JP5218440B2 - Test method for evaluation of cracking susceptibility of weld metal - Google Patents

Test method for evaluation of cracking susceptibility of weld metal Download PDF

Info

Publication number
JP5218440B2
JP5218440B2 JP2010015941A JP2010015941A JP5218440B2 JP 5218440 B2 JP5218440 B2 JP 5218440B2 JP 2010015941 A JP2010015941 A JP 2010015941A JP 2010015941 A JP2010015941 A JP 2010015941A JP 5218440 B2 JP5218440 B2 JP 5218440B2
Authority
JP
Japan
Prior art keywords
welding
weld
weld metal
test
test method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010015941A
Other languages
Japanese (ja)
Other versions
JP2011153926A (en
Inventor
正 糟谷
裕滋 井上
裕治 橋場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2010015941A priority Critical patent/JP5218440B2/en
Publication of JP2011153926A publication Critical patent/JP2011153926A/en
Application granted granted Critical
Publication of JP5218440B2 publication Critical patent/JP5218440B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶接金属の割れ感受性評価を行う試験方法に関するもので、より詳しくは、溶接ワイヤ製造が比較的難しい成分系に対して、溶接ワイヤより製造が容易である鋼板状の試験素材を用いることで、溶接金属の割れ感受性評価試験を効率よく行うことのできる試験方法に関するものである。   The present invention relates to a test method for evaluating crack susceptibility of a weld metal, and more specifically, a steel plate-like test material that is easier to manufacture than a weld wire is used for a component system that is relatively difficult to manufacture a weld wire. Thus, the present invention relates to a test method capable of efficiently performing a crack susceptibility evaluation test of a weld metal.

溶接継手の信頼性は、溶接構造物の信頼性を決定する重要な因子であり、特に、溶接割れが存在する場合は、構造物全体の信頼性に多大な影響を与える。   The reliability of the welded joint is an important factor that determines the reliability of the welded structure. In particular, when there is a weld crack, the reliability of the entire structure is greatly affected.

このような理由から、溶接施工条件の選定には、事前に、使用予定材料の割れ感受性を詳しく評価する必要がある。溶接割れの代表的な試験方法としては、非特許文献1に規定されているy形溶接割れ試験や、非特許文献2に規定されているU形溶接割れ試験などが盛んに用いられてきた。特に、最近では、鋼材の耐溶接割れ性が向上したため、溶接継手に発生する割れは、溶接金属に生じる場合が多くなってきた。そのため、溶接割れ感受性を評価する方法としては、効率よく溶接金属の割れ感受性を評価できる方法が望ましい。   For these reasons, it is necessary to evaluate in advance the cracking susceptibility of the material to be used before selecting welding conditions. As a typical test method for weld cracks, the y-type weld crack test defined in Non-Patent Document 1, the U-shaped weld crack test defined in Non-Patent Document 2, and the like have been actively used. In particular, recently, since the resistance to weld cracking of steel materials has improved, cracks occurring in welded joints have often occurred in weld metals. Therefore, as a method for evaluating the weld crack sensitivity, a method capable of efficiently evaluating the crack sensitivity of the weld metal is desirable.

一般に、溶接金属の割れ感受性を評価する方法としてよく用いられる方法は、前述のU形溶接割れ試験がある。これは、U形の溝が加工された試験体に、割れ感受性を評価したい溶接ワイヤまたは溶接棒を用いてU形溝に沿って試験ビードをおいて割れ発生有無を調べる方法である。この場合、溶接金属の成分は、試験体を形成している鋼板の成分も影響があるものの、最も影響を与えているのは溶接ワイヤなどの溶接材料である。当然のことながら、実際の溶接構造物の継手を作製する溶接材料と割れ感受性評価試験に用いる溶接材料は、同じ材料である必要がある。   In general, a method often used as a method for evaluating the cracking susceptibility of a weld metal is the aforementioned U-shaped weld crack test. This is a method for examining the presence or absence of cracking by placing a test bead along a U-shaped groove using a welding wire or a welding rod whose crack sensitivity is to be evaluated on a test body in which a U-shaped groove is processed. In this case, the component of the weld metal is affected by the component of the steel plate forming the test body, but the welding material such as a welding wire has the most influence. As a matter of course, the welding material for producing the joint of the actual welded structure and the welding material used for the crack sensitivity evaluation test need to be the same material.

溶接材料が既に製造されている、あるいは試作されている状態では、上記試験方法はきわめて有効な試験方法である。しかし、溶接材料の設計がまだ充分検討されていない段階で、溶接割れ感受性の観点から候補となっている成分系を絞り込む段階では、溶接材料試作の難しさから、従来試験方法では、きわめて効率が悪い場合がある。特に、最近では、鋼材の強度が高い、すなわち高張力鋼が用いられる傾向が強まっており、それに応じて溶接金属の特性も鋼材並みの高強度が要求されている。このような溶接金属を形成する溶接材料は、強度を確保するために合金元素を多く含む場合が多いが、このような場合、例えば、溶接ワイヤの製造の場合では、ワイヤ伸線中に断線などを起こし易くなる。溶接材料の成分系を検討する段階では、必ずしもワイヤ伸線性のみを議論するわけではなく、むしろ、溶接割れ感受性の観点から効率よく候補成分系を絞り込む方が、溶接材料開発を効率よく実施できる。   In the state where the welding material has already been manufactured or manufactured as a prototype, the above test method is a very effective test method. However, at the stage where the design of the welding material has not yet been fully studied, and at the stage where the candidate component system is narrowed down from the viewpoint of weld cracking susceptibility, the conventional test method is extremely efficient due to the difficulty in prototyping the welding material. It may be bad. In particular, recently, the strength of steel materials is high, that is, the tendency to use high-tensile steel is increasing, and the properties of weld metal are required to be as high as steel materials accordingly. The welding material for forming such a weld metal often contains a lot of alloying elements in order to ensure strength. In such a case, for example, in the case of manufacturing a welding wire, the wire is broken during wire drawing. It becomes easy to cause. At the stage of studying the component system of the welding material, not only wire drawability is necessarily discussed, but rather, it is more efficient to narrow down the candidate component system from the viewpoint of weld crack sensitivity, so that the welding material can be developed more efficiently.

これまでも、溶接割れ試験方法として、非特許文献1および2にある方法以外の割れ試験方法が検討されてきた。特許文献1には、非特許文献1及び2に代わる割れ試験方法を提供することを目的とする技術として、中央部分に一直線状の開先が形成された試験片を用いた溶接割れ試験方法において、溶接線の延長線上となる前記試験片の外側から前記開先の溶接部分へ溶接棒を一直線状に供給しながら試験溶接を行うことを特徴とする溶接割れ試験方法が開示されている。しかし、これら従来技術では、溶接材料を試作しなければ、割れ感受性の試験を実施できない。すなわち、従来技術では、溶接材料試作が難しい場合、効率よい溶接材料開発ができないという問題が存在していた。   So far, crack test methods other than those in Non-Patent Documents 1 and 2 have been studied as weld crack test methods. In Patent Document 1, as a technique aimed at providing a crack test method in place of Non-Patent Documents 1 and 2, in a weld crack test method using a test piece in which a straight groove is formed in the central portion. A welding crack test method is disclosed, in which test welding is performed while supplying a welding rod in a straight line from the outside of the test piece on the extension line of the weld line to the weld portion of the groove. However, in these conventional technologies, a crack sensitivity test cannot be performed unless a welding material is prototyped. That is, in the prior art, when it is difficult to prototype a welding material, there is a problem that an efficient welding material cannot be developed.

特開平06−180278号公報Japanese Patent Laid-Open No. 06-180278

JIS Z3158「y形溶接割れ試験方法」(1993年)JIS Z3158 “y-type weld cracking test method” (1993) JIS Z3157「U形溶接割れ試験方法」(1993年)JIS Z3157 “U-shaped weld cracking test method” (1993)

溶接割れ感受性は、高張力鋼ほど高まる傾向にあるため、効率よい割れ感受性評価試験方法が望まれている。その反面、高張力鋼用の溶接材料ほど試作が難しくなる。そのため、従来評価方法では効率よい溶接材料開発ができなかった。
そこで、本発明では、溶接材料試作をしなくても溶接金属の割れ感受性を評価できる試験方法の提供を目的とする。
Since weld crack susceptibility tends to increase as the strength of steel increases, an efficient crack susceptibility evaluation test method is desired. On the other hand, trial manufacture becomes difficult as the welding material for high-tensile steel. For this reason, the conventional evaluation method could not develop an efficient welding material.
Therefore, an object of the present invention is to provide a test method that can evaluate the cracking susceptibility of weld metal without trial manufacture of a welding material.

本発明者らは、以上の観点から、溶接材料を試作しなくても割れ感受性が評価できる試験方法について鋭意研究してきた。そして、溶接材料試作より容易な鋼板を試作し、鋼板に溶接金属と同等な成分を持たせ、溶加材を使用しないTIG溶接(以降、TIGなめ付け溶接と呼ぶ。)を実施することで溶接金属の割れ感受性を評価できる方法を見出したものである。本発明は、このような研究によってなされたものであり、その要旨は以下のとおりである。   From the above viewpoint, the present inventors have intensively studied a test method that can evaluate cracking susceptibility without trial manufacture of a welding material. Then, a steel plate that is easier than a prototype of welding material is prototyped, the steel plate has the same components as the weld metal, and TIG welding (hereinafter referred to as TIG tanning welding) that does not use a filler metal is performed. The present inventors have found a method capable of evaluating the cracking sensitivity of metals. This invention is made | formed by such a research, The summary is as follows.

(1) 溶接金属の割れ感受性を評価する試験方法において、
該溶接金属と同じ成分を持つ鋼板を用い、該鋼板に裏面よりスリット状の溝を加工し、該スリット状の溝を加工した鋼板を拘束板で拘束し、該スリット状の溝を加工した鋼板を表面より溶加材を使用しないTIG溶接を行うことにより該スリット状の溝に達する溶接金属を形成させることを特徴とする、溶接金属の割れ感受性評価試験方法。
(1) In the test method for evaluating the cracking susceptibility of weld metal,
Using a steel plate having the same component as the weld metal, processing a slit-shaped groove from the back surface of the steel plate, constraining the steel plate processed the slit-shaped groove with a restraining plate, and processing the slit-shaped groove A weld metal crack susceptibility evaluation test method comprising forming a weld metal reaching the slit-like groove by performing TIG welding without using a filler material from the surface.

) 前記TIG溶接のシールドガスとして、Hガスを質量%で0.1〜5%含有するArガスを用いることを特徴とする、請求項1に記載の溶接金属の割れ感受性評価試験方法。
(2) Examples shielding gas TIG welding, characterized by using an Ar gas containing 0.1% to 5% of H 2 gas in mass%, cracking susceptibility evaluation test method of the weld metal according to claim 1 .

本発明によれば、溶接金属の割れ感受性を効率よく評価することができるため、新しい溶接材料の開発速度を格段に速めることができるなど、産業上の意義はきわめて大きい。   According to the present invention, the cracking susceptibility of the weld metal can be efficiently evaluated, so that the development speed of new welding materials can be greatly increased, and thus the industrial significance is extremely great.

本発明が提供する溶接割れ試験方法を断面図で概念的に説明する図である。It is a figure which illustrates the weld crack test method which this invention provides conceptually with sectional drawing. 本発明の実施例で採用した試験方法を斜視図と断面図で概念的に説明する図である。It is a figure which illustrates conceptually the test method employ | adopted in the Example of this invention with a perspective view and sectional drawing.

以下に、本発明を詳細に説明する。   The present invention is described in detail below.

溶接金属の成分は、鋼材および溶接材料の成分の混合として決定され、その割合は溶接施工条件でほぼ決定される。一般に、この影響を表現する指標としては、溶接金属における鋼材からの寄与率があり、これを母材希釈率とよぶ。すなわち、母材希釈率は、溶接施工条件でほぼ決定され、逆に、溶接施工条件を予め決めておけば、鋼材および溶接材料の成分から溶接金属成分が計算できることになる。例えば、母材希釈率が20%の溶接施工条件について考えると、鋼材のNiが1%であり、溶接材料のNi成分が2%である場合は、1×0.2+2×(1−0.2)=1.8となり、溶接金属のNi成分は、1.8%と計算できることになる。   The component of the weld metal is determined as a mixture of the steel material and the component of the welding material, and the ratio is almost determined by the welding conditions. In general, as an index for expressing this influence, there is a contribution ratio from a steel material in a weld metal, and this is called a base material dilution ratio. That is, the base material dilution rate is substantially determined by the welding conditions, and conversely, if the welding conditions are determined in advance, the weld metal component can be calculated from the components of the steel material and the welding material. For example, when considering the welding condition where the base material dilution ratio is 20%, when the Ni of the steel material is 1% and the Ni component of the welding material is 2%, 1 × 0.2 + 2 × (1-0. 2) = 1.8, and the Ni component of the weld metal can be calculated as 1.8%.

溶接施工条件を予め決定しておけば、母材希釈率がきまるが、この母材希釈率を決定するときに用いることができる溶接材料は、必ずしも割れ感受性を評価すべき溶接材料である必要はないため、事前に、母材希釈率を実験等で決めておくことができる。   If the welding conditions are determined in advance, the base material dilution rate is determined, but the welding material that can be used when determining this base material dilution rate does not necessarily need to be a weld material whose crack sensitivity should be evaluated. Therefore, the base material dilution rate can be determined in advance through experiments or the like.

そこで、割れ感受性を評価したい溶接材料の成分と溶接を行いたい鋼板の成分から、予め求めておいた母材希釈率を用いて溶接金属の成分を計算し、その成分と同じ成分を持つ鋼板を事前に試作することができる。このようにする理由は、同じ成分でも、溶接ワイヤなどの溶接材料を試作する場合より鋼板を試作する方が作業が容易であるためである。   Therefore, calculate the weld metal component using the base material dilution ratio obtained in advance from the component of the welding material to be evaluated for cracking susceptibility and the component of the steel plate to be welded. Prototypes can be made in advance. The reason for doing this is that even with the same components, it is easier to make a steel plate as a prototype than when making a prototype of a welding material such as a welding wire.

しかし、成分が同じでも、鋼板と溶接金属では、ミクロ組織が大きく異なり、それが割れ感受性に影響を与える。そのため、鋼板に溶接金属と同じミクロ組織を与える必要がある。そこで、TIGなめ付け溶接を鋼板に施工することで、溶接金属組織を鋼板に与えることとした。これにより、成分およびミクロ組織とも一致する溶接金属が導入されることになり、割れ感受性を評価したい溶接材料の試験と考えることができるようになるのである。   However, even if the components are the same, the microstructures of steel sheets and weld metals differ greatly, which affects crack sensitivity. Therefore, it is necessary to give the steel sheet the same microstructure as the weld metal. Then, it decided to give a weld metal structure to a steel plate by constructing TIG tanning welding to a steel plate. As a result, a weld metal having the same composition and microstructure is introduced, and it can be considered as a test of a welding material whose crack sensitivity is to be evaluated.

次に、本発明で、鋼板にスリット状の溝がある場合に限定している理由について述べる。   Next, the reason why the present invention is limited to the case where the steel plate has slit-like grooves will be described.

溶接金属に発生する割れの影響因子としては、溶接金属成分、水素量、拘束度に加え、応力集中も大きな影響因子であることが知られている。そこで、本発明では、応力集中部を作製し、割れ感受性の比較を容易にすることにした。図1には、その手順が示されている。すなわち、溶接金属と同じ成分を持つ鋼板3を用意し、そこに所定のスリット幅1およびスリット高さ2をもつスリット状の溝を作製する。それが図1(a)である。図1では、ストレート形状の溝を作製した例が載せてある。また、図1(a)からわかるように、溝は、必ずしも表面側にまで貫通している必要はない。TIGなめ付け溶接を行ったとき、溶け込み深さが裏面から加工されたスリットの先端に届き、溶接金属部分に応力集中部が形成できるようになれば充分である。これは、スリットの高さとTIGなめ付け溶接を行った時の溶け込み深さが問題になるが、溶け込み深さは、事前に実験で決定できるため、必要なスリット高さを決定することは、当業者であれば特に問題ではない。このようにして、TIGなめ付け溶接4を行うと、図1(b)のように、鋼板表面に溶接金属組織5が導入され、溶接金属に応力集中部6を形成することができる。これにより実際の溶接金属を再現することができ、割れ感受性評価が可能となる。   As an influencing factor of cracks occurring in the weld metal, it is known that stress concentration is also a large influencing factor in addition to the weld metal component, the amount of hydrogen, and the degree of restraint. Therefore, in the present invention, a stress concentration portion is prepared to facilitate the comparison of crack sensitivity. FIG. 1 shows the procedure. That is, a steel plate 3 having the same components as the weld metal is prepared, and a slit-like groove having a predetermined slit width 1 and slit height 2 is prepared therein. This is shown in FIG. FIG. 1 shows an example in which a straight groove is produced. Further, as can be seen from FIG. 1A, the groove does not necessarily have to penetrate to the surface side. When TIG tanning welding is performed, it is sufficient that the penetration depth reaches the tip of the slit machined from the back surface so that a stress concentration portion can be formed in the weld metal portion. This is because the depth of the slit and the penetration depth when TIG tanning welding is performed are problematic. However, since the penetration depth can be determined in advance by experiments, determining the required slit height is not appropriate. If it is a trader, it is not particularly a problem. Thus, when TIG tanning welding 4 is performed, as shown in FIG. 1B, the weld metal structure 5 is introduced on the surface of the steel sheet, and the stress concentration portion 6 can be formed on the weld metal. Thereby, an actual weld metal can be reproduced, and crack sensitivity evaluation can be performed.

次に、本発明で、溶接方法として、TIGなめ付け溶接に限定している理由について述べる。   Next, the reason why the present invention is limited to TIG tanning welding as a welding method will be described.

本発明では、溶接材料試作が効率よく行うことができないような成分系を対象としている。そのため、溶接材料を用いないプロセスを前提とする必要がある。TIGなめ付け溶接は、溶接材料を用いない(この場合、溶接材料は、溶加材とも呼ばれる。)TIG溶接のことで、タングステン電極と鋼材の間で溶接アークを発生させ、鋼材表面を溶融させるプロセスである。このプロセスは、本発明の目的に合致し、かつ、通常のTIG溶接機を用いて行うことができる方法であるため、この方法に限定した。   In the present invention, a component system in which trial manufacture of a welding material cannot be performed efficiently is targeted. Therefore, it is necessary to assume a process that does not use a welding material. TIG tanning welding does not use a welding material (in this case, the welding material is also referred to as a filler metal). TIG welding generates a welding arc between a tungsten electrode and a steel material and melts the steel surface. Is a process. This process is limited to this method because it meets the object of the present invention and can be performed using a normal TIG welder.

以上が本発明における必須要件である。   The above are essential requirements in the present invention.

本発明では、鋼板を拘束板で予め拘束す
In the present invention, it advance restrain the steel plates by constraining plate.

その理由は、溶接割れ感受性は、溶接部がどれだけ周囲から拘束されているかにも影響を受けるためである。特に低温割れ感受性に関しては、拘束の影響を評価する指標として拘束度という概念が従来から用いられていた。これにより、実構造物と割れ試験体との比較がより容易になった。本発明でも、実構造物との比較を容易にするために、拘束板を用いて拘束度をコントロールすることは、きわめて実用的である。そのため、拘束板を用い拘束度を精度よくコントロールすることとした。なお、拘束度は、開先幅を単位長さだけ縮めるときに必要な単位開先長さ当たりの荷重で定義される。試験板より十分大きな拘束板を用いるときは、拘束度は、試験板の幅をW、板厚をh、ヤング率をEとすると、拘束度RFは、RF=E×h÷Wで計算できる。
This is because the weld crack sensitivity is affected by how much the weld is constrained from the surroundings. In particular, regarding cold cracking susceptibility, the concept of restraint has been used as an index for evaluating the influence of restraint. Thereby, the comparison with an actual structure and a crack test body became easier. Also in the present invention, it is very practical to control the degree of restraint using a restraint plate in order to facilitate comparison with an actual structure. Me other, it was decided to accurately control the degree of restraint with captive plate. The degree of restraint is defined as the load per unit groove length required when the groove width is reduced by the unit length. When a restraint plate that is sufficiently larger than the test plate is used, the restraint degree can be calculated by RF = E × h ÷ W, where W is the width of the test plate, h is the plate thickness, and E is the Young's modulus. .

本発明では、さらに必要に応じて、TIGなめ付け溶接のシールドガスに、Hガスを質量%で0.1〜5%含有したArガスを用いることができる。一般に、TIGなめ付け溶接を行う場合は、シールドガスは100%Arガスを用いることが普通であり、本発明でも、水素の影響を調べない場合、例えば高温割れを調査する場合は、100%Arガスをシールドガスに用いることが望ましい。一方、100%Arガスでは、溶接金属に水素が充分導入されないため、溶接割れのうち、低温割れに関しては、実際と異なる割れ感受性評価をしてしまう危険がある。そこで、水素の影響を再現するために、シールドガスにHガスを混入させ、これにより溶接金属に水素を導入させることとした。下限の0.1%は、これを下回る水素ガス量では、割れにおける水素の影響が充分評価できないためにこの値を設定した。上限の5%は、これを上回る水素量では、過大水素量の導入になる点と、水素ガスそのものの爆発性という性質を考慮して、上限を5%とした。 In the present invention, if necessary, Ar gas containing 0.1 to 5% by mass of H 2 gas can be used as a shielding gas for TIG tanning welding. In general, when performing TIG tanning welding, it is common to use 100% Ar gas as the shielding gas. Even in the present invention, when the influence of hydrogen is not examined, for example, when examining hot cracking, 100% Ar is used. It is desirable to use gas as the shielding gas. On the other hand, with 100% Ar gas, hydrogen is not sufficiently introduced into the weld metal, and therefore, there is a risk of performing a crack susceptibility evaluation different from the actual one regarding the low temperature crack among the weld cracks. Therefore, in order to reproduce the influence of hydrogen, H 2 gas was mixed into the shield gas, thereby introducing hydrogen into the weld metal. The lower limit of 0.1% was set to this value because the effect of hydrogen on cracking could not be sufficiently evaluated with an amount of hydrogen gas below the lower limit. The upper limit of 5% is set to 5% in consideration of the property of introducing an excessive amount of hydrogen when the amount of hydrogen exceeds the upper limit and the explosive nature of the hydrogen gas itself.

以下に、本発明の実施例について説明する。   Examples of the present invention will be described below.

表1に、本実施例で用いた溶接ワイヤの成分を載せる。溶接ワイヤの直径は、1.2mmに統一させた。表1の実施例では、特に、Ni、Cr、Moが大きく変化している。これら元素が添加された線材を溶接ワイヤに線引きする際、加工硬化によりワイヤが硬くなりすぎ、断線する可能性がでてくる。断線を防止するためには、焼鈍を行い、硬くなったワイヤを軟らかくすればよいが、焼鈍しなければならない材料は、ワイヤ製造しにくい材料であると言える。そのため、溶接ワイヤに関しては、ワイヤ伸線中に行う焼鈍の回数で、ワイヤ試作の難しさが評価できる。本実施例では、焼鈍回数が3回以上の場合を、ワイヤ試作が難しい成分系、と判断した。   Table 1 lists the components of the welding wire used in this example. The diameter of the welding wire was unified to 1.2 mm. In the example of Table 1, especially Ni, Cr, and Mo are greatly changed. When drawing a wire rod to which these elements are added to a welding wire, the wire becomes too hard due to work hardening, and there is a possibility of disconnection. In order to prevent disconnection, annealing may be performed to soften the hardened wire, but the material that must be annealed is a material that is difficult to manufacture. Therefore, regarding the welding wire, the difficulty of trial manufacture of the wire can be evaluated by the number of annealing performed during wire drawing. In this example, the case where the number of times of annealing was 3 times or more was determined to be a component system in which the wire trial production was difficult.

Figure 0005218440
Figure 0005218440

表1の成分系をもつワイヤを用いて、通常の溶接割れ試験方法である、U形溶接割れ試験を実施した。用いた鋼材はJIS G3106に準拠したSM490鋼材であり、そのおもな成分は、C:0.12%、Si:0.25%、Mn:1.45%である。SM490鋼材の板厚は50mmである。表1に示すように、成分によっては、ワイヤを1.2mmまでに伸線する際に、ワイヤ破断を防ぐために焼鈍を実施しなければならなかった。本実施例では、断線を防ぐのに必要な最小限の焼鈍回数を、ワイヤ製造しにくさを表すパラメーターとして採用した。一般の溶接ワイヤは、焼鈍回数は3回未満であることから、焼鈍回数が3回以上になった場合を、難製造ワイヤ成分系とすることとした。一方、割れ試験時の溶接は、20%COを含有するArガスをシールドガスとして採用した。なお、溶接ワイヤには、紳線時にワイヤ表面に付着したオイル成分が存在し、それが拡散性水素源となり、溶接割れを発生させる要因の1つになっている。溶接条件は、270A−29V−25cm/minである。また、予熱は行っていない。溶接後、7日間放置してから、1試験体より5断面マクロ試験片を採取し、顕微鏡観察により割れの有無を判断した。なお、5断面マクロによる割れ観察は、JIS Z3157に記載されている測定要領に従った方法である。 Using a wire having the component system shown in Table 1, a U-shaped weld crack test, which is a normal weld crack test method, was performed. The steel used was SM490 steel in accordance with JIS G3106, and the main components are C: 0.12%, Si: 0.25%, and Mn: 1.45%. The plate thickness of SM490 steel is 50 mm. As shown in Table 1, depending on the component, when the wire was drawn to 1.2 mm, annealing had to be performed to prevent wire breakage. In this example, the minimum number of annealings necessary to prevent disconnection was adopted as a parameter representing the difficulty of wire manufacture. Since general welding wires are annealed less than 3 times, the case where the number of annealing times is 3 times or more is determined to be a difficult-to-manufacture wire component system. On the other hand, Ar gas containing 20% CO 2 was used as a shielding gas for welding during the crack test. In addition, the oil component adhering to the wire surface at the time of a gentle wire exists in a welding wire, and it becomes a diffusible hydrogen source and becomes one of the factors which generate | occur | produce a weld crack. The welding conditions are 270A-29V-25 cm / min. Preheating is not performed. After welding, the sample was allowed to stand for 7 days, and then a five-section macro test piece was taken from one test specimen, and the presence or absence of cracks was judged by microscopic observation. In addition, the crack observation by a five-section macro is a method according to the measurement procedure described in JIS Z3157.

表1のワイヤを用いてU形溶接割れ試験を行い、顕微鏡観察による割れの判断をしたのち、溶接金属より成分分析用の試料を採取し、溶接金属の成分分析を行った。溶接金属の場合、鋼材が一部溶接金属に希釈してくるため、必ずしもワイヤ成分と溶接金属成分が一致するわけではない。表2には、溶接金属成分分析結果が載せてある。母材からの希釈の影響により、溶接金属成分とワイヤ成分が異なることが理解できる。   A U-shaped weld cracking test was performed using the wires shown in Table 1, and cracks were judged by microscopic observation. Samples for component analysis were taken from the weld metal, and component analysis of the weld metal was performed. In the case of a weld metal, since the steel material is partially diluted with the weld metal, the wire component and the weld metal component do not necessarily match. Table 2 lists the weld metal component analysis results. It can be understood that the weld metal component and the wire component are different due to the influence of dilution from the base material.

次に、本発明の溶接割れ試験を実施するために、表2に示す溶接金属成分と同じ成分を持つ鋼材を作製し、図2に示す溶接割れ試験体を作製した。すなわち、表2の成分を持つ板厚5mmの、100mm×100mmサイズの鋼板を用意し、裏側より、幅が2mmのスリット状の溝8を作製した。このとき、スリット状の溝深さは4mmであり、鋼板表面より1mm下のところに溝の底が位置することになる。これが試験鋼板である。次に、幅600mm、長さ600mmの、板厚50mmのSM490鋼材を用意した。板厚を50mmとしたのは、すでに述べたU形溶接割れ試験方法で50mm板厚の鋼板を用いたためである。このSM490鋼材の中央部分に、100mm×100mmの正方形状の穴を加工する。その穴に、試験鋼板を挿入し、周囲を溶接して(拘束溶接7)、試験鋼板をSM490鋼板に取り付けた。図2には、試験鋼板を含む部分の断面図(A−B断面)も示している。   Next, in order to carry out the weld crack test of the present invention, a steel material having the same components as the weld metal components shown in Table 2 was prepared, and a weld crack test body shown in FIG. 2 was prepared. That is, a steel plate having a thickness of 5 mm and a size of 100 mm × 100 mm having the components shown in Table 2 was prepared, and a slit-like groove 8 having a width of 2 mm was produced from the back side. At this time, the depth of the slit-shaped groove is 4 mm, and the bottom of the groove is located 1 mm below the surface of the steel plate. This is the test steel plate. Next, a SM490 steel material having a width of 600 mm and a length of 600 mm and a thickness of 50 mm was prepared. The reason why the plate thickness is set to 50 mm is that a steel plate having a plate thickness of 50 mm was used in the U-shaped weld crack test method described above. A square hole of 100 mm × 100 mm is machined in the central portion of the SM490 steel. A test steel plate was inserted into the hole, the periphery was welded (restraint welding 7), and the test steel plate was attached to the SM490 steel plate. FIG. 2 also shows a cross-sectional view (A-B cross section) of a portion including the test steel plate.

このような試験体を表2に示す成分系をもつ鋼板(板厚5mm)すべてに対して作製し、溶接割れ試験を実施した。溶接割れ試験は、TIGなめ付け溶接で行った。TIGなめ付け溶接とは、溶加材、すなわち溶接ワイヤを用いずに、溶接する方法で、TIGのアークで鋼板を溶かすことを目的にしばしば行われる方法である。割れ試験を再現するために、シールドガスは、5%のHガスを含有するArガスを用いた。溶接条件は、240A−13V−10cm/minである。なお、従来溶接割れ試験方法であるU形溶接割れ試験方法と同じ条件にするために、予熱は実施していない。割れの有無は、TIGなめ付け溶接後、7日間放置してから、溶接部より断面マクロを、1試験片あたり5個採取して、顕微鏡で割れ観察を行うことにより、割れの有無を判断した。 Such a test body was produced with respect to all the steel plates (plate thickness 5mm) which have a component system shown in Table 2, and the weld cracking test was implemented. The weld cracking test was performed by TIG tanning welding. TIG tanning welding is a method of welding without using a filler metal, that is, a welding wire, and is often performed for the purpose of melting a steel sheet with a TIG arc. In order to reproduce the crack test, Ar gas containing 5% H 2 gas was used as the shielding gas. The welding conditions are 240A-13V-10 cm / min. In addition, preheating is not performed in order to make it the same conditions as the U-shaped weld crack test method which is a conventional weld crack test method. The presence or absence of cracks was determined after standing for 7 days after TIG tanning welding, and by taking 5 cross-section macros per test piece from the weld and observing the cracks with a microscope. .

Figure 0005218440
Figure 0005218440

表3には、本発明の試験方法、およびU形溶接割れ試験方法における、割れ発生の有無を調査した結果を載せている。U割れ試験の拘束度は、y割れ試験とほぼ同様で、板厚(mm)×70(kg/mm)であらわされるが、表3の試験結果は板厚30mmの場合の結果である。本発明の試験方法では、U割れ試験方法と同程度の拘束度になるように、試験板厚と試験板幅を調整した試験方法1と、拘束度を30%低くした試験方法2の両方を実施した。表3における○は、割れが発生していなかったことを、●は、割れが発生したことを示している。表3からわかるように、本発明の試験方法で得られた結果と、従来試験方法であるU形溶接割れ試験方法で得られた結果が、拘束度を一致させた試験方法1では非常によく一致していることが分かる。また、拘束度を緩くした試験方法2では、成分系4で割れが再現できていないが、その他の成分系では一致している。これは、本発明の試験方法では、拘束度の影響も十分評価できることを意味している。一方、表1をみるとわかるように、成分系によっては、ワイヤ製造時に、焼鈍回数が3回以上になる成分系も存在することが分かる。このような成分系では、ワイヤ製造のコストが大きくなる、開発期間が長くなるなどの問題が発生する。本発明の方法では、あらかじめ想定できるワイヤ成分と溶接の対象となる鋼材成分を用いて、母材希釈率から計算される溶接金属成分と同等の成分を持つ試験鋼材を用いることができるため、ワイヤ伸線時の断線トラブルなどの問題を回避することができ、開発期間などを大幅に短縮させることができる。 Table 3 lists the results of investigating the presence or absence of cracks in the test method of the present invention and the U-shaped weld crack test method. The restraint degree of the U-crack test is almost the same as that of the y-crack test, and is expressed as a plate thickness (mm) × 70 (kg / mm 2 ). The test results in Table 3 are the results when the plate thickness is 30 mm. In the test method of the present invention, both test method 1 in which the test plate thickness and test plate width are adjusted so that the degree of restraint is the same as that of the U crack test method, and test method 2 in which the degree of restraint is reduced by 30%. Carried out. ○ in Table 3 indicates that no cracks occurred, and ● indicates that cracks occurred. As can be seen from Table 3, the results obtained by the test method of the present invention and the results obtained by the U-shaped weld crack test method, which is a conventional test method, are very good in Test Method 1 in which the degree of constraint is matched. You can see that they match. Further, in Test Method 2 in which the degree of restraint was relaxed, cracks could not be reproduced in Component System 4, but they were consistent with other component systems. This means that the test method of the present invention can sufficiently evaluate the influence of the degree of restraint. On the other hand, as can be seen from Table 1, depending on the component system, it can be seen that there are also component systems in which the number of annealing is 3 or more during wire production. In such a component system, problems such as an increase in wire manufacturing cost and a long development period occur. In the method of the present invention, a test steel material having a component equivalent to the weld metal component calculated from the base metal dilution rate can be used using a wire component that can be assumed in advance and a steel component to be welded. Problems such as disconnection troubles at the time of wire drawing can be avoided, and the development period can be significantly shortened.

Figure 0005218440
Figure 0005218440

表4も、表3とほぼ同じ条件で行った従来溶接割れ試験であるU形溶接割れ試験と本発明が提供している割れ試験の結果を比較しているものである。本発明の試験方法1及び2は、表3で示したように、拘束度を一致させた場合(試験方法1)と拘束度を緩くした場合(試験方法2)の両方を実施している。さらに、試験条件としては、U形溶接割れ試験では、各溶接ワイヤを試験前に洗浄し、ワイヤ表面のオイルを除去した点以外は、表3の試験条件と同じである。また、表4の本発明が提供している溶接割れ試験では、TIGなめ付け溶接のシールドガスとして、Arに0.4%のHを含有するガスを用いた点以外は表3の試験条件と同じである。表4からわかるように、従来溶接割れ試験方法の結果と、本発明が提供している溶接割れ試験方法の結果が非常によく一致していることが分かる。このことから、本発明が提供している溶接割れ試験方法で、ワイヤ伸線時の断線トラブルなどの問題を回避することができ、開発期間などを大幅に短縮させることができる。 Table 4 also compares the results of the U-shaped weld cracking test, which is a conventional weld cracking test performed under substantially the same conditions as in Table 3, and the cracking test provided by the present invention. As shown in Table 3, the test methods 1 and 2 of the present invention are implemented both when the degree of restriction is matched (test method 1) and when the degree of restriction is loosened (test method 2). Furthermore, the test conditions are the same as the test conditions in Table 3 except that in the U-shaped weld crack test, each welding wire was washed before the test and oil on the wire surface was removed. In the weld cracking test provided by the present invention in Table 4, the test conditions in Table 3 except that a gas containing 0.4% H 2 in Ar was used as the shielding gas for TIG tanning welding. Is the same. As can be seen from Table 4, it can be seen that the results of the conventional weld crack test method and the results of the weld crack test method provided by the present invention are in good agreement. For this reason, the welding crack test method provided by the present invention can avoid problems such as wire breakage troubles during wire drawing, and can greatly shorten the development period.

Figure 0005218440
Figure 0005218440

なお、表1には、焼鈍回数が3回未満でワイヤ伸線が終了している成分系もあるが、このような場合は、必ずしも、本発明が提供している溶接割れ試験方法を用いる必要がない。また、成分系によっては、難製造ワイヤであるかどうかがあらかじめ予測できる。そのため、本発明が提供している溶接割れ試験を用いてワイヤ成分候補の検討を行うか、あるいは、従来溶接割れ試験方法を用いてワイヤ成分候補の検討を行うか、は、溶接材料開発に携わっている関係者にとって、特に難しい選択ではない。   In Table 1, there is also a component system in which the wire drawing is completed after the number of annealing times is less than 3, but in such a case, the weld crack test method provided by the present invention is necessarily used. There is no. In addition, depending on the component system, it can be predicted in advance whether the wire is difficult to manufacture. Therefore, whether to examine the wire component candidates using the weld crack test provided by the present invention or to examine the wire component candidates using the conventional weld crack test method is involved in the welding material development. It is not a particularly difficult choice for those involved.

以上のように、本発明の溶接割れ試験方法を用いることにより、溶接ワイヤ開発におけるワイヤ成分候補の絞り込みなどにかかわる開発期間を大幅に短縮することができる。これにより、本発明は、産業上のメリットが極めて大きいことが明白となった。   As described above, by using the welding crack test method of the present invention, it is possible to significantly shorten the development period related to narrowing of wire component candidates in welding wire development. As a result, it has become clear that the present invention has an extremely large industrial advantage.

1 スリット高さ
2 スリット幅
3 スリット状溝付き鋼板
4 TIGなめ付け溶接
5 溶接金属
6 応力集中部
7 拘束溶接
8 スリット状の溝
DESCRIPTION OF SYMBOLS 1 Slit height 2 Slit width 3 Steel plate 4 with slit-shaped groove TIG tanning welding 5 Weld metal 6 Stress concentration part 7 Restraint welding 8 Slit-shaped groove

Claims (2)

溶接金属の割れ感受性を評価する試験方法において、
該溶接金属と同じ成分を持つ鋼板を用い、該鋼板に裏面よりスリット状の溝を加工し、該スリット状の溝を加工した鋼板を拘束板で拘束し、該スリット状の溝を加工した鋼板を表面より溶加材を使用しないTIG溶接を行うことにより該スリット状の溝に達する溶接金属を形成させることを特徴とする、溶接金属の割れ感受性評価試験方法。
In a test method for evaluating the susceptibility of weld metal to cracking,
Using a steel plate having the same component as the weld metal, processing a slit-shaped groove from the back surface of the steel plate, constraining the steel plate processed the slit-shaped groove with a restraining plate, and processing the slit-shaped groove A weld metal crack susceptibility evaluation test method comprising forming a weld metal reaching the slit-like groove by performing TIG welding without using a filler material from the surface.
前記TIG溶接のシールドガスとして、Hガスを質量%で0.1〜5%含有するArガスを用いることを特徴とする、請求項1に記載の溶接金属の割れ感受性評価試験方法。 The weld metal crack sensitivity evaluation test method according to claim 1, wherein Ar gas containing 0.1 to 5% by mass of H 2 gas is used as the shielding gas for TIG welding.
JP2010015941A 2010-01-27 2010-01-27 Test method for evaluation of cracking susceptibility of weld metal Expired - Fee Related JP5218440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010015941A JP5218440B2 (en) 2010-01-27 2010-01-27 Test method for evaluation of cracking susceptibility of weld metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010015941A JP5218440B2 (en) 2010-01-27 2010-01-27 Test method for evaluation of cracking susceptibility of weld metal

Publications (2)

Publication Number Publication Date
JP2011153926A JP2011153926A (en) 2011-08-11
JP5218440B2 true JP5218440B2 (en) 2013-06-26

Family

ID=44540008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010015941A Expired - Fee Related JP5218440B2 (en) 2010-01-27 2010-01-27 Test method for evaluation of cracking susceptibility of weld metal

Country Status (1)

Country Link
JP (1) JP5218440B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104483223A (en) * 2014-11-14 2015-04-01 南京钢铁股份有限公司 Steel plate lamellar tearing sensitivity evaluation method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014109398B4 (en) * 2014-07-04 2019-01-24 Thyssenkrupp Ag Testing the crack sensitivity of a metallic material
CN106840789B (en) * 2016-12-23 2020-04-10 中国石油天然气集团公司 Improved test piece for oblique Y-shaped groove welding crack sensitivity test and manufacturing method thereof
CN111220437B (en) * 2020-01-20 2021-08-13 西安交通大学 Manufacturing method of welding hydrogen hole defect test plate
CN113732553B (en) * 2020-05-27 2022-11-18 宝山钢铁股份有限公司 Low-carbon micro-alloy steel high-heat input weldability evaluation method based on twin-wire submerged arc welding
CN113732551B (en) * 2020-05-27 2022-11-18 宝山钢铁股份有限公司 Low-carbon microalloyed steel high-heat input weldability evaluation method based on flux-cored wire
CN113732556B (en) * 2020-05-29 2022-11-18 宝山钢铁股份有限公司 Low-carbon micro-alloy steel ultralow heat input weldability evaluation method based on gas shielded welding
CN112192000B (en) * 2020-08-21 2022-05-31 江阴兴澄特种钢铁有限公司 Welding process of ultrahigh-strength steel plate with yield strength of not less than 1250MPa
CN112067781B (en) * 2020-08-21 2023-09-19 平顶山平煤机煤矿机械装备有限公司 Test method for sensitivity of welding cold cracks of hydraulic support structural part
CN112775579B (en) * 2021-01-11 2022-04-26 中车青岛四方机车车辆股份有限公司 Welding thermal crack sensitivity testing device and method
CN114166630B (en) * 2021-11-30 2023-09-12 天津大学 Transverse crack sensitivity test device and method based on composite restraint
CN116804618A (en) * 2023-02-07 2023-09-26 广州番禺职业技术学院 Method and system for detecting multi-component weld dilution rate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116136A (en) * 1975-04-04 1976-10-13 Kawasaki Heavy Ind Ltd Method of producing test piece for restraint cracking test
JPS60139268U (en) * 1984-02-27 1985-09-14 三菱電機株式会社 Disc-shaped weld crack test piece
JPH06180278A (en) * 1992-12-15 1994-06-28 Mitsubishi Heavy Ind Ltd Testing method and test piece for weld crack
JP3773631B2 (en) * 1997-09-12 2006-05-10 Jfe工建株式会社 TIG welding method for stainless steel pipe
JP2002096111A (en) * 2000-09-19 2002-04-02 Nisshin Steel Co Ltd METHOD FOR MANUFACTURING Mo-CONTAINING HIGH-Cr HIGH-Ni AUSTENITIC STAINLESS STEEL PIPE EXCELLENT IN DUCTILITY OF WELDED PART
JP3902419B2 (en) * 2001-05-11 2007-04-04 株式会社日立製作所 Arc welding method and arc welding apparatus
JP2002372597A (en) * 2001-06-13 2002-12-26 Toshiba Corp Manufacturing method for neutron absorber and neutron absorber manufactured thereby
JP2008221266A (en) * 2007-03-09 2008-09-25 Nisshin Steel Co Ltd Warm water vessel and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104483223A (en) * 2014-11-14 2015-04-01 南京钢铁股份有限公司 Steel plate lamellar tearing sensitivity evaluation method
CN104483223B (en) * 2014-11-14 2017-02-22 南京钢铁股份有限公司 Steel plate lamellar tearing sensitivity evaluation method

Also Published As

Publication number Publication date
JP2011153926A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP5218440B2 (en) Test method for evaluation of cracking susceptibility of weld metal
de Jesus Jorge et al. Mechanical properties and microstructure of SMAW welded and thermically treated HSLA-80 steel
Rozumek et al. The influence of heat treatment on the behavior of fatigue crack growth in welded joints made of S355 under bending loading
RU2493943C2 (en) Method of hidden arc welding of steel strip
Borrego et al. Mould steels repaired by laser welding
JP6201803B2 (en) Submerged arc welds with excellent low temperature toughness
Barreda et al. Influence of the filler metal on the mechanical properties of Ti–6Al–4V electron beam weldments
Bhanu et al. Investigation on joining P91 steel and Incoloy 800HT through gas tungsten arc welding for Advanced Ultra Super Critical (AUSC) power plants
CN103857491B (en) The bonding layer of high Cr steel turbine rotor or upper strata weld part, this weld part resurfacing welding material and the manufacture method in this built-up welding portion
Ermakova et al. Uniaxial and multiaxial fatigue behaviour of wire arc additively manufactured ER70S-6 low carbon steel components
Ahn et al. Ductility-dip cracking susceptibility of Inconel 690 using Nb content
Maduraimuthu et al. Microstructure and mechanical properties of 9Cr-0.5 Mo-1.8 W–VNb (P92) steel weld joints processed by fusion welding
Buddu et al. Investigations of microstructure and mechanical properties of 60-mm-thick type 316L stainless steel welded plates by multipass tungsten inert gas welding and electron beam welding for fusion reactor applications
Kumar et al. Effect of process parameters on microhardness and microstructure of heat affected zone in submerged arc welding
Branza et al. A microstructural and low-cycle fatigue investigation of weld-repaired heat-resistant cast steels
JP2006088184A (en) High heat input butt-welded joint having excellent brittle fracture generation resisting property and method for verifying brittle fracture generation resisting property of high heat input butt-welded joint
Duchosal et al. Analysis of weld-cracking and improvement of the weld-repair process of superplastic forming tools
JP6741198B2 (en) Crack repair method for existing steel structures
JP5754203B2 (en) Fracture toughness specimen
Kadoi et al. New measurement technique of ductility curve for ductility-dip cracking susceptibility in Alloy 690 welds
Wang et al. Dissimilar friction stir welding of austenitic and duplex stainless steel: Effect of material position and tool Offset
Foroozmehr et al. An investigation on fracture toughness of the heat‐affected zone in the welded joints of 13% Cr‐4% Ni martensitic stainless steels
Mohammadijoo Development of a welding process to improve welded microalloyed steel characteristics
KR101195733B1 (en) Method for evaluating fatigue property of t-joint portion at t-type welding joint structure
Arsić et al. Application of the S690QL class steels in responsible welded structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5218440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees