JP3773631B2 - TIG welding method for stainless steel pipe - Google Patents

TIG welding method for stainless steel pipe Download PDF

Info

Publication number
JP3773631B2
JP3773631B2 JP26517597A JP26517597A JP3773631B2 JP 3773631 B2 JP3773631 B2 JP 3773631B2 JP 26517597 A JP26517597 A JP 26517597A JP 26517597 A JP26517597 A JP 26517597A JP 3773631 B2 JP3773631 B2 JP 3773631B2
Authority
JP
Japan
Prior art keywords
welding
groove
shaped groove
stainless steel
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26517597A
Other languages
Japanese (ja)
Other versions
JPH1177300A (en
Inventor
任布 村上
定史 三浦
Original Assignee
Jfe工建株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe工建株式会社 filed Critical Jfe工建株式会社
Priority to JP26517597A priority Critical patent/JP3773631B2/en
Publication of JPH1177300A publication Critical patent/JPH1177300A/en
Application granted granted Critical
Publication of JP3773631B2 publication Critical patent/JP3773631B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、オーステナイト系ステンレス鋼管の円周継手を接合するTIG溶接方法、特に溶接能率の向上に関するものである。
【0002】
【従来の技術】
オーステナイト系ステンレス鋼管のパイプライン敷設現場における管端部の溶接は、接合される双方の管の管端部に開先加工を施した後に、インターナルクランプ等で双方の管を突き合わせて固定し、これによって形成される円周継手に沿って全姿勢溶接によって行われる。この溶接工事の省力化や溶接品質の安定化を図るために全姿勢自動溶接法が採用されている。このオーステナイト系ステンレス鋼管の全姿勢自動溶接における問題は、ルート間隔を設けて良好な裏波を確保しようとしてもルート間隔が溶接中の加熱により変動してしまい、安定した裏波が得られないことである。特にオーステナイト系ステンレス鋼管では、熱伝導率が炭素鋼の約1/3と小さく、熱膨張係数が炭素鋼の約1.5倍と大きいため、ルート間隔は溶接の進行と共に著しく収縮する。このためオーステナイト系ステンレス鋼管に対しては、溶接中のルート間隔の収縮を無視できるようにするため、例えば図4に示すように、開先角度αが30度〜60度のU型開先41を機械加工により成形し、ルート間隔を標準0mmとしてTIG自動溶接する方法が採用されている。この場合、全周にわたって良好な裏波を得るために、ルート面の厚さt0を1.0mm〜1.5mm、そのルート面の幅wを2.0mm〜3.0mmとして、あたかも薄板の溶接に似た方法で初層裏波溶接を行っている。
【0003】
また、例えば特開平9−19767号公報に記載された固定管の周継ぎ手接合方法は、開先角度αが90度〜110度のV型開先でルート間隔を0mm〜0.5mmの範囲としてホットワイヤ式TIG自動溶接装置で接合する方法である。この溶接方法の特徴は開先加工の容易なV型で広角度な開先を採用し、フィラーワイヤに通電加熱されるホットワイヤ式TIG自動溶接装置により、ルート間隔を0mm〜0.5mmとしてルート間隔の変動を無視できる点にある。すなわち、この方法は、ルート部の溶融を確実にして良好な裏波を確保するために、開先角度αを90度〜110度に広げてルート部の実質的な厚さを減少させ、さらにワイヤを電気抵抗で加熱することによりルート部の溶接に対するアークの熱効率を高めるようにしている。
【0004】
【発明が解決しようとする課題】
上記のようにU型開先41でルート間隔を0mmとしたTIG溶接方法はルート間隔の変動(収縮)は無視できるが、開先形状が複雑でかつ加工寸法に関しても高精度な管理が必要であり、このため専用の開先加工機を必要としていた。このため設備費が高価になってしまう。また、パイプラインは開先加工が容易な直管ばかりでなく、随所にエルボ等のフィッティング類が使用されるが、これらは形状上の問題で機械加工する際の保持,固定が難しく、高精度の開先加工が困難であり、TIG自動溶接の適用範囲が限定されていた。
【0005】
さらに、U型開先用に開先加工した管端部は、管の運搬中や突き合わせ芯出し作業中に損傷を受ける危険性が高く、管端防護と作業管理を丁寧に実行しなければならず、その管理が容易でなかった。また、一旦損傷を受けるとグラインダー等の簡易な方法で修正できないため現場施工上問題となった。
【0006】
また、特開平9−19767号公報に記載された溶接方法では、V型開先のV型角度を90度〜110度と大きく広げているため開先断面積が大きくなり、溶接層数が増加して溶接作業に多くの時間を要する。例えば同じ板厚7mmに対し、開先角度が40度のU型開先を使用した場合には、図5に示すように、4層仕上げであるが、開先角度が100度のV型開先を使用した場合には5層仕上げとなってしまう。さらに、図6の管の板厚と開先断面積の変化特性図に示すように、開先角度が100度のV型開先の開先断面積の増加分は、管の板厚が増加するほど開先角度が40度のU型開先の場合より拡大して溶接層数が増加してしまう。
【0007】
さらに特開平9−19767号公報に記載された溶接方法は初層にホットワイヤ式TIG溶接を採用しているため、ワイヤ加熱用設備が必要であり、しかもトーチ近傍に通電端子を設けて加熱用ケーブルを設置するため、設備コストが高価になるだけでなく、トーチ部の構造が複雑となったり、溶接中のケーブル処理が面倒になる等の問題があった。
【0008】
この発明はかかる短所を改善し、簡素な設備で良質な溶接継手を能率良く形成することができるステンレス鋼管のTIG溶接方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
この発明に係るステンレス鋼管のTIG溶接方法は、互いに接合するオーステナイト系ステンレス鋼管の管端部にV型角度が65度〜80度の範囲でルート面の厚さが0.1mm〜1.5mmの範囲になるV型開先を形成するように開先加工を施し、該管端部をルート間隔が0mm〜2.0mmの範囲になるように突き合わせ、突き合わせた管端部のV型開先の内側に深さが0.5mm〜1.5mmの範囲で幅が10mm〜40mmの範囲の溝を有する裏当てを固定し、1〜7%の水素ガスを混合したアルゴンガスを溶接用ガスノズルから供給しながら、V型開先に沿ってTIG自動溶接を行うことを特徴とする。
【0010】
また、上記裏当てからV型開先の管内面にバックシールドガスを供給することが望ましい。
【0011】
【発明の実施の形態】
この発明のステンレス鋼管のTIG溶接方法は、シールドガスとして1〜7%の水素を混合したアルゴンガスを使用し、アークを収束させてアークのエネルギー密度を高める。ここでシールドガスの水素ガス混合比率を1〜7%としたのは、シールドガスの水素ガス混合比率が1%からアーク収束効果が得られ、シールドガスの水素ガス混合比率が7%ではオーステナイト系ステンレス鋼で継手品質上問題とならないからである。
【0012】
この場合、V型開先の開先寸法は、ルート面の厚さt0を0.1mm〜1.5mm、V型角度の適正な範囲は65度〜80度である。すなわちV型角度が80度を超えると必要溶着金属量が多くなり能率的に劣ることと上向き姿勢で裏波が凹み易くなること、また、V型角度を65度より狭くすると、ルート部に溶け込み不良が発生し易くなることから、適正な開先角度の範囲として65度〜80度とした。
【0013】
また、V型開先の内側に深さdが0.5mm〜1.5mmの範囲で幅w1が10mm〜40mmの範囲の溝を有する裏当てを固定することにより、溶融された金属をTIGアークの裏側で保持,冷却して、全姿勢で均一な裏波を確保する。この裏当てにより、V型開先のルート間隔の寸法裕度を0〜2.0mmと広げて良好な溶接を行うことができた。
【0014】
さらに、裏当てからバックシールドガスを供給することにより裏波の酸化を防止し裏波品質を向上させ、より良質な溶接継手を形成することができる。
【0015】
【実施例】
図1はこの発明の一実施例の開先形状を示す断面図である。図に示すように、板厚tのオーステナイト系ステンレス鋼管1a,1bを突き合わせて接合するときに、V型角度αが65度〜80度の範囲でルート面の厚さt0が0.1mm〜1.5mmの範囲になるV型開先を形成するように管1a,1bの管端部を開先加工する。この開先加工した管1a,1bの管端部をルート間隔Lが0mm〜2.0mmの範囲になるように突き合わせてV型開先2を形成する。このV型開先2の内側に深さdが0.5mm〜1.5mmの範囲で幅w1が10mm〜40mmの範囲の溝3を有する裏当て4をプランジャ5を有するインターナルクランプ装置6で固定する。
【0016】
この管1a,1bをTIG自動溶接装置で溶接する。TIG自動溶接装置は、図2に示すように、溶接トーチ11の溶接用ガスノズル12から1〜7%の水素を混合したアルゴンガスをシールドガスとして供給しながら、タングステン電極13とステンレス鋼管との間にアーク14を発生し、ワイヤリール15とワイヤ送給モータ16とワイヤ送給ローラ17を有するワイヤ送給装置18によって通電加熱を行わないコールドワイヤ方式でアーク外縁部より溶融プール19へフィラーワイヤ20を送給して溶融しながらV型開先2に充填して溶接を行う。溶接トーチ11及びワイヤ送給装置18は図示しない溶接台車に搭載され、一方の管1bの外周に沿って設けられたガイドレール上を走行しながら一方向に回転し、全姿勢にわたってV型開先2を埋めるように自動溶接を行う。溶接台車上には溶接トーチを管軸方向及び管径方向に移動できる2軸の駆動機構を有する。また、これらの駆動軸の動作や溶接電流,溶接電圧,ワイヤ送給速度等は不図示の制御装置で制御される。図2において21は溶接電源、22はガス供給装置である。
【0017】
上記のようにシールドガスとして1〜7%の水素を混合したアルゴンガスを使用し、V型開先2の条件を定めた理由について説明する。
【0018】
一般的に使用されているTIG溶接ではアルゴンガスがシールドガスとして利用されている。このシールドガスでルート間隔を0mmとすると、V型開先で良好な裏波を確保するためには、特開平9−19767号公報に示された溶接方法と同じように約100度の開先角度が必要になる。これは開先角度が約100度より小さいと、溶融金属が管外面側に形成されてルート部分が溶け残ってしまうためである。また、溶接入熱を上げてルート部を溶融させようとすると、上向き姿勢で過大な溶け込みとなり裏波が凹状となり、良好な溶接継手が得られなくなってしまう。
【0019】
これに対し、シールドガスに水素ガスを混合したアルゴンガスを使用すると、アークが収束されてアークのエネルギー密度が上昇する。アークが収束されるとアークの電位傾度が変化し、実際にアルゴンガスに3%の水素を混合した場合、アルゴンガス100%の場合に比べ、同一アーク長においてアーク電圧が1.0V〜1.2V上昇することを確認した。このアークのエネルギー密度の上昇を考慮して各種条件を設定して溶接実験を行った。この結果、アルゴンガスに1〜7%の水素ガスを混合させたシールドガスを使用し、TIGアークの熱エネルギーを収束させ、V型角度を100度より小さなV型開先2でもルート部を良好に溶融させ、全姿勢において良好な裏波が得られることを確認した。ここでシールドガスの水素ガス混合比率を1〜7%としたのは、シールドガスの水素ガス混合比率が1%からアーク収束効果が得られ、シールドガスの水素ガス混合比率が7%ではオーステナイト系ステンレス鋼で継手品質上問題とならないからである。
【0020】
この場合、V型開先2の開先寸法は、ルート面の厚さt0を0.1mm〜1.5mmとすると、V型角度αの適正な範囲は65度〜80度であった。このV型角度αが80度を超えると必要溶着金属量が多くなり能率的に劣ることと上向き姿勢で裏波が凹み易くなる。また、V型角度αを65度より狭くすると、ルート部に溶け込み不良が発生し易くなる。そこで適正な開先角度αの範囲として65度〜80度を決定した。
【0021】
また、V型開先2の内側に深さdが0.5mm〜1.5mmの範囲で幅w1が10mm〜40mmの範囲の溝3を有する銅又はセラミックスの裏当て4を固定することにより、溶融された金属をTIGアークの裏側で保持,冷却することができ、全姿勢で均一な裏波を確保することができた。さらに、この裏当て4により、V型開先2のルート間隔Lの寸法裕度を0〜2.0mmと広げて良好な溶接を行うことができた。このように管内面より裏当て4を押し当てておくことにより、バックシールドガスを供給しなくても、わずかに酸化するだけの良好な裏波を確保できるが、さらに裏波の酸化を防止し裏波品質を向上させるために、裏当て4とインターナルクランプ装置6にガス供給孔を設け、ガス供給孔からアルゴンガス等のバックシールドガスを流しながらTIG自動溶接を行えばより良質な溶接継手を形成することができる。
【0022】
〔具体例〕 例えばオーステナイト系ステンレス鋼(SUS304)の管径300A、板厚t=6.5mmの管1a,1bの円周継手を溶接した場合の具体例を説明する。
【0023】
図1に示すV型開先2のV型角度αが70度でルート面の厚さt0が0.5mm〜1.5mmの範囲になるV型開先を形成するように管1a,1bの管端部を開先加工する。この開先加工した管1a,1bの管端部をルート間隔Lが0mm〜2.0mmの範囲になるように突き合わせてV型開先2を形成する。このV型開先2の内側に深さdが1.0mmで幅w1が15mmの範囲の溝3を有する裏当て4をインターナルクランプ装置6で固定して、図2に示すTIG自動溶接装置でシールドガスとしては3%の水素と97%のアルゴンガスの混合ガスを使用し、JIS Z 3321 Y308Lで1.0mmの溶接ワイヤにより、平均溶接電流が110〜150A、平均ワイヤ送給速度は110〜160cm/min、溶接速度は70〜100mm/minの溶接条件で溶接した。このときの溶接層数は図3に示すように2層で仕上がった。溶接後に非破壊検査として外観検査とX線検査を実施したが、内外面とも良好な外観であり、継手内部にも有害欠陥の発生はなく良好な結果であった。また、機械試験として引張試験と曲げ試験を行ったが、引張試験では母材規格以上の強度が得られ、曲げ試験においても欠陥発生もなく良好な継手性能を得ることができた。
【0024】
【発明の効果】
この発明は以上説明したように、シールドガスとして1〜7%の水素を混合したアルゴンガスを使用し、アークを収束させてアークのエネルギー密度を高めるようにしたから、ワイヤを加熱する必要がなく、溶接装置の構造を簡略化することができる。
【0025】
また、円周継手をV型開先とすることにより、直管やエルボ等のフィッティングの開先加工を特別な機械を使用せずに現場でも簡単に行うことができ、溶接費用を低減することができる。
【0026】
さらに、V型開先のV型角度を65度〜80度と狭くすることにより、必要とする溶着金属量を減少することができ、溶接能率を高めることができる。
【0027】
また、V型開先の内側に深さが0.5mm〜1.5mmの範囲で幅が10mm〜40mmの範囲の溝を有する裏当てを固定することにより、溶融された金属をTIGアークの裏側で保持,冷却して、全姿勢で均一な裏波を確保し、良好な溶接を行うことができる。
【0028】
また、V型開先のルート間隔の寸法裕度を0〜2.0mmと広げ、かつV型角度が狭く、1〜7%の水素を混合したアルゴンガスのシールドガスを使用してアークのエネルギー密度を高めるから、ルート間隔変動が大きなオーステナイト系ステンレス鋼管の円周溶接を確実に行うことができる。
【0029】
さらに、裏当てからバックシールドガスを供給することにより裏波の酸化を防止し裏波品質を向上させ、より良質な溶接継手を形成することができる。
【図面の簡単な説明】
【図1】この発明の実施例の開先形状を示す断面図である。
【図2】TIG自動溶接装置の構成図である。
【図3】上記実施例による溶接層数を示す断面図である。
【図4】従来例のU型開先を示す断面図である。
【図5】従来例のU型開先の溶接層数を示す断面図である。
【図6】管の板厚と開先断面積の変化特性図である。
【符号の説明】
1 オーステナイト系ステンレス鋼管
2 V型開先
4 裏当て
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a TIG welding method for joining circumferential joints of austenitic stainless steel pipes, and particularly to improvement of welding efficiency.
[0002]
[Prior art]
Welding of the pipe ends at the pipeline laying site of austenitic stainless steel pipes, after applying groove processing to the pipe ends of both pipes to be joined, with both pipes abutted and fixed with an internal clamp or the like, This is done by all-position welding along the circumferential joint formed. The all-position automatic welding method is adopted to save labor in the welding work and stabilize the welding quality. The problem with all-position automatic welding of this austenitic stainless steel pipe is that even if an attempt is made to secure a good back wave by providing a root interval, the root interval fluctuates due to heating during welding and a stable back wave cannot be obtained. It is. In particular, in an austenitic stainless steel pipe, the thermal conductivity is as small as about 1/3 that of carbon steel and the thermal expansion coefficient is as large as about 1.5 times that of carbon steel. For this reason, for the austenitic stainless steel pipe, in order to be able to ignore the shrinkage of the root interval during welding, for example, as shown in FIG. 4, a U-shaped groove 41 having a groove angle α of 30 degrees to 60 degrees. Is formed by machining, and TIG automatic welding is adopted with a route interval of 0 mm as standard. In this case, in order to obtain a good back wave over the entire circumference, the thickness t 0 of the root surface is set to 1.0 mm to 1.5 mm, and the width w of the root surface is set to 2.0 mm to 3.0 mm. The first layer back wave welding is performed by this method.
[0003]
Further, for example, the joint joint method of a fixed pipe described in JP-A-9-19767 is a V-shaped groove having a groove angle α of 90 degrees to 110 degrees and a route interval of 0 mm to 0.5 mm. It is the method of joining with a wire-type TIG automatic welding apparatus. This welding method is characterized by a V-shaped and wide-angle groove that is easy to groove, and with a hot wire type TIG automatic welding device that is heated by energizing the filler wire, with a route interval of 0 mm to 0.5 mm. It is in the point that the fluctuation of can be ignored. That is, this method reduces the substantial thickness of the root portion by widening the groove angle α to 90 to 110 degrees in order to ensure the melting of the root portion and ensure a good back wave, By heating the wire with electric resistance, the thermal efficiency of the arc for the welding of the root portion is increased.
[0004]
[Problems to be solved by the invention]
As described above, the TIG welding method with the U-shaped groove 41 having a root interval of 0 mm can ignore the fluctuation (shrinkage) of the root interval, but the groove shape is complicated and high-precision management is required for the machining dimensions. For this reason, a dedicated groove processing machine was required. For this reason, equipment costs will become expensive. Pipelines are not only straight pipes that are easy to beveled, but fittings such as elbows are used everywhere, but these are difficult to hold and fix when machining due to shape problems, and have high precision. The groove processing is difficult, and the application range of TIG automatic welding is limited.
[0005]
In addition, pipe ends that are grooved for U-shaped grooves have a high risk of damage during pipe transportation and butt centering operations, and pipe end protection and work management must be carefully performed. The management was not easy. In addition, once damaged, it could not be corrected by a simple method such as a grinder, which caused problems on site construction.
[0006]
Further, in the welding method described in Japanese Patent Laid-Open No. 9-19767, the V-shaped angle of the V-shaped groove is greatly expanded from 90 degrees to 110 degrees, so that the groove sectional area increases and the number of weld layers increases. Therefore, it takes a lot of time for the welding work. For example, if a U-shaped groove with a groove angle of 40 degrees is used for the same plate thickness of 7 mm, as shown in FIG. 5, the four-layer finish is used, but a V-shaped groove with a groove angle of 100 degrees is used. If the tip is used, it will be a five-layer finish. Furthermore, as shown in the change characteristic chart of the tube thickness and the groove cross-sectional area of FIG. 6, the increase in the groove cross-sectional area of the V-shaped groove having a groove angle of 100 degrees increases the thickness of the pipe. As the number of weld layers increases, the number of weld layers increases as compared with a U-shaped groove having a groove angle of 40 degrees.
[0007]
Furthermore, since the welding method described in Japanese Patent Application Laid-Open No. 9-19767 employs hot wire type TIG welding for the first layer, wire heating equipment is required, and an energizing terminal is provided near the torch for heating. Since the cable is installed, not only the equipment cost becomes expensive, but also the structure of the torch part becomes complicated and the cable processing during welding becomes troublesome.
[0008]
An object of the present invention is to provide a TIG welding method for a stainless steel pipe which can efficiently form a high-quality welded joint with simple equipment to improve such disadvantages.
[0009]
[Means for Solving the Problems]
In the TIG welding method for stainless steel pipes according to the present invention, the end faces of austenitic stainless steel pipes to be joined together have a V-shaped angle in the range of 65 to 80 degrees and the thickness of the root surface in the range of 0.1 to 1.5 mm. Groove processing is performed to form a V-shaped groove, the pipe ends are butted so that the root interval is in a range of 0 mm to 2.0 mm, and the depth of the abutted pipe end is deep inside the V-shaped groove. While fixing a backing having a groove with a width of 0.5 mm to 1.5 mm and a width of 10 mm to 40 mm, and supplying argon gas mixed with 1 to 7% hydrogen gas from a welding gas nozzle, V type TIG automatic welding is performed along the groove.
[0010]
Further, it is desirable to supply a back shield gas from the backing to the inner surface of the V-shaped groove.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the TIG welding method for a stainless steel pipe of the present invention, argon gas mixed with 1 to 7% hydrogen is used as a shielding gas, and the arc is converged to increase the energy density of the arc. Here, the reason why the hydrogen gas mixing ratio of the shielding gas is set to 1 to 7% is that the arc convergence effect is obtained from the hydrogen gas mixing ratio of the shielding gas of 1%, and the austenite type when the hydrogen gas mixing ratio of the shielding gas is 7%. This is because stainless steel is not a problem in terms of joint quality.
[0012]
In this case, the groove dimensions of the V-shaped groove are a root surface thickness t 0 of 0.1 mm to 1.5 mm, and an appropriate range of the V-shaped angle is 65 degrees to 80 degrees. In other words, if the V-shaped angle exceeds 80 degrees, the required amount of deposited metal increases and the efficiency is inferior, and the back wave tends to dent in an upward orientation, and if the V-shaped angle is narrower than 65 degrees, it melts into the root part. Since defects are likely to occur, the appropriate groove angle range is set to 65 to 80 degrees.
[0013]
Further, by fixing a backing having a groove with a depth d in the range of 0.5 mm to 1.5 mm and a width w 1 in the range of 10 mm to 40 mm inside the V-shaped groove, the molten metal is removed from the TIG arc. Hold and cool on the back side to ensure a uniform back wave in all positions. By this backing, the dimensional tolerance of the root interval of the V-shaped groove was expanded to 0 to 2.0 mm, and good welding could be performed.
[0014]
Further, by supplying the back shield gas from the backing, the back wave is prevented from being oxidized, the quality of the back wave is improved, and a better quality welded joint can be formed.
[0015]
【Example】
FIG. 1 is a sectional view showing a groove shape according to an embodiment of the present invention. As shown in the figure, when the austenitic stainless steel pipes 1a and 1b having a thickness t are abutted and joined, the V-type angle α is in the range of 65 to 80 degrees, and the root surface thickness t 0 is 0.1 to 1.5 mm. The tube ends of the tubes 1a and 1b are grooved so as to form a V-shaped groove having a range of mm. The V-shaped groove 2 is formed by butting the pipe ends of the pipes 1a and 1b that have been grooved so that the root interval L is in the range of 0 mm to 2.0 mm. A backing 4 having a groove 3 having a depth d in the range of 0.5 mm to 1.5 mm and a width w 1 in the range of 10 mm to 40 mm is fixed by an internal clamp device 6 having a plunger 5 inside the V-shaped groove 2. To do.
[0016]
The pipes 1a and 1b are welded by a TIG automatic welding apparatus. As shown in FIG. 2, the TIG automatic welding apparatus supplies an argon gas mixed with 1 to 7% of hydrogen from the welding gas nozzle 12 of the welding torch 11 as a shielding gas, and between the tungsten electrode 13 and the stainless steel pipe. In the cold wire method in which an arc 14 is generated in the wire 14 and no electric heating is performed by a wire feeding device 18 having a wire reel 15, a wire feeding motor 16 and a wire feeding roller 17. The V-shaped groove 2 is filled and welded while melting and feeding. The welding torch 11 and the wire feeding device 18 are mounted on a welding carriage (not shown), rotate in one direction while traveling on a guide rail provided along the outer periphery of one pipe 1b, and have a V-shaped groove over all positions. Automatic welding is performed so as to fill 2. On the welding carriage, there is a biaxial drive mechanism that can move the welding torch in the pipe axis direction and the pipe radial direction. The operation of these drive shafts, the welding current, the welding voltage, the wire feed speed, and the like are controlled by a control device (not shown). In FIG. 2, 21 is a welding power source, and 22 is a gas supply device.
[0017]
The reason for using the argon gas mixed with 1 to 7% hydrogen as the shielding gas as described above and determining the conditions of the V-shaped groove 2 will be described.
[0018]
In TIG welding generally used, argon gas is used as a shielding gas. When the root distance is set to 0 mm with this shielding gas, a groove of about 100 degrees is used in the same manner as the welding method disclosed in Japanese Patent Laid-Open No. 9-19767 in order to ensure a good back wave with a V-shaped groove. An angle is required. This is because if the groove angle is smaller than about 100 degrees, molten metal is formed on the outer surface side of the tube and the root portion remains undissolved. Further, if the welding heat input is increased to melt the root portion, excessive melting occurs in an upward posture, and the back wave becomes concave, so that a good weld joint cannot be obtained.
[0019]
On the other hand, when argon gas in which hydrogen gas is mixed with the shielding gas is used, the arc is converged and the energy density of the arc is increased. When the arc is converged, the potential gradient of the arc changes, and when argon gas is actually mixed with 3% hydrogen, the arc voltage increases by 1.0V to 1.2V at the same arc length when compared with 100% argon gas. Confirmed to do. Various welding conditions were set in consideration of the increase in the arc energy density, and welding experiments were conducted. As a result, a shield gas in which 1 to 7% hydrogen gas is mixed with argon gas is used, the thermal energy of the TIG arc is converged, and the root portion is good even with the V-shaped groove 2 having a V-shaped angle smaller than 100 degrees. It was confirmed that a good back wave was obtained in all positions. Here, the reason why the hydrogen gas mixing ratio of the shielding gas is set to 1 to 7% is that the arc convergence effect is obtained from the hydrogen gas mixing ratio of the shielding gas of 1%, and the austenite type when the hydrogen gas mixing ratio of the shielding gas is 7%. This is because stainless steel is not a problem in terms of joint quality.
[0020]
In this case, the groove size of the V-shaped groove 2 is 65 to 80 degrees when the root surface thickness t 0 is 0.1 mm to 1.5 mm. If the V-shaped angle α exceeds 80 degrees, the amount of required metal to be deposited increases and the efficiency is inferior, and the back wave tends to dent in an upward posture. Further, if the V-shaped angle α is narrower than 65 degrees, a poor penetration is likely to occur in the root portion. Therefore, 65 to 80 degrees was determined as a proper range of the groove angle α.
[0021]
Further, by fixing a copper or ceramic backing 4 having a groove 3 with a depth d in the range of 0.5 mm to 1.5 mm and a width w 1 in the range of 10 mm to 40 mm inside the V-shaped groove 2, melting is performed. The finished metal could be held and cooled on the back side of the TIG arc, and a uniform back wave could be secured in all positions. Furthermore, with this backing 4, the dimensional tolerance of the route interval L of the V-shaped groove 2 was expanded to 0 to 2.0 mm, and good welding could be performed. By pressing the backing 4 from the inner surface of the tube in this way, it is possible to secure a good back wave that only slightly oxidizes without supplying the back shield gas, but further prevents the back wave from being oxidized. In order to improve the back wave quality, a gas supply hole is provided in the backing 4 and the internal clamp device 6, and if TIG automatic welding is performed while a back shield gas such as argon gas is supplied from the gas supply hole, a better quality welded joint is obtained. Can be formed.
[0022]
[Specific example] For example, a specific example in the case of welding the circumferential joint of the pipes 1a and 1b having a pipe diameter of 300A of austenitic stainless steel (SUS304) and a plate thickness t = 6.5 mm will be described.
[0023]
The tubes 1a and 1b are formed so as to form a V-shaped groove in which the V-shaped angle α of the V-shaped groove 2 shown in FIG. 1 is 70 degrees and the thickness t 0 of the root surface is in the range of 0.5 mm to 1.5 mm. The edge is grooved. The V-shaped groove 2 is formed by butting the pipe ends of the pipes 1a and 1b that have been grooved so that the root interval L is in the range of 0 mm to 2.0 mm. A backing 4 having a groove 3 having a depth d of 1.0 mm and a width w 1 of 15 mm inside the V-shaped groove 2 is fixed by an internal clamp device 6, and the TIG automatic welding device shown in FIG. As a shielding gas, a mixed gas of 3% hydrogen and 97% argon gas is used, and with JIS Z 3321 Y308L 1.0mm welding wire, the average welding current is 110-150A, and the average wire feed speed is 110- Welding was performed under a welding condition of 160 cm / min and a welding speed of 70 to 100 mm / min. The number of weld layers at this time was finished in two layers as shown in FIG. After welding, visual inspection and X-ray inspection were conducted as non-destructive inspection, but both the inner and outer surfaces had a good appearance, and no harmful defects were generated inside the joint. In addition, a tensile test and a bending test were performed as mechanical tests. In the tensile test, a strength higher than that of the base material standard was obtained, and in the bending test, good joint performance could be obtained without generation of defects.
[0024]
【The invention's effect】
As described above, the present invention uses argon gas mixed with 1 to 7% hydrogen as a shielding gas and converges the arc to increase the energy density of the arc, so there is no need to heat the wire. The structure of the welding apparatus can be simplified.
[0025]
In addition, by using a V-shaped groove on the circumferential joint, it is possible to easily perform groove processing for fittings such as straight pipes and elbows on-site without using a special machine, thereby reducing welding costs. Can do.
[0026]
Furthermore, by reducing the V-shaped angle of the V-shaped groove to 65 degrees to 80 degrees, the amount of deposited metal required can be reduced, and the welding efficiency can be increased.
[0027]
In addition, the molten metal is held behind the TIG arc by fixing a backing having a groove with a depth of 0.5 mm to 1.5 mm and a width of 10 mm to 40 mm inside the V-shaped groove. , Cool, ensure a uniform back wave in all postures, can perform good welding.
[0028]
In addition, the dimensional tolerance of the root spacing of the V-shaped groove is expanded to 0 to 2.0 mm, the V-shaped angle is narrow, and the arc energy density using a shielding gas of argon gas mixed with 1 to 7% hydrogen. Therefore, circumferential welding of an austenitic stainless steel pipe having a large route interval variation can be reliably performed.
[0029]
Further, by supplying the back shield gas from the backing, the back wave is prevented from being oxidized, the quality of the back wave is improved, and a better quality welded joint can be formed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a groove shape according to an embodiment of the present invention.
FIG. 2 is a configuration diagram of a TIG automatic welding apparatus.
FIG. 3 is a cross-sectional view showing the number of weld layers according to the embodiment.
FIG. 4 is a cross-sectional view showing a conventional U-shaped groove.
FIG. 5 is a cross-sectional view showing the number of weld layers of a U-shaped groove of a conventional example.
FIG. 6 is a graph showing changes in the plate thickness and groove cross-sectional area of the tube.
[Explanation of symbols]
1 Austenitic stainless steel pipe 2 V-shaped groove 4 Backing

Claims (2)

互いに接合するオーステナイト系ステンレス鋼管の管端部にV型角度が65度〜80度の範囲でルート面の厚さが0.1mm〜1.5mmの範囲になるV型開先を形成するように開先加工を施し、該管端部をルート間隔が0mm〜2.0mmの範囲になるように突き合わせ、
上記突き合わせた管端部のV型開先の内側に深さが0.5mm〜1.5mmの範囲で幅が10mm〜40mmの範囲の溝を有する裏当てを固定し、
1〜7%の水素ガスを混合したアルゴンガスを溶接用ガスノズルから供給しながら、V型開先に沿ってTIG自動溶接を行うことを特徴とするステンレス鋼管のTIG溶接方法。
A groove is formed at the ends of the austenitic stainless steel pipes to be joined to each other so that a V-shaped groove having a V-shaped angle in the range of 65 to 80 degrees and a root surface thickness in the range of 0.1 to 1.5 mm is formed. Apply the processing, but the tube ends are butted so that the root interval is in the range of 0 mm to 2.0 mm,
A backing having a groove with a depth in the range of 0.5 mm to 1.5 mm and a width in the range of 10 mm to 40 mm is fixed to the inside of the V-shaped groove at the end of the butted tube,
A TIG welding method for a stainless steel pipe, characterized in that TIG automatic welding is performed along a V-shaped groove while supplying argon gas mixed with 1 to 7% hydrogen gas from a welding gas nozzle.
上記裏当てからV型開先の管内面にバックシールドガスを供給する請求項1記載のステンレス鋼管のTIG溶接方法。The TIG welding method for a stainless steel pipe according to claim 1, wherein a back shield gas is supplied from the backing to the inner surface of the V-shaped groove.
JP26517597A 1997-09-12 1997-09-12 TIG welding method for stainless steel pipe Expired - Fee Related JP3773631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26517597A JP3773631B2 (en) 1997-09-12 1997-09-12 TIG welding method for stainless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26517597A JP3773631B2 (en) 1997-09-12 1997-09-12 TIG welding method for stainless steel pipe

Publications (2)

Publication Number Publication Date
JPH1177300A JPH1177300A (en) 1999-03-23
JP3773631B2 true JP3773631B2 (en) 2006-05-10

Family

ID=17413631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26517597A Expired - Fee Related JP3773631B2 (en) 1997-09-12 1997-09-12 TIG welding method for stainless steel pipe

Country Status (1)

Country Link
JP (1) JP3773631B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140035A (en) * 2010-01-06 2011-07-21 Nippon Steel Engineering Co Ltd Mig welding apparatus and mig welding method of steel tube

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DZ3365A1 (en) * 2001-03-06 2002-09-12 Weldshield Dev N V METHOD AND APPARATUS FOR END-TO-END WELDING OF COATED CONDUITS
JP5218440B2 (en) * 2010-01-27 2013-06-26 新日鐵住金株式会社 Test method for evaluation of cracking susceptibility of weld metal
CN103264209A (en) * 2013-04-26 2013-08-28 中国化学工程第三建设有限公司 Combine-welding method of stainless steel welded parts
CN103418891A (en) * 2013-09-03 2013-12-04 中国化学工程第三建设有限公司 Method for welding stainless steel weldments with liner in combining mode
CN103920972A (en) * 2014-04-30 2014-07-16 任少琳 Welding technology for copper pipe and steel pipe
CN105983782B (en) * 2015-02-06 2018-01-23 南京理工大学 High-nitrogen austenitic stainless steel laser beam welding molten bath back protection device
CN104816070A (en) * 2015-05-15 2015-08-05 中国海洋石油总公司 Austenitic stainless steel pipeline welding process
CN105817749A (en) * 2016-05-27 2016-08-03 中国海洋石油总公司 Automatic tungsten inert gas (TIG) argon arc welding process for stainless steel pipelines
CN109420818A (en) * 2017-08-28 2019-03-05 宝山钢铁股份有限公司 A kind of welding method of underground natural gas storage tank casing
CN108115256B (en) * 2017-11-23 2020-10-09 南通象屿海洋装备有限责任公司 Automatic TIG welding process for butt joint of stainless steel pipe connecting pipes for ships
CN109202230A (en) * 2018-11-12 2019-01-15 美钻深海能源科技研发(上海)有限公司 A kind of welding technique of welded flange and petroleum pipeline

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140035A (en) * 2010-01-06 2011-07-21 Nippon Steel Engineering Co Ltd Mig welding apparatus and mig welding method of steel tube

Also Published As

Publication number Publication date
JPH1177300A (en) 1999-03-23

Similar Documents

Publication Publication Date Title
JP3773631B2 (en) TIG welding method for stainless steel pipe
JPS63260691A (en) Welding method
JP2004306084A (en) Composite welding method of laser welding and arc welding
CN111872563A (en) Electric arc-laser double-sided hybrid welding process and equipment with all-position consumable electrode
US20200338668A1 (en) Method and apparatus for laser beam welding
CN111715981A (en) All-position TIG pipe welding equipment and welding process thereof
US20140042740A1 (en) Methods and systems for cladding surfaces of components using hot wire laser welding
JPH0919767A (en) Method for joining circumferential joint of fixed tube
EP1025944B1 (en) Method for making a welding joint
CN113042895B (en) Welding method of nickel steel composite structure
JP2008238265A (en) Penetration welding method of t-type joint and penetration welding structure of t-type joint
JP2839394B2 (en) Metal tube joining method
JPS60154875A (en) Longitudinal seam welding of uoe steel pipe
JP4128022B2 (en) Groove butt welding method using insert member and insert member used therefor
JPH11129068A (en) Circumferential welding for pipe line fixed pipe
JP3139326B2 (en) One-sided butt welding method for fixed pipe
JP7267475B1 (en) Pipe joint welding method using plasma welding prior to CO2 welding and joint pipe welded by this method
JPH11129069A (en) Circumferential welding of pipe line fixed tube
JPH0947878A (en) Tack welding method of stainless steel tube
JP5483553B2 (en) Laser-arc combined welding method
CN116551115A (en) Welding method suitable for transverse butt joint single-sided welding double-sided forming of high-temperature steel pipes
JP2867708B2 (en) Tube welding by consumable electrode welding
JPS62183983A (en) Laser cladding method
JPS63260679A (en) Method for welding pipe
CN116475537A (en) Welding method for horizontally fixing all-position single-sided welding and double-sided forming of high-temperature steel pipe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees