WO2000057471A1 - Heat pipe cooling device and power converting device - Google Patents

Heat pipe cooling device and power converting device Download PDF

Info

Publication number
WO2000057471A1
WO2000057471A1 PCT/JP1999/001399 JP9901399W WO0057471A1 WO 2000057471 A1 WO2000057471 A1 WO 2000057471A1 JP 9901399 W JP9901399 W JP 9901399W WO 0057471 A1 WO0057471 A1 WO 0057471A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat pipe
receiving member
short
pipe
Prior art date
Application number
PCT/JP1999/001399
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Suzuki
Heikichi Kuwahara
Nobuaki Mizuguchi
Yasuhiro Hara
Nobuo Fujieda
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1999/001399 priority Critical patent/WO2000057471A1/en
Priority to JP2000607264A priority patent/JP3900830B2/en
Priority to RU2000105788/06A priority patent/RU2176368C1/en
Publication of WO2000057471A1 publication Critical patent/WO2000057471A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heat-pipe type cooling device and a power conversion device, and is particularly suitable for a heat-pipe type cooling device and a power conversion device installed in a lower part of a floor of an electric railway vehicle or the like.
  • a switch for a vehicle inverter As a conventional heat pipe type cooling device for a power conversion device installed in a lower part of a floor of an electric railway vehicle, for example, as described in Japanese Patent Application Laid-Open No. 7-176660, a switch for a vehicle inverter is used. A plurality of long and short heat pipes are inserted and fixed in a heat receiving block to which a plurality of semiconductor elements used as a tuning element are fixed, and a plurality of heat dissipating fins are fixed to the long and short heat pipes.
  • a thick heat pipe instead of this short heat pipe (2nd prior art), or a simple long metal rod (Third prior art) is known.
  • the first conventional technique requires a heat generation amount exceeding a certain threshold value in order for the heat pipe to operate even in a low temperature environment below the freezing point of the working fluid. It is.
  • a cooling device for a power converter that generates heat depending on the situation, such as a railway car the heat generated may fall below the threshold value depending on the operation state. In other words, there was a risk that the cooling device would not operate.
  • application to railway vehicles In such cases it is assumed that the heat radiation capacity to the outside air fluctuates and becomes large due to the traveling wind during traveling.In this case, even if the heat generation exceeds the threshold value, There was a risk that the heat pipe would not operate without the working fluid rising to its freezing point.
  • the second conventional technique using a thick heat pipe or the third conventional technique using a metal rod can be considered.
  • the wall thickness had to be increased in order to secure the amount of heat transfer, and the performance as a heat pipe had to be reduced.
  • the heat transfer capacity of the metal rod is only about several tenths of that of a heat pipe, so that sufficient cooling performance cannot be obtained. For this reason, in the second and third prior arts, measures such as enlarging the radiating fin area are required, so that the whole had to be enlarged.
  • a first feature of the present invention for achieving the above object is that a heat receiving member to which a heating element is attached and has good heat conduction, and a refrigerant is sealed inside to form one side.
  • the heat evaporating section is thermally connected to and attached to the heat receiving member, and the condensing section forming the other side is attached to a plurality of heat pipes provided so as to protrude from the heat receiving member and the condensing section of the heat pipe.
  • the heat pipe has a long heat pipe, a short heat pipe and a short heat pipe.
  • a heat conductor is provided to transfer heat from the heat receiving member to the condensing portion of the short heat pipe.
  • the heat conductor is adjacent to the short heat pipe and is thermally connected to a short heat pipe through a heat radiating fin attached to the short heat pipe. It is in.
  • the heat conductor is made of a metal rod having a high thermal conductivity such as copper or aluminum, and is adjacent to the short heat pipe at substantially the same length.
  • the heat conductor is connected to the short heat pipe via the heat radiating fin and the thick heat conductive member.
  • a second feature of the present invention is that a heat receiving member to which a heat generating element is attached and has good heat conduction and a refrigerant is sealed inside and an evaporating portion forming one side is thermally connected to the heat receiving member.
  • a heat pipe type comprising: a plurality of heat pipes provided with a condensing portion forming the other side protruding from the heat receiving member; and a plurality of radiating fins mounted on the condensing portion of the heat pipe.
  • the heat pipe has a long heat pipe and a short heat pipe, and transfers heat from the heat receiving member to the condensing portion of the short heat pipe at a temperature equal to or lower than the freezing point of the refrigerant sealed in the short heat pipe.
  • the heat conductor is made of a metal rod having a high heat conductivity such as copper or aluminum.
  • the heat conductor is adjacent to the short heat pipe with almost the same length. Through the heat radiation fins attached to a short heat one In that it is thermally connected to the top pipe.
  • a third feature of the present invention is that a heat receiving member to which a heat generating element is attached and which has good heat conduction and a refrigerant is sealed inside and an evaporating portion forming one side is thermally connected to the heat receiving member.
  • a heat pipe type cooling system comprising: a plurality of heat pipes provided with a condensing portion forming the other side protruding from the heat receiving member; and a plurality of radiating fins mounted on the condensing portion of the heat pipe.
  • the heat pipe is configured to have three or more types of different heat radiation capabilities.
  • a fourth feature of the present invention is that a heat receiving member to which a heat generating element is attached and which has good heat conduction and a refrigerant is sealed therein and an evaporating portion forming one side is thermally connected to the heat receiving member.
  • a heat pipe type cooling system comprising: a plurality of heat pipes provided with a condensing portion forming the other side protruding from the heat receiving member; and a plurality of radiating fins mounted on the condensing portion of the heat pipe.
  • the heat pipe has a long first heat pipe, a short second heat pipe, and a shortest third heat pipe, and the heat pipe is short-circuited from the heat receiving member at a temperature equal to or lower than the freezing point of the refrigerant of the short second heat pipe.
  • the shortest third heat pipe is provided to transfer heat to the condensing section of the second heat pipe.
  • a fifth feature of the present invention is that a heat receiving member to which a heat generating element is attached and has good heat conduction and a refrigerant is sealed inside and an evaporator forming one side are thermally connected to the heat receiving member.
  • a heat pipe type cooling system comprising: a plurality of heat pipes provided with a condensing portion forming the other side protruding from the heat receiving member; and a plurality of radiating fins mounted on the condensing portion of the heat pipe.
  • the heat pipe has a long first heat pipe, a short second heat pipe, and a short third heat pipe that is thicker than the short second heat pipe. Before transferring heat from the heat receiving member to the condensing section of the short second heat pipe at a temperature below the freezing point The shortest third heat pipe is provided.
  • a sixth feature of the present invention is that a heat receiving member to which a heat generating element is attached and which has good heat conduction and a refrigerant is sealed inside and an evaporating portion forming one side is thermally connected to the heat receiving member.
  • a heat pipe type cooling device comprising: a plurality of heat pipes provided with a condensing portion forming the other side protruding from the heat receiving member; and a plurality of radiating fins mounted on the condensing portion of the heat pipe.
  • the heat pipe has a long first heat pipe, a short second heat pipe, and a third heat pipe filled with non-condensable gas
  • the heat receiving member has a temperature equal to or lower than the freezing point of the refrigerant of the short second heat pipe.
  • a third heat pipe filled with the non-condensable gas so as to transfer heat to the condensing portion of the short second heat pipe.
  • an electric railway vehicle includes: a power conversion circuit for converting a DC power to control a motor; and a heat pipe cooling device for cooling the power conversion circuit.
  • the heat pipe type cooling device includes a heat receiving member having good heat conduction to which a semiconductor element constituting the power conversion circuit is attached, and a refrigerant enclosed therein.
  • FIG. 1 is a perspective view of a first embodiment of a heat pipe type cooling device according to the present invention.
  • FIG. 2 is a schematic configuration diagram for explaining the operation of the cooling device of FIG.
  • FIG. 3 is a characteristic diagram showing the time change of the temperature of each part of the cooling device at a low temperature of the cooling device of FIG.
  • FIG. 4 is a diagram showing temperature characteristics of the cooling device of FIG. 2 with respect to the outside air temperature.
  • FIG. 5 is a sectional view showing a second embodiment of the heat pipe type cooling device of the present invention.
  • FIG. 6 is a sectional view showing a third embodiment of the heat pipe type cooling device of the present invention.
  • FIG. 7 is a sectional view showing a fourth embodiment of the heat pipe type cooling device of the present invention.
  • FIG. 8 is a sectional view showing a fifth embodiment of the heat pipe type cooling device of the present invention.
  • FIG. 9 is a configuration diagram in which the power converter of the present invention is applied to an electric railway vehicle.
  • FIG. 10 is a main circuit diagram of the power converter according to the first embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the main circuit with the inverter 101 is the DC feed section A power converter installed below the floor of an electric railway vehicle running on a railway.
  • the converter 106 is connected to a circuit breaker 105, a filter reactor 104, and a filter capacitor 102, and is supplied with direct current power.
  • the inverter 101 is composed of a power semiconductor element such as a semiconductor switching element 101a such as an IGBT or an anti-parallel diode 101b, for example.
  • the DC power is converted into 3-phase AC power with variable voltage and variable frequency, which is PWM modulated, by outputting pulses with three levels of positive, negative and neutral.
  • the AC motor 103 that drives the electric vehicle is connected to the inverter 101, and its rotation is controlled by inputting AC power with a variable voltage and variable frequency. Is done.
  • the energy is returned to the pantograph 106, contrary to the above-described power generation.
  • the pipe may not operate and the power converter may overheat.
  • an overheating of a power converter is prevented by having a good cooling function below and above the freezing point of a refrigerant in a heat pipe.
  • the power converter includes an inverter 201 of a main circuit and a heat pipe type cooling device 10.
  • the figure shows six semiconductor modules 5 constituting the inverter 201 of the main circuit.
  • the cooling device includes a heat receiving member 4 and a plurality of substantially L-shaped heat sinks. It comprises a metal pipe 2 having the same cylindrical shape as the heat pipe 1, a heat pipe 1, and heat radiation fins 3 attached to heat radiation sections of the heat pipe 1 and the metal rod 2. Have been.
  • the heat pipe 1 has a long heat radiating section, a plurality of heat pipes 1a to which all the heat radiating fins 3 are attached, and a short heat radiating section and a part of the heat radiating fin near the heat receiving member 4. It is composed of two types, a plurality of heat tips 1b with only three attached.
  • the heat sinks, tips 1a and lb, are made of thin material in order to improve the heat radiation from the internal refrigerant to the outside air.
  • the metal machine 2 is the same length as the short heat pipe 1b, and is adjacent to the individual pipes of the short heat noise group 1b. It is arranged in the same way as Eve 1b, and the heat dissipating fin 3 to be attached is shared with the short heat pipe 1b.
  • the metal rod 2 is made of a material having a high thermal conductivity, such as copper or aluminum.
  • Heat pipe 1 consists of a substantially vertical heat receiving section and a substantially horizontal condensing section. Heat pipe 1 heat receiving section Installed thermally connected to timber 4.
  • the heat dissipating fins 2 are attached to the condensing part of the heat type 1, and the tip of the condensing part is located near the tip of the condensing part to smoothly return the liquid from the condensing part to the heat receiving part even when the vehicle is inclined. It is provided slightly inclined so as to be located slightly above.
  • the refrigerant sealed in the heat pipe 1 for example, water or a fluid such as a flon-based or perfluorocarbon-based fluid is used.
  • a semiconductor module 5 and the like constituting an inverter 201 of a main circuit of the power converter are thermally connected and mounted.
  • FIG. 2 schematically shows the heat pipe 1 and the metal rod 2 vertically.
  • pure water is used as a refrigerant of the heat pipe 1 and copper is used as a metal rod
  • a cooling performance index of the cooling device 10 is a heat receiving member to which the semiconductor module 5 is attached. 4 is below 80 ° C. It is supposed to be.
  • the solid line in the figure is the temperature change curve of each part of the cooling device 10, where A HB is the HB part of the heat receiving member, A HL is the long heat nozzle tip HS part of the heat sink 1 a, and A HS shows heat radiating tip HS portion of the short heating Topai flop 1 b, a cs is the temperature variation curve of the heat radiating tip CS part of the metal rod 2, respectively.
  • Cooling system 1 when the heat generation such as a semiconductor module 5 is started, HS portion of the heat receiving member 4 receives the heat generation temperature rises cormorants good of A HB. Also, HL portion of heating Topai flop 1 a, 1 b and the metal rod 2, HS unit and CS unit is a temperature rise in the power sale good of A H had A HS and A cs. In this way, the temperature of each part also rises, and when the temperature of the heat receiving member 4 reaches about 0 ° C, the refrigerant frozen in the evaporating sections of the heat pipes 1a and 1b is discharged in the evaporating section. It begins to melt and becomes a liquid, and then begins to evaporate.
  • the gasified refrigerant starts transferring heat to the condensing part, which is the heat radiating part, by the transfer of latent heat of evaporation.
  • the tips of the heat pipes 1a and 1b are still below 0 ° C, and the water that has moved to the condensing section freezes after condensing at the tips of the heat pipes 1a and 1b.
  • the cooling device 10 mainly transmits heat to the heat radiating fin 3 attached to the metal rod 2 by heat conduction from the heat receiving member 4 to the metal rod 2 to radiate heat to the outside air.
  • the temperature A cs 2 is higher than the outside air.
  • the cooling device 10 has a force that significantly reduces the cooling performance, and the temperature of the heat receiving member 4 is low because the outside air temperature is low. Is kept below the set value of 80 ° C.
  • the short heat pipe 1 b has a temperature A HS substantially equal to the temperature A cs of the metal bar 2 due to the heat transfer from the heat radiation fin 3 attached to the metal bar 2.
  • FIG. 4 shows the state in which the power converter operates in the state of 150 shown in Fig. 3 and the heat pipe section of the cooling apparatus fails to operate, and the refrigerant freezes in the evaporating section.
  • This figure shows the temperature change of each part of the cooling device when the outside air temperature gradually rises to + 40 ° C while the amount Q is constant.
  • the temperature A HB of the heat receiving member 4 in FIG. 3 is in a stable state, and the tip temperature B cs of the short metal rod 2 is small. is higher than the Ri by the thermal conductivity outside air temperature B AR from the heat receiving member 4.
  • the tip temperature B HS of the short heat pipe 1 b is heated by the heat flowing from the metal bar 2, and becomes almost the same temperature as the metal bar 2.
  • the configuration is such that the entire metal rod 2 and the short heat pipe 1b become 0 ° C. or more. Heathno, short for being.
  • the refrigerant frozen in the condensing section of Eve 1b melts and starts operating as a heat pipe.
  • the temperature of the heat receiving member 4 Since BHB can drop sharply from this operating point ⁇ , the allowable temperature does not exceed 80 ° C.
  • the outside air temperature B AR rises from the operating point 2
  • the temperature of each part of the cooling device 10 also rises, and the temperature B HB of the heat receiving member 4 rises and approaches the allowable temperature of 80 ° C.
  • the outside air temperature BAR is configured to reach 0 ° C, so long heat.
  • Lee Bed 1 a tip temperature B HL Ri is Do and 0 ° C or higher, longer heating Topai flop 1 a also starts the operation of the heating Topai flop (operating point 3).
  • the allowable temperature does not exceed 80 ° C.
  • the setting of the heat radiation fin 3 attached to the long heat pipe 1a is set so that the temperature B HB of the heat receiving member 4 is 80 ° C. or less at an outside air temperature of 40 ° C.
  • the short heater and the heater 1b are heated by the short metal rod 2, so that when the outside air temperature is lower than the freezing point of the refrigerant, the calorific value fluctuates and decreases.
  • the heat receiving member 4 has a short temperature below the allowable temperature.
  • Eve 1b can be operated, and a predetermined cooling performance can be obtained.
  • the long heat pipe 1a also operates, a predetermined cooling performance can be obtained, whereby it is possible to have a predetermined cooling performance in all temperature ranges.
  • the cooling device in the present embodiment is an alternative to the metal rod 2 in the first embodiment, except that a shorter heat pipe 1 is used. c is arranged.
  • a cooling device that is used in a usage state in which the change in the amount of generated heat or the heat radiation capacity does not fall below an extremely low threshold value, the shortest due to the heat transfer from the heat receiving member 4 when the outside air temperature is below the freezing point of the refrigerant. This shortest heat source, which raises the temperature of the heat pipe above the outside temperature. Short heat at Eve 1 c, °
  • the short heat pipe 1b By heating 1b, the short heat pipe 1b can be heated to a temperature higher than the freezing point of the refrigerant at a temperature lower than the outside air temperature.
  • the weight By using only a heat pipe, the weight can be reduced as compared with the case where a metal rod is used.
  • the cooling device according to the present embodiment is different from the adjacent short heat pipe 1b in that the heat pipe 1d having the same length and a thick wall thickness of the pipe is used for the adjacent short heat pipe 1b. Is arranged. With this configuration, the pipe wall pressure is increased, so that the heat radiating ability of the heat pipe is reduced, and at the same time, when the refrigerant solidifies, the heat conduction of the pipe wall pressure section is reduced. This promotes the warm-up of the adjacent heat pipe.
  • the cooling device in this embodiment is the same as the first embodiment except that a heat conducting member 7 for promoting heat conduction between the metal rod 2 and the adjacent short heat pipe 1b is attached. It is. Ri by this configuration, a short heating concert, ° Lee Bed 1 b warmup is promoted Ri good of, c the operating region of the short heating Topai flop 1 b spreads As a result, the temperature of the heat receiving member 4 can be reduced, so that the cooling device is configured more compactly.
  • the cooling device according to the present embodiment is similar to the cooling device according to the first embodiment except that the cooling device has a short length.
  • a variable conductance transistor 1'e filled with a non-condensable gas is placed instead of the metal rod 2.
  • the gas is filled in the condensing part at low temperature where the refrigerant vapor pressure is low, so that the heat radiation ability is naturally reduced. Therefore, it can operate stably even when the heat radiation capability of the fin is temporarily improved during low heat generation.
  • FIG. 9 is a schematic cross-sectional view of the vehicle equipped with the power converter as viewed from the traveling direction of the electric vehicle.
  • FIG. 9 is an enlarged perspective view of the heat pipe type cooling device according to the present embodiment. It was shown to.
  • a power converter 100 is installed under the floor of the vehicle body 107.
  • the power converter 100 includes a main circuit shown in FIG. 10 and a cooling device 100 using a two-stage heat pipe which is slightly modified from that shown in FIG.
  • the cooling device is vertically stacked in two stages, and the compactness of the entire power conversion device is reduced. I'm trying toy dani.
  • the present invention is not limited to this, and the present invention can be applied to a converter / inverter system that drives an induction motor by supplying alternating current.
  • the inverter described above is a two-level power converter, but may be a three-level power converter.
  • the switching element can be applied to all switching elements adopting a package structure of flat mounting and single-sided cooling, such as IGBT, power transistor MOSFET, etc.
  • the calorific value of the power converter fluctuates depending on operating conditions, or passes through the cooling device during traveling. Even if the heat radiation capacity changes due to the traveling wind, it has a predetermined cooling performance and has a high heat transport capacity even at normal temperature operation, and the whole body including the cooling device housing is compact. Thus, a heat pipe type cooling device and a power conversion device which can perform the heat pipe cooling can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)

Abstract

A heat pipe cooling device and power converting device having a heat receiving member for mounting a heating element thereon and a plurality of heat pipes, comprising a heat conductor which is provided with long and short heat pipes and conducts heat from the heat receiving member to the short heat pipes at a temperature below the freezing point of a refrigerant, whereby a specified cooling performance can be obtained under the environmental condition that the temperature is below the freezing point of the refrigerant.

Description

明 細 書  Specification
ヒートパイプ式冷却装置及び電力変換装置 技術分野  Heat pipe cooling device and power conversion device
本発明は、 ヒー トパイ プ式冷却装置及び電力変換装置に係り 、 特に電気鉄道車両の床下部等に設置する ヒ— トパイ プ式冷却 装置及び電力変換装置に好適なものである。 背景技術  The present invention relates to a heat-pipe type cooling device and a power conversion device, and is particularly suitable for a heat-pipe type cooling device and a power conversion device installed in a lower part of a floor of an electric railway vehicle or the like. Background art
従来の電気鉄道車両の床下部等に設置する電力変換装置の ヒー トパイ プ式冷却装置と しては、 例えば特開平 7— 176660 号 公報に記載されている よ う に、 車両用ィ ンバータにスィ ツチン グ素子と して使用される複数の半導体素子が固定される受熱 ブロ ッ ク に複数の長短ヒー トパイ プを揷入して固定され、 この 長短ヒ一トパイ プに複数の放熱フ ィ ンが設けられたもの (第 1 従来技術) 、 この短いヒー トパイ プの代り に肉厚の厚い長いヒ ― トパイ プが用いられたもの (第 2従来技術) 、 あるいは単な る長い金属棒が用いられたもの (第 3従来技術) が公知である。 かかる従来のヒー トパイ プ式冷却装置において、 第 1 従来技 術のものは、 作動液の凝固点以下の低温環境下でも ヒー トパイ プが作動するためには、 ある しきい値以上の発熱量が必要であ る。 しかし、 例えば鉄道車両のよ う に発熱量が状況によ り変動 する よ う な電力変換装置の冷却装置と して用いる場合には、 そ の運転状態によ つて発熱量がしきい値以下とな り、冷却装置が 作動しないという虞れがあつた。 同様に鉄道車両への適用にお いては、 走行時の走行風によ り外気への放熱能力が変動して大 き く なる場合が想定され、 この場合においては、 しきい値以上 の発熱量があっても ヒー トパイ プ内の作動液が凝固点まで温 度上昇せずにヒー トパイ プが作動しないという虞れがあった。 この対策と して、 肉厚の厚いヒー トパイ プを用いた第 2従来技 術のもの、 または、 金属棒を用いた第 3従来技術のものが考え られる。 しかし第 2従来技術のものでは、 伝熱量を確保するた めに、 肉厚を厚く する必要があ り、 ヒー トパイ プと しての性能 を低くせざるをえなかった。 一方、 第 3従来技術のものでは、 金属棒の熱輸送能力はヒ一 トパイ プの数十分の一程度である ため、 十分な冷却性能が得られなかった。 このため、 第 2, 第 3従来技術のものでは放熱フ ィ ン面積を大き く するなどの措 置が必要である こ とから、 全体を大型化せざるをえないもので あった。 発明の開示 本発明の目的は、 ヒー トパイ プ冷媒の凝固点よ り外気温度が 低いよ う な環境下で、 電力変換装置の発熱量が動作条件によ り 変動した り 、 または走行時に冷却装置内を通過する走行風によ つて放熱能力が変化した場合でも、 所定の冷却性能を有し、 か つ常温作動時においても高い熱輸送能力を有し、 しかも、 冷却 装置全体をコ ンパク ト にする こ とができる ヒー トパイ プ式冷 却装置及び電力変換装置を得る こ と にある。 As a conventional heat pipe type cooling device for a power conversion device installed in a lower part of a floor of an electric railway vehicle, for example, as described in Japanese Patent Application Laid-Open No. 7-176660, a switch for a vehicle inverter is used. A plurality of long and short heat pipes are inserted and fixed in a heat receiving block to which a plurality of semiconductor elements used as a tuning element are fixed, and a plurality of heat dissipating fins are fixed to the long and short heat pipes. Provided (1st prior art), a thick heat pipe instead of this short heat pipe (2nd prior art), or a simple long metal rod (Third prior art) is known. In such a conventional heat pipe type cooling apparatus, the first conventional technique requires a heat generation amount exceeding a certain threshold value in order for the heat pipe to operate even in a low temperature environment below the freezing point of the working fluid. It is. However, when used as a cooling device for a power converter that generates heat depending on the situation, such as a railway car, the heat generated may fall below the threshold value depending on the operation state. In other words, there was a risk that the cooling device would not operate. Similarly, application to railway vehicles In such cases, it is assumed that the heat radiation capacity to the outside air fluctuates and becomes large due to the traveling wind during traveling.In this case, even if the heat generation exceeds the threshold value, There was a risk that the heat pipe would not operate without the working fluid rising to its freezing point. As a countermeasure, the second conventional technique using a thick heat pipe or the third conventional technique using a metal rod can be considered. However, in the case of the second prior art, the wall thickness had to be increased in order to secure the amount of heat transfer, and the performance as a heat pipe had to be reduced. On the other hand, in the case of the third prior art, the heat transfer capacity of the metal rod is only about several tenths of that of a heat pipe, so that sufficient cooling performance cannot be obtained. For this reason, in the second and third prior arts, measures such as enlarging the radiating fin area are required, so that the whole had to be enlarged. DISCLOSURE OF THE INVENTION It is an object of the present invention to provide an electric power conversion device in an environment in which the outside air temperature is lower than the freezing point of a heat pipe refrigerant, the calorific value of the power conversion device fluctuates depending on operating conditions, or the inside of the cooling device during traveling. Even if the heat radiation capacity changes due to the traveling wind passing through the chiller, it has a predetermined cooling performance, has a high heat transport capacity even at normal temperature operation, and makes the entire cooling device compact An object of the present invention is to obtain a heat pipe type cooling device and a power conversion device that can perform the heating.
上記目的を達成するための本発明の第 1の特徴は、発熱体が取付けら れた熱伝導が良好な受熱部材と、 内部に冷媒が封入され、 一側を形成す る蒸発部がこの受熱部材に熱的に接続して取付けられ、他側を形成する 凝縮部が前記受熱部材より突出して設けられた複数のヒートパイプと、 前記ヒートパイプの凝縮部に取付けられた複数の放熱フィ ンとを備え たヒートパイプ式冷却装置において、前記ヒートパイプは長いヒートノ、 ° ィプと短いヒートパイプとを有し、 この短いヒ一トパイプの冷媒の凝固 点以下の温度で前記受熱部材から前記短いヒー トパイプの凝縮部へ伝 熱するように熱伝導体を設けたことにある。 A first feature of the present invention for achieving the above object is that a heat receiving member to which a heating element is attached and has good heat conduction, and a refrigerant is sealed inside to form one side. The heat evaporating section is thermally connected to and attached to the heat receiving member, and the condensing section forming the other side is attached to a plurality of heat pipes provided so as to protrude from the heat receiving member and the condensing section of the heat pipe. In a heat pipe type cooling device provided with a plurality of heat radiating fins, the heat pipe has a long heat pipe, a short heat pipe and a short heat pipe. A heat conductor is provided to transfer heat from the heat receiving member to the condensing portion of the short heat pipe.
好ましくは、 前記熱伝導体は、 前記短いヒートパイプに隣接され、 こ の短いヒ一トパイプに取付けられた放熱フィ ンを介して短いヒー トノ、 ° ィプに熱的に接続された構成にしたことにある。  Preferably, the heat conductor is adjacent to the short heat pipe and is thermally connected to a short heat pipe through a heat radiating fin attached to the short heat pipe. It is in.
また、 好ましくは、 前記熱伝導体は、 銅やアルミニューム等の熱伝導 率の大きい金属棒が用いられ、前記短いヒートパイプにほぼ同じ長さで 隣接された構成にしたことにある。  Preferably, the heat conductor is made of a metal rod having a high thermal conductivity such as copper or aluminum, and is adjacent to the short heat pipe at substantially the same length.
また、 好ましくは、 前記熱伝導体は、 前記放熱フィンょり厚肉の熱伝 導部材を介して前記短いヒートパイプに接続された構成にしたことに める。  Preferably, the heat conductor is connected to the short heat pipe via the heat radiating fin and the thick heat conductive member.
本発明の第 2の特徴は、発熱体が取付けられた熱伝導が良好な受熱部 材と、 内部に冷媒が封入され、一側を形成する蒸発部がこの受熱部材に 熱的に接続して取付けられ、他側を形成する凝縮部が前記受熱部材ょり 突出して設けられた複数のヒ一トパイプと、前記ヒートパイプの凝縮部 に取付けられた複数の放熱フィ ンとを備えたヒートパイプ式冷却装置 において、前記ヒートパイプは長いヒートパイプと短いヒートパイプと を有し、 この短いヒートパイプに封入された冷媒の凝固点以下の温度で 前記受熱部材から前記短いヒートパイプの凝縮部へ伝熱するように熱 伝導体を設け、 この熱伝導体は、 銅やアルミニューム等の熱伝導率の大 きい金属棒が用いられ、前記短いヒートパイプにほぼ同じ長さで隣接さ れ、 この短いヒートパイプに取付けられた放熱フィンを介して短いヒ一 トパイプに熱的に接続された構成にしたことにある。 A second feature of the present invention is that a heat receiving member to which a heat generating element is attached and has good heat conduction and a refrigerant is sealed inside and an evaporating portion forming one side is thermally connected to the heat receiving member. A heat pipe type comprising: a plurality of heat pipes provided with a condensing portion forming the other side protruding from the heat receiving member; and a plurality of radiating fins mounted on the condensing portion of the heat pipe. In the cooling device, the heat pipe has a long heat pipe and a short heat pipe, and transfers heat from the heat receiving member to the condensing portion of the short heat pipe at a temperature equal to or lower than the freezing point of the refrigerant sealed in the short heat pipe. The heat conductor is made of a metal rod having a high heat conductivity such as copper or aluminum. The heat conductor is adjacent to the short heat pipe with almost the same length. Through the heat radiation fins attached to a short heat one In that it is thermally connected to the top pipe.
本発明の第 3の特徴は、発熱体が取付けられた熱伝導が良好な受熱部 材と、 内部に冷媒が封入され、一側を形成する蒸発部がこの受熱部材に 熱的に接続して取付けられ、他側を形成する凝縮部が前記受熱部材ょり 突出して設けられた複数のヒートパイプと、前記ヒートパイプの凝縮部 に取付けられた複数の放熱フィ ンとを備えたヒートパイプ式冷却装置 において、前記ヒートパイプは 3種類以上の異なる放熱能力を有するよ うに構成したことにある。  A third feature of the present invention is that a heat receiving member to which a heat generating element is attached and which has good heat conduction and a refrigerant is sealed inside and an evaporating portion forming one side is thermally connected to the heat receiving member. A heat pipe type cooling system comprising: a plurality of heat pipes provided with a condensing portion forming the other side protruding from the heat receiving member; and a plurality of radiating fins mounted on the condensing portion of the heat pipe. In the apparatus, the heat pipe is configured to have three or more types of different heat radiation capabilities.
本発明の第 4の特徴は、発熱体が取付けられた熱伝導が良好な受熱部 材と、 内部に冷媒が封入され、一側を形成する蒸発部がこの受熱部材に 熱的に接続して取付けられ、他側を形成する凝縮部が前記受熱部材ょり 突出して設けられた複数のヒートパイプと、前記ヒートパイプの凝縮部 に取付けられた複数の放熱フィ ンとを備えたヒートパイプ式冷却装置 において、前記ヒートパイプは長い第 1 ヒートパイプと短い第 2 ヒート パイプと最も短い第 3ヒートパイプとを有し、前記短い第 2ヒートパイ プの冷媒の凝固点以下の温度で前記受熱部材から前記短い第 2ヒート パイプの凝縮部へ伝熱するように前記最も短い第 3 ヒートパイプを設 けた構成にしたことにある。  A fourth feature of the present invention is that a heat receiving member to which a heat generating element is attached and which has good heat conduction and a refrigerant is sealed therein and an evaporating portion forming one side is thermally connected to the heat receiving member. A heat pipe type cooling system comprising: a plurality of heat pipes provided with a condensing portion forming the other side protruding from the heat receiving member; and a plurality of radiating fins mounted on the condensing portion of the heat pipe. In the apparatus, the heat pipe has a long first heat pipe, a short second heat pipe, and a shortest third heat pipe, and the heat pipe is short-circuited from the heat receiving member at a temperature equal to or lower than the freezing point of the refrigerant of the short second heat pipe. The shortest third heat pipe is provided to transfer heat to the condensing section of the second heat pipe.
本発明の第 5の特徴は、発熱体が取付けられた熱伝導が良好な受熱部 材と、 内部に冷媒が封入され、一側を形成する蒸発部がこの受熱部材に 熱的に接続して取付けられ、他側を形成する凝縮部が前記受熱部材ょり 突出して設けられた複数のヒートパイプと、前記ヒートパイプの凝縮部 に取付けられた複数の放熱フィ ンとを備えたヒー トパイプ式冷却装置 において、前記ヒー トパイプは長い第 1 ヒー トパイプと短い第 2 ヒー ト パイプとこの短い第 2ヒートパイプょり厚肉の短い第 3ヒートパイプ とを有し、前記短い第 2ヒートパイプの冷媒の凝固点以下の温度で前記 受熱部材から前記短い第 2 ヒー トパイプの凝縮部へ伝熱するように前 記最も短い第 3 ヒートパイプを設けた構成にしたことにある。 A fifth feature of the present invention is that a heat receiving member to which a heat generating element is attached and has good heat conduction and a refrigerant is sealed inside and an evaporator forming one side are thermally connected to the heat receiving member. A heat pipe type cooling system comprising: a plurality of heat pipes provided with a condensing portion forming the other side protruding from the heat receiving member; and a plurality of radiating fins mounted on the condensing portion of the heat pipe. In the apparatus, the heat pipe has a long first heat pipe, a short second heat pipe, and a short third heat pipe that is thicker than the short second heat pipe. Before transferring heat from the heat receiving member to the condensing section of the short second heat pipe at a temperature below the freezing point The shortest third heat pipe is provided.
本発明の第 6の特徴は、発熱体が取付けられた熱伝導が良好な受熱部 材と、 内部に冷媒が封入され、一側を形成する蒸発部がこの受熱部材に 熱的に接続して取付けられ、他側を形成する凝縮部が前記受熱部材ょり 突出して設けられた複数のヒートパイプと、前記ヒートパイプの凝縮部 に取付けられた複数の放熱フィンとを備えたヒートパイプ式冷却装置 において、前記ヒートパイプは長い第 1 ヒートパイプと短い第 2ヒート パイプと非凝縮ガスを封入した第 3 ヒートパイプとを有し、前記短い第 2 ヒートパイプの冷媒の凝固点以下の温度で前記受熱部材から前記短 い第 2 ヒートパイプの凝縮部へ伝熱するように前記非凝縮ガスを封入 した第 3ヒートパイプを設けた構成にしたことにある。  A sixth feature of the present invention is that a heat receiving member to which a heat generating element is attached and which has good heat conduction and a refrigerant is sealed inside and an evaporating portion forming one side is thermally connected to the heat receiving member. A heat pipe type cooling device comprising: a plurality of heat pipes provided with a condensing portion forming the other side protruding from the heat receiving member; and a plurality of radiating fins mounted on the condensing portion of the heat pipe. Wherein the heat pipe has a long first heat pipe, a short second heat pipe, and a third heat pipe filled with non-condensable gas, and the heat receiving member has a temperature equal to or lower than the freezing point of the refrigerant of the short second heat pipe. And a third heat pipe filled with the non-condensable gas so as to transfer heat to the condensing portion of the short second heat pipe.
本発明の第 5の特徴は、直流電力を変換して電動機を制御するための 電力変換回路と、前記電力変換回路を冷却するためのヒ一トパイプ式冷 却装置とを備え、電気鉄道車両の床下等に設置される電力変換装置にお いて、 前記ヒートパイプ式冷却装置は、 前記電力変換回路を構成する半 導体素子が取付けられた熱伝導が良好な受熱部材と、内部に冷媒が封入 され、一側を形成する蒸発部がこの受熱部材に熱的に接続して取付けら れ、他側を形成する凝縮部が前記受熱部材ょり突出して設けられた複数 のヒートパイプと、前記ヒ一トパイプの凝縮部に取付けられた複数の放 熱フィ ンとを有し、前記ヒートパイプは長いヒートパイプと短いヒート パイプとを有し、 この短いヒートパイプの冷媒の凝固点以下の温度で前 記受熱部材から前記短いヒートパイプの凝縮部へ伝熱するように熱伝 導体を設けた構成にしたことにある。 図面の簡単な説明 第 1 図は本発明のヒー トパイ プ式冷却装置の第 1 実施例の 斜視図である。 第 2 図は第 1 図の冷却装置の動作を説明するための構成模 式図である。 A fifth feature of the present invention is that an electric railway vehicle includes: a power conversion circuit for converting a DC power to control a motor; and a heat pipe cooling device for cooling the power conversion circuit. In a power conversion device installed under the floor or the like, the heat pipe type cooling device includes a heat receiving member having good heat conduction to which a semiconductor element constituting the power conversion circuit is attached, and a refrigerant enclosed therein. A plurality of heat pipes provided with an evaporating portion forming one side thermally connected to the heat receiving member and a condensing portion forming the other side protruding from the heat receiving member; A plurality of heat-dissipating fins attached to the condensing section of the heat pipe, wherein the heat pipe has a long heat pipe and a short heat pipe, and the heat-receiving pipe has a temperature lower than the freezing point of the refrigerant in the short heat pipe. From the member The heat pipe is provided with a heat conductor to transfer heat to the condensing part of the heat pipe. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a first embodiment of a heat pipe type cooling device according to the present invention. FIG. 2 is a schematic configuration diagram for explaining the operation of the cooling device of FIG.
第 3 図は第 2 図の冷却装置の低温下での冷却装置各部の温 度の時間変化を示す特性図である。  FIG. 3 is a characteristic diagram showing the time change of the temperature of each part of the cooling device at a low temperature of the cooling device of FIG.
第 4図は第 2 図の冷却装置の外気温度に対する温度特性を 示す図である。  FIG. 4 is a diagram showing temperature characteristics of the cooling device of FIG. 2 with respect to the outside air temperature.
第 5 図は本発明のヒー トパイ プ式冷却装置の第 2実施例を 示す断面図である。  FIG. 5 is a sectional view showing a second embodiment of the heat pipe type cooling device of the present invention.
第 6 図は本発明のヒ ー トパイ プ式冷却装置の第 3実施例を 示す断面図である。  FIG. 6 is a sectional view showing a third embodiment of the heat pipe type cooling device of the present invention.
第 7図は本発明のヒー トパイ プ式冷却装置の第 4実施例を 示す断面図である。  FIG. 7 is a sectional view showing a fourth embodiment of the heat pipe type cooling device of the present invention.
第 8図は本発明のヒー トパイ プ式冷却装置の第 5実施例を 示す断面図である。  FIG. 8 is a sectional view showing a fifth embodiment of the heat pipe type cooling device of the present invention.
第 9 図は本発明の電力変換装置を電気鉄道車両に適用 した 構成図である。  FIG. 9 is a configuration diagram in which the power converter of the present invention is applied to an electric railway vehicle.
第 1 0 図は本発明の第 1 実施例における電力変換装置の主 回路図である。 発明を実施するための最良の形態  FIG. 10 is a main circuit diagram of the power converter according to the first embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明のヒ一トパイ プ冷却装置と これを用いた電力変 換装置の実施例を図面を用いて説明する。  Hereinafter, embodiments of a heat pipe cooling device of the present invention and a power conversion device using the same will be described with reference to the drawings.
まず、 第 1 0 図を用いて、 本発明を適用する電力変換装置を 説明する。 イ ンバータ 1 0 1 を有する主回路は、 直流き電区間 を走行する電気鉄道車両の床下に設置する電力変換装置を構 成し、 ノ、。ンタ グラ フ 1 0 6 に、 遮断器 1 0 5 , フ ィ ルタ リ アク トル 1 0 4及びフ ィ ルタ コ ンデンサ 102 を介して接続され、 直 流電力が供給される。 このイ ンバータ 1 0 1 は、 例えば I G B T といつた半導体スイ ツチング素子 1 0 1 aや逆並列ダイォ ー ド 1 0 1 b等の電力用半導体素子によ り構成されてお り、 入 力された直流電力を正, 負, 中性の 3 つのレベルを有するパル スを出力する こ とによ り P W M変調された可変電圧可変周波 数の 3相交流電力に変換して出力する。 電気車を駆動する交流 電動機 1 0 3 は、 イ ンバ一タ 1 0 1 に接続され、 可変電圧可変 周波数の交流電力を入力する こ とによつてその回転が制御さ れ、 電気車がカ行される。 また、 交流電動機 1 0 3が発電機と して動作する回生時は、 上記カ行時とは反対にエネルギーがパ ンタグラフ 1 0 6 に戻される。 First, a power converter to which the present invention is applied will be described with reference to FIG. The main circuit with the inverter 101 is the DC feed section A power converter installed below the floor of an electric railway vehicle running on a railway. The converter 106 is connected to a circuit breaker 105, a filter reactor 104, and a filter capacitor 102, and is supplied with direct current power. The inverter 101 is composed of a power semiconductor element such as a semiconductor switching element 101a such as an IGBT or an anti-parallel diode 101b, for example. The DC power is converted into 3-phase AC power with variable voltage and variable frequency, which is PWM modulated, by outputting pulses with three levels of positive, negative and neutral. The AC motor 103 that drives the electric vehicle is connected to the inverter 101, and its rotation is controlled by inputting AC power with a variable voltage and variable frequency. Is done. In addition, during the regenerative operation in which the AC motor 103 operates as a generator, the energy is returned to the pantograph 106, contrary to the above-described power generation.
かかる電力変換装置は、 冷却系にと ってみれば、 主回路を構 成する各素子全てが発熱体であ り、 これらが密に実装される と 熱的に厳しいものとなるので、 ヒー トパイ プ式冷却装置を備え ている。 また、 これらの発熱は常に一定という訳ではな く 、 例 えば乗車率や線路状況によ り大き く 変動する と共に、 走行時の 冷却風等の影響によ り ヒー トパイ プ式冷却装置の放熱部の放 熱能力も時々刻々 と変動する。 これらの要因によ り、 ヒ ー トパ ィ プ内に封入された冷媒が凝固しないよ う な温度域では、 電力 変換装置の発熱に対してヒー トパイ プ式冷却装置の良好な冷 却機能が作用するが、 冷媒の凝固点以下の温度域では、 ヒー ト パィ プが作動できず、 電力変換装置が過熱してしま う恐れがあ る。 本発明では、 ヒー トパイ プ内の冷媒の凝固点以下及び以上 において、 良好な冷却機能を有して電力変換装置の過熱を防止 する も のである。 In the case of such a power conversion device, when viewed from a cooling system, all the elements constituting the main circuit are heating elements, and if these components are densely mounted, it becomes thermally severe. Equipped with a pump-type cooling device. Moreover, these heats are not always constant. For example, they vary greatly depending on the occupancy rate and track conditions, and the heat radiation part of the heat pipe type cooling device is affected by the cooling wind during driving. The heat-dissipation capacity of the wing also fluctuates from moment to moment. Due to these factors, in the temperature range where the refrigerant enclosed in the heat pipe does not solidify, the good cooling function of the heat pipe type cooling device acts on the heat generated by the power converter. However, in the temperature range below the freezing point of the refrigerant, The pipe may not operate and the power converter may overheat. According to the present invention, an overheating of a power converter is prevented by having a good cooling function below and above the freezing point of a refrigerant in a heat pipe.
次に、 第 1 図を用いて本発明のヒー トパイ プ式冷却装置の第 1 実施例の構成を説明する。 電力変換装置は、 主回路のイ ンバ タ 2 0 1 と ヒー トパイ プ式冷却装置 1 0 と を備えている。主 回路のイ ンバー タ 2 0 1 を構成する 6 つの半導体モジュール 5 を図に示してある。 冷却装置は、 受熱部材 4 と、 複数の略 L 字型ヒー ト ノ、。イ ブ 1 と、 ヒ ー トノ イ プ 1 と同一円筒形状の中実 の金属棒 2 と、 ヒー トパイ プ 1 および金属棒 2 の放熱部に取り 付けられた放熱フ ィ ン 3 と を備えて構成されている。 ヒー トパ ィ プ 1 は、 放熱部が長く 、 全ての放熱フ イ ン 3が取り付けられ ている複数のヒー トパイ プ 1 a と、 放熱部が短く 、 受熱部材 4 寄り の一部の放熱フ ィ ン 3 しか取り付けられていない複数の ヒ ー ト ノ ィ プ 1 b の 2種類で構成されている。 このヒ一 ト ノ、 ° ィ プ 1 a , l b は内部の冷媒から外気への放熱を良好にするため に薄肉のもので形成されている。 金属機 2 は、 短いヒー トパイ プ 1 b と同じ長さで、 短いヒー トノ イ ブ群 1 bの個々のパイ プ に隣接してヒ一 ト ノ、。イ ブ 1 b と同様に配置されてお り、 取り付 けられる放熱フ ィ ン 3 も短いヒー トパイ プ 1 b と共有してい る。 金属棒 2 は、 銅やアル ミ ニウ ムなど、 熱伝導率の大きい部 材が用いられる。 ヒー トパイ プ 1 は、 略垂直な受熱部と略水平 な凝縮部よ り なつている。 ヒー トパイ プ 1 の受熱部は、 受熱部 材 4 に熱的に接続して取り付けられている。 また、 ヒー トノ イ プ 1 の凝縮部は、 放熱フ ィ ン 2が取り付けられる と共に、 車両 が傾斜した場合でも凝縮部から受熱部への液戻り を円滑に行 う為、 凝縮部の先端寄りが若干上方に位置する よ う に若干傾斜 して設けられる。ヒ一 トパイ プ 1 内に封入される冷媒と しては、 例えば水や、 フロ ン系, パーフ レオ口カーボン系等の流体が用 いる。 本実施例では、 漏出する こ とがあっても環境への影響の 少ない水が作動液と して用いられている。 受熱部材 4 の他側に は電力変換器の主回路のイ ンバータ 2 0 1 を構成する半導体 モジュール 5等が熱的に接続されて取り付けられている。 Next, the configuration of the first embodiment of the heat pipe type cooling device of the present invention will be described with reference to FIG. The power converter includes an inverter 201 of a main circuit and a heat pipe type cooling device 10. The figure shows six semiconductor modules 5 constituting the inverter 201 of the main circuit. The cooling device includes a heat receiving member 4 and a plurality of substantially L-shaped heat sinks. It comprises a metal pipe 2 having the same cylindrical shape as the heat pipe 1, a heat pipe 1, and heat radiation fins 3 attached to heat radiation sections of the heat pipe 1 and the metal rod 2. Have been. The heat pipe 1 has a long heat radiating section, a plurality of heat pipes 1a to which all the heat radiating fins 3 are attached, and a short heat radiating section and a part of the heat radiating fin near the heat receiving member 4. It is composed of two types, a plurality of heat tips 1b with only three attached. The heat sinks, tips 1a and lb, are made of thin material in order to improve the heat radiation from the internal refrigerant to the outside air. The metal machine 2 is the same length as the short heat pipe 1b, and is adjacent to the individual pipes of the short heat noise group 1b. It is arranged in the same way as Eve 1b, and the heat dissipating fin 3 to be attached is shared with the short heat pipe 1b. The metal rod 2 is made of a material having a high thermal conductivity, such as copper or aluminum. Heat pipe 1 consists of a substantially vertical heat receiving section and a substantially horizontal condensing section. Heat pipe 1 heat receiving section Installed thermally connected to timber 4. In addition, the heat dissipating fins 2 are attached to the condensing part of the heat type 1, and the tip of the condensing part is located near the tip of the condensing part to smoothly return the liquid from the condensing part to the heat receiving part even when the vehicle is inclined. It is provided slightly inclined so as to be located slightly above. As the refrigerant sealed in the heat pipe 1, for example, water or a fluid such as a flon-based or perfluorocarbon-based fluid is used. In the present embodiment, water that has little effect on the environment even if it leaks is used as the hydraulic fluid. On the other side of the heat receiving member 4, a semiconductor module 5 and the like constituting an inverter 201 of a main circuit of the power converter are thermally connected and mounted.
次に、 第 2 図から第 4図を用いて、 かかる ヒー トパイ プ式冷 却装置の動作特性について説明する。 なお、 第 2 図はヒ一 トパ ィ プ 1 及び金属棒 2 を垂直に模式的に図示してある。  Next, the operating characteristics of the heat pipe type cooling device will be described with reference to FIGS. FIG. 2 schematically shows the heat pipe 1 and the metal rod 2 vertically.
まず、 第 3 図を用いてヒー トパイ プ式冷却装置の各部の温度 が時間の経過によ ってどのよ う に変化するかを説明する。 第 3 図においては、 外気温度— 5 0 °Cの状態で、 かつ電力変換装置 が長時間動作していない状況下で、 電力変換装置が動作を開始 し、 半導体モジュ一ル 5等の発熱量 Qが少しずつ上昇していき ながら所定の発熱量に達する場合 (図中の一点鎖線にて表示) の冷却装置 1 0 の第 2 図に示す各部の H B部, H L部, H S部 及び C S部の温度の時間変化を表したものである。 ここで、 ヒ 一トパイ プ 1 の冷媒と しては純水、 金属棒と しては銅を用いて お り、冷却装置 1 0 の冷却性能指標と しては半導体モジュール 5 の取り付けられる受熱部材 4 の許容温度が 8 0 °C以下にな る こ と と している。 図中の実線は冷却装置 1 0 の各部の温度変 化曲線であ り 、 A H Bは受熱部材の H B部、 A H Lは長いヒー トノヽ ° イ ブ 1 aの放熱部先端 H S部、 A H Sは短いヒー トパイ プ 1 bの 放熱部先端 H S部、 A c sは金属棒 2 の放熱部先端 C S部の温度 変化曲線をそれぞれ示す。 冷却装置 1 0 は、 半導体モジュール 5等の発熱が開始される と、 その発熱を受けて受熱部材 4 の H S部が A H Bのよ う に温度上昇する。 また、 ヒー トパイ プ 1 a, 1 b及び金属棒 2 の H L部, H S部及び C S部が A Hい A H S 及び A c sのよ う に温度上昇する。 このよ う にして各部と も温度 上昇していき、 受熱部材 4 の温度が 0 °C近傍に達する と、 ヒー トパイ プ 1 a, 1 bの蒸発部で凍結している冷媒が蒸発部にて 融解を開始して液体とな り 、 さ らには蒸発を開始する。 このと き気体となつた冷媒は蒸発潜熱の移動によ り放熱部である凝 縮部へ熱輸送を開始する。 しかし、 このと きのヒー トパイ プ 1 a , 1 b の先端はまだ 0 °C以下であ り 、 凝縮部に移動した水は、 ヒー トパイ プ 1 a, 1 b の先端部で凝縮した後に凍結してしま い、 蒸発部へ還流できな く なってしま う。 このよ う にして蒸発 部において冷媒が全て蒸発してしま う と、 蒸発部で液枯れが発 生し、 ヒー トパイ プ 1 a, 1 bが動作しな く なってしま う。 そ のため、 冷却装置 1 0 は、 主に受熱部材 4 から金属棒 2への熱 伝導によ り 、 金属棒 2 に取り付けられた放熱フイ ン 3へ伝熱し て外気へ放熱するため、金属棒 2 の温度 A c sが外気よ り高い温 度となる。 このよ う に、 冷却装置 1 0 は、 冷却性能が著し く低 下した状態となる力'、 外気温度が低いため、 受熱部材 4 の温度 は設定値の 8 0 °C以下に保たれる。 なお、 短かいヒー トパイ プ 1 b は、 金属棒 2 に取り付けられた放熱フ イ ン 3 からの伝熱に よ り 、 その温度 A H Sが金属棒 2 の温度 A c sとほぼ同じとなる。 次に、 第 4 図を用いてヒー トパイ プ式冷却装置の各部の温度 が外気温度によ ってどのよ う に変化するかを説明する。 第 4図 は、 第 3 図に示す一 5 0での状態で電力変換装置が動作し、 冷 却装置のヒー トパイ プ部が作動に失敗して蒸発部に冷媒が凍 結した状態において、 発熱量 Qが一定のま ま外気温度が徐々 に 上昇して + 4 0 °Cまで達する場合の冷却装置の各部の温度変 ィ匕を示したものである。 First, with reference to FIG. 3, a description will be given of how the temperature of each part of the heat pipe type cooling device changes over time. In Fig. 3, the power converter starts operating under conditions where the outside air temperature is 50 ° C and the power converter has not been operating for a long time, and the heat value of the semiconductor module 5, etc. In the case where Q gradually increases and reaches a predetermined calorific value (indicated by the dashed line in the figure), the HB, HL, HS and CS sections of each part shown in Fig. 2 of the cooling device 10 Is a time change of the temperature. Here, pure water is used as a refrigerant of the heat pipe 1 and copper is used as a metal rod, and a cooling performance index of the cooling device 10 is a heat receiving member to which the semiconductor module 5 is attached. 4 is below 80 ° C. It is supposed to be. The solid line in the figure is the temperature change curve of each part of the cooling device 10, where A HB is the HB part of the heat receiving member, A HL is the long heat nozzle tip HS part of the heat sink 1 a, and A HS shows heat radiating tip HS portion of the short heating Topai flop 1 b, a cs is the temperature variation curve of the heat radiating tip CS part of the metal rod 2, respectively. Cooling system 1 0, when the heat generation such as a semiconductor module 5 is started, HS portion of the heat receiving member 4 receives the heat generation temperature rises cormorants good of A HB. Also, HL portion of heating Topai flop 1 a, 1 b and the metal rod 2, HS unit and CS unit is a temperature rise in the power sale good of A H had A HS and A cs. In this way, the temperature of each part also rises, and when the temperature of the heat receiving member 4 reaches about 0 ° C, the refrigerant frozen in the evaporating sections of the heat pipes 1a and 1b is discharged in the evaporating section. It begins to melt and becomes a liquid, and then begins to evaporate. At this time, the gasified refrigerant starts transferring heat to the condensing part, which is the heat radiating part, by the transfer of latent heat of evaporation. However, at this time, the tips of the heat pipes 1a and 1b are still below 0 ° C, and the water that has moved to the condensing section freezes after condensing at the tips of the heat pipes 1a and 1b. As a result, it is impossible to return to the evaporator. If all of the refrigerant evaporates in the evaporating section in this way, liquid withdrawal will occur in the evaporating section, and the heat pipes 1a and 1b will not operate. Therefore, the cooling device 10 mainly transmits heat to the heat radiating fin 3 attached to the metal rod 2 by heat conduction from the heat receiving member 4 to the metal rod 2 to radiate heat to the outside air. The temperature A cs 2 is higher than the outside air. As described above, the cooling device 10 has a force that significantly reduces the cooling performance, and the temperature of the heat receiving member 4 is low because the outside air temperature is low. Is kept below the set value of 80 ° C. The short heat pipe 1 b has a temperature A HS substantially equal to the temperature A cs of the metal bar 2 due to the heat transfer from the heat radiation fin 3 attached to the metal bar 2. Next, how the temperature of each part of the heat pipe type cooling device changes depending on the outside air temperature will be described with reference to FIG. Fig. 4 shows the state in which the power converter operates in the state of 150 shown in Fig. 3 and the heat pipe section of the cooling apparatus fails to operate, and the refrigerant freezes in the evaporating section. This figure shows the temperature change of each part of the cooling device when the outside air temperature gradually rises to + 40 ° C while the amount Q is constant.
まず、 外気温度 B A Rがー 5 0での状態 (動作点①) において は、 第 3 図の受熱部材 4 の温度 A H Bが安定した状態であ り 、 短 い金属棒 2 の先端温度 B c sは、受熱部材 4 からの熱伝導によ り 外気温度 B A Rに比べ高く なっている。 また、 短いヒー トパイ プ 1 b の先端温度 B H Sは、 金属棒 2から流入する熱によ り暖めら れ、 金属棒 2 とほぼ同じ温度となる。 この状態で外気温度 B A Rが徐々 に上昇してい く と、 冷却装置 1 0 の各部の温度も上昇 していき、外気温度 B A Rが 0 °Cに達する前に受熱部材 4 の温度 B H Bが許容温度 8 0 °Cを越えよ う とする (動作点②) 。 しかし、 本実施例によれば、受熱部材 4 の温度 B H Bが許容温度 8 0 °Cを 越える前に金属棒 2及び短いヒー トパイ プ 1 b全体が 0 °C以 上になる よ う に構成されているため、 短いヒー トノ、。イ ブ 1 b の 凝縮部で凍結している冷媒が融解してヒー トパイ プと して作 動を開始する。 その結果、 受熱部材 4 の温度 B H Bはこの動作点②を境に急激に低下する こ とができるので、 許容温度 8 0 °Cを越える こ とがない。 この動作点②から外気温 度 B A Rが上昇する と、 冷却装置 1 0 の各部の温度も上昇し、 受 熱部材 4 の温度 B H Bが上昇してその許容温度 8 0 °Cに近づく が、 この許容温度 8 0 °Cを越える前に、 外気温度 B A Rが 0 °Cに 到達する よ う に構成されているので、 長いヒー ト ノ、。イ ブ 1 aの 先端温度 B H Lが 0 °C以上とな り 、長いヒー トパイ プ 1 a も ヒー トパイ プと しての動作を開始する (動作点③) 。 この結果、 受 熱部材 4 の温度 B H Bは、 この動作点③を境に急激に低下する こ とができるので、 許容温度 8 0 °Cを越える こ とがない。 長いヒ 一トパイ プ 1 a に取り付けられる放熱フィ ン 3 の設定は、外気 温度 4 0 °Cで受熱部材 4 の温度 B H Bが 8 0 °C以下となる よ う に設定されている。 First, in the state where the outside air temperature B AR is −50 (operating point ①), the temperature A HB of the heat receiving member 4 in FIG. 3 is in a stable state, and the tip temperature B cs of the short metal rod 2 is small. is higher than the Ri by the thermal conductivity outside air temperature B AR from the heat receiving member 4. In addition, the tip temperature B HS of the short heat pipe 1 b is heated by the heat flowing from the metal bar 2, and becomes almost the same temperature as the metal bar 2. When the outside air temperature B A R gradually increases in this state, the temperature of each part of the cooling device 10 also increases, and the temperature B HB of the heat receiving member 4 before the outside air temperature B AR reaches 0 ° C. Attempts to exceed the permissible temperature of 80 ° C (operating point ②). However, according to the present embodiment, before the temperature B HB of the heat receiving member 4 exceeds the allowable temperature of 80 ° C., the configuration is such that the entire metal rod 2 and the short heat pipe 1b become 0 ° C. or more. Heathno, short for being. The refrigerant frozen in the condensing section of Eve 1b melts and starts operating as a heat pipe. As a result, the temperature of the heat receiving member 4 Since BHB can drop sharply from this operating point 境, the allowable temperature does not exceed 80 ° C. When the outside air temperature B AR rises from the operating point ②, the temperature of each part of the cooling device 10 also rises, and the temperature B HB of the heat receiving member 4 rises and approaches the allowable temperature of 80 ° C. Before this allowable temperature exceeds 80 ° C, the outside air temperature BAR is configured to reach 0 ° C, so long heat. Lee Bed 1 a tip temperature B HL Ri is Do and 0 ° C or higher, longer heating Topai flop 1 a also starts the operation of the heating Topai flop (operating point ③). As a result, since the temperature B HB of the heat receiving member 4 can be rapidly lowered from the operating point ③, the allowable temperature does not exceed 80 ° C. The setting of the heat radiation fin 3 attached to the long heat pipe 1a is set so that the temperature B HB of the heat receiving member 4 is 80 ° C. or less at an outside air temperature of 40 ° C.
このよ う に、 短いヒー トノ、イ ブ 1 b を短い金属棒 2で加熱す る よ う にしたので、 外気温度が冷媒の凝固点以下の低温時にお いて、 発熱量が変動して低下しても、 あるいは走行風の変動に よ り放熱量が大き く なつても、 受熱部材 4 の温度が許容温度以 下で短いヒー ト ノ、。イ ブ 1 b を作動する こ とができ、 これによ り 所定の冷却性能を得るこ とができる。 また、 長いヒー トパイ プ 1 a も作動するので所定の冷却性能が得られ、 これによ り、 全 ての温度域で所定の冷却性能を有する こ とが可能となる。 次に、 第 5 図を用いて本発明のヒー トパイ プ式冷却装置の第 2実施例を説明する。 本実施例における冷却装置は、 第 1 実施 例における金属棒 2 の代替と して、 さ らに短いヒー トパイ プ 1 c を配置したものである。発熱量や放熱能力の変化が極端に低 いしきい値以下にはならない使用状態に用いられる冷却装置 においては、 外気温度が冷媒の凝固点以下の状態で受熱部材 4 からの伝熱によ り最も短いヒー トパイ プの温度を外気温度よ り も高く し、 この最も短いヒー トノ、。イ ブ 1 c で短いヒー トノ、 °ィ プ In this way, the short heater and the heater 1b are heated by the short metal rod 2, so that when the outside air temperature is lower than the freezing point of the refrigerant, the calorific value fluctuates and decreases. However, even if the amount of heat radiation becomes large due to the fluctuation of the traveling wind, the heat receiving member 4 has a short temperature below the allowable temperature. Eve 1b can be operated, and a predetermined cooling performance can be obtained. In addition, since the long heat pipe 1a also operates, a predetermined cooling performance can be obtained, whereby it is possible to have a predetermined cooling performance in all temperature ranges. Next, a second embodiment of the heat pipe type cooling device of the present invention will be described with reference to FIG. The cooling device in the present embodiment is an alternative to the metal rod 2 in the first embodiment, except that a shorter heat pipe 1 is used. c is arranged. In a cooling device that is used in a usage state in which the change in the amount of generated heat or the heat radiation capacity does not fall below an extremely low threshold value, the shortest due to the heat transfer from the heat receiving member 4 when the outside air temperature is below the freezing point of the refrigerant. This shortest heat source, which raises the temperature of the heat pipe above the outside temperature. Short heat at Eve 1 c, °
1 b を加熱する こ とによ り 、 短いヒー トパイ プ 1 b を外気温度 よ り低い温度で冷媒の凝固点以上にする こ とが可能である。 ヒ 一トパイ プのみで構成する こ と によ り金属棒を用いる場合と 比較して軽量化が図れる。  By heating 1b, the short heat pipe 1b can be heated to a temperature higher than the freezing point of the refrigerant at a temperature lower than the outside air temperature. By using only a heat pipe, the weight can be reduced as compared with the case where a metal rod is used.
次に、 第 6 図を用いて本発明のヒ一トパイ プ式冷却装置の第 3実施例を説明する。 本実施例における冷却装置は、 第 1 実施 例における金属棒 2 の代替と して、 隣接する短いヒー トパイ プ 1 b に対し、 同じ長さでかつパイ プの肉圧が厚いヒー トパイ プ 1 d を配置したものである。 この構成によ り 、 パイ プ肉圧が厚 く なる こ とで、 このヒー トパイ プの放熱能力が小さ く なる と同 時に、 冷媒が凝固する際にも、 パイ プ肉圧部の熱伝導によ り 隣 接する ヒー トパイ プの暖機が促進される ものである。  Next, a third embodiment of the heat pipe type cooling device of the present invention will be described with reference to FIG. As a substitute for the metal rod 2 in the first embodiment, the cooling device according to the present embodiment is different from the adjacent short heat pipe 1b in that the heat pipe 1d having the same length and a thick wall thickness of the pipe is used for the adjacent short heat pipe 1b. Is arranged. With this configuration, the pipe wall pressure is increased, so that the heat radiating ability of the heat pipe is reduced, and at the same time, when the refrigerant solidifies, the heat conduction of the pipe wall pressure section is reduced. This promotes the warm-up of the adjacent heat pipe.
次に、 第 7図を用いて本発明のヒー トパイ プ式冷却装置の第 4実施例を説明する。 本実施例における冷却装置は、 第 1 実施 例において、 金属棒 2 と対になって隣接する短いヒー トパイ プ 1 b との間の熱伝導を促進するための熱伝導部材 7 を取り付 けたものである。 この構成によ り 、 短いヒー トノ、 °イ ブ 1 bの暖 機がよ り促進され、短いヒー トパイ プ 1 b の作動領域が広がる c その結果、 受熱部材 4 の温度を低下できるので、 冷却装置がよ り コ ンパク ト に構成される。 Next, a fourth embodiment of the heat pipe type cooling device of the present invention will be described with reference to FIG. The cooling device in this embodiment is the same as the first embodiment except that a heat conducting member 7 for promoting heat conduction between the metal rod 2 and the adjacent short heat pipe 1b is attached. It is. Ri by this configuration, a short heating concert, ° Lee Bed 1 b warmup is promoted Ri good of, c the operating region of the short heating Topai flop 1 b spreads As a result, the temperature of the heat receiving member 4 can be reduced, so that the cooling device is configured more compactly.
次に第 9 図を用いて本発明のヒー トパイ プ式冷却装置の第 5実施例を説明する。 本実施例における冷却装置は、 第 1 実施 例において、 短いヒー トノ、。イ ブ 1 b と対になつて隣接する金属 棒 2 の代わ り に非凝縮ガスを封入した可変コ ンダク タ ンス ヒ 一ト ノ、 'ィ プ 1 e を配置したものである。可変コ ンダク タ ンス ヒ 一トパイ プ 1 e は、 冷媒蒸気圧の低い低温下においては凝縮部 にガスが充満するため、 放熱能力が自然に小さ く なる。 そのた め、 低発熱時ゃフ ィ ン部放熱能力が一時的に向上した場合にお いても安定に作動する こ とができる も のである。  Next, a fifth embodiment of the heat pipe type cooling device of the present invention will be described with reference to FIG. The cooling device according to the present embodiment is similar to the cooling device according to the first embodiment except that the cooling device has a short length. Instead of the metal rod 2 adjacent to the pair 1b and 1b, a variable conductance transistor 1'e filled with a non-condensable gas is placed instead of the metal rod 2. In the variable conductance heat pipe 1e, the gas is filled in the condensing part at low temperature where the refrigerant vapor pressure is low, so that the heat radiation ability is naturally reduced. Therefore, it can operate stably even when the heat radiation capability of the fin is temporarily improved during low heat generation.
次に、 第 9 図を用いて本発明の電力変換装置を電気鉄道車両 に採用 した構成について説明する。 第 9図は電力変換装置を搭 載した車両の電気車の進行方向から見た断面概略図であ り、 本 実施例による ヒ ー トパイ プ式冷却装置の斜視図を図中に拡大 して詳細に示した。 車体 1 0 7 の床下には、 電力変換装置 1 0 0が設置されている。 この電力変換装置 1 0 0 は、 第 1 0図に 示す主回路と、 第 1 図に示すものを若干変更した 2段式ヒー ト パイ プを用いた冷却装置 1 0 と を備えている。本実施例では高 さ方向が特に小さ く なる よ う な実装形態を有しているため、 図 中に示すよ う に、 本冷却装置を 2段に縦積みして電力変換装置 全体のコ ンパク トイ匕を図っている。  Next, a configuration in which the power converter of the present invention is applied to an electric railway vehicle will be described with reference to FIG. FIG. 9 is a schematic cross-sectional view of the vehicle equipped with the power converter as viewed from the traveling direction of the electric vehicle. FIG. 9 is an enlarged perspective view of the heat pipe type cooling device according to the present embodiment. It was shown to. A power converter 100 is installed under the floor of the vehicle body 107. The power converter 100 includes a main circuit shown in FIG. 10 and a cooling device 100 using a two-stage heat pipe which is slightly modified from that shown in FIG. In this embodiment, since the mounting configuration is such that the height direction is particularly small, as shown in the figure, the cooling device is vertically stacked in two stages, and the compactness of the entire power conversion device is reduced. I'm trying toy dani.
以上は、 直流をき電して交流電動機である誘導電動機を駆動 する イ ンバータ システムにおける電力変換装置についての実 施例を説明したが、 本発明はこれに限定されず、 交流をき電し て誘導電動機を駆動する コ ンバータ ' イ ンバータシステムにお いても適用する こ とができ る。 また、 上記説明したイ ンバータ は 2 レベルの電力変換器と したが 3 レベル電力変換器であつ ても よい。 更に、 スイ ッチング素子はと して I G B Tを始め、 パワー ト ラ ンジスタゃ M O S F E T等の平面実装かつ片面冷 却のパッケージ構造を採用するスィ ッチング素子全般につい て適用できる。 The above is a description of the power converter in an inverter system that drives an induction motor, which is an AC motor, by feeding DC power. Although the embodiment has been described, the present invention is not limited to this, and the present invention can be applied to a converter / inverter system that drives an induction motor by supplying alternating current. Also, the inverter described above is a two-level power converter, but may be a three-level power converter. Furthermore, the switching element can be applied to all switching elements adopting a package structure of flat mounting and single-sided cooling, such as IGBT, power transistor MOSFET, etc.
本発明によれば、 ヒー トパイ プ冷媒の凝固点よ り外気温度が 低いよ う な環境下で、 電力変換装置の発熱量が動作条件によ り 変動した り、 または走行時に冷却装置内を通過する走行風によ つて放熱能力が変化した場合でも、 所定の冷却性能を有し、 か つ常温作動時においても高い熱輸送能力を有し、 しかも、 冷却 装置筐体を含む全体をコ ンパク ト にする こ とができる ヒー ト パィ プ式冷却装置及び電力変換装置が得られる。  According to the present invention, in an environment where the outside air temperature is lower than the freezing point of the heat pipe refrigerant, the calorific value of the power converter fluctuates depending on operating conditions, or passes through the cooling device during traveling. Even if the heat radiation capacity changes due to the traveling wind, it has a predetermined cooling performance and has a high heat transport capacity even at normal temperature operation, and the whole body including the cooling device housing is compact. Thus, a heat pipe type cooling device and a power conversion device which can perform the heat pipe cooling can be obtained.
なお、 本発明は、 その精神又は主要な特徴から逸脱することなく、 他 のいろいろな形で実施する事ができる。 そのため、 本明細書に記載した 好ましい実施例は例示的なものであり、 限定的なものではない。本発明 の範囲は、 添付の特許請求の範囲によって示されており、 その特許請求 の範囲の意味の中に入る全ての変形例は本発明の範囲に含まれるもの である。  Note that the present invention can be embodied in various other forms without departing from the spirit or main features. As such, the preferred embodiments described herein are illustrative and not limiting. The scope of the invention is indicated by the appended claims, and all modifications that come within the meaning of the claims are intended to be included within the scope of the invention.

Claims

請求の範囲 The scope of the claims
1 . 発熱体が取付けられた熱伝導が良好な受熱部材と、 内部に冷媒が封 入され、一側を形成する蒸発部がこの受熱部材に熱的に接続して取付け られ、他側を形成する凝縮部が前記受熱部材ょり突出して設けられた複 数のヒ一トパイプと、前記ヒートパイプの凝縮部に取付けられた複数の 放熱フイ ンとを備えたヒートパイプ式冷却装置において、前記ヒートパ ィプは長いヒー トパイプと短いヒ一 トパイプとを有し、 この短いヒー ト パイプの冷媒の凝固点以下の温度で前記受熱部材から前記短いヒート パイプの凝縮部へ伝熱するように熱伝導体を設けたことを特徴とする ヒートパイプ式冷却装置。  1. A heat receiving member with good heat conduction with a heating element attached, a refrigerant sealed inside, and an evaporator that forms one side is thermally connected to this heat receiving member and attached, forming the other side. A heat pipe provided with a plurality of heat pipes each having a condensing section protruding from the heat receiving member; and a plurality of heat radiating fins attached to the condensing section of the heat pipe. The heat pipe has a long heat pipe and a short heat pipe, and a heat conductor is transferred from the heat receiving member to the condensing portion of the short heat pipe at a temperature below the freezing point of the refrigerant in the short heat pipe. A heat pipe type cooling device, which is provided.
2 . 前記熱伝導体は、 前記短いヒートパイプに隣接され、 この短いヒー トパイプに取付けられた放熱フィ ンを介して短いヒートパイプに熱的 に接続されたことを特徴とする請求項 1記載のヒートパイプ式冷却装  2. The heat conductor according to claim 1, wherein the heat conductor is adjacent to the short heat pipe and is thermally connected to the short heat pipe via a heat radiation fin attached to the short heat pipe. Heat pipe type cooling equipment
3 . 前記熱伝導体は、 銅やアルミニューム等の熱伝導率の大きい金属棒 が用いられ、前記短いヒートパイプにほぼ同じ長さで隣接されたことを 特徴とする請求項 1記載のヒートパイプ式冷却装置。 3. The heat pipe according to claim 1, wherein the heat conductor is a metal rod having a high heat conductivity such as copper or aluminum, and is adjacent to the short heat pipe with substantially the same length. Type cooling device.
4 . 前記熱伝導体は、 前記放熱フィンょり厚肉の熱伝導部材を介して前 記短いヒートパイプに接続されたことを特徴とする請求項 1 または 3 に記載のヒ一トパイプ式冷却装置。  4. The heat pipe type cooling device according to claim 1, wherein the heat conductor is connected to the short heat pipe via the heat radiating fin thick heat conductive member. .
5 . 発熱体が取付けられた熱伝導が良好な受熱部材と、 内部に冷媒が封 入され、一側を形成する蒸発部がこの受熱部材に熱的に接続して取付け られ、他側を形成する凝縮部が前記受熱部材ょり突出して設けられた複 数のヒートパイプと、前記ヒートパイプの凝縮部に取付けられた複数の 放熱フイ ンとを備えたヒートパイプ式冷却装置において、前記ヒ一トパ ィプは長いヒートパイプと短いヒートパイプとを有し、 この短いヒート パイプに封入された冷媒の凝固点以下の温度で前記受熱部材から前記 短いヒートパイプの凝縮部へ伝熱するように熱伝導体を設け、 この熱伝 導体は、銅やアルミ二ュ―ム等の熱伝導率の大きい金属棒が用いられ、 前記短いヒートパイプにほぼ同じ長さで隣接され、 この短いヒートパイ プに取付けられた放熱フィ ンを介して短いヒートパイプに熱的に接続 されたことを特徴とするヒートパイプ式冷却装置。 5. A heat-receiving member with good heat conduction with a heating element attached, a refrigerant sealed inside, and an evaporator that forms one side is thermally connected to this heat-receiving member and attached, forming the other side. A heat pipe type cooling device comprising: a plurality of heat pipes each having a condensing section protruding from the heat receiving member; and a plurality of heat radiating fins attached to the condensing section of the heat pipe. The pipe has a long heat pipe and a short heat pipe. The heat receiving member receives the heat from the heat receiving member at a temperature equal to or lower than the freezing point of the refrigerant sealed in the short heat pipe. A heat conductor is provided so as to transfer heat to the condensing portion of the short heat pipe, and a metal rod having a high heat conductivity such as copper or aluminum is used as the heat conductor. A heat pipe type cooling device characterized by being adjacent to each other at the same length and thermally connected to the short heat pipe via a heat radiation fin attached to the short heat pipe.
6 . 発熱体が取付けられた熱伝導が良好な受熱部材と、 内部に冷媒が封 入され、ー惻を形成する蒸発部がこの受熱部材に熱的に接続して取付け られ、他側を形成する凝縮部が前記受熱部材ょり突出して設けられた複 数のヒートパイプと、前記ヒ一トパイプの凝縮部に取付けられた複数の 放熱フイ ンとを備えたヒ一 トパイプ式冷却装置において、前記ヒー トパ ィプは 3種類以上の異なる放熱能力を有するように構成したことを特 徴とするヒートパイプ式冷却装置。  6. A heat-receiving member with good heat conduction with a heat-generating element attached thereto, and an evaporator section inside which a refrigerant is sealed and forming a trailing surface are thermally connected to this heat-receiving member and attached to form the other side. A heat pipe provided with a plurality of heat pipes each having a condensing section protruding from the heat receiving member, and a plurality of heat dissipating fins attached to the condensing section of the heat pipe. The heat pipe is a heat pipe type cooling device characterized by having three or more different heat radiation capabilities.
7 . 発熱体が取付けられた熱伝導が良好な受熱部材と、 内部に冷媒が封 入され、一側を形成する蒸発部がこの受熱部材に熱的に接続して取付け られ、他側を形成する凝縮部が前記受熱部材ょり突出して設けられた複 数のヒートパイプと、前記ヒートパイプの凝縮部に取付けられた複数の 放熱フインとを備えたヒートパイプ式冷却装置において、前記ヒートパ ィプは長い第 1 ヒ一トパイプと短い第 2 ヒ一トパイプと最も短い第 3 ヒートパイプとを有し、前記短い第 2ヒートパイプの冷媒の凝固点以下 の温度で前記受熱部材から前記短い第 2 ヒートパイプの凝縮部へ伝熱 するように前記最も短い第 3 ヒー トパイプを設けたことを特徴とする ヒートパイプ式冷却装置。  7. A heat-receiving member with good heat conduction with a heating element attached, a refrigerant sealed inside, and an evaporator that forms one side is thermally connected to this heat-receiving member and attached, forming the other side. A heat pipe provided with a plurality of heat pipes each having a condensing portion protruding from the heat receiving member and a plurality of radiating fins attached to the condensing portion of the heat pipe. Has a long first heat pipe, a short second heat pipe, and a shortest third heat pipe, and the second heat pipe from the heat receiving member at a temperature not higher than the freezing point of the refrigerant of the short second heat pipe. The heat pipe type cooling device, wherein the shortest third heat pipe is provided so as to transfer heat to the condensing section.
8 . 発熱体が取付けられた熱伝導が良好な受熱部材と、 内部に冷媒が封 入され、一側を形成する蒸発部がこの受熱部材に熱的に接続して取付け られ、他側を形成する凝縮部が前記受熱部材ょり突出して設けられた複 数のヒートパイプと、前記ヒートパイプの凝縮部に取付けられた複数の 放熱フイ ンとを備えたヒートパイプ式冷却装置において、前記ヒートパ イブは長い第 1 ヒー トパイプと短い第 2 ヒー トパイプとこの短い第 2 ヒートパイブょり厚肉の短い第 3 ヒートパイプとを有し、前記短い第 2 ヒートパイプの冷媒の凝固点以下の温度で前記受熱部材から前記短い 第 2ヒートパイプの凝縮部へ伝熱するように前記最も短い第 3ヒート パイプを設けたことを特徴とするヒートパイプ式冷却装置。 8. A heat-receiving member with good heat conduction with a heating element attached, a refrigerant sealed inside, and an evaporator that forms one side is thermally connected to this heat-receiving member and attached, forming the other side. A heat pipe provided with a plurality of heat pipes each having a condensing section protruding from the heat receiving member, and a plurality of heat radiating fins attached to the condensing section of the heat pipe. Eve has a long first heat pipe, a short second heat pipe, a short second heat pipe, and a short, thick third heat pipe.The heat receiving pipe has a temperature lower than the freezing point of the refrigerant in the short second heat pipe. A heat pipe type cooling device, wherein the shortest third heat pipe is provided so as to transfer heat from a member to a condensing section of the short second heat pipe.
9 . 発熱体が取付けられた熱伝導が良好な受熱部材と、 内部に冷媒が封 入され、一側を形成する蒸発部がこの受熱部材に熱的に接続して取付け られ、他側を形成する凝縮部が前記受熱部材より突出して設けられた複 数のヒートパイプと、前記ヒートパイプの凝縮部に取付けられた複数の 放熱フインとを備えたヒートパイプ式冷却装置において、前記ヒートパ ィプは長い第 1 ヒートパイプと短い第 2 ヒートパイプと非凝縮ガスを 封入した第 3 ヒートパイプとを有し、前記短い第 2 ヒートパイプの冷媒 の凝固点以下の温度で前記受熱部材から前記短い第 2 ヒートパイプの 凝縮部へ伝熱するように前記非凝縮ガスを封入した第 3 ヒー トパイプ を設けたことを特徴とするヒ一トパイプ式冷却装置。  9. A heat receiving member with good heat conduction with a heating element attached, and a refrigerant sealed inside, and an evaporator forming one side is thermally connected to this heat receiving member and attached, forming the other side. A heat pipe provided with a plurality of heat pipes each having a condensing portion protruding from the heat receiving member, and a plurality of heat radiation fins attached to the condensing portion of the heat pipe. A heat pipe having a long first heat pipe, a short second heat pipe, and a third heat pipe filled with non-condensable gas; A heat pipe type cooling device, comprising a third heat pipe filled with the non-condensable gas so as to transfer heat to a condensing section of the pipe.
1 0 . 直流電力を変換して電動機を制御するための電力変換回路と、 前 記電力変換回路を冷却するためのヒートパイプ式冷却装置とを備え、電 気鉄道車両の床下等に設置される電力変換装置において、前記ヒートパ ィプ式冷却装置は、前記電力変換回路を構成する半導体素子が取付けら れた熱伝導が良好な受熱部材と、 内部に冷媒が封入され、一側を形成す る蒸発部がこの受熱部材に熱的に接続して取付けられ、他側を形成する 凝縮部が前記受熱部材ょり突出して設けられた複数のヒートパイプと、 前記ヒートパイプの凝縮部に取付けられた複数の放熱フインとを有し、 前記ヒートパイプは長いヒートパイプと短いヒ一トパイプとを有し、 こ の短いヒ一トパイプの冷媒の凝固点以下の温度で前記受熱部材から前 記短いヒートパイプの凝縮部へ伝熱するように熱伝導体を設けたこと を特徴とする電力変換装置。  10. Equipped with a power conversion circuit for converting the DC power to control the motor, and a heat pipe cooling device for cooling the power conversion circuit, and are installed under the floor of an electric railway vehicle. In the power converter, the heat-pipe type cooling device forms one side with a heat-receiving member having good heat conduction, to which a semiconductor element constituting the power conversion circuit is attached, and a refrigerant enclosed therein. An evaporating section is thermally connected to the heat receiving member and is attached to the heat receiving member. A plurality of heat dissipating fins, wherein the heat pipe has a long heat pipe and a short heat pipe, and the short heat pipe has a temperature lower than the freezing point of the refrigerant of the short heat pipe. Coagulation A power converter, wherein a heat conductor is provided so as to transfer heat to the compression section.
PCT/JP1999/001399 1999-03-19 1999-03-19 Heat pipe cooling device and power converting device WO2000057471A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP1999/001399 WO2000057471A1 (en) 1999-03-19 1999-03-19 Heat pipe cooling device and power converting device
JP2000607264A JP3900830B2 (en) 1999-03-19 1999-03-19 Heat pipe type cooling device and power conversion device
RU2000105788/06A RU2176368C1 (en) 1999-03-19 2000-03-09 Refrigerator with heat carrying tubes and energy converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/001399 WO2000057471A1 (en) 1999-03-19 1999-03-19 Heat pipe cooling device and power converting device

Publications (1)

Publication Number Publication Date
WO2000057471A1 true WO2000057471A1 (en) 2000-09-28

Family

ID=14235248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001399 WO2000057471A1 (en) 1999-03-19 1999-03-19 Heat pipe cooling device and power converting device

Country Status (3)

Country Link
JP (1) JP3900830B2 (en)
RU (1) RU2176368C1 (en)
WO (1) WO2000057471A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211956A (en) * 2007-02-28 2008-09-11 Fuji Electric Systems Co Ltd Power supply unit
GB2462098A (en) * 2008-07-23 2010-01-27 Ryan James Mcglen Thermal management device comprising heat pipes
JP2011243808A (en) * 2010-05-19 2011-12-01 Mitsubishi Electric Corp Semiconductor module
KR101159992B1 (en) 2009-08-27 2012-06-25 가부시키가이샤 히타치세이사쿠쇼 Power converter
CN104412498A (en) * 2012-06-29 2015-03-11 东芝三菱电机产业系统株式会社 Power converter
EP2784811A3 (en) * 2013-03-26 2015-05-27 GE Energy Power Conversion Technology Ltd Heat pipe sink with heating unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5875995B2 (en) * 2013-01-16 2016-03-02 株式会社日立製作所 Driving device for railway vehicles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176660A (en) * 1993-12-20 1995-07-14 Hitachi Cable Ltd Heat sink
JPH07190655A (en) * 1993-12-28 1995-07-28 Hitachi Ltd Heat pipe type cooling device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176660A (en) * 1993-12-20 1995-07-14 Hitachi Cable Ltd Heat sink
JPH07190655A (en) * 1993-12-28 1995-07-28 Hitachi Ltd Heat pipe type cooling device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211956A (en) * 2007-02-28 2008-09-11 Fuji Electric Systems Co Ltd Power supply unit
GB2462098A (en) * 2008-07-23 2010-01-27 Ryan James Mcglen Thermal management device comprising heat pipes
KR101159992B1 (en) 2009-08-27 2012-06-25 가부시키가이샤 히타치세이사쿠쇼 Power converter
JP2011243808A (en) * 2010-05-19 2011-12-01 Mitsubishi Electric Corp Semiconductor module
CN104412498A (en) * 2012-06-29 2015-03-11 东芝三菱电机产业系统株式会社 Power converter
EP2869443A4 (en) * 2012-06-29 2016-01-20 Toshiba Mitsubishi Elec Inc Power converter
US9661785B2 (en) 2012-06-29 2017-05-23 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion apparatus
EP2784811A3 (en) * 2013-03-26 2015-05-27 GE Energy Power Conversion Technology Ltd Heat pipe sink with heating unit

Also Published As

Publication number Publication date
RU2176368C1 (en) 2001-11-27
JP3900830B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
US5508908A (en) Motor control unit with thermal structure
JP4382445B2 (en) Cooling structure for electrical equipment
US7957145B2 (en) Electric power converter
JP3067399B2 (en) Semiconductor cooling device
US8919424B2 (en) Semiconductor element cooling structure
JP2005191082A (en) Cooling device for electrical equipment
WO2011083578A1 (en) Semiconductor module
JP2006273317A (en) Apparatus composed for cooling electric motor integrated type inverter
KR20110022531A (en) Power converter
WO2006103721A1 (en) Power converter cooling structure
JP6500756B2 (en) Power converter
JP2011259536A (en) Cooling device, power conversion device, and railway vehicle
JP3239310U (en) Cooling pulse inverter for operating electrical machines in automobiles
JP2896454B2 (en) Inverter device
WO2000057471A1 (en) Heat pipe cooling device and power converting device
JP3549933B2 (en) Plate fin type element cooler
JP2003079162A (en) Power converter
JP2759587B2 (en) Inverter cooling system for electric vehicles
Sakai et al. Power control unit for high power hybrid system
JP2011233562A (en) Power conversion device and rolling stock
JP3271059B2 (en) Three-phase inverter for electric vehicles
US11395445B2 (en) Power converter and railroad vehicle
JP2008251844A (en) Structure and method for phase transition cooling of power electronic circuit
JP2932140B2 (en) Inverter for electric vehicle
JP5659744B2 (en) Inverter device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 607264

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase