JP3900830B2 - Heat pipe type cooling device and power conversion device - Google Patents

Heat pipe type cooling device and power conversion device Download PDF

Info

Publication number
JP3900830B2
JP3900830B2 JP2000607264A JP2000607264A JP3900830B2 JP 3900830 B2 JP3900830 B2 JP 3900830B2 JP 2000607264 A JP2000607264 A JP 2000607264A JP 2000607264 A JP2000607264 A JP 2000607264A JP 3900830 B2 JP3900830 B2 JP 3900830B2
Authority
JP
Japan
Prior art keywords
heat
heat pipe
short
receiving member
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000607264A
Other languages
Japanese (ja)
Inventor
敦 鈴木
平吉 桑原
信章 水口
康浩 原
信男 藤枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of JP3900830B2 publication Critical patent/JP3900830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)

Description

技術分野
本発明は、ヒートパイプ式冷却装置及び電力変換装置に係り、特に電気鉄道車両の床下部等に設置するヒートパイプ式冷却装置及び電力変換装置に好適なものである。
背景技術
従来の電気鉄道車両の床下部等に設置する電力変換装置のヒートパイプ式冷却装置としては、例えば特開平7−176660号公報に記載されているように、車両用インバータにスイッチング素子として使用される複数の半導体素子が固定される受熱ブロックに複数の長短ヒートパイプを挿入して固定され、この長短ヒートパイプに複数の放熱フィンが設けられたもの(第1従来技術)、この短いヒートパイプの代りに肉厚の厚い長いヒートパイプが用いられたもの(第2従来技術)、あるいは単なる長い金属棒が用いられたもの(第3従来技術)が公知である。
かかる従来のヒートパイプ式冷却装置において、第1従来技術のものは、作動液の凝固点以下の低温環境下でもヒートパイプが作動するためには、あるしきい値以上の発熱量が必要である。しかし、例えば鉄道車両のように発熱量が状況により変動するような電力変換装置の冷却装置として用いる場合には、その運転状態によって発熱量がしきい値以下となり、冷却装置が作動しないという虞れがあった。同様に鉄道車両への適用においては、走行時の走行風により外気への放熱能力が変動して大きくなる場合が想定され、この場合においては、しきい値以上の発熱量があってもヒートパイプ内の作動液が凝固点まで温度上昇せずにヒートパイプが作動しないという虞れがあった。この対策として、肉厚の厚いヒートパイプを用いた第2従来技術のもの、または、金属棒を用いた第3従来技術のものが考えられる。しかし第2従来技術のものでは、伝熱量を確保するために、肉厚を厚くする必要があり、ヒートパイプとしての性能を低くせざるをえなかった。一方、第3従来技術のものでは、金属棒の熱輸送能力はヒートパイプの数十分の一程度であるため、十分な冷却性能が得られなかった。このため、第2,第3従来技術のものでは放熱フィン面積を大きくするなどの措置が必要であることから、全体を大型化せざるをえないものであった。
発明の開示
本発明の目的は、ヒートパイプ冷媒の凝固点より外気温度が低いような環境下で、電力変換装置の発熱量が動作条件により変動したり、または走行時に冷却装置内を通過する走行風によって放熱能力が変化した場合でも、所定の冷却性能を有し、かつ常温作動時においても高い熱輸送能力を有し、しかも、冷却装置全体をコンパクトにすることができるヒートパイプ式冷却装置及び電力変換装置を得ることにある。
上記目的を達成するための本発明の第1の特徴は、発熱体が取付けられた熱伝導が良好な受熱部材と、内部に冷媒が封入され、一側を形成する蒸発部がこの受熱部材に熱的に接続して取付けられ、他側を形成する凝縮部が前記受熱部材より突出して設けられた複数のヒートパイプと、前記ヒートパイプの凝縮部に取付けられた複数の放熱フィンとを備えたヒートパイプ式冷却装置において、前記ヒートパイプは長いヒートパイプと短いヒートパイプとを有し、この短いヒートパイプの冷媒の凝固点以下の温度で前記受熱部材から前記短いヒートパイプの凝縮部へ伝熱するように熱伝導体を設けたことにある。
好ましくは、前記熱伝導体は、前記短いヒートパイプに隣接され、この短いヒートパイプに取付けられた放熱フィンを介して短いヒートパイプに熱的に接続された構成にしたことにある。
また、好ましくは、前記熱伝導体は、銅やアルミニューム等の熱伝導率の大きい金属棒が用いられ、前記短いヒートパイプにほぼ同じ長さで隣接された構成にしたことにある。
また、好ましくは、前記熱伝導体は、前記放熱フィンより厚肉の熱伝導部材を介して前記短いヒートパイプに接続された構成にしたことにある。
本発明の第2の特徴は、発熱体が取付けられた熱伝導が良好な受熱部材と、内部に冷媒が封入され、一側を形成する蒸発部がこの受熱部材に熱的に接続して取付けられ、他側を形成する凝縮部が前記受熱部材より突出して設けられた複数のヒートパイプと、前記ヒートパイプの凝縮部に取付けられた複数の放熱フィンとを備えたヒートパイプ式冷却装置において、前記ヒートパイプは長いヒートパイプと短いヒートパイプとを有し、この短いヒートパイプに封入された冷媒の凝固点以下の温度で前記受熱部材から前記短いヒートパイプの凝縮部へ伝熱するように熱伝導体を設け、この熱伝導体は、銅やアルミニューム等の熱伝導率の大きい金属棒が用いられ、前記短いヒートパイプにほぼ同じ長さで隣接され、この短いヒートパイプに取付けられた放熱フィンを介して短いヒートパイプに熱的に接続された構成にしたことにある。
本発明の第3の特徴は、発熱体が取付けられた熱伝導が良好な受熱部材と、内部に冷媒が封入され、一側を形成する蒸発部がこの受熱部材に熱的に接続して取付けられ、他側を形成する凝縮部が前記受熱部材より突出して設けられた複数のヒートパイプと、前記ヒートパイプの凝縮部に取付けられた複数の放熱フィンとを備えたヒートパイプ式冷却装置において、前記ヒートパイプは3種類以上の異なる放熱能力を有するように構成したことにある。
本発明の第4の特徴は、発熱体が取付けられた熱伝導が良好な受熱部材と、内部に冷媒が封入され、一側を形成する蒸発部がこの受熱部材に熱的に接続して取付けられ、他側を形成する凝縮部が前記受熱部材より突出して設けられた複数のヒートパイプと、前記ヒートパイプの凝縮部に取付けられた複数の放熱フィンとを備えたヒートパイプ式冷却装置において、前記ヒートパイプは長い第1ヒートパイプと短い第2ヒートパイプと最も短い第3ヒートパイプとを有し、前記短い第2ヒートパイプの冷媒の凝固点以下の温度で前記受熱部材から前記短い第2ヒートパイプの凝縮部へ伝熱するように前記最も短い第3ヒートパイプを設けた構成にしたことにある。
本発明の第5の特徴は、発熱体が取付けられた熱伝導が良好な受熱部材と、内部に冷媒が封入され、一側を形成する蒸発部がこの受熱部材に熱的に接続して取付けられ、他側を形成する凝縮部が前記受熱部材より突出して設けられた複数のヒートパイプと、前記ヒートパイプの凝縮部に取付けられた複数の放熱フィンとを備えたヒートパイプ式冷却装置において、前記ヒートパイプは長い第1ヒートパイプと短い第2ヒートパイプとこの短い第2ヒートパイプより厚肉の短い第3ヒートパイプとを有し、前記短い第2ヒートパイプの冷媒の凝固点以下の温度で前記受熱部材から前記短い第2ヒートパイプの凝縮部へ伝熱するように前記最も短い第3ヒートパイプを設けた構成にしたことにある。
本発明の第6の特徴は、発熱体が取付けられた熱伝導が良好な受熱部材と、内部に冷媒が封入され、一側を形成する蒸発部がこの受熱部材に熱的に接続して取付けられ、他側を形成する凝縮部が前記受熱部材より突出して設けられた複数のヒートパイプと、前記ヒートパイプの凝縮部に取付けられた複数の放熱フィンとを備えたヒートパイプ式冷却装置において、前記ヒートパイプは長い第1ヒートパイプと短い第2ヒートパイプと非凝縮ガスを封入した第3ヒートパイプとを有し、前記短い第2ヒートパイプの冷媒の凝固点以下の温度で前記受熱部材から前記短い第2ヒートパイプの凝縮部へ伝熱するように前記非凝縮ガスを封入した第3ヒートパイプを設けた構成にしたことにある。
本発明の第5の特徴は、直流電力を変換して電動機を制御するための電力変換回路と、前記電力変換回路を冷却するためのヒートパイプ式冷却装置とを備え、電気鉄道車両の床下等に設置される電力変換装置において、前記ヒートパイプ式冷却装置は、前記電力変換回路を構成する半導体素子が取付けられた熱伝導が良好な受熱部材と、内部に冷媒が封入され、一側を形成する蒸発部がこの受熱部材に熱的に接続して取付けられ、他側を形成する凝縮部が前記受熱部材より突出して設けられた複数のヒートパイプと、前記ヒートパイプの凝縮部に取付けられた複数の放熱フィンとを有し、前記ヒートパイプは長いヒートパイプと短いヒートパイプとを有し、この短いヒートパイプの冷媒の凝固点以下の温度で前記受熱部材から前記短いヒートパイプの凝縮部へ伝熱するように熱伝導体を設けた構成にしたことにある。
発明を実施するための最良の形態
以下、本発明のヒートパイプ冷却装置とこれを用いた電力変換装置の実施例を図面を用いて説明する。
まず、第10図を用いて、本発明を適用する電力変換装置を説明する。インバータ101を有する主回路は、直流き電区間を走行する電気鉄道車両の床下に設置する電力変換装置を構成し、パンタグラフ106に、遮断器105,フィルタリアクトル104及びフィルタコンデンサ102を介して接続され、直流電力が供給される。このインバータ101は、例えばIGBTといった半導体スイッチング素子101aや逆並列ダイオード101b等の電力用半導体素子により構成されており、入力された直流電力を正,負,中性の3つのレベルを有するパルスを出力することによりPWM変調された可変電圧可変周波数の3相交流電力に変換して出力する。電気車を駆動する交流電動機103は、インバータ101に接続され、可変電圧可変周波数の交流電力を入力することによってその回転が制御され、電気車が力行される。また、交流電動機103が発電機として動作する回生時は、上記力行時とは反対にエネルギーがパンタグラフ106に戻される。
かかる電力変換装置は、冷却系にとってみれば、主回路を構成する各素子全てが発熱体であり、これらが密に実装されると熱的に厳しいものとなるので、ヒートパイプ式冷却装置を備えている。また、これらの発熱は常に一定という訳ではなく、例えば乗車率や線路状況により大きく変動すると共に、走行時の冷却風等の影響によりヒートパイプ式冷却装置の放熱部の放熱能力も時々刻々と変動する。これらの要因により、ヒートパイプ内に封入された冷媒が凝固しないような温度域では、電力変換装置の発熱に対してヒートパイプ式冷却装置の良好な冷却機能が作用するが、冷媒の凝固点以下の温度域では、ヒートパイプが作動できず、電力変換装置が過熱してしまう恐れがある。本発明では、ヒートパイプ内の冷媒の凝固点以下及び以上において、良好な冷却機能を有して電力変換装置の過熱を防止するものである。
次に、第1図を用いて本発明のヒートパイプ式冷却装置の第1実施例の構成を説明する。電力変換装置は、主回路のインバータ201とヒートパイプ式冷却装置10とを備えている。主回路のインバータ201を構成する6つの半導体モジュール5を図に示してある。冷却装置は、受熱部材4と、複数の略L字型ヒートパイプ1と、ヒートパイプ1と同一円筒形状の中実の金属棒2と、ヒートパイプ1および金属棒2の放熱部に取り付けられた放熱フィン3とを備えて構成されている。ヒートパイプ1は、放熱部が長く、全ての放熱フィン3が取り付けられている複数のヒートパイプ1aと、放熱部が短く、受熱部材4寄りの一部の放熱フィン3しか取り付けられていない複数のヒートパイプ1bの2種類で構成されている。このヒートパイプ1a,1bは内部の冷媒から外気への放熱を良好にするために薄肉のもので形成されている。金属機2は、短いヒートパイプ1bと同じ長さで、短いヒートパイプ群1bの個々のパイプに隣接してヒートパイプ1bと同様に配置されており、取り付けられる放熱フィン3も短いヒートパイプ1bと共有している。金属棒2は、銅やアルミニウムなど、熱伝導率の大きい部材が用いられる。ヒートパイプ1は、略垂直な受熱部と略水平な凝縮部よりなっている。ヒートパイプ1の受熱部は、受熱部材4に熱的に接続して取り付けられている。また、ヒートパイプ1の凝縮部は、放熱フィン2が取り付けられると共に、車両が傾斜した場合でも凝縮部から受熱部への液戻りを円滑に行う為、凝縮部の先端寄りが若干上方に位置するように若干傾斜して設けられる。ヒートパイプ1内に封入される冷媒としては、例えば水や、フロン系,パーフレオロカーボン系等の流体が用いる。本実施例では、漏出することがあっても環境への影響の少ない水が作動液として用いられている。受熱部材4の他側には電力変換器の主回路のインバータ201を構成する半導体モジュール5等が熱的に接続されて取り付けられている。
次に、第2図から第4図を用いて、かかるヒートパイプ式冷却装置の動作特性について説明する。なお、第2図はヒートパイプ1及び金属棒2を垂直に模式的に図示してある。
まず、第3図を用いてヒートパイプ式冷却装置の各部の温度が時間の経過によってどのように変化するかを説明する。第3図においては、外気温度−50℃の状態で、かつ電力変換装置が長時間動作していない状況下で、電力変換装置が動作を開始し、半導体モジュール5等の発熱量Qが少しずつ上昇していきながら所定の発熱量に達する場合(図中の一点鎖線にて表示)の冷却装置10の第2図に示す各部のHB部,HL部,HS部及びCS部の温度の時間変化を表したものである。ここで、ビートパイプ1の冷媒としては純水、金属棒としては銅を用いており、冷却装置10の冷却性能指標としては半導体モジュール5の取り付けられる受熱部材4の許容温度が80℃以下になることとしている。図中の実線は冷却装置10の各部の温度変化曲線であり、AHBは受熱部材のHB部、AHLは長いヒートパイプ1aの放熱部先端HS部、AHSは短いヒートパイプ1bの放熱部先端HS部、ACSは金属棒2の放熱部先端CS部の温度変化曲線をそれぞれ示す。冷却装置10は、半導体モジュール5等の発熱が開始されると、その発熱を受けて受熱部材4のHS部がAHBのように温度上昇する。また、ヒートパイプ1a,1b及び金属棒2のHL部,HS部及びCS部がAHL,AHS及びACSのように温度上昇する。このようにして各部とも温度上昇していき、受熱部材4の温度が0℃近傍に達すると、ビートパイプ1a,1bの蒸発部で凍結している冷媒が蒸発部にて融解を開始して液体となり、さらには蒸発を開始する。このとき気体となった冷媒は蒸発潜熱の移動により放熱部である凝縮部へ熱輸送を開始する。しかし、このときのヒートパイプ1a,1bの先端はまだ0℃以下であり、凝縮部に移動した水は、ヒートパイプ1a,1bの先端部で凝縮した後に凍結してしまい、蒸発部へ還流できなくなってしまう。このようにして蒸発部において冷媒が全て蒸発してしまうと、蒸発部で液枯れが発生し、ヒートパイプ1a,1bが動作しなくなってしまう。そのため、冷却装置10は、主に受熱部材4から金属棒2への熱伝導により、金属棒2に取り付けられた放熱フィン3へ伝熱して外気へ放熱するため、金属棒2の温度ACSが外気より高い温度となる。このように、冷却装置10は、冷却性能が著しく低下した状態となるが、外気温度が低いため、受熱部材4の温度は設定値の80℃以下に保たれる。なお、短かいヒートパイプ1bは、金属棒2に取り付けられた放熱フィン3からの伝熱により、その温度AHSが金属棒2の温度ACSとほぼ同じとなる。
次に、第4図を用いてヒートパイプ式冷却装置の各部の温度が外気温度によってどのように変化するかを説明する。第4図は、第3図に示す−50℃の状態で電力変換装置が動作し、冷却装置のヒートパイプ部が作動に失敗して蒸発部に冷媒が凍結した状態において、発熱量Qが一定のまま外気温度が徐々に上昇して+40℃まで達する場合の冷却装置の各部の温度変化を示したものである。
まず、外気温度BARが−50℃の状態(動作点▲1▼)においては、第3図の受熱部材4の温度AHBが安定した状態であり、短い金属棒2の先端温度BCSは、受熱部材4からの熱伝導により外気温度BARに比べ高くなっている。また、短いヒートパイプ1bの先端温度BHSは、金属棒2から流入する熱により暖められ、金属棒2とほぼ同じ温度となる。この状態で外気温度BARが徐々に上昇していくと、冷却装置10の各部の温度も上昇していき、外気温度BARが0℃に達する前に受熱部材4の温度BHBが許容温度80℃を越えようとする(動作点▲2▼)。しかし、本実施例によれば、受熱部材4の温度BHBが許容温度80℃を越える前に金属棒2及び短いヒートパイプ1b全体が0℃以上になるように構成されているため、短いヒートパイプ1bの凝縮部で凍結している冷媒が融解してヒートパイプとして作動を開始する。その結果、受熱部材4の温度BHBはこの動作点▲2▼を境に急激に低下することができるので、許容温度80℃を越えることがない。この動作点▲2▼から外気温度BARが上昇すると、冷却装置10の各部の温度も上昇し、受熱部材4の温度BHBが上昇してその許容温度80℃に近づくが、この許容温度80℃を越える前に、外気温度BARが0℃に到達するように構成されているので、長いヒートパイプ1aの先端温度BHLが0℃以上となり、長いヒートパイプ1aもヒートパイプとしての動作を開始する(動作点▲3▼)。この結果、受熱部材4の温度BHBは、この動作点▲3▼を境に急激に低下することができるので、許容温度80℃を越えることがない。長いヒートパイプ1aに取り付けられる放熱フィン3の設定は、外気温度40℃で受熱部材4の温度BHBが80℃以下となるように設定されている。
このように、短いヒートパイプ1bを短い金属棒2で加熱するようにしたので、外気温度が冷媒の凝固点以下の低温時において、発熱量が変動して低下しても、あるいは走行風の変動により放熱量が大きくなっても、受熱部材4の温度が許容温度以下で短いヒートパイプ1bを作動することができ、これにより所定の冷却性能を得ることができる。また、長いヒートパイプ1aも作動するので所定の冷却性能が得られ、これにより、全ての温度域で所定の冷却性能を有することが可能となる。
次に、第5図を用いて本発明のヒートパイプ式冷却装置の第2実施例を説明する。本実施例における冷却装置は、第1実施例における金属棒2の代替として、さらに短いヒートパイプ1cを配置したものである。発熱量や放熱能力の変化が極端に低いしきい値以下にはならない使用状態に用いられる冷却装置においては、外気温度が冷媒の凝固点以下の状態で受熱部材4からの伝熱により最も短いヒートパイプの温度を外気温度よりも高くし、この最も短いヒートパイプ1cで短いヒートパイプ1bを加熱することにより、短いヒートパイプ1bを外気温度より低い温度で冷媒の凝固点以上にすることが可能である。ビートパイプのみで構成することにより金属棒を用いる場合と比較して軽量化が図れる。
次に、第6図を用いて本発明のヒートパイプ式冷却装置の第3実施例を説明する。本実施例における冷却装置は、第1実施例における金属棒2の代替として、隣接する短いヒートパイプ1bに対し、同じ長さでかつパイプの肉圧が厚いヒートパイプ1dを配置したものである。この構成により、パイプ肉圧が厚くなることで、このヒートパイプの放熱能力が小さくなると同時に、冷媒が凝固する際にも、パイプ肉圧部の熱伝導により隣接するヒートパイプの暖機が促進されるものである。
次に、第7図を用いて本発明のヒートパイプ式冷却装置の第4実施例を説明する。本実施例における冷却装置は、第1実施例において、金属棒2と対になって隣接する短いヒートパイプ1bとの間の熱伝導を促進するための熱伝導部材7を取り付けたものである。この構成により、短いヒートパイプ1bの暖機がより促進され、短いヒートパイプ1bの作動領域が広がる。その結果、受熱部材4の温度を低下できるので、冷却装置がよりコンパクトに構成される。
次に第9図を用いて本発明のヒートパイプ式冷却装置の第5実施例を説明する。本実施例における冷却装置は、第1実施例において、短いヒートパイプ1bと対になって隣接する金属棒2の代わりに非凝縮ガスを封入した可変コンダクタンスヒートパイプ1eを配置したものである。可変コンダクタンスヒートパイプ1eは、冷媒蒸気圧の低い低温下においては凝縮部にガスが充満するため、放熱能力が自然に小さくなる。そのため、低発熱時やフィン部放熱能力が一時的に向上した場合においても安定に作動することができるものである。
次に、第9図を用いて本発明の電力変換装置を電気鉄道車両に採用した構成について説明する。第9図は電力変換装置を搭載した車両の電気車の進行方向から見た断面概略図であり、本実施例によるヒートパイプ式冷却装置の斜視図を図中に拡大して詳細に示した。車体107の床下には、電力変換装置100が設置されている。この電力変換装置100は、第10図に示す主回路と、第1図に示すものを若干変更した2段式ヒートパイプを用いた冷却装置10とを備えている。本実施例では高さ方向が特に小さくなるような実装形態を有しているため、図中に示すように、本冷却装置を2段に縦積みして電力変換装置全体のコンパクト化を図っている。
以上は、直流をき電して交流電動機である誘導電動機を駆動するインバータシステムにおける電力変換装置についての実施例を説明したが、本発明はこれに限定されず、交流をき電して誘導電動機を駆動するコンバータ・インバータシステムにおいても適用することができる。また、上記説明したインバータは2レベルの電力変換器としたが3レベル電力変換器であってもよい。更に、スイッチング素子はとしてIGBTを始め、パワートランジスタやMOSFET等の平面実装かつ片面冷却のパッケージ構造を採用するスイッチング素子全般について適用できる。
本発明によれば、ヒートパイプ冷媒の凝固点より外気温度が低いような環境下で、電力変換装置の発熱量が動作条件により変動したり、または走行時に冷却装置内を通過する走行風によって放熱能力が変化した場合でも、所定の冷却性能を有し、かつ常温作動時においても高い熱輸送能力を有し、しかも、冷却装置筐体を含む全体をコンパクトにすることができるヒートパイプ式冷却装置及び電力変換装置が得られる。
なお、本発明は、その精神又は主要な特徴から逸脱することなく、他のいろいろな形で実施する事ができる。そのため、本明細書に記載した好ましい実施例は例示的なものであり、限定的なものではない。本発明の範囲は、添付の特許請求の範囲によって示されており、その特許請求の範囲の意味の中に入る全ての変形例は本発明の範囲に含まれるものである。
【図面の簡単な説明】
第1図は本発明のヒートパイプ式冷却装置の第1実施例の斜視図である。
第2図は第1図の冷却装置の動作を説明するための構成模式図である。
第3図は第2図の冷却装置の低温下での冷却装置各部の温度の時間変化を示す特性図である。
第4図は第2図の冷却装置の外気温度に対する温度特性を示す図である。
第5図は本発明のヒートパイプ式冷却装置の第2実施例を示す断面図である。
第6図は本発明のヒートパイプ式冷却装置の第3実施例を示す断面図である。
第7図は本発明のヒートパイプ式冷却装置の第4実施例を示す断面図である。
第8図は本発明のヒートパイプ式冷却装置の第5実施例を示す断面図である。
第9図は本発明の電力変換装置を電気鉄道車両に適用した構成図である。
第10図は本発明の第1実施例における電力変換装置の主回路図である。
TECHNICAL FIELD The present invention relates to a heat pipe type cooling device and a power conversion device, and is particularly suitable for a heat pipe type cooling device and a power conversion device installed in the lower floor of an electric railway vehicle.
BACKGROUND ART As a heat pipe type cooling device for a power converter installed in the lower floor of a conventional electric railway vehicle, for example, as described in Japanese Patent Application Laid-Open No. 7-176660, it is used as a switching element in a vehicle inverter. A plurality of long and short heat pipes are inserted into and fixed to a heat receiving block to which a plurality of semiconductor elements are fixed, and a plurality of heat radiation fins are provided on the long and short heat pipes (first prior art), this short heat pipe Instead of this, there are known ones in which a long heat pipe having a large thickness is used (second prior art), or one in which only a long metal rod is used (third prior art).
In such a conventional heat pipe type cooling device, the first prior art device requires a heat generation amount equal to or greater than a certain threshold value in order for the heat pipe to operate even in a low temperature environment below the freezing point of the working fluid. However, for example, when used as a cooling device for a power converter in which the amount of heat generated varies depending on the situation, such as in a railway vehicle, the amount of heat generated may be below a threshold value depending on the operation state, and the cooling device may not operate. was there. Similarly, in the application to railway vehicles, it is assumed that the heat radiation capacity to the outside air fluctuates and increases due to the traveling wind during traveling. In this case, even if the heat generation amount exceeds the threshold value, the heat pipe There was a possibility that the heat pipe would not operate without the temperature of the inside working fluid rising to the freezing point. As this countermeasure, the second prior art using a thick heat pipe or the third prior art using a metal rod can be considered. However, in the second prior art, it is necessary to increase the thickness in order to secure the heat transfer amount, and the performance as a heat pipe has to be lowered. On the other hand, in the third prior art, since the heat transport capability of the metal rod is about one tenth of that of the heat pipe, sufficient cooling performance cannot be obtained. For this reason, in the second and third prior arts, measures such as increasing the area of the heat dissipating fins are necessary, so that the whole size has to be increased.
DISCLOSURE OF THE INVENTION An object of the present invention is that the amount of heat generated by the power converter varies depending on the operating conditions in an environment where the outside air temperature is lower than the freezing point of the heat pipe refrigerant, or the traveling wind that passes through the cooling device during traveling. Heat pipe type cooling device and electric power that has a predetermined cooling performance even when the heat dissipation capability changes due to the above, and has a high heat transport capability even during normal temperature operation, and can make the whole cooling device compact It is to obtain a conversion device.
In order to achieve the above object, the first feature of the present invention is that a heat receiving member to which a heat generating body is attached and having good heat conduction, and an evaporation portion forming one side in the refrigerant are enclosed in the heat receiving member. A plurality of heat pipes that are attached in thermal connection and that form the other side protrude from the heat receiving member, and a plurality of heat radiation fins attached to the condensation part of the heat pipe. In the heat pipe type cooling device, the heat pipe has a long heat pipe and a short heat pipe, and transfers heat from the heat receiving member to the condensing part of the short heat pipe at a temperature below the freezing point of the refrigerant of the short heat pipe. Thus, a heat conductor is provided.
Preferably, the heat conductor is adjacent to the short heat pipe, and is thermally connected to the short heat pipe via a radiation fin attached to the short heat pipe.
Preferably, the heat conductor is made of a metal rod having a high thermal conductivity such as copper or aluminum and is adjacent to the short heat pipe with substantially the same length.
Preferably, the heat conductor is connected to the short heat pipe through a heat conductive member thicker than the heat radiating fin.
The second feature of the present invention is that a heat receiving member having a heat conducting member with good heat conduction and a refrigerant sealed inside, and an evaporation portion forming one side is thermally connected to the heat receiving member. In the heat pipe type cooling device provided with a plurality of heat pipes provided with a condensing part projecting from the heat receiving member and a plurality of radiating fins attached to the condensing part of the heat pipe, The heat pipe has a long heat pipe and a short heat pipe, and conducts heat so that heat is transferred from the heat receiving member to the condensing part of the short heat pipe at a temperature below the freezing point of the refrigerant sealed in the short heat pipe. This heat conductor is made of a metal rod with high thermal conductivity, such as copper or aluminum, and is adjacent to the short heat pipe with approximately the same length, and is attached to the short heat pipe. Lies in the thermally coupled configuration in shorter heat pipe through the heat radiation fins.
The third feature of the present invention is that the heat receiving member having a heat conduction member to which the heat generating element is attached and the refrigerant is enclosed inside, and the evaporation portion forming one side is thermally connected to the heat receiving member. In the heat pipe type cooling device provided with a plurality of heat pipes provided with a condensing part projecting from the heat receiving member and a plurality of radiating fins attached to the condensing part of the heat pipe, The heat pipe is configured to have three or more different heat dissipation capabilities.
According to a fourth aspect of the present invention, a heat receiving member having a heat conducting member with a good heat conduction and a refrigerant sealed inside, and an evaporation portion forming one side is thermally connected to the heat receiving member. In the heat pipe type cooling device provided with a plurality of heat pipes provided with a condensing part projecting from the heat receiving member and a plurality of radiating fins attached to the condensing part of the heat pipe, The heat pipe has a long first heat pipe, a short second heat pipe, and a shortest third heat pipe, and the short second heat from the heat receiving member at a temperature below the freezing point of the refrigerant of the short second heat pipe. The shortest third heat pipe is provided so as to transfer heat to the condensing part of the pipe.
The fifth feature of the present invention is that the heat receiving member having a heat conduction member to which the heat generating body is attached and the refrigerant is enclosed inside, and the evaporation portion forming one side is thermally connected to the heat receiving member. In the heat pipe type cooling device provided with a plurality of heat pipes provided with a condensing part projecting from the heat receiving member and a plurality of radiating fins attached to the condensing part of the heat pipe, The heat pipe has a long first heat pipe, a short second heat pipe, and a third heat pipe that is thicker than the short second heat pipe, and has a temperature below the freezing point of the refrigerant of the short second heat pipe. The shortest third heat pipe is provided to transfer heat from the heat receiving member to the condensing part of the short second heat pipe.
According to a sixth aspect of the present invention, a heat receiving member having a heat conduction member to which a heat generating body is attached and a refrigerant is enclosed therein, and an evaporation portion forming one side is thermally connected to the heat receiving member. In the heat pipe type cooling device provided with a plurality of heat pipes provided with a condensing part projecting from the heat receiving member and a plurality of radiating fins attached to the condensing part of the heat pipe, The heat pipe includes a long first heat pipe, a short second heat pipe, and a third heat pipe enclosing non-condensable gas, and the heat receiving member is moved from the heat receiving member at a temperature below the freezing point of the refrigerant of the short second heat pipe. The third heat pipe in which the non-condensed gas is enclosed is provided so as to transfer heat to the condensing part of the short second heat pipe.
According to a fifth aspect of the present invention, there is provided a power conversion circuit for converting direct current power to control an electric motor, and a heat pipe type cooling device for cooling the power conversion circuit, such as under the floor of an electric railway vehicle. In the power conversion device installed in the heat pipe type cooling device, the heat receiving member with a good heat conduction to which the semiconductor element constituting the power conversion circuit is attached, and a refrigerant is enclosed inside to form one side The evaporation section to be attached is thermally connected to the heat receiving member, and the condensing part forming the other side is attached to the plurality of heat pipes protruding from the heat receiving member, and the heat pipe condensing part. A plurality of heat dissipating fins, and the heat pipe has a long heat pipe and a short heat pipe, and the short heat pipe receives the short heat from the heat receiving member at a temperature below the freezing point of the refrigerant. In that the structure provided with thermal conductor so as to transfer heat to the condenser section of the type.
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a heat pipe cooling device of the present invention and a power conversion device using the same will be described with reference to the drawings.
First, the power converter to which the present invention is applied will be described with reference to FIG. The main circuit having the inverter 101 constitutes a power converter installed under the floor of an electric railway vehicle traveling in a DC feeding section, and is connected to the pantograph 106 through a circuit breaker 105, a filter reactor 104, and a filter capacitor 102. DC power is supplied. The inverter 101 is composed of a power semiconductor element such as a semiconductor switching element 101a such as an IGBT or an antiparallel diode 101b, and outputs a pulse having three levels of positive, negative, and neutral to the input DC power. By doing so, it is converted into a PWM-modulated variable voltage variable frequency three-phase AC power and output. The AC motor 103 that drives the electric vehicle is connected to the inverter 101, and its rotation is controlled by inputting AC power of variable voltage and variable frequency, and the electric vehicle is powered. Also, during regeneration when the AC motor 103 operates as a generator, energy is returned to the pantograph 106 as opposed to during powering.
Such a power conversion device is provided with a heat pipe type cooling device because all elements constituting the main circuit are heating elements when viewed from the cooling system, and these elements are thermally severe when densely mounted. ing. In addition, these heat generations are not always constant. For example, they vary greatly depending on the boarding rate and track conditions, and the heat radiation capacity of the heat pipe cooling device also varies from time to time due to the influence of cooling air during travel. To do. Due to these factors, in the temperature range where the refrigerant sealed in the heat pipe does not solidify, a good cooling function of the heat pipe type cooling device acts on the heat generation of the power converter, but it is below the freezing point of the refrigerant. In the temperature range, the heat pipe cannot be operated, and the power conversion device may be overheated. In this invention, it has a favorable cooling function below and above the freezing point of the refrigerant in the heat pipe to prevent overheating of the power converter.
Next, the configuration of the first embodiment of the heat pipe type cooling device of the present invention will be described with reference to FIG. The power converter includes a main circuit inverter 201 and a heat pipe type cooling device 10. Six semiconductor modules 5 constituting the inverter 201 of the main circuit are shown in the figure. The cooling device is attached to the heat receiving member 4, a plurality of substantially L-shaped heat pipes 1, a solid metal rod 2 having the same cylindrical shape as the heat pipe 1, and the heat pipe 1 and the heat radiating portion of the metal rod 2. The heat dissipating fins 3 are provided. The heat pipe 1 has a plurality of heat pipes 1a each having a long heat radiating part and all the heat radiating fins 3 attached thereto, and a plurality of heat pipes 1a each having a short heat radiating part and only a part of the heat radiating fins 3 near the heat receiving member 4. It consists of two types of heat pipes 1b. The heat pipes 1a and 1b are formed of a thin wall to improve heat dissipation from the internal refrigerant to the outside air. The metal machine 2 has the same length as the short heat pipe 1b and is arranged in the same manner as the heat pipe 1b adjacent to the individual pipes of the short heat pipe group 1b. Sharing. For the metal rod 2, a member having a high thermal conductivity such as copper or aluminum is used. The heat pipe 1 includes a substantially vertical heat receiving part and a substantially horizontal condensing part. The heat receiving portion of the heat pipe 1 is attached in thermal connection to the heat receiving member 4. In addition, the heat pipe 1 has a heat dissipating fin 2 attached to the condensing part, and even when the vehicle is inclined, the liquid returns smoothly from the condensing part to the heat receiving part. It is provided with a slight inclination. As the refrigerant sealed in the heat pipe 1, for example, water or a fluid such as chlorofluorocarbon or perfluorocarbon is used. In this embodiment, water that has little influence on the environment even if it leaks is used as the working fluid. On the other side of the heat receiving member 4, the semiconductor module 5 and the like constituting the inverter 201 of the main circuit of the power converter are thermally connected and attached.
Next, the operation characteristics of the heat pipe type cooling device will be described with reference to FIGS. FIG. 2 schematically shows the heat pipe 1 and the metal rod 2 vertically.
First, how the temperature of each part of the heat pipe type cooling device changes with the passage of time will be described with reference to FIG. In FIG. 3, the power conversion device starts to operate in a state where the outside temperature is −50 ° C. and the power conversion device has not been operated for a long time, and the heat generation amount Q of the semiconductor module 5 and the like gradually increases. Changes in temperature of the HB part, HL part, HS part and CS part of each part shown in FIG. 2 of the cooling device 10 when reaching a predetermined calorific value while rising (indicated by a one-dot chain line in the figure) It represents. Here, pure water is used as the refrigerant of the beat pipe 1, and copper is used as the metal rod, and the allowable temperature of the heat receiving member 4 to which the semiconductor module 5 is attached is 80 ° C. or less as the cooling performance index of the cooling device 10. I am going to do that. A solid line in the figure is a temperature change curve of each part of the cooling device 10, A HB is an HB part of the heat receiving member, A HL is a heat radiating part tip HS part of the long heat pipe 1a, and A HS is a heat radiating part of the short heat pipe 1b. The tip HS portion and A CS indicate the temperature change curves of the heat radiating portion tip CS portion of the metal rod 2, respectively. When the heat generation of the semiconductor module 5 or the like is started, the cooling device 10 receives the heat and the temperature of the HS portion of the heat receiving member 4 increases like A HB . Further, the heat pipe 1a, HL portion 1b and the metal rod 2, HS unit and CS unit is a temperature rise as A HL, A HS and A CS. In this way, the temperature of each part rises, and when the temperature of the heat receiving member 4 reaches around 0 ° C., the refrigerant frozen in the evaporation part of the beat pipes 1a and 1b starts to melt in the evaporation part and becomes liquid. Then, evaporation is started. At this time, the refrigerant that has become a gas starts to transport heat to the condensing part, which is a heat radiating part, by the movement of latent heat of evaporation. However, the tips of the heat pipes 1a and 1b at this time are still below 0 ° C., and the water that has moved to the condensing part is frozen after condensing at the tip parts of the heat pipes 1a and 1b, and can be returned to the evaporation part. It will disappear. When all the refrigerant evaporates in the evaporating part in this way, liquid withering occurs in the evaporating part, and the heat pipes 1a and 1b do not operate. Therefore, the cooling device 10, mainly by heat conduction from the heat receiving member 4 to the metal rod 2, for radiating to the outside air by heating heat to the radiating fins 3, which is attached to the metal rod 2, the temperature A CS of the metal bar 2 The temperature is higher than the outside air. Thus, although the cooling device 10 is in a state in which the cooling performance is remarkably deteriorated, the temperature of the heat receiving member 4 is kept at a set value of 80 ° C. or lower because the outside air temperature is low. Note that the short heat pipe 1 b has a temperature A HS substantially equal to the temperature A CS of the metal rod 2 due to heat transfer from the radiation fins 3 attached to the metal rod 2.
Next, how the temperature of each part of the heat pipe type cooling device varies depending on the outside air temperature will be described with reference to FIG. FIG. 4 shows a constant calorific value Q when the power converter operates in the state of −50 ° C. shown in FIG. 3 and the heat pipe portion of the cooling device fails to operate and the refrigerant freezes in the evaporation portion. The temperature change of each part of the cooling device when the outside air temperature gradually rises to + 40 ° C. is shown.
First, in a state where the outside air temperature BAR is −50 ° C. (operating point (1)), the temperature A HB of the heat receiving member 4 in FIG. 3 is stable, and the tip temperature B CS of the short metal rod 2 is The heat conduction from the heat receiving member 4 is higher than the outside air temperature BAR . Further, the tip temperature B HS of the short heat pipe 1 b is warmed by the heat flowing in from the metal rod 2, and becomes substantially the same temperature as the metal rod 2. When the outside air temperature B AR is gradually increased in this state, the temperature of each part of the cooling apparatus 10 also continue to rise, the temperature B HB permissible temperature of the heat receiving member 4 before the outside air temperature B AR reaches 0 ℃ Attempts to exceed 80 ° C (operating point (2)). However, according to the present embodiment, since the metal rod 2 and the entire short heat pipe 1b are configured to be 0 ° C. or more before the temperature B HB of the heat receiving member 4 exceeds the allowable temperature of 80 ° C., the short heat The refrigerant frozen in the condensing part of the pipe 1b is melted and starts operating as a heat pipe. As a result, the temperature B HB of the heat receiving member 4 can be rapidly lowered at the operating point (2), so that the allowable temperature does not exceed 80 ° C. When the outside air temperature BAR rises from this operating point (2), the temperature of each part of the cooling device 10 also rises, and the temperature B HB of the heat receiving member 4 rises and approaches its allowable temperature of 80 ° C. Since the outside air temperature BAR reaches 0 ° C. before the temperature exceeds 0 ° C., the tip temperature B HL of the long heat pipe 1a becomes 0 ° C. or more, and the long heat pipe 1a also operates as a heat pipe. Start (operating point (3)). As a result, the temperature B HB of the heat receiving member 4 can be rapidly lowered at the operating point (3), so that the allowable temperature does not exceed 80 ° C. The setting of the radiating fins 3 attached to the long heat pipe 1a is set so that the temperature B HB of the heat receiving member 4 is 80 ° C. or less at an outside air temperature of 40 ° C.
As described above, since the short heat pipe 1b is heated by the short metal rod 2, even when the outside air temperature is a low temperature below the freezing point of the refrigerant, even if the calorific value fluctuates and falls, Even when the amount of heat radiation increases, the heat pipe 1b can be operated with the temperature of the heat receiving member 4 being equal to or lower than the allowable temperature, whereby a predetermined cooling performance can be obtained. Further, since the long heat pipe 1a also operates, a predetermined cooling performance can be obtained, and thereby it is possible to have a predetermined cooling performance in all temperature ranges.
Next, a second embodiment of the heat pipe type cooling device of the present invention will be described with reference to FIG. The cooling device in the present embodiment is one in which a shorter heat pipe 1c is arranged as an alternative to the metal rod 2 in the first embodiment. In a cooling device used in a usage state in which a change in heat generation amount or heat radiation capacity does not fall below an extremely low threshold value, the heat pipe that is the shortest due to heat transfer from the heat receiving member 4 when the outside air temperature is below the freezing point of the refrigerant It is possible to make the short heat pipe 1b higher than the freezing point of the refrigerant at a temperature lower than the outside air temperature by heating the short heat pipe 1b with the shortest heat pipe 1c. By comprising only a beat pipe, weight reduction can be achieved compared with the case where a metal rod is used.
Next, a third embodiment of the heat pipe type cooling device of the present invention will be described with reference to FIG. The cooling device in the present embodiment is an alternative to the metal rod 2 in the first embodiment, in which a heat pipe 1d having the same length and a thick wall pressure is disposed with respect to the adjacent short heat pipe 1b. With this configuration, the heat pressure of the heat pipe is reduced by increasing the pipe wall pressure, and at the same time, when the refrigerant is solidified, the heat conduction of the pipe wall pressure part promotes the warming up of the adjacent heat pipe. Is.
Next, a fourth embodiment of the heat pipe type cooling device of the present invention will be described with reference to FIG. In the first embodiment, the cooling device according to this embodiment is provided with a heat conduction member 7 for promoting heat conduction between the metal rod 2 and the adjacent short heat pipe 1b. With this configuration, warm-up of the short heat pipe 1b is further promoted, and the operating area of the short heat pipe 1b is expanded. As a result, since the temperature of the heat receiving member 4 can be lowered, the cooling device is configured more compactly.
Next, a fifth embodiment of the heat pipe type cooling device of the present invention will be described with reference to FIG. In the first embodiment, the cooling device in this embodiment is a variable conductance heat pipe 1e in which non-condensable gas is sealed instead of the adjacent metal rod 2 in a pair with the short heat pipe 1b. The variable conductance heat pipe 1e naturally has a low heat dissipation capability because the condensing part is filled with gas at a low temperature with a low refrigerant vapor pressure. Therefore, even when the heat generation is low or the fin heat dissipation capability is temporarily improved, the device can operate stably.
Next, the structure which employ | adopted the power converter device of this invention for the electric railway vehicle using FIG. 9 is demonstrated. FIG. 9 is a schematic cross-sectional view as seen from the traveling direction of the electric vehicle of the vehicle on which the power conversion device is mounted. The perspective view of the heat pipe type cooling device according to the present embodiment is enlarged and shown in detail in the drawing. A power conversion device 100 is installed under the floor of the vehicle body 107. This power conversion device 100 includes a main circuit shown in FIG. 10 and a cooling device 10 using a two-stage heat pipe slightly modified from the one shown in FIG. Since the present embodiment has a mounting form in which the height direction is particularly small, as shown in the figure, the cooling device is vertically stacked in two stages so as to make the entire power conversion device compact. Yes.
Although the embodiment of the power conversion device in the inverter system that drives the induction motor that is an AC motor by discharging direct current has been described above, the present invention is not limited to this, and the present invention is not limited to this, and the induction motor is powered by alternating current. It can also be applied to a converter / inverter system that drives The inverter described above is a two-level power converter, but may be a three-level power converter. Furthermore, the switching element can be applied to all switching elements adopting a package structure of planar mounting and single-sided cooling such as IGBT, as well as IGBT.
According to the present invention, in an environment where the outside air temperature is lower than the freezing point of the heat pipe refrigerant, the heat generation amount of the power converter varies depending on the operating conditions, or the heat dissipating ability by the traveling wind passing through the cooling device during traveling A heat pipe type cooling device that has a predetermined cooling performance and has a high heat transport capability even during normal temperature operation, and can make the whole including the cooling device casing compact. A power converter is obtained.
The present invention can be implemented in various other forms without departing from the spirit or main features thereof. As such, the preferred embodiments described herein are illustrative and not limiting. The scope of the invention is indicated by the appended claims, and all modifications that come within the meaning of the claims are intended to be embraced within the scope of the invention.
[Brief description of the drawings]
FIG. 1 is a perspective view of a first embodiment of the heat pipe type cooling device of the present invention.
FIG. 2 is a schematic diagram for explaining the operation of the cooling device of FIG.
FIG. 3 is a characteristic diagram showing a change with time of temperature of each part of the cooling device at a low temperature of the cooling device of FIG.
FIG. 4 is a diagram showing temperature characteristics with respect to the outside air temperature of the cooling device of FIG.
FIG. 5 is a sectional view showing a second embodiment of the heat pipe type cooling device of the present invention.
FIG. 6 is a sectional view showing a third embodiment of the heat pipe type cooling device of the present invention.
FIG. 7 is a sectional view showing a fourth embodiment of the heat pipe type cooling device of the present invention.
FIG. 8 is a sectional view showing a fifth embodiment of the heat pipe type cooling device of the present invention.
FIG. 9 is a configuration diagram in which the power converter of the present invention is applied to an electric railway vehicle.
FIG. 10 is a main circuit diagram of the power conversion device according to the first embodiment of the present invention.

Claims (10)

発熱体が取付けられた熱伝導が良好な受熱部材と、内部に冷媒が封入され、一側を形成する蒸発部がこの受熱部材に熱的に接続して取付けられ、他側を形成する凝縮部が前記受熱部材より突出して設けられた複数のヒートパイプと、前記ヒートパイプの凝縮部に取付けられた複数の放熱フィンとを備えたヒートパイプ式冷却装置において、前記ヒートパイプは長いヒートパイプと短いヒートパイプとを有し、この短いヒートパイプの冷媒の凝固点以下の温度で前記受熱部材から前記短いヒートパイプの凝縮部へ伝熱するように熱伝導体を設けたことを特徴とするヒートパイプ式冷却装置。  A heat receiving member having a good heat conduction to which a heating element is attached, and a condensing portion in which a refrigerant is sealed inside and an evaporation portion forming one side is attached in thermal connection to the heat receiving member and forms the other side In the heat pipe type cooling device comprising a plurality of heat pipes protruding from the heat receiving member and a plurality of heat radiation fins attached to the condensation part of the heat pipe, the heat pipe is a short heat pipe and a short heat pipe A heat pipe, and a heat conductor is provided to transfer heat from the heat receiving member to the condensing part of the short heat pipe at a temperature below the freezing point of the refrigerant of the short heat pipe. Cooling system. 前記熱伝導体は、前記短いヒートパイプに隣接され、この短いヒートパイプに取付けられた放熱フィンを介して短いヒートパイプに熱的に接続されたことを特徴とする請求項1記載のヒートパイプ式冷却装置。  The heat pipe type according to claim 1, wherein the heat conductor is adjacent to the short heat pipe and is thermally connected to the short heat pipe through a radiation fin attached to the short heat pipe. Cooling system. 前記熱伝導体は、銅やアルミニューム等の熱伝導率の大きい金属棒が用いられ、前記短いヒートパイプにほぼ同じ長さで隣接されたことを特徴とする請求項1記載のヒートパイプ式冷却装置。  The heat pipe type cooling according to claim 1, wherein the heat conductor is a metal rod having a high thermal conductivity such as copper or aluminum, and is adjacent to the short heat pipe with substantially the same length. apparatus. 前記熱伝導体は、前記放熱フィンより厚肉の熱伝導部材を介して前記短いヒートパイプに接続されたことを特徴とする請求項1または3に記載のヒートパイプ式冷却装置。  4. The heat pipe type cooling device according to claim 1, wherein the heat conductor is connected to the short heat pipe through a heat conductive member thicker than the radiating fin. 5. 発熱体が取付けられた熱伝導が良好な受熱部材と、内部に冷媒が封入され、一側を形成する蒸発部がこの受熱部材に熱的に接続して取付けられ、他側を形成する凝縮部が前記受熱部材より突出して設けられた複数のヒートパイプと、前記ヒートパイプの凝縮部に取付けられた複数の放熱フィンとを備えたヒートパイプ式冷却装置において、前記ヒートパイプは長いヒートパイプと短いヒートパイプとを有し、この短いヒートパイプに封入された冷媒の凝固点以下の温度で前記受熱部材から前記短いヒートパイプの凝縮部へ伝熱するように熱伝導体を設け、この熱伝導体は、銅やアルミニューム等の熱伝導率の大きい金属棒が用いられ、前記短いヒートパイプにほぼ同じ長さで隣接され、この短いヒートパイプに取付けられた放熱フィンを介して短いヒートパイプに熱的に接続されたことを特徴とするヒートパイプ式冷却装置。  A heat receiving member having a good heat conduction to which a heating element is attached, and a condensing portion in which a refrigerant is sealed inside and an evaporation portion forming one side is attached in thermal connection to the heat receiving member and forms the other side In the heat pipe type cooling device comprising a plurality of heat pipes protruding from the heat receiving member and a plurality of heat radiation fins attached to the condensation part of the heat pipe, the heat pipe is a short heat pipe and a short heat pipe A heat pipe, and a heat conductor is provided to transfer heat from the heat receiving member to the condensing part of the short heat pipe at a temperature below the freezing point of the refrigerant sealed in the short heat pipe. Metal rods with high thermal conductivity, such as copper and aluminum, are used, and are adjacent to the short heat pipe with approximately the same length, and through heat radiation fins attached to the short heat pipe. A heat pipe type cooling apparatus, characterized in that it is thermally connected to a short heat pipe. 発熱体が取付けられた熱伝導が良好な受熱部材と、内部に冷媒が封入され、一側を形成する蒸発部がこの受熱部材に熱的に接続して取付けられ、他側を形成する凝縮部が前記受熱部材より突出して設けられた複数のヒートパイプと、前記ヒートパイプの凝縮部に取付けられた複数の放熱フィンとを備えたヒートパイプ式冷却装置において、前記ヒートパイプは3種類以上の異なる放熱能力を有するように構成してなり、この構成は前記複数の放熱フィン全てが取付けられたヒートパイプと、前記複数の放熱フィンのうちの一部が取付けられたヒートパイプと、中実の金属棒とで構成されていることを特徴とするヒートパイプ式冷却装置。A heat receiving member having a good heat conduction to which a heating element is attached, and a condensing portion in which a refrigerant is sealed inside and an evaporation portion forming one side is attached in thermal connection to the heat receiving member and forms the other side Is a heat pipe type cooling device provided with a plurality of heat pipes projecting from the heat receiving member and a plurality of heat dissipating fins attached to the condensing part of the heat pipe. It is configured to have heat dissipation capability , and this configuration includes a heat pipe to which all of the plurality of radiation fins are attached, a heat pipe to which some of the plurality of radiation fins are attached, and a solid metal A heat pipe type cooling device characterized by comprising a rod . 発熱体が取付けられた熱伝導が良好な受熱部材と、内部に冷媒が封入され、一側を形成する蒸発部がこの受熱部材に熱的に接続して取付けられ、他側を形成する凝縮部が前記受熱部材より突出して設けられた複数のヒートパイプと、前記ヒートパイプの凝縮部に取付けられた複数の放熱フィンとを備えたヒートパイプ式冷却装置において、前記ヒートパイプは長い第1ヒートパイプと短い第2ヒートパイプと最も短い第3ヒートパイプとを有し、前記短い第2ヒートパイプの冷媒の凝固点以下の温度で前記受熱部材から前記短い第2ヒートパイプの凝縮部へ伝熱するように前記最も短い第3ヒートパイプを設けたことを特徴とするヒートパイプ式冷却装置。  A heat receiving member having a good heat conduction to which a heating element is attached, and a condensing portion in which a refrigerant is sealed inside and an evaporation portion forming one side is attached in thermal connection to the heat receiving member and forms the other side In the heat pipe type cooling device, comprising: a plurality of heat pipes projecting from the heat receiving member; and a plurality of heat dissipating fins attached to the condensing part of the heat pipe, the heat pipe is a long first heat pipe The short second heat pipe and the shortest third heat pipe, and transfer heat from the heat receiving member to the condensing part of the short second heat pipe at a temperature below the freezing point of the refrigerant of the short second heat pipe. A heat pipe type cooling device, wherein the shortest third heat pipe is provided. 発熱体が取付けられた熱伝導が良好な受熱部材と、内部に冷媒が封入され、一側を形成する蒸発部がこの受熱部材に熱的に接続して取付けられ、他側を形成する凝縮部が前記受熱部材より突出して設けられた複数のヒートパイプと、前記ヒートパイプの凝縮部に取付けられた複数の放熱フィンとを備えたヒートパイプ式冷却装置において、前記ヒートパイプは長い第1ヒートパイプと短い第2ヒートパイプとこの短い第2ヒートパイプより厚肉の短い第3ヒートパイプとを有し、前記短い第2ヒートパイプの冷媒の凝固点以下の温度で前記受熱部材から前記短い第2ヒートパイプの凝縮部へ伝熱するように前記最も短い第3ヒートパイプを設けたことを特徴とするヒートパイプ式冷却装置。  A heat receiving member having a good heat conduction to which a heating element is attached, and a condensing portion in which a refrigerant is sealed inside and an evaporation portion forming one side is attached in thermal connection to the heat receiving member and forms the other side Is a heat pipe type cooling device comprising a plurality of heat pipes provided so as to protrude from the heat receiving member, and a plurality of radiating fins attached to a condensing part of the heat pipe, wherein the heat pipe is a long first heat pipe A short second heat pipe and a third heat pipe having a thickness shorter than that of the short second heat pipe, and the short second heat pipe from the heat receiving member at a temperature below the freezing point of the refrigerant of the short second heat pipe. The heat pipe type cooling device, wherein the shortest third heat pipe is provided so as to transfer heat to a condensing part of the pipe. 発熱体が取付けられた熱伝導が良好な受熱部材と、内部に冷媒が封入され、一側を形成する蒸発部がこの受熱部材に熱的に接続して取付けられ、他側を形成する凝縮部が前記受熱部材より突出して設けられた複数のヒートパイプと、前記ヒートパイプの凝縮部に取付けられた複数の放熱フィンとを備えたヒートパイプ式冷却装置において、前記ヒートパイプは長い第1ヒートパイプと短い第2ヒートパイプと非凝縮ガスを封入した第3ヒートパイプとを有し、前記短い第2ヒートパイプの冷媒の凝固点以下の温度で前記受熱部材から前記短い第2ヒートパイプの凝縮部へ伝熱するように前記非凝縮ガスを封入した第3ヒートパイプを設けたことを特徴とするヒートパイプ式冷却装置。  A heat receiving member having a good heat conduction to which a heating element is attached, and a condensing portion in which a refrigerant is sealed inside and an evaporation portion forming one side is attached in thermal connection to the heat receiving member and forms the other side In the heat pipe type cooling device, comprising: a plurality of heat pipes projecting from the heat receiving member; and a plurality of heat dissipating fins attached to the condensing part of the heat pipe, the heat pipe is a long first heat pipe A short second heat pipe and a third heat pipe filled with non-condensable gas, and from the heat receiving member to the condensing part of the short second heat pipe at a temperature below the freezing point of the refrigerant of the short second heat pipe A heat pipe type cooling device, characterized in that a third heat pipe in which the non-condensable gas is enclosed is provided so as to conduct heat. 直流電力を変換して電動機を制御するための電力変換回路と、前記電力変換回路を冷却するためのヒートパイプ式冷却装置とを備え、電気鉄道車両の床下等に設置される電力変換装置において、前記ヒートパイプ式冷却装置は、前記電力変換回路を構成する半導体素子が取付けられた熱伝導が良好な受熱部材と、内部に冷媒が封入され、一側を形成する蒸発部がこの受熱部材に熱的に接続して取付けられ、他側を形成する凝縮部が前記受熱部材より突出して設けられた複数のヒートパイプと、前記ヒートパイプの凝縮部に取付けられた複数の放熱フィンとを有し、前記ヒートパイプは長いヒートパイプと短いヒートパイプとを有し、この短いヒートパイプの冷媒の凝固点以下の温度で前記受熱部材から前記短いヒートパイプの凝縮部へ伝熱するように熱伝導体を設けたことを特徴とする電力変換装置。  In a power conversion device provided with a power conversion circuit for converting DC power and controlling an electric motor, and a heat pipe type cooling device for cooling the power conversion circuit, installed under the floor of an electric railway vehicle, etc. In the heat pipe type cooling device, a heat receiving member having good heat conduction, to which a semiconductor element constituting the power conversion circuit is attached, and an evaporation part forming one side are heated by the heat receiving member. A plurality of heat pipes that are connected to each other and that form the other side projecting from the heat receiving member, and a plurality of radiating fins attached to the condensation part of the heat pipe, The heat pipe has a long heat pipe and a short heat pipe, and transfers heat from the heat receiving member to the condensing part of the short heat pipe at a temperature below the freezing point of the refrigerant of the short heat pipe. Power conversion apparatus is characterized by providing a thermal conductor so.
JP2000607264A 1999-03-19 1999-03-19 Heat pipe type cooling device and power conversion device Expired - Fee Related JP3900830B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/001399 WO2000057471A1 (en) 1999-03-19 1999-03-19 Heat pipe cooling device and power converting device

Publications (1)

Publication Number Publication Date
JP3900830B2 true JP3900830B2 (en) 2007-04-04

Family

ID=14235248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000607264A Expired - Fee Related JP3900830B2 (en) 1999-03-19 1999-03-19 Heat pipe type cooling device and power conversion device

Country Status (3)

Country Link
JP (1) JP3900830B2 (en)
RU (1) RU2176368C1 (en)
WO (1) WO2000057471A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103929077A (en) * 2013-01-16 2014-07-16 株式会社日立制作所 Drive device for railway vehicle
CN104142077A (en) * 2013-03-26 2014-11-12 通用电气能源能量变换技术有限公司 Heat pipe heat sink with heating unit

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194487B2 (en) * 2007-02-28 2013-05-08 富士電機株式会社 Power supply
GB2462098A (en) * 2008-07-23 2010-01-27 Ryan James Mcglen Thermal management device comprising heat pipes
JP4929325B2 (en) 2009-08-27 2012-05-09 株式会社日立製作所 Power converter
JP5353815B2 (en) * 2010-05-19 2013-11-27 三菱電機株式会社 Semiconductor module
CN104412498B (en) * 2012-06-29 2017-08-08 东芝三菱电机产业系统株式会社 Power conversion device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3198771B2 (en) * 1993-12-20 2001-08-13 日立電線株式会社 heatsink
JP3020790B2 (en) * 1993-12-28 2000-03-15 株式会社日立製作所 Heat pipe type cooling device and vehicle control device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103929077A (en) * 2013-01-16 2014-07-16 株式会社日立制作所 Drive device for railway vehicle
CN103929077B (en) * 2013-01-16 2016-08-17 株式会社日立制作所 The driving means of rail truck
CN104142077A (en) * 2013-03-26 2014-11-12 通用电气能源能量变换技术有限公司 Heat pipe heat sink with heating unit

Also Published As

Publication number Publication date
WO2000057471A1 (en) 2000-09-28
RU2176368C1 (en) 2001-11-27

Similar Documents

Publication Publication Date Title
CN102612747B (en) Semiconductor module
KR101144409B1 (en) Power conversion device
JP4382445B2 (en) Cooling structure for electrical equipment
JP3314256B2 (en) Electric vehicle power converter
US8919424B2 (en) Semiconductor element cooling structure
JPH0621289A (en) Cooler for semiconductor
JP4912512B1 (en) Cooling device and power conversion device
JP3900830B2 (en) Heat pipe type cooling device and power conversion device
JP2004266973A (en) Inverter arrangement
JP2896454B2 (en) Inverter device
JP2005117819A (en) Power conversion device for electric vehicle
JP2003079162A (en) Power converter
JP2759587B2 (en) Inverter cooling system for electric vehicles
JP2006287112A (en) Semiconductor device and vehicle
JP3271059B2 (en) Three-phase inverter for electric vehicles
Liang et al. HybridPACK2-advanced cooling concept and package technology for hybrid electric vehicles
JP3420945B2 (en) Power converter
US11395445B2 (en) Power converter and railroad vehicle
JP2932140B2 (en) Inverter for electric vehicle
JP5659744B2 (en) Inverter device
JP2008071879A (en) Thermoelectric conversion system
JP6575362B2 (en) Power converter
JP7497275B2 (en) Uninterruptible power system
JP7451386B2 (en) power converter
JPH0626237B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040205

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R151 Written notification of patent or utility model registration

Ref document number: 3900830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees