部とに冷却媒体を噴射させて冷却するアーク溶接方法において、前記溶接ビード部の断面の深さD、幅をWとすれば、前記溶接ビード部の断面のアスペクト比(D/W)が0.5以上の溶接ビードを形成することを特徴とするアーク溶接方法。  In the arc welding method of cooling by injecting a cooling medium to a weld bead portion formed by solidification by forming a weld pool on a weld base material by arc welding and a heat affected zone adjacent to the weld bead portion, the welding bead portion An arc welding method characterized by forming a weld bead having a cross-sectional aspect ratio (D / W) of 0.5 or more when the cross-section depth D and width are W. 前記冷却媒体として水を使用し、水の噴射冷却時の流速が1〜5m/secとなることを特徴とする請求項1に記載のアーク溶接方法。  The arc welding method according to claim 1, wherein water is used as the cooling medium, and a flow rate at the time of water jet cooling is 1 to 5 m / sec. アルゴンに水素を2〜10%混合したシールドガスを用いた高周波TIG溶接装置を使用し、溶接ビード部の断面のアスペクト比(D/W)が0.5以上の溶接ビードを形成することを特徴とする請求項1又は2に記載のアーク溶接方法。  A high-frequency TIG welding apparatus using a shielding gas in which 2 to 10% of hydrogen is mixed with argon is used, and a weld bead having a cross-sectional aspect ratio (D / W) of 0.5 or more is formed. The arc welding method according to claim 1 or 2. 活性フラックスを塗布しTIG溶接装置を使用し、溶接ビード断面のアスペクト比(D/W)が0.5以上の溶接ビードを形成することを特徴とする請求項1から3のいずれか1項に記載のアーク溶接方法。  The active bead is applied and a TIG welding apparatus is used to form a weld bead having an aspect ratio (D / W) of a weld bead cross section of 0.5 or more. The described arc welding method. 各層を1パスで行う狭開先の多層突合せ溶接の最終層は、溶接ビード部の断面のアスペクト比(D/W)が0.5以上の溶接ビードを形成することを特徴とする請求項1から4のいずれか1項に記載のアーク溶接方法。  2. The final layer of multi-face butt welding with narrow gaps in which each layer is performed in one pass forms a weld bead having an aspect ratio (D / W) of a cross section of the weld bead portion of 0.5 or more. 5. The arc welding method according to any one of items 1 to 4. アークにより溶接母材上を溶融して溶融池を形成する電極と、前記溶融池に吹き付けるアークシールドガスとを有する移動可能な溶接トーチと、前記溶融池を凝固させて形成した溶接ビード部とその周辺に冷却媒体を噴射して冷却させる冷却ヘッドとを備えたアーク溶接装置において、前記溶接トーチに前記電極及び前記溶池を前記冷却媒体より阻止する排除隔壁を設け、前記冷却ヘッドと反対側の前記排除隔壁に前記アークシールドガスを排出する出口部を設けることを特徴とするアーク溶接装置。A movable welding torch having an electrode for melting the weld base material by an arc to form a molten pool, an arc shield gas sprayed to the molten pool, a weld bead portion formed by solidifying the molten pool, and in arc welding apparatus having a cooling head for cooling by spraying a cooling medium on the periphery is provided with a rejection barrier ribs of the electrode and the molten pool on the welding torch to prevent from the cooling medium, the opposite side of the cooling head An arc welding apparatus, wherein an outlet for discharging the arc shield gas is provided in the exclusion partition wall.
JP2001141510A 2001-05-11 2001-05-11 Arc welding method and arc welding apparatus Expired - Fee Related JP3902419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001141510A JP3902419B2 (en) 2001-05-11 2001-05-11 Arc welding method and arc welding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001141510A JP3902419B2 (en) 2001-05-11 2001-05-11 Arc welding method and arc welding apparatus

Publications (2)

Publication Number Publication Date
JP2002336965A JP2002336965A (en) 2002-11-26
JP3902419B2 true JP3902419B2 (en) 2007-04-04

Family

ID=18987957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001141510A Expired - Fee Related JP3902419B2 (en) 2001-05-11 2001-05-11 Arc welding method and arc welding apparatus

Country Status (1)

Country Link
JP (1) JP3902419B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4890179B2 (en) * 2006-09-27 2012-03-07 株式会社ダイヘン Plasma MIG welding method
JP5218440B2 (en) * 2010-01-27 2013-06-26 新日鐵住金株式会社 Test method for evaluation of cracking susceptibility of weld metal
CN102152012B (en) * 2011-01-25 2013-06-05 武汉科技大学 Online process for improving impact toughness of welding heat affected zone
KR101586884B1 (en) * 2013-11-21 2016-01-19 현대제철 주식회사 Apparatus for spot welding hot stamping member for improving of strenth
CN105643122B (en) * 2016-03-17 2018-02-13 中船黄埔文冲船舶有限公司 Dynamic hot-stretch is with thin plate associated with Quench with weldering deformation controller in hole and method
CN106425148B (en) * 2016-11-22 2018-01-26 佳木斯大学 It is a kind of to control welding stress and the device of deformation with weldering heating and Quench combination

Also Published As

Publication number Publication date
JP2002336965A (en) 2002-11-26

Similar Documents

Publication Publication Date Title
CN112975122B (en) Welding gas protection device, laser wire filling welding system and welding method
EP0689896B1 (en) Plasma welding process
JP3902419B2 (en) Arc welding method and arc welding apparatus
JP6512880B2 (en) Shield nozzle and shield method
Samarjy et al. Using laser cutting as a source of molten droplets for additive manufacturing: A new recycling technique
Yang et al. Decreasing the surface roughness of aluminum alloy welds fabricated by a dual beam laser
KR101639904B1 (en) Apparatus for cooling of coated strip
Liu et al. Influence of interwire angle on undercutting formation and arc behavior in pulsed tandem narrow-gap GMAW
Victor Hybrid laser arc welding
Boulos et al. Plasma Torches for Cutting, Welding, and PTA Coating
KR102178729B1 (en) Method for welding steel material
Guo et al. Microstructure and properties of Ti-6Al-4V titanium alloy prepared by underwater wire feeding laser deposition
TW201841706A (en) Method of arc welding hot-dip galvanized steel plate and method of producing welded member
JP5146006B2 (en) Secondary cooling method in continuous casting
JP6191761B2 (en) Manufacturing method of welded structure
KR20220107579A (en) To minimize residue after metal cutting
JP4882406B2 (en) Cooling grid equipment for continuous casting machine and method for producing continuous cast slab
JP2005052867A (en) Flame scarfing device
KR102031435B1 (en) Cooling apparatus for welding
KR102554828B1 (en) Electro gas arc welding system
CN112404733B (en) Laser arc hybrid welding method for medium-large thickness high-temperature alloy structure
JPS6027473A (en) Plasma welding method
JP4646464B2 (en) TIG welding equipment
JPS6050544B2 (en) Narrow gap welding method and device
JPH0825053A (en) Plasma keyhole welding method using backing plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees