JP2002336965A - Arc welding method and device - Google Patents

Arc welding method and device

Info

Publication number
JP2002336965A
JP2002336965A JP2001141510A JP2001141510A JP2002336965A JP 2002336965 A JP2002336965 A JP 2002336965A JP 2001141510 A JP2001141510 A JP 2001141510A JP 2001141510 A JP2001141510 A JP 2001141510A JP 2002336965 A JP2002336965 A JP 2002336965A
Authority
JP
Japan
Prior art keywords
welding
arc
weld bead
cooling
molten pool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001141510A
Other languages
Japanese (ja)
Other versions
JP3902419B2 (en
Inventor
Takao Kumasaka
隆夫 熊坂
Mitsuo Kato
光雄 加藤
Akihiro Sato
章弘 佐藤
Kunio Miyazaki
邦夫 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001141510A priority Critical patent/JP3902419B2/en
Publication of JP2002336965A publication Critical patent/JP2002336965A/en
Application granted granted Critical
Publication of JP3902419B2 publication Critical patent/JP3902419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an arc welding method and an arc welding device with which a high tensile residual stress of a heat-affected part in welding is mitigat ed without impairing welding quality. SOLUTION: In the welding in which a molten pool is formed on a base metal by arc welding and solidified to perform welding, the shape of a weld bead is specified to show an aspect ratio (D/W) of 0.5 or above, and water is injected from a jetting nozzle succeeding a welding torch, so that the welding solidification part and the heat-affected part are rapidly cooled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアーク溶接方法に係
わり、特に溶接ビード部と該熱影響部の残留応力を低減
するのに好適なアーク溶接方法及びアーク溶接装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an arc welding method, and more particularly to an arc welding method and an arc welding apparatus suitable for reducing residual stress in a weld bead portion and a heat affected zone.

【0002】[0002]

【従来の技術】従来のアーク溶接においては、溶接トー
チと溶接母材との間にアークを発生させ溶接母材上に溶
融池を形成し、該溶融池が凝固した溶接ビード部と該溶
融池と接触する部分に形成された熱影響部と溶接母材と
を熱輻射及び周囲媒体である空気の自然対流により冷却
させ常温に戻していた。又、特開昭55−73477号
公報、特開昭58−205687号公報、特開昭60−
187478号公報においては、大気中の溶接を行う際
に水冷を行いクロム炭化物の析出を防止する方法が提案
されている。
2. Description of the Related Art In conventional arc welding, an arc is generated between a welding torch and a welding base material to form a molten pool on the welding base material, and a weld bead portion in which the molten pool is solidified and the molten pool are formed. The heat-affected zone and the welding base metal formed at the portion in contact with are cooled by heat radiation and natural convection of air as the surrounding medium to return to normal temperature. Also, JP-A-55-73377, JP-A-58-205687, and JP-A-60-205
187478 proposes a method for preventing precipitation of chromium carbide by performing water cooling when performing welding in the atmosphere.

【0003】更に、水中溶接においては、水を排除した
気相空間にてアークを発生させた後、溶接ビード部と熱
影響部と溶接母材とを周囲媒体である水と接触させるこ
とに水の自然対流により冷却し水温まで戻していた。こ
のような水中アーク溶接に関連するものに、特開平10
−34374号公報などがある。
Further, in underwater welding, an arc is generated in a gas phase space from which water has been removed, and then the welding bead, the heat-affected zone, and the welding base metal are brought into contact with the surrounding medium, water. And cooled to the water temperature by natural convection. Japanese Patent Application Laid-Open No.
No. -34374.

【0004】[0004]

【発明が解決しようとする課題】しかし、特開昭55−
73477号公報、特開昭58−205687号公報、
特開昭60−187478号公報においては、クロム炭
化物の析出を防止するため650℃〜1200℃に加熱
されている時間を短縮するようにしたものであり、残留
応力を引張り応力から圧縮応力にするための方法につい
ては開示されていなかった。
However, Japanese Patent Application Laid-Open No.
73377, JP-A-58-205687,
In Japanese Patent Application Laid-Open No. 60-187478, the duration of heating at 650 ° C. to 1200 ° C. is reduced to prevent the precipitation of chromium carbide, and the residual stress is changed from tensile stress to compressive stress. No method was disclosed.

【0005】又、特開平10−34374号公報は水中
ブラズマ溶接により残留応力を低減するものであるが、
気泡の発生などにより溶接品質が損なわれたり、ビード
に隣接する熱影響部に局部的な引張り残留応力(残留応
力のピーク)が残存するケースがあった。引張り残留応
力を有する溶接部を使用した製品は、比較的短期間に亀
裂や応力腐食割れを生じやすい欠点がある。
Japanese Patent Application Laid-Open No. 10-34374 discloses a technique for reducing residual stress by underwater plasma welding.
In some cases, the quality of welding was impaired due to the generation of bubbles, and local tensile residual stress (peak of residual stress) remained in the heat-affected zone adjacent to the bead. A product using a weld having a tensile residual stress has a disadvantage that cracks and stress corrosion cracks are easily generated in a relatively short time.

【0006】本発明の目的は、製品の使用中の亀裂や応
力腐食割れ防止し、製品の寿命を長くし、かつ性能に対
する信頼性を向上したアーク溶接方法を提供することに
ある。
An object of the present invention is to provide an arc welding method which prevents cracks and stress corrosion cracking during use of a product, prolongs the life of the product, and improves reliability in performance.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、溶接ビード部の断面の深さ寸法をD、
幅寸法をWとすれば、溶接ビード部の断面のアスペクト
比(D/W)が0.5以上の溶接ビードを形成し、凝固
させた直後の溶接ビード部とこれに隣接する熱影響部と
に冷却媒体を噴射させて急冷し、表面が圧縮残留応力を
有する溶接部を形成し、前述の目的を達成することにあ
る。
In order to achieve the above object, according to the present invention, the depth dimension of the cross section of the weld bead portion is D,
Assuming that the width dimension is W, a weld bead having a cross-sectional aspect ratio (D / W) of 0.5 or more of the weld bead portion is formed, and the weld bead portion immediately after solidification and the heat-affected zone adjacent thereto are formed. The present invention achieves the above-described object by forming a weld having a compressive residual stress on its surface by injecting a cooling medium into the weld and quenching it.

【0008】[0008]

【発明の実施の形態】(第1の実施例)図1(A),(B)
に本発明の第1の実施例を示す。本発明の第1の実施例
は、溶接装置例えばアーク溶接装置に冷却媒体を噴出す
る噴射ノズル6を用い、気中で溶接をする場合である。
(First Embodiment) FIGS. 1A and 1B
FIG. 1 shows a first embodiment of the present invention. The first embodiment of the present invention relates to a case in which welding is performed in the air using an injection nozzle 6 for injecting a cooling medium into a welding device, for example, an arc welding device.

【0009】溶接トーチ1に保持される電極2と溶接母
材3との間にアークを発生させ溶接母材3上に溶接池5
を形成し、溶接池5を凝固させ溶接ビート部4を形成す
るものにおいて、溶接ビード4は溶接ビードの深さ寸法
をDとし、幅寸法をWとすれば、アスペクト比(D/
W)が0.5以上となる溶接条件にて溶接ビード部4を
形成し、冷却媒体10例えば水は溶接トーチ1近傍に配
置した冷却ヘッド8から噴出させ溶接局部4Cに流動さ
せるようにして、溶接局部4Cを急冷し、図1(B)に示
す溶接ビード部4を形成する。ここで溶接局部4Cは溶
融池が凝固した直後の溶接ビード部4と溶融池5と隣接
する熱的影響部4Aとを指すものである。
An arc is generated between the electrode 2 held by the welding torch 1 and the welding base material 3 to cause a welding pond 5 on the welding base material 3.
Is formed, and the weld pool 5 is solidified to form the weld bead portion 4. In the weld bead 4, if the depth of the weld bead is D and the width is W, the aspect ratio (D /
A welding bead portion 4 is formed under welding conditions where W) is 0.5 or more, and a cooling medium 10 such as water is ejected from a cooling head 8 disposed near the welding torch 1 and flows to a welding local portion 4C. The weld local portion 4C is quenched to form a weld bead portion 4 shown in FIG. Here, the weld local portion 4C indicates the weld bead portion 4 immediately after the molten pool has solidified, and the heat affected zone 4A adjacent to the molten pool 5.

【0010】入熱5〜20KJ/cmより望ましくは、
8〜17KJ/cmの溶接ビード部4において、アスペ
クト比(D/W)が0.5以上となるような深溶け込み
溶接は、次の方法により実現できる。DCアークの場合
はシールドガスとして、アルゴンに2〜10%の水素を
混合した混合ガスを用いてビードオン溶接を行うか、シ
ールドガスとして、アルゴンを用い活性フラックスを溶
接部に塗布しビードオン溶接を行うことで実現できる。
又、パルスアークの場合はパルスピーク電流値を高く
(300〜600A)設定し、5〜30KHzの高周波
パルス溶接でビードオン溶接を行うことによりシールド
に混合する水素を低減できる利点がある。
More preferably, the heat input is 5 to 20 KJ / cm.
In the weld bead portion 4 of 8 to 17 KJ / cm, deep penetration welding in which the aspect ratio (D / W) becomes 0.5 or more can be realized by the following method. In the case of DC arc, bead-on welding is performed using a mixed gas of argon mixed with 2 to 10% of hydrogen as a shielding gas, or bead-on welding is performed by applying an active flux to a welding portion using argon as a shielding gas. This can be achieved by:
In the case of a pulse arc, the pulse peak current value is set high (300 to 600 A), and bead-on welding is performed by high-frequency pulse welding at 5 to 30 KHz, so that there is an advantage that hydrogen mixed in the shield can be reduced.

【0011】冷却媒体10は、冷却媒体供給装置9によ
り配管7を経て電極2の周囲に設置された噴射ノズル6
を有する冷却ヘッド8に供給される。又、冷却ヘッド8
は溶接トーチ1に固定され、溶接トーチ1と同一速度で
移動する。
The cooling medium 10 is supplied by a cooling medium supply device 9 via a pipe 7 to an injection nozzle 6 installed around the electrode 2.
Is supplied to the cooling head 8 having Also, the cooling head 8
Is fixed to the welding torch 1 and moves at the same speed as the welding torch 1.

【0012】冷却ヘッド8としては、1本の噴射ノズル
6を用いて構成し、溶融池5が凝固した直後の溶接ビー
ド部4と溶融池6に隣接する部分に形成された熱影響部
4Aとを冷却する例を示したが、2本、又は、複数の噴
射ノズル6を用いて溶融池6が凝固した直後の溶接ビー
ド部4と溶融池6に隣接する部分に形成された熱影響部
4Aとを冷却するようにしても良い。
The cooling head 8 is constituted by using one injection nozzle 6, and has a weld bead portion 4 immediately after the molten pool 5 has solidified and a heat-affected zone 4 A formed in a portion adjacent to the molten pool 6. Has been described, but the weld bead portion 4 immediately after the molten pool 6 is solidified by using two or a plurality of injection nozzles 6 and the heat-affected zone 4A formed in a portion adjacent to the molten pool 6 May be cooled.

【0013】又、冷却媒体10(例えば、水)が飛散し
水しぶきなどでアーク空間を乱したり、電極2を濡らし
たり、溶融池6で過度の蒸気を発生させたりすることを
防止するには、電極2と冷却ヘッド8との間に冷却媒体
10を遮蔽する水排除隔壁14を設け、アーク空間から
冷却媒体10を遮蔽するようにし、冷却ヘッド8と反対
側の水排除隔壁14の前面にシールドガス16の出口部
15を設ける。
In order to prevent the cooling medium 10 (for example, water) from being scattered and disturbing the arc space due to splashes, wetting the electrodes 2 and generating excessive steam in the molten pool 6. A water exclusion partition 14 for shielding the cooling medium 10 is provided between the electrode 2 and the cooling head 8 so as to shield the cooling medium 10 from the arc space. An outlet 15 for the shielding gas 16 is provided.

【0014】シールドガス16に出口部15を設けない
と、水排除隔壁14の後方から流出するシールドガス1
6により噴射冷却を行う噴流10に乱れが発生したり、
又冷却ヘッド8と同側の水排除隔壁14側面に出口部1
5を設けると、シールドガス16の流れにより、溶接ビ
ード断面に偏りが発生する傾向があるからである。
If the outlet portion 15 is not provided in the shielding gas 16, the shielding gas 1
6 causes turbulence in the jet 10 for injection cooling,
The outlet 1 is provided on the side of the water exclusion partition 14 on the same side as the cooling head 8.
This is because the provision of No. 5 tends to cause a deviation in the weld bead cross section due to the flow of the shield gas 16.

【0015】更に、図2に示すように、噴射ノズル6は
母材3面に対して30度〜50度の範囲で傾斜させて配
置することが望ましい。傾斜角度θが20度以下の場合
は冷却開始位置が溶融池6から遠くなり急冷効果が少な
くなり、60度以上の場合は水排除隔壁21と母材3と
の隙間から衝突噴流が進入しアークを乱すようになるか
らである。
Further, as shown in FIG. 2, it is desirable that the injection nozzle 6 is disposed at an angle of 30 to 50 degrees with respect to the surface of the base material 3. If the inclination angle θ is less than 20 degrees, the cooling start position is farther from the molten pool 6 and the quenching effect is reduced. It is because it becomes disturbed.

【0016】冷却媒体として、水の他に、難燃性オイ
ル、フロリナート、液体窒素などが使用できるが、噴射
冷却の熱伝達率が5〜50KW/m2℃より望ましく
は、水を用い噴射冷却の熱伝達率が10〜30KW/m
2℃となるように噴射時の流速や流量を設定すると良
い。噴射冷却の熱伝達率が10KW/m2℃未満の場
合、後述する反転温度差が充分に形成されず残留応力の
極大部を圧縮にすることができない。
As the cooling medium, in addition to water, flame-retardant oil, florinate, liquid nitrogen, etc. can be used. The heat transfer coefficient of the injection cooling is preferably 5 to 50 KW / m 2 ° C, more preferably, water is used for the injection cooling. Has a heat transfer coefficient of 10 to 30 KW / m
It is advisable to set the flow rate and flow rate at the time of injection so as to be 2 ° C. If the heat transfer coefficient of the injection cooling is less than 10 KW / m 2 ° C, the reversal temperature difference described below is not sufficiently formed, and the maximum part of the residual stress cannot be compressed.

【0017】又、噴射冷却時の流速や流量を高くすれ
ば、熱伝達率を増大できるが、流速や流量を高くし過ぎ
るとアークを乱し溶接品質が悪化する傾向があるからで
ある。即ち、水噴射冷却時の流速が0.8〜8m/se
c、より望ましくは、1〜5m/secとなるように噴
射時の流量を設定すると良い。
The heat transfer coefficient can be increased by increasing the flow rate and flow rate during injection cooling, but if the flow rate and flow rate are too high, the arc tends to be disturbed and the welding quality tends to deteriorate. That is, the flow velocity during water jet cooling is 0.8 to 8 m / sec.
c, more preferably, the flow rate at the time of injection is set so as to be 1 to 5 m / sec.

【0018】更に、水温を0〜5℃程度の低温状態にし
たり、不凍液を混合させたり不凍効果のある物質を溶解
させ氷点以下にし、流速や流量を極力高くせずに常温の
場合よりも冷却作用(熱伝達率)を高めることが望まし
い。
Furthermore, the water temperature is lowered to a low temperature of about 0 to 5 ° C., an antifreezing solution is mixed, or a substance having an antifreezing effect is melted to a temperature below the freezing point. It is desirable to increase the cooling action (heat transfer coefficient).

【0019】このような構成で、母材の厚さ12mmの
SUS304を入熱11KJ/cm,溶接速度100m
m/minにおいて、1例として図3(B),(C),(D)
に示す複数の溶接ビード部4を形成した。SUS304
以外の母材の材質としてSUS316、インコネル60
0等を用いても良い。溶接ビード部4のビード断面形状
のアスペクト比D/Wは、(B)=0.3,(C)=0.
5,(D)=1.0であり、ビードオン溶接を行い、冷却
媒体として水を使用し、冷却ヘッド8として1本の矩形
噴射ノズル6(開口幅20mm、開口高さ2mm)を配
置し、母材面に対して40度の角度で約5l/min噴
流を供給し、冷却をした。尚、噴流の流速は約2.0m
/sであり、噴流の熱伝達率は約13〜20KW/m2
℃と推定される。
With such a configuration, a SUS304 having a base material thickness of 12 mm is supplied with a heat input of 11 KJ / cm and a welding speed of 100 m.
At m / min, FIGS. 3 (B), (C), (D)
A plurality of weld beads 4 shown in FIG. SUS304
SUS316, Inconel 60
0 or the like may be used. The aspect ratio D / W of the bead cross-sectional shape of the weld bead portion 4 is (B) = 0.3, (C) = 0.
5, (D) = 1.0, bead-on welding is performed, water is used as a cooling medium, and one rectangular spray nozzle 6 (opening width 20 mm, opening height 2 mm) is arranged as a cooling head 8, A jet of about 5 l / min was supplied at an angle of 40 degrees with respect to the base material surface, and cooled. The flow velocity of the jet is about 2.0m
/ S, and the heat transfer coefficient of the jet is about 13 to 20 KW / m 2
It is estimated to be ° C.

【0020】このような施工を行い、アスペクト比と残
留応力との関係を求めた結果を図4(A),(B)に示す。
図4(A)は母材3に溶接ビード部4を形成した状況を示
し、溶接ビード部4の中心部0からY方向に順次離れた
時の残留応力を測定した特性図を図4(B)に示す。図4
(B)の特性図は図3(B),(C),(D)に示す複数の溶接
ビード部4に水噴射した場合と自然冷却の場合とを示し
た。図4(B)の特性図の溶接局部における残留応力の極
大値つまりピーク値を合成した特性図を図5に示した。
図5においてはアスペクト比(D/W)が0.4の場合
の残留応力ピーク値も追加した。
FIG. 4A and FIG. 4B show the results obtained by performing such a construction and determining the relationship between the aspect ratio and the residual stress.
FIG. 4A shows a state in which a weld bead portion 4 is formed on the base material 3, and FIG. 4B shows a characteristic diagram in which the residual stress is measured when the weld bead portion 4 is sequentially separated from the center portion 0 in the Y direction. ). FIG.
The characteristic diagram of (B) shows the case where water is injected to the plurality of weld beads 4 shown in FIGS. 3 (B), (C) and (D) and the case where natural cooling is performed. FIG. 5 is a characteristic diagram in which the maximum value, that is, the peak value of the residual stress in the welding local portion in the characteristic diagram of FIG.
In FIG. 5, the residual stress peak value when the aspect ratio (D / W) is 0.4 is also added.

【0021】図5の特性図から明らかなように、水噴射
冷却時の残留応力のビード方向成分(σx)は、アスペ
クト比が0.3以下の溶接ビード部4は、溶接線近傍の
熱的影響部つまり溶接局部4Cにおいて、ピークが約+
100MPa以上の引張残留応力値を有している。
As is clear from the characteristic diagram of FIG. 5, the bead direction component (σx) of the residual stress at the time of water injection cooling is such that the weld bead portion 4 having an aspect ratio of 0.3 or less has a thermal stress near the weld line. The peak is about +
It has a tensile residual stress value of 100 MPa or more.

【0022】またアスペクト比が0.4以上の溶接ビー
ド部4は、溶接線近傍の熱的影響部つまり溶接局部4C
において、0から約−140MPaを有する圧縮残留応
力となる。更にこれらの詳細を図5により説明する。
The weld bead portion 4 having an aspect ratio of 0.4 or more is formed in a heat affected zone near the weld line, that is, a weld local portion 4C.
At 0 to about -140 MPa. Further details of these will be described with reference to FIG.

【0023】即ち、図5から明らかなように、アスペク
ト比が0.3以下の溶接ビード部4を有する製品におい
ては、引張残留応力値を有しており、この溶接ビード部
4を使用した製品は比較的短期間に亀裂や応力腐食割れ
を生じやすい欠点がある。
That is, as apparent from FIG. 5, a product having a weld bead portion 4 having an aspect ratio of 0.3 or less has a tensile residual stress value, and a product using this weld bead portion 4 Has the disadvantage that cracks and stress corrosion cracking are likely to occur in a relatively short period of time.

【0024】又アスペクト比が0.4以上0.5未満の
溶接ビード部4は、溶接局部4Cの応力ピークは約0〜
−120MPaの圧縮残留応力となるが、アスペクト比
が少し変化しただけで、引張残留応力値が大幅に変化
し、アスペクト比が0.4以上0.5未満の溶接ビード
部4を有する製品例えばSUS304に繰り返し負荷疲
労試験をすると、破損限界値がばらつき性能の安定した
製品を製作することができない。
In the weld bead portion 4 having an aspect ratio of 0.4 or more and less than 0.5, the stress peak of the local weld portion 4C is approximately 0 to 0.
Although the compressive residual stress becomes −120 MPa, even if the aspect ratio is slightly changed, the tensile residual stress value is significantly changed, and a product having a weld bead portion 4 having an aspect ratio of 0.4 or more and less than 0.5, for example, SUS304 If the load fatigue test is repeated, the product cannot be manufactured with a stable breaking performance due to a variation in the breaking limit value.

【0025】これに対して、本発明のアスペクト比が
0.5以上の溶接ビード部4を有する製品においては、
アスペクト比が多少変化しても常に圧縮残留応力が略−
120〜−140MPaとなり、略一定値の圧縮残留応
力となり、アスペクト比が0.5以上の溶接ビード部4
を有する製品例えばSUS304に繰り返し負荷を与え
て疲労試験をすると、破損限界値が略一定した性能の安
定した製品を製作することができると共に、亀裂や応力
腐食割れが生じにくくなるので、製品の寿命が長くな
り、製品の信頼性が向上した。
On the other hand, in the product of the present invention having a weld bead portion 4 having an aspect ratio of 0.5 or more,
Even if the aspect ratio changes slightly, the compressive residual stress is almost
120 to -140 MPa, a substantially constant compressive residual stress, and a weld bead portion 4 having an aspect ratio of 0.5 or more.
When a fatigue test is performed by repeatedly applying a load to a product having, for example, SUS304, a stable product having a performance with a substantially constant damage limit value can be manufactured, and cracks and stress corrosion cracking are less likely to occur. And the reliability of the product has improved.

【0026】又、図6に溶接ビード部4の図3(B),
(C),(D)及び図4(A)のビード表面温度3Aと内部温
度3Bに関する時間と温度との関係を示す変化曲線であ
る。ビード表面温度3Aと内部温度3Bとは、ビード直
下で高温となる位置(図3の(D)参照)の温度として定義
した。図6において、溶融池形成直後に水噴射冷却を行
った場合のビード表面温度3Aとビード内部温度3Bに
関する冷却曲線を図6の太線で示した。又、ビード内部
温度3Bとビード表面温度3Aとの温度差(=内部温度
−ビード表面温度)を反転温度差と定義した。
FIG. 6 shows the weld bead portion 4 shown in FIG.
5 is a change curve showing a relationship between time and temperature with respect to the bead surface temperature 3A and the internal temperature 3B in (C), (D) and FIG. 4 (A). The bead surface temperature 3A and the internal temperature 3B were defined as temperatures at positions where the temperature was high immediately below the bead (see FIG. 3D). In FIG. 6, the bold line in FIG. 6 shows a cooling curve relating to the bead surface temperature 3A and the bead internal temperature 3B when water injection cooling is performed immediately after the formation of the molten pool. The temperature difference (= internal temperature−bead surface temperature) between the bead internal temperature 3B and the bead surface temperature 3A was defined as the reversal temperature difference.

【0027】図6から、アスペクト比が0.3の場合の
反転温度差は小さいが、アスペクト比が(0.5),
(1.0)と大きくなる程、反転温度差が大きくなること
が判る。即ち、アスペクト比が0.3の場合にはビード
表面の温度が低下すると、内部に形成される高温部は板
内部の浅い部分(表面より3〜4mmの位置)にあるた
め表面温度と共に低下する。その結果、内部温度3Bの
方がビード表面温度3Aより少し高い温度状態を保持す
るに過ぎない。
FIG. 6 shows that the inversion temperature difference is small when the aspect ratio is 0.3, but the aspect ratio is (0.5),
It can be seen that the reversal temperature difference increases as (1.0) increases. That is, when the temperature of the bead surface is lowered when the aspect ratio is 0.3, the high temperature portion formed inside is at a shallow portion (at a position of 3 to 4 mm from the surface) inside the plate and thus decreases with the surface temperature. . As a result, the internal temperature 3B merely maintains a temperature state slightly higher than the bead surface temperature 3A.

【0028】他方、アスペクト比が(0.5),(1.0)
の場合、ビード中心表面の温度が急速に低下しても、ビ
ード直下の高温部は板内部の深い部分(表面より4〜6
mmの位置)にあるため、内部温度低下の度合いは表面
より遅く緩やかになる。その結果、内部温度3Bがビー
ド表面温度3Aより高くなる反転温度差が大きく形成さ
れるようになる。
On the other hand, when the aspect ratio is (0.5), (1.0)
In the case of, even if the temperature of the bead center surface decreases rapidly, the high temperature portion immediately below the bead is deep inside the plate (4 to 6 from the surface).
mm position), the degree of decrease in the internal temperature is slower and slower than the surface. As a result, a large inversion temperature difference at which the internal temperature 3B becomes higher than the bead surface temperature 3A is formed.

【0029】又、図5と図6の結果を対比すると、板表
面の残留応力を圧縮残留応力にするには、上記した反転
温度差を充分大きく形成する必要があることが判った。
又、上記した施工を行なっても、溶接部において気泡の
発生などにより溶接品質が損なわれることはなかった。
Further, comparing the results shown in FIGS. 5 and 6, it was found that in order to reduce the residual stress on the plate surface to the compressive residual stress, it is necessary to form the above-mentioned reversal temperature difference sufficiently large.
In addition, even when the above-mentioned construction was performed, welding quality was not impaired due to generation of bubbles in the welded portion.

【0030】尚、図示はしてないが、溶接トーチ1と冷
却ヘッド8を固定し、溶接母材3を移動させるように構
成しても、上記した効果と同等な効果が得られることは
言うまでも無い。 (第2の実施例)図7に本発明の第2の実施例を示す。
本発明の第2の実施例は水排除隔壁14を用い、水中1
7で溶接を行なう場合である。
Although not shown, it can be said that the same effect as described above can be obtained even if the welding torch 1 and the cooling head 8 are fixed and the welding base material 3 is moved. Not even. (Second Embodiment) FIG. 7 shows a second embodiment of the present invention.
The second embodiment of the present invention uses a water exclusion partition wall 14 to remove water 1.
7 is a case where welding is performed.

【0031】溶接トーチ1に保持される電極2と溶接母
材3との間に発生するアークの周辺にシールドガス16
による水排除(気相)空間を形成し、水中17の溶接母
材3上に溶融池5を形成し水中溶接を行うものにおい
て、溶接ビード部4のアスペクト比(D/W)が0.5
以上となる溶接条件にて溶接ビードを形成し、冷却媒体
10である水を冷却ヘッド8から噴出させ、溶接局部を
急冷するようにしたものである。
A shield gas 16 is formed around an arc generated between the electrode 2 held by the welding torch 1 and the welding base material 3.
(Water / gas) space is formed by welding, the molten pool 5 is formed on the base metal 3 in the water 17 and the underwater welding is performed, and the aspect ratio (D / W) of the weld bead portion 4 is 0.5.
A welding bead is formed under the welding conditions described above, and water as the cooling medium 10 is jetted from the cooling head 8 to rapidly cool the local welding spot.

【0032】本発明において、電極周辺に配置される水
排除隔壁14は、断面形状が円形の場合、直径を溶融池
5の長さとほぼ同等以上で約3倍の範囲に設定され、更
に、水排除隔壁14の溶接進行方向の前面にはシールド
ガスの出口部15が設けられている。従って、本発明に
おいては、従来使用されている隔壁断面直径(溶融池長
さの5〜8倍)と比較して水排除隔壁14の断面直径を
小さくしたので、水排除(気相)空間での温度降下が少
なくなり、より高温の状態の溶接母材(表面及び内部)
を急冷できる効果がある。
In the present invention, when the cross-sectional shape of the water exclusion partition 14 disposed around the electrode is circular, the diameter thereof is set to be approximately equal to or longer than the length of the molten pool 5 and approximately three times. An outlet 15 for a shielding gas is provided on the front surface of the exclusion partition wall 14 in the welding direction. Therefore, in the present invention, the cross-sectional diameter of the water exclusion partition 14 is smaller than the conventionally used cross-sectional diameter of the partition (5 to 8 times the length of the molten pool). The temperature drop of the welding base metal is lower and the base material is hotter (surface and internal)
Has the effect of quenching.

【0033】その結果、溶接ビード部4表面の温度を溶
接ビード直下の母材内部の温度より低くし、反転温度差
を大きくすることができる。更に、水排除隔壁14の溶
接進行方向の前面にシールドガスの出口部15を設けた
ので、実施例1と同様な効果に加えて、溶接進行方向の
後方からのシールドガスの排出に伴う気泡により、溶接
進行方向の後方の冷却を妨げることがない利点がある。
As a result, the temperature of the surface of the weld bead portion 4 can be made lower than the temperature of the inside of the base material immediately below the weld bead, and the reversal temperature difference can be increased. Further, since the shield gas outlet 15 is provided on the front surface of the water exclusion partition wall 14 in the welding progress direction, in addition to the same effects as those of the first embodiment, bubbles due to the discharge of the shield gas from the rear in the welding progress direction are provided. In addition, there is an advantage that cooling in the rear in the welding traveling direction is not hindered.

【0034】又、実施例1と同様な傾斜角、開口部の噴
射ノズル6を有する冷却ヘッドを水排除隔壁14の周辺
に配置し、噴射ノズル6により水噴流を溶接局部に流動
させ水噴射冷却を行うことにより、水の自然対流による
冷却(熱伝達率約1〜5KW/m2℃)よりも冷却作用
(熱伝達率)を高くすることができる。
Further, a cooling head having a spray nozzle 6 having the same inclination angle and opening as that of the first embodiment is arranged around the water exclusion partition wall 14, and the water jet is caused to flow to the local welding portion by the spray nozzle 6 to cool the water jet. , The cooling action (heat transfer coefficient) can be made higher than the cooling by the natural convection of water (heat transfer coefficient about 1 to 5 KW / m 2 ° C).

【0035】又、冷却媒体10として水を用いる場合、
周囲の水24より低い温度の状態、例えば、0〜10℃
程度の低温状態にしたり、不凍液を混合させたり不凍効
果のある物質を溶解させ氷点以下にすることにより、周
囲の水24よりも冷却作用を高めることが望ましい。
When water is used as the cooling medium 10,
A temperature lower than the surrounding water 24, for example, 0 to 10 ° C.
It is desirable to enhance the cooling action more than the surrounding water 24 by setting the temperature to a low temperature, mixing an antifreeze, or dissolving a substance having an antifreeze effect to a temperature below the freezing point.

【0036】この構成で、厚さ12mmのSUS304
を入熱12KJ/cm、溶接速度100mm/minに
おいて、複数のビード形状つまりアスペクト比=(0.
3),(0.5),(1.0)のビードオン溶接を行い、冷
却媒体として水を使用し、冷却ヘッド8として1本の矩
形噴射ノズル6(開口幅20mm、開口高さ2mm)を
配置し、母材面に対して40度の角度で約10l/mi
n噴流を供給し、冷却した。尚、噴流の流速は約4.2
m/sであり、噴流の熱伝達率は約18〜28KW/m
2℃と推定される。
With this configuration, a SUS304 having a thickness of 12 mm
At a heat input of 12 KJ / cm and a welding speed of 100 mm / min, a plurality of bead shapes, that is, an aspect ratio = (0.
3), (0.5), (1.0) bead-on welding was performed, water was used as a cooling medium, and one rectangular spray nozzle 6 (opening width 20 mm, opening height 2 mm) was used as a cooling head 8. Approximately 10 l / mi at an angle of 40 degrees to the base material surface
n jets were supplied and cooled. The flow velocity of the jet is about 4.2
m / s and the heat transfer coefficient of the jet is about 18-28 KW / m
Estimated at 2 ° C.

【0037】このような施工を行い、アスペクト比と残
留応力との関係を求めたところ、溶接ビード部のアスペ
クト比(D/W)が0.5以上の溶接ビード部4を形成
し、上記した水噴射冷却を行なうことにより、水中溶接
においても、板表面の残留応力を圧縮残留応力にできる
ことが判った。又、溶接部においては、気泡の発生など
により溶接品質が損なわれることはなかった。 (第3の実施例)図8(A),(B)に本発明の第3の実施
例を示す。本発明の第3の実施例は各層を1パスで行う
狭開先の多層突合せ溶接を行なう場合である。特に、図
8(A),(B)に示すように、狭い開先,即ち、溶接母材
3に開先底部3Cを有する溝18を形成する。この溝1
8に1パスで溶接を行い、先ず開先底部3Cを溶接させ
最下段溶接層を形成する。更に各層を1パスにより最下
段溶接層例えば3Cの上に順次第2溶接層18A、第3
溶接層18Bの如く積重ねて、最上段溶接層18Nを形
成後、最上段溶接層18Nの上に本発明による溶接ビー
ド部の断面のアスペクト比(D/W)が0.5以上の溶
接ビード部4を行い最終溶接層18Zを形成する。溶接
ビード部の断面のアスペクト比(D/W)が0.5以上
の溶接ビード4を形成し、凝固した直後の溶接ビード部
とこれに隣接する熱影響部とに冷却媒体を噴射させ急冷
するようにしたものである。
When the relationship between the aspect ratio and the residual stress was determined by performing such a construction, a weld bead portion 4 having an aspect ratio (D / W) of 0.5 or more at the weld bead portion was formed. It was found that by performing water jet cooling, the residual stress on the plate surface can be changed to the compressive residual stress even in underwater welding. Further, in the welded portion, the welding quality was not impaired due to generation of bubbles or the like. (Third Embodiment) FIGS. 8A and 8B show a third embodiment of the present invention. The third embodiment of the present invention is directed to a case where a narrow groove multi-layer butt welding in which each layer is performed in one pass. In particular, as shown in FIGS. 8A and 8B, a groove 18 having a narrow groove, that is, a groove bottom 3C is formed in the welding base material 3. This groove 1
Welding is performed in one pass at 8, and the groove bottom 3C is first welded to form the lowermost welding layer. Further, each layer is sequentially formed on the lowermost welding layer, for example, 3C by one pass on the second welding layer 18A and the third welding layer 18C.
After forming the uppermost welding layer 18N by stacking as in the case of the welding layer 18B, the welding bead portion having a cross-sectional aspect ratio (D / W) of 0.5 or more of the welding bead portion according to the present invention is formed on the uppermost welding layer 18N. 4 is performed to form the final weld layer 18Z. A weld bead 4 having a cross-sectional aspect ratio (D / W) of 0.5 or more of the weld bead portion is formed, and a cooling medium is injected into the weld bead portion immediately after solidification and the heat-affected zone adjacent thereto to be rapidly cooled. It is like that.

【0038】そして、最終溶接層18Zとその熱影響部
の表面残留応力を圧縮残留応力にするか、又は極めて低
い引張残留応力に抑制するので、本発明による溶接ビー
ド部4を使用した分だけ各溶接層での亀裂、応力腐食割
れを抑制することが出来るようになり、本発明を使用し
た製品の性能の信頼性を向上することができる。
Since the surface residual stress of the final weld layer 18Z and its heat-affected zone is reduced to a compressive residual stress or suppressed to an extremely low tensile residual stress, each of the weld beads 4 according to the present invention is used. Cracks and stress corrosion cracking in the weld layer can be suppressed, and the reliability of the performance of products using the present invention can be improved.

【0039】前述において各層を1パスで順次肉盛りを
行う狭開先溶接は、開先幅(ルート幅)を狭く設定し,
アークの指向性を高めたTIG溶接を用い溶加ワイヤを
供給しながら溶接を行なうことにより実現できる。例え
ば、板厚20mm、開先形状としては、ルート幅4〜6
mm、開先角3度、ルートフェース1〜3mm、ルート
ギャップ0mmに対し、パルスTIG溶接において、入
熱5〜15KJ/cm、溶接速度80〜150mm/m
in、パルスピーク電流値を高く(300〜600A)
設定し、300〜700Hzの中周波パルスTIGで溶
接を行うか、5〜30KHzの高周波パルスTIGで溶
接を行うことで可能であることを見出した。
In the above, in the narrow groove welding in which each layer is sequentially built up in one pass, the groove width (root width) is set to be narrow, and
This can be realized by performing welding while supplying a filler wire using TIG welding with enhanced arc directivity. For example, as a plate thickness of 20 mm and a groove shape, a root width of 4 to 6 is used.
mm, groove angle 3 degrees, root face 1-3 mm, root gap 0 mm, in pulse TIG welding, heat input 5-15 KJ / cm, welding speed 80-150 mm / m
in, high pulse peak current value (300-600A)
It has been found that it is possible to set the welding frequency with a middle frequency pulse TIG of 300 to 700 Hz or to perform the welding with a high frequency pulse TIG of 5 to 30 KHz.

【0040】又、DC−TIG溶接を用いる場合は、開
先幅(ルート幅)及び開先角を上記より大きくし、シー
ルドガスとしてアルゴンに2〜10%の水素を混合した
混合ガスを用いて施工することで可能である。
When DC-TIG welding is used, the groove width (root width) and the groove angle are made larger than those described above, and a mixed gas obtained by mixing 2 to 10% hydrogen with argon is used as a shielding gas. It is possible by construction.

【0041】又、溶接ビード部のアスペクト比(D/
W)が0.5以上となるような深溶け込み溶接は、実施
例1と同様な方法で実現できる。例えば、DC−TIG
を用い、シールドガスとしてアルゴンに2〜10%の水
素を混合した混合ガスを用いてビードオン溶接を行う
か、シールドガスとしてアルゴンを用い活性フラックス
を溶接部に塗布しビードオン溶接を行えば良い。
The aspect ratio of the weld bead portion (D / D
Deep penetration welding in which W) is 0.5 or more can be realized by the same method as in the first embodiment. For example, DC-TIG
, And bead-on welding may be performed using a mixed gas in which 2 to 10% hydrogen is mixed with argon as a shielding gas, or bead-on welding may be performed by applying an active flux to a welding portion using argon as a shielding gas.

【0042】厚さ20mmのSUS304板の多層突合
せ溶接において、狭開先部のルート幅を5mmとし、先
ず、図8(A)に示すように、DC−TIGを用いて各層
の肉盛りを1パスで行った後、図8(B)に示すように、
溶接ビード部の断面のアスペクト比(D/W)が0.5
乃至1.0の最終層を形成しつつ、凝固した高温状態の
溶接ビード部と隣接する熱影響部に水を噴射させて急冷
した。又、比較のため、DC−TIGを用いて溶接ビー
ド断面のアスペクト比(D/W)が0.3の最終層を形
成し同様な施工を行った。
In the multi-layer butt welding of a SUS304 plate having a thickness of 20 mm, the root width of the narrow groove portion was set to 5 mm, and first, as shown in FIG. After performing the pass, as shown in FIG.
The aspect ratio (D / W) of the section of the weld bead is 0.5
Water was sprayed to the heat-affected zone adjacent to the solidified high-temperature weld bead portion while forming a final layer of 1.0 to 1.0, followed by rapid cooling. For comparison, a final layer having a weld bead cross-sectional aspect ratio (D / W) of 0.3 was formed using DC-TIG, and the same construction was performed.

【0043】冷却ヘッド8として1本の矩形噴射ノズル
6(開口幅20mm、開口高さ2mm)を配置し母材面
に対して40度の角度で約5l/min噴流を供給し
て、冷却をした。尚、噴流の流速は約2.0m/sであ
り、噴流の熱伝達率は約13〜20KW/m2℃と推定
される。
A single rectangular injection nozzle 6 (opening width 20 mm, opening height 2 mm) is arranged as a cooling head 8 and a jet of about 5 l / min is supplied at an angle of 40 degrees with respect to the base material surface to perform cooling. did. Note that the flow velocity of the jet is about 2.0 m / s, and the heat transfer coefficient of the jet is estimated to be about 13 to 20 KW / m 2 ° C.

【0044】このような施工を行い、アスペクト比と残
留応力との関係を求めたところ、溶接ビード部4のアス
ペクト比(D/W)が0.5以上の溶接ビード4を形成
し、上記した水噴射冷却を行なうことにより、多層突合
せ溶接部においても、表面の残留応力を圧縮残留応力に
できることが判った。又、溶接部においては、気泡の発
生などにより溶接品質が損なわれることはなかった。
When the relationship between the aspect ratio and the residual stress was determined by performing such a construction, a weld bead 4 having an aspect ratio (D / W) of the weld bead portion 4 of 0.5 or more was formed. It has been found that by performing water jet cooling, the residual stress on the surface can be changed to the compressive residual stress even in the multi-layer butt weld. Further, in the welded portion, the welding quality was not impaired due to generation of bubbles or the like.

【0045】尚、前述の実施例ではアスペクト比(D/
W)が(0.5),(1.0)の場合しか説明していない
が、アスペクト比(D/W)が0.5以上である(1.
5),(2.0)〜等にも適用できることは云うまでもな
い。
In the above embodiment, the aspect ratio (D /
Although only the case where (W) is (0.5) and (1.0) is described, the aspect ratio (D / W) is 0.5 or more (1.
It goes without saying that the present invention can be applied to 5), (2.0) and the like.

【0046】[0046]

【発明の効果】以上のように、本発明によれば、圧縮残
留応力を有する溶接ビード部を使用した製品は、使用中
に亀裂や応力腐食割れを生じにくくなり、アスペクト比
(D/W)を0.5以上にした分だけ製品の寿命が長く
なると共に、製品の性能に対する信頼性が向上した。
As described above, according to the present invention, a product using a weld bead having a compressive residual stress is less likely to cause cracks and stress corrosion cracks during use, and has an aspect ratio (D / W). Is increased by 0.5 or more, the product life is prolonged, and the reliability of the product performance is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例であるアーク溶接の概略構成を
示した斜視図。
FIG. 1 is a perspective view showing a schematic configuration of arc welding according to an embodiment of the present invention.

【図2】図1に使用した噴射ノズルからの冷却媒体を溶
接母材に噴射する冷却ヘッド部分の構成図。
FIG. 2 is a configuration diagram of a cooling head portion for injecting a cooling medium from an injection nozzle used in FIG.

【図3】図1により形成した溶接ビード部の断面図。FIG. 3 is a sectional view of a weld bead portion formed according to FIG. 1;

【図4】図3の溶接ビード部におけるビード方向の残留
応力分布を示す分布図。
FIG. 4 is a distribution diagram showing a residual stress distribution in a bead direction in a weld bead part in FIG. 3;

【図5】図4の溶接ビード部における残留応力のビード
方向成分を示す分布図。
FIG. 5 is a distribution diagram showing a component in a bead direction of a residual stress in a weld bead portion of FIG. 4;

【図6】図3の溶接ビード部における熱的影響部の残留
応力の温度と時間との関係を示す特性図。
FIG. 6 is a characteristic diagram showing a relationship between temperature and time of residual stress in a heat affected zone in the weld bead portion in FIG.

【図7】本発明の他の実施例として示した水中アーク溶
接の概略斜視図。
FIG. 7 is a schematic perspective view of underwater arc welding shown as another embodiment of the present invention.

【図8】本発明の他の実施例として開先溶接部を示す斜
視図。
FIG. 8 is a perspective view showing a groove welding portion as another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…溶接トーチ、2…電極、3…母材、3C…開先底
部、4…溶接ビード部、5…溶融池、6…噴射ノズル、
7…流体供給配管、8…冷却ヘッド、9…冷却媒体供給
装置、10…冷却媒体、11…溶接ビード断面、12…
溶接ビード断面、13…溶接ビード断面、14…水排除
隔壁、15…出口部、16…シールドガス、17…水
中、18…溝(開先部)、18A…第2溶接層、18B…
第3溶接層、18N…最上溶接層。
DESCRIPTION OF SYMBOLS 1 ... welding torch, 2 ... electrode, 3 ... base material, 3C ... groove bottom part, 4 ... weld bead part, 5 ... molten pool, 6 ... injection nozzle,
7: fluid supply pipe, 8: cooling head, 9: cooling medium supply device, 10: cooling medium, 11: cross section of weld bead, 12 ...
Weld bead cross section, 13 ... weld bead cross section, 14 ... water exclusion partition wall, 15 ... outlet part, 16 ... shield gas, 17 ... underwater, 18 ... groove (groove), 18A ... second weld layer, 18B ...
Third welding layer, 18N: uppermost welding layer.

フロントページの続き (72)発明者 佐藤 章弘 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 宮崎 邦夫 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 4E001 AA03 BB07 DD02 DD06 DD07 DE04 EA02 Continued on the front page (72) Inventor Akihiro Sato 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Kunio Miyazaki 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in Hitachi Laboratory, Hitachi, Ltd. (Reference) 4E001 AA03 BB07 DD02 DD06 DD07 DE04 EA02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 アーク溶接により溶接母材上に溶融池を
形成し凝固させた溶接ビード部と前記溶接ビード部に隣
接する熱影響部とに冷却媒体を噴射させて冷却するアー
ク溶接方法において、前記溶接ビード部の断面の深さ
D、幅をWとすれば、前記溶接ビード部の断面のアスペ
クト比(D/W)が0.5以上の溶接ビードを形成する
ことを特徴とするアーク溶接方法。
1. An arc welding method for cooling by injecting a cooling medium into a weld bead portion formed and solidified by forming a molten pool on a welding base metal by arc welding and a heat-affected zone adjacent to the weld bead portion, Assuming that the depth D and the width of the cross section of the weld bead portion are W, a weld bead having an aspect ratio (D / W) of 0.5 or more in the cross section of the weld bead portion is formed. Method.
【請求項2】 前記冷却媒体として水を使用し、水の噴
射冷却時の流速が1〜5m/secとなることを特徴と
する請求項1に記載のアーク溶接方法。
2. The arc welding method according to claim 1, wherein water is used as the cooling medium, and a flow velocity at the time of jet cooling of the water is 1 to 5 m / sec.
【請求項3】 アルゴンに水素を2〜10%混合したシ
ールドガスを用いた高周波TIG溶接装置を使用し、溶
接ビード部の断面のアスペクト比(D/W)が0.5以
上の溶接ビードを形成することを特徴とする請求項1又
は2に記載のアーク溶接方法。
3. A welding bead having a cross-sectional aspect ratio (D / W) of 0.5 or more using a high-frequency TIG welding apparatus using a shielding gas in which 2 to 10% of hydrogen is mixed with argon. The arc welding method according to claim 1, wherein the arc welding is performed.
【請求項4】 活性フラックスを塗布しTIG溶接装置
を使用し、溶接ビード断面のアスペクト比(D/W)が
0.5以上の溶接ビードを形成することを特徴とする請
求項1から3のいずれか1項に記載のアーク溶接方法。
4. A welding bead having an aspect ratio (D / W) of 0.5 or more in a weld bead cross section by applying an active flux and using a TIG welding device. The arc welding method according to claim 1.
【請求項5】 各層を1パスで行う狭開先の多層突合せ
溶接の最終層は、溶接ビード部の断面のアスペクト比
(D/W)が0.5以上の溶接ビードを形成することを
特徴とする請求項1から4のいずれか1項に記載のアー
ク溶接方法。
5. The final layer of the narrow groove multi-layer butt welding in which each layer is formed in one pass forms a weld bead having an aspect ratio (D / W) of 0.5 or more in a cross section of a weld bead portion. The arc welding method according to any one of claims 1 to 4, wherein
【請求項6】 アークにより溶接母材上を溶融して溶融
池を形成する電極と、前記溶融池に吹き付けるアークシ
ールドガスとを有する移動可能な溶接トーチと、前記溶
融池を凝固させて形成した溶接ビード部とその周辺に冷
却媒体を噴射して冷却させる冷却ヘッドとを備えたアー
ク溶接装置において、前記冷却ヘッドに噴出ノズルを設
け、前記噴出ノズルの傾斜角度を前記溶接母材に対して
30°から50°の範囲で傾斜させることを特徴とする
アーク溶接装置。
6. A movable welding torch having an electrode for melting a welding base material by an arc to form a molten pool, an arc shield gas sprayed on the molten pool, and a solidified form of the molten pool. In an arc welding apparatus including a welding bead and a cooling head for injecting a cooling medium to cool the periphery of the welding bead, an ejection nozzle is provided in the cooling head, and an inclination angle of the ejection nozzle is set to 30 with respect to the welding base metal. An arc welding apparatus characterized in that it is inclined in a range of from 50 to 50 degrees.
【請求項7】 アークにより溶接母材上を溶融して溶融
池を形成する電極と、前記溶融池に吹き付けるアークシ
ールドガスとを有する移動可能な溶接トーチと、前記溶
融池を凝固させて形成した溶接ビード部とその周辺に冷
却媒体を噴射して冷却させる冷却ヘッドとを備えたアー
ク溶接装置において、前記溶接トーチに前記電極及び前
記溶接池を前記冷却媒体より阻止する排除隔壁を設け、
前記冷却ヘッドと反対側の前記排除隔壁に前記アークシ
ールドガスを排出する出口部を設けることを特徴とする
アーク溶接装置。
7. A movable welding torch having an electrode for melting a welding base material by an arc to form a molten pool, an arc shield gas sprayed on the molten pool, and a solidified form of the molten pool. In an arc welding apparatus including a welding head and a cooling head that injects and cools a cooling medium around the welding bead, an exclusion partition wall that blocks the electrode and the welding pond from the cooling medium is provided on the welding torch,
An arc welding apparatus, wherein an outlet for discharging the arc shield gas is provided on the rejection partition wall opposite to the cooling head.
JP2001141510A 2001-05-11 2001-05-11 Arc welding method and arc welding apparatus Expired - Fee Related JP3902419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001141510A JP3902419B2 (en) 2001-05-11 2001-05-11 Arc welding method and arc welding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001141510A JP3902419B2 (en) 2001-05-11 2001-05-11 Arc welding method and arc welding apparatus

Publications (2)

Publication Number Publication Date
JP2002336965A true JP2002336965A (en) 2002-11-26
JP3902419B2 JP3902419B2 (en) 2007-04-04

Family

ID=18987957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001141510A Expired - Fee Related JP3902419B2 (en) 2001-05-11 2001-05-11 Arc welding method and arc welding apparatus

Country Status (1)

Country Link
JP (1) JP3902419B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080355A (en) * 2006-09-27 2008-04-10 Daihen Corp Plasma mig welding method
JP2011153926A (en) * 2010-01-27 2011-08-11 Nippon Steel Corp Weld metal crack sensitivity evaluation testing method
CN102152012A (en) * 2011-01-25 2011-08-17 武汉科技大学 Online process for improving impact toughness of welding heat affected zone
KR20150058737A (en) * 2013-11-21 2015-05-29 현대제철 주식회사 Apparatus for spot welding hot stamping member for improving of strenth
CN105643122A (en) * 2016-03-17 2016-06-08 中船黄埔文冲船舶有限公司 Thin plate weld with trailing deformation control device and method with dynamic hot stretching and chilling combined
CN106425148A (en) * 2016-11-22 2017-02-22 佳木斯大学 Device and method for controlling welding stress and deformation by combining heating with welding and chilling

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080355A (en) * 2006-09-27 2008-04-10 Daihen Corp Plasma mig welding method
JP2011153926A (en) * 2010-01-27 2011-08-11 Nippon Steel Corp Weld metal crack sensitivity evaluation testing method
CN102152012A (en) * 2011-01-25 2011-08-17 武汉科技大学 Online process for improving impact toughness of welding heat affected zone
KR20150058737A (en) * 2013-11-21 2015-05-29 현대제철 주식회사 Apparatus for spot welding hot stamping member for improving of strenth
KR101586884B1 (en) 2013-11-21 2016-01-19 현대제철 주식회사 Apparatus for spot welding hot stamping member for improving of strenth
CN105643122A (en) * 2016-03-17 2016-06-08 中船黄埔文冲船舶有限公司 Thin plate weld with trailing deformation control device and method with dynamic hot stretching and chilling combined
CN106425148A (en) * 2016-11-22 2017-02-22 佳木斯大学 Device and method for controlling welding stress and deformation by combining heating with welding and chilling

Also Published As

Publication number Publication date
JP3902419B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
Li et al. A study of narrow gap laser welding for thick plates using the multi-layer and multi-pass method
CN112975122B (en) Welding gas protection device, laser wire filling welding system and welding method
Zhao et al. Effect of shielding gas on the metal transfer and weld morphology in pulsed current MAG welding of carbon steel
WO1995010385A1 (en) Plasma cutting method
EP0689896B1 (en) Plasma welding process
JP6512880B2 (en) Shield nozzle and shield method
JP2002336965A (en) Arc welding method and device
JP2010234373A (en) Laser machining nozzle, and laser machining apparatus
Boulos et al. Plasma Torches for Cutting, Welding, and PTA Coating
KR102178729B1 (en) Method for welding steel material
US5750955A (en) High efficiency, variable position plasma welding process
TW201841706A (en) Method of arc welding hot-dip galvanized steel plate and method of producing welded member
KR20100116855A (en) Gas outlets shaped of copper shoe for electro gas welding
JP5146006B2 (en) Secondary cooling method in continuous casting
Abe et al. Dynamic observation of high speed laser-arc combination welding of thick steel plates
JPS6258828B2 (en)
KR20220107579A (en) To minimize residue after metal cutting
JP4882406B2 (en) Cooling grid equipment for continuous casting machine and method for producing continuous cast slab
US3171013A (en) Process and apparatus for joining steel work by automatic and semi-automatic electric arc welding
JP2010131615A (en) Method of shielding laser beam welding, shielding gas feeding nozzle, and apparatus for shielding laser beam welding
KR200384956Y1 (en) Water cooled copper backing for 2 electrod eledtro gas welding
JP2004188455A (en) Cooling method and water-cooling device for rail welding structure
EP0824987A1 (en) Plasma welding process
KR102031435B1 (en) Cooling apparatus for welding
KR20190068839A (en) Cooling apparatus for welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees