JP2005117819A - Power conversion device for electric vehicle - Google Patents

Power conversion device for electric vehicle Download PDF

Info

Publication number
JP2005117819A
JP2005117819A JP2003350663A JP2003350663A JP2005117819A JP 2005117819 A JP2005117819 A JP 2005117819A JP 2003350663 A JP2003350663 A JP 2003350663A JP 2003350663 A JP2003350663 A JP 2003350663A JP 2005117819 A JP2005117819 A JP 2005117819A
Authority
JP
Japan
Prior art keywords
electric vehicle
converter
switching element
phase
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003350663A
Other languages
Japanese (ja)
Inventor
Satoshi Koizumi
泉 聡 志 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003350663A priority Critical patent/JP2005117819A/en
Publication of JP2005117819A publication Critical patent/JP2005117819A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power conversion device for an electric vehicle reducible in size even if the device is equipped with a converter device and inverter devices. <P>SOLUTION: The power conversion device for the electric vehicle comprises the converter device (3) of which the switching element is connected in a manner of single-phase bridging, and which converts a single-phase AC to a DC; first and second inverter devices (5a, 5b) of which each switching element is connected in a three-phase bridging, and each of which converts the DC converted by the converter device to a three-phase AC; a cooling medium circulation passage (11) in which the intermediate zone of a piping passage that circulates a cooling medium is divided into two branches, one branch (12) is thermally coupled to a U-phase switching element unit (3a) of the converter device and the first inverter device (5a), and the other branch (13) is thermally coupled to a V-phase switching element unit (3b) of the converter device and the second inverter device (5b); a pump (14) for circulating the cooling medium arranged at a main passage of the cooling medium circulation passage; and a heat exchanger (15) arranged at the main passage of the cooling medium circulation passage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鉄道車両、とりわけ電気車に用いられる電力変換装置に係り、特に、この電力変換装置の冷却に関する。   The present invention relates to a power conversion device used for a railway vehicle, particularly an electric vehicle, and more particularly to cooling of the power conversion device.

交流き電区間を走行する電気車には、コンバータ装置とインバータ装置を備えた電力変換装置が用いられる。図5はこの種の電力変換装置の構成を示す回路図である。同図において、パンタグラフ1から集電された交流は、主変圧器2によって降圧され、U相スイッチング素子ユニット3a及びV相スイッチング素子ユニット3bでなるコンバータ装置3の交流側に入力される。このコンバータ装置3の直流側から出力された直流は、並列接続されたフィルタコンデンサ4a,4bを介して、インバータ装置5a及びインバータ装置5bの直流側に入力される。インバータ装置5a,5bは入力された直流をそれぞれ正、負、中性の3つのレベルを有するパルスを出力することによりPWM変調された可変電圧可変周波数の3相交流を出力する。この3相交流によって電気車駆動用の誘導式主電動機6a,6b,6c,6dの回転が制御され、電気車が力行する。一方、誘導式主電動機6a,6b,6c,6dが発電機として動作する回生時には、上記力行時とは反対にエネルギーがパンタグラフ1に回生される。   A power conversion device including a converter device and an inverter device is used for an electric vehicle traveling in an AC feeding section. FIG. 5 is a circuit diagram showing the configuration of this type of power converter. In the figure, the alternating current collected from the pantograph 1 is stepped down by the main transformer 2 and input to the alternating current side of the converter device 3 including the U-phase switching element unit 3a and the V-phase switching element unit 3b. The direct current output from the direct current side of the converter device 3 is input to the direct current side of the inverter device 5a and the inverter device 5b via the filter capacitors 4a and 4b connected in parallel. The inverter devices 5a and 5b output three-phase alternating currents of variable voltage and variable frequency that are PWM modulated by outputting pulses having three levels of positive, negative, and neutral respectively. The rotation of the induction main motors 6a, 6b, 6c, 6d for driving the electric vehicle is controlled by the three-phase alternating current, and the electric vehicle is powered. On the other hand, when the induction type main motors 6a, 6b, 6c, 6d are regenerated as a generator, energy is regenerated in the pantograph 1 as opposed to the above power running.

上述したコンバータ装置3やインバータ装置5a,5bは、それぞれ、IGBT(Insulated Gate Bipollar Transistor)やGTO(Gate Turn Off thyristor)等のモジュール型自己消弧型スイッチング素子がブリッジ接続された構成になっている。これらのスイッチング素子は冷却系にとってみれば全てが発熱体であり、これらが密に実装されると、熱的に厳しいものとなる。一方、レイアウトもメンテナンスを考慮すると、重要な要素であり、冷却にとって必ずしも都合の良いものとはなり得ない。   Each of the converter device 3 and the inverter devices 5a and 5b described above has a configuration in which module type self-extinguishing switching elements such as IGBT (Insulated Gate Bipolar Transistor) and GTO (Gate Turn Off thyristor) are bridge-connected. . These switching elements are all heat generating elements for the cooling system, and if they are mounted closely, they become thermally severe. On the other hand, the layout is also an important factor in consideration of maintenance, and cannot always be convenient for cooling.

これらの要請に応じるものとして、電力変換装置を構成するモジュール型半導体スイッチング素子を取り付けた受熱板に冷却液を通し、これを空気−液熱交換器との間で循環して冷却する循環液冷方式を採用すると共に、使用する冷媒としては、例えば水や、低温下での凍結を抑制するエチレングリコールの成分を含んだ水溶液を用いるものが開示されている(例えば、特許文献1参照。)。   In response to these demands, circulating liquid cooling is performed by passing cooling liquid through a heat receiving plate to which a module type semiconductor switching element constituting the power conversion device is attached and circulating the cooling liquid between the air-liquid heat exchanger. While adopting the system, as a refrigerant to be used, for example, water or an aqueous solution containing an ethylene glycol component that suppresses freezing at low temperatures is disclosed (for example, see Patent Document 1).

一方、直流き電区間を走行する電気車は、交流き電区間を走行する場合に用いられる変圧器やコンバータ装置が不要である。しかし、IGBTやGTOで構成されるインバータ装置が大型化する傾向があるので、装置の構成を工夫し、電気車用インバータ装置を全体として小型化することが要望される。   On the other hand, an electric vehicle traveling in a DC feeding section does not require a transformer or a converter device used when traveling in an AC feeding section. However, since an inverter device composed of IGBTs and GTOs tends to increase in size, it is desired to devise the configuration of the device and downsize the electric vehicle inverter device as a whole.

この小型化を可能にするため、及び、電気車の床下などのように、狭い場所に設けられてもメンテナンス性を向上させるために、ブリッジ接続されたスイッチング素子のモジュールを1相分毎に分割して伝熱性を有する同一の受熱板を一面に取付けると共に、この受熱板の他面に、ヒートパイプの一端を熱的に結合し、その他端に放熱部を形成し、作動流体として水を用いた冷却器を接続するインバータ装置が開示されている(例えば、特許文献2参照。)。
特開平9−219904号公報 特開平11−8982号公報
In order to enable this miniaturization and to improve maintainability even if it is installed in a narrow place such as under the floor of an electric vehicle, the switching-connected module of bridge connection is divided for each phase. The same heat receiving plate having heat conductivity is attached to one surface, and one end of the heat pipe is thermally coupled to the other surface of the heat receiving plate, and a heat radiating portion is formed at the other end, and water is used as a working fluid. An inverter device for connecting a conventional cooler is disclosed (for example, see Patent Document 2).
JP-A-9-219904 JP-A-11-8982

上述した2つの電力変換装置のうち、交流き電区間を走行する電気車の電力変換装置、すなわち、コンバータ装置及びインバータ装置を有する電力変換装置は、その1相分(S相、T相、U相、V相、W相)の冷却対象素子がそれぞれ両面に取り付けられた受熱板が、軌道方向に4枚配置され、これらが単一の筐体に一体的に収納されているため、電気車の床下の限られたスペースに艤装するには装置が大型化してしまうという問題があった。   Of the two power converters described above, a power converter for an electric vehicle traveling in an AC feeding section, that is, a power converter having a converter device and an inverter device, is equivalent to one phase (S phase, T phase, U Since the four heat receiving plates with the elements to be cooled (phase, V phase, W phase) attached on both sides are arranged in the track direction and these are integrally housed in a single casing, There is a problem that the apparatus becomes large in order to dispose in a limited space under the floor.

一方、直流き電区間を走行するインバータ装置のみでなる電力変換装置は、半導体スイッチモジュールを1相分毎に分割して同一の受熱板の一面に取り付け、その他面に冷却器を熱的に接続したことにより、冷却器の熱負荷量を平均化することができ、これによって、冷却器の小型化と装置全体の小型化ができる。しかし、交流き電区間を走行する電気車のようにコンバータ装置を備えた電力変換装置には適用し難いという問題があった。   On the other hand, a power conversion device consisting only of an inverter device that runs in a DC feeding section divides a semiconductor switch module for each phase and attaches it to one surface of the same heat receiving plate, and thermally connects a cooler to the other surface. As a result, the amount of heat load on the cooler can be averaged, thereby reducing the size of the cooler and the size of the entire apparatus. However, there is a problem that it is difficult to apply to a power conversion device including a converter device, such as an electric vehicle traveling in an AC feeder section.

本発明は、上記の問題点を解決するためになされたもので、その目的は、コンバータ装置及びインバータ装置を備える場合でも小型化を図ることのできる電気車用電力変換装置を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an electric vehicle power converter that can be reduced in size even when a converter device and an inverter device are provided. .

本発明の他の目的は、信頼性を向上させると共に、経済性においても有利な電気車用電力変換装置を提供することにある。   Another object of the present invention is to provide a power converter for an electric vehicle that improves reliability and is advantageous in terms of economy.

請求項1に係る発明は、
スイッチング素子が単相ブリッジ接続され、単相交流を直流に変換するコンバータ装置と、
スイッチング素子が3相ブリッジ接続され、コンバータ装置によって変換された直流をそれぞれ3相交流に変換する第1及び第2のインバータ装置と、
冷媒を循環させる配管経路の途中の区間が2つに分岐され、一方の分岐部がコンバータ装置のU相スイッチング素子ユニット及び第1のインバータ装置に熱的に結合され、他方の分岐部がコンバータ装置のV相スイッチング素子ユニット及び第2のインバータ装置に熱的に結合された冷媒循環路と、
冷媒循環路の主経路に設けられた冷媒循環用のポンプと、
冷媒循環路の主経路に設けられた熱交換器と、
を備えた電気車用電力変換装置である。
The invention according to claim 1
A converter device in which a switching element is connected in a single-phase bridge, and converts a single-phase alternating current into a direct current;
A first and a second inverter device, each of which has a switching element connected in a three-phase bridge and converts the direct current converted by the converter device into a three-phase alternating current;
A section in the middle of the piping path for circulating the refrigerant is branched into two, one branch is thermally coupled to the U-phase switching element unit of the converter device and the first inverter device, and the other branch is the converter device. A refrigerant circuit thermally coupled to the V-phase switching element unit and the second inverter device,
A pump for circulating the refrigerant provided in the main path of the refrigerant circulation path;
A heat exchanger provided in the main path of the refrigerant circuit;
It is the electric power converter for electric vehicles provided with.

請求項2に係る発明は、請求項1に記載の電気車用電力変換装置において、第1及び第2のコンバータ装置は互いに等しい容量を有し、分岐部は略等しい冷却性能を備えている。   According to a second aspect of the present invention, in the electric vehicle power converter according to the first aspect, the first and second converter devices have the same capacity, and the branch portions have substantially the same cooling performance.

請求項3に係る発明は、請求項1又は2に記載の電気車用電力変換装置において、車両の床下に、風洞のスペースを残すように懸架され、その一部が気密部を形成するように区画された筐体を備え、コンバータ装置及びインバータ装置が筐体の気密部に収納され、ポンプが非気密部に収納されている。   According to a third aspect of the present invention, in the electric vehicle power converter according to the first or second aspect, the suspension is suspended so as to leave a space in the wind tunnel under the floor of the vehicle, and a part thereof forms an airtight portion. A partitioned housing is provided, the converter device and the inverter device are housed in an airtight portion of the housing, and the pump is housed in a non-airtight portion.

請求項4に係る発明は、請求項1ないし3のいずれか1項に記載の電気車用電力変換装置において、熱交換器は筐体から離隔して走行風によって自然冷却される部位に設置されている。   According to a fourth aspect of the present invention, in the power conversion device for an electric vehicle according to any one of the first to third aspects, the heat exchanger is installed at a part that is separated from the housing and naturally cooled by the traveling wind. ing.

請求項5に係る発明は、請求項3又は4に記載の電気車用電力変換装置において、コンバータ装置及びインバータ装置が収納された気密部のうち、温度が最も高くなると予測される部位に設置された温度センサと、この温度センサの検出値が所定値を超えないようにポンプの流量を制御する流量制御部と、を備えている。   According to a fifth aspect of the invention, in the electric vehicle power converter according to the third or fourth aspect of the invention, the electric vehicle power converter is installed at a portion where the temperature is predicted to be highest among the hermetic portions in which the converter device and the inverter device are housed. And a flow rate control unit that controls the flow rate of the pump so that the detection value of the temperature sensor does not exceed a predetermined value.

請求項6に係る発明は、請求項6に記載の電気車用電力変換装置において、インバータによって駆動される主電動機の電流を検出する電流センサを備え、流量制御部は電流センサの検出電流に応じて予め定められた冷媒が供給されるようにポンプの流量を制御する。   According to a sixth aspect of the present invention, in the electric vehicle power converter according to the sixth aspect of the present invention, the electric vehicle power converter includes a current sensor that detects a current of the main motor driven by the inverter, and the flow rate control unit is responsive to the detected current of the current sensor. The flow rate of the pump is controlled so that a predetermined refrigerant is supplied.

請求項7に係る発明は、請求項5又は6に記載の電気車用電力変換装置において、電気車の走行、停止を検出する手段を備え、流量制御部は電気車の走行中と停止中とで流量を変更する。   The invention according to claim 7 is the electric vehicle power converter according to claim 5 or 6, further comprising means for detecting running and stopping of the electric vehicle, and the flow rate control unit is configured to detect whether the electric vehicle is running or stopped. Change the flow rate with.

本発明によれば、冷媒を循環させる配管経路の途中の区間が2つに分岐された冷媒循環路によって冷媒を強制的に循環させると共に、一方の分岐部がコンバータ装置のU相スイッチング素子ユニット及び第1のインバータ装置に熱的に結合され、他方の分岐部がコンバータ装置のV相スイッチング素子ユニット及び第2のインバータ装置に熱的に結合されているので、コンバータ装置及びインバータ装置を備える場合でも小型化を図ることのできる電気車用電力変換装置が提供される。   According to the present invention, the refrigerant is forcibly circulated by the refrigerant circulation path in which the middle section of the piping path for circulating the refrigerant is branched into two, and one branch portion is the U-phase switching element unit of the converter device, Since it is thermally coupled to the first inverter device and the other branch is thermally coupled to the V-phase switching element unit of the converter device and the second inverter device, even when the converter device and the inverter device are provided Provided is an electric vehicle power converter that can be reduced in size.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明を図面に示す好適な実施形態に基づいて詳細に説明する。図1は本発明を適用する電力変換装置の主回路の構成を示す回路図であり、図中、従来装置を示した図5と同一の要素には同一の符号を付してその説明を省略する。この場合、コンバータ装置3を構成するU相スイッチング素子ユニット3aとV相スイッチング素子ユニット3bとは回路構成が同じになっている。また、インバータ装置5a,5bも回路構成は互いに同じになっている。そこで、本実施形態はU相スイッチング素子ユニット3a及びインバータ装置5aを1つの被冷却単位とし、V相スイッチング素子ユニット3b及びインバータ装置5bをもう1つの被冷却単位とすることにより、両者の冷却構造を同じにすると共に、これらを強制循環水冷方式として装置の小型化を図るものである。   Hereinafter, the present invention will be described in detail based on preferred embodiments shown in the drawings. FIG. 1 is a circuit diagram showing the configuration of a main circuit of a power converter to which the present invention is applied. In FIG. 1, the same elements as those in FIG. To do. In this case, the U-phase switching element unit 3a and the V-phase switching element unit 3b constituting the converter device 3 have the same circuit configuration. The inverter devices 5a and 5b have the same circuit configuration. Therefore, in the present embodiment, the U-phase switching element unit 3a and the inverter device 5a are used as one unit to be cooled, and the V-phase switching element unit 3b and the inverter device 5b are used as another unit to be cooled, thereby cooling both the cooling structures. Are made the same, and these are forced circulation water cooling systems to reduce the size of the apparatus.

図2は本発明に係る電力変換装置の一実施形態の概略構成を示すブロック図である。同図において、U相スイッチング素子ユニット3a及びインバータ装置5aが1つの被冷却単位となり、さらに、V相スイッチング素子ユニット3b及びインバータ装置5bがもう1つの被冷却単位となって、これらがパワーユニット部7として後述する筐体に一纏めに収納される。パワーユニット部7を冷却するために冷媒循環路11が設けられている。冷媒循環路11は配管経路の途中の区間が分岐部12,13になっており、このうち、分岐部12がU相スイッチング素子ユニット3a及びインバータ装置5aに熱伝達可能に結合され、分岐部13がV相スイッチング素子ユニット3b及びインバータ装置5bに熱伝達可能に結合されている。また、冷媒循環路11の主経路に冷媒として、例えば、エチレングリコールの成分を含んだ水溶液を循環させるポンプ14が設けられ、さらに、パワーユニット部7が収納された筐体の外側に導出された主経路に、冷却フィンによって走行風とで熱交換を図る熱交換器15が設けられている。   FIG. 2 is a block diagram showing a schematic configuration of an embodiment of the power conversion device according to the present invention. In the figure, the U-phase switching element unit 3a and the inverter device 5a are one unit to be cooled, and the V-phase switching element unit 3b and the inverter device 5b are another unit to be cooled. Are collectively stored in a housing described later. A refrigerant circulation path 11 is provided to cool the power unit portion 7. The refrigerant circulation path 11 has branches 12 and 13 in the middle of the piping path. Of these, the branch 12 is coupled to the U-phase switching element unit 3a and the inverter device 5a so that heat can be transferred. Is coupled to the V-phase switching element unit 3b and the inverter device 5b so that heat can be transferred. In addition, for example, a pump 14 that circulates an aqueous solution containing an ethylene glycol component is provided as a refrigerant in the main path of the refrigerant circulation path 11, and the main unit led out to the outside of the casing in which the power unit unit 7 is housed. The path is provided with a heat exchanger 15 that exchanges heat with the traveling wind using cooling fins.

ポンプ14としては能力制御可変なものが用いられ、その回転速度を制御するための流量制御部20を備えている。流量制御部20は、冷媒循環路11の主経路に設けられた流量センサ21、パワーユニット部7が収納された筐体内で、温度が最も高くなると予測される部位に設置された温度センサ22及び誘導式主電動機6aの電流を検出するCT23の各出力信号に基づいてポンプ14の回転速度を制御するように構成されている。   As the pump 14, a pump with variable capacity control is used, and a flow rate control unit 20 for controlling the rotation speed is provided. The flow rate control unit 20 includes a flow rate sensor 21 provided in the main path of the refrigerant circulation path 11, a temperature sensor 22 installed in a portion where the temperature is predicted to be highest in the housing in which the power unit unit 7 is housed, and an induction The rotational speed of the pump 14 is controlled based on each output signal of the CT 23 that detects the current of the main motor 6a.

図3は上述した電力変換装置が装着された電気車の底部の構成を説明するために、特に、本実施形態に関連する要素の取付状態を示した底面図である。ここで、電気車30は、走行方向の一端部に台車31を備え、その他端部に台車32を備えており、中間部に電力変換装置8が装着され、この電力変換装置8から離隔した位置に熱交換器15と主変圧器2とが装着されている。図4(a)は本実施形態に関連する要素の取付状態を示した電気車の一部の側面図であり、電力変換装置8は電気車30の底部に風洞9のスペースを残すように懸架された筐体内に装着され、その側方に熱交換器15及び主変圧器2が装着されている。図4(b)は電力変換装置8を構成する要素の装着状態を示すための断面図である。電力変換装置8は、パワーユニット収納部81及び気密部82に区画された筐体80を備え、パワーユニット収納部81に前述したパワーユニット部7が収納され、気密部82にポンプ14及び流量センサ21が収納されている。なお、パワーユニット収納部81にはプロアや抵抗器等が収納され、気密部82には充電ユニット、過電圧抑制サイリスタユニット等が収納されるが、これらは本発明に直接的に関係しないので図示を省略している。   FIG. 3 is a bottom view particularly showing an attachment state of elements related to the present embodiment in order to explain the configuration of the bottom portion of the electric vehicle on which the above-described power conversion device is mounted. Here, the electric vehicle 30 includes a carriage 31 at one end in the traveling direction, and a carriage 32 at the other end. The electric power converter 8 is attached to an intermediate portion, and is separated from the electric power converter 8. The heat exchanger 15 and the main transformer 2 are attached to the main body. FIG. 4A is a side view of a part of the electric vehicle showing the mounting state of the elements related to this embodiment, and the power conversion device 8 is suspended so as to leave a space for the wind tunnel 9 at the bottom of the electric vehicle 30. The heat exchanger 15 and the main transformer 2 are attached to the side of the housing. FIG. 4B is a cross-sectional view for illustrating a mounting state of elements constituting the power conversion device 8. The power conversion device 8 includes a casing 80 partitioned into a power unit storage portion 81 and an airtight portion 82, the power unit portion 7 described above is stored in the power unit storage portion 81, and the pump 14 and the flow sensor 21 are stored in the airtight portion 82. Has been. The power unit storage unit 81 stores a probe, a resistor, and the like, and the airtight unit 82 stores a charging unit, an overvoltage suppression thyristor unit, and the like. However, these are not directly related to the present invention and are not shown. doing.

上記のように構成された本実施形態の動作について、特に、従来装置と構成を異にする部分を中心にして以下に説明する。被冷却単位となる一組の発熱体として、コンバータ装置3を構成するU相スイッチング素子ユニット3aとインバータ装置5aとが分岐部12に熱的に結合され、もう一組の発熱体として、コンバータ装置3を構成するV相スイッチング素子ユニット3bとインバータ装置5bとが分岐部13に熱的に結合されている。これらの発熱体の電力容量は互いに等しく、原理的に等しい電流が流れるため、両者の発熱量も略等しくなる。これに対応して分岐部12及び13の配管の直径、結合部分の全長、曲げ形状を同じにして、略等しい冷却性能を持たせている。従って、ポンプ14によって冷媒循環路11にエチレングリコールの成分を含んだ水溶液を循環させると、分岐部12及び13において、二組のスイッチング素子の発熱が水溶液に吸収され、次いで、熱交換器15において、走行風との熱交換が行われて放熱が行われ、コンバータ装置3及びインバータ装置5a,5bを構成するスイッチング素子が冷却され、これらのスイッチング素子の抵抗値は略等しく保たれる。   The operation of the present embodiment configured as described above will be described below with a focus on portions that differ from the conventional apparatus. The U-phase switching element unit 3a constituting the converter device 3 and the inverter device 5a are thermally coupled to the branching section 12 as a set of heating elements serving as a unit to be cooled, and the converter device is used as another set of heating elements. 3 and the inverter device 5b are thermally coupled to the branching section 13. Since the power capacities of these heating elements are equal to each other and the same current flows in principle, the amount of heat generated by both of them is also substantially equal. Correspondingly, the diameters of the pipes of the branch parts 12 and 13, the total length of the coupling part, and the bending shape are made the same to give substantially the same cooling performance. Therefore, when the aqueous solution containing the ethylene glycol component is circulated in the refrigerant circulation path 11 by the pump 14, the heat generated by the two sets of switching elements is absorbed by the aqueous solution in the branch portions 12 and 13, and then in the heat exchanger 15. Then, heat is exchanged with the traveling wind to dissipate heat, and the switching elements constituting the converter device 3 and the inverter devices 5a and 5b are cooled, and the resistance values of these switching elements are kept substantially equal.

ここで、流量制御部20は次のa〜c項の制御を実行する。   Here, the flow rate control unit 20 executes the control of the following items a to c.

a.パワーユニット部7が収納された非気密部のうち、温度が最も高くなると予測される部位に設置された温度センサ22の検出値が所定の閾値を超えない範囲ではポンプの流量を定常の値に保持する。そして、温度センサ22の検出値が閾値を越えようとする毎に、流量センサ21によって検出される流量が所定値だけ増加するようにポンプ14の速度を高める。反対に、温度センサ22の検出値が閾値以下に降下する毎に流量センサ21によって検出される流量が所定値だけ減少するようにポンプ14の速度を低下させる動作を繰り返す。 a. Of the non-hermetic part in which the power unit 7 is housed, the flow rate of the pump is maintained at a steady value as long as the detection value of the temperature sensor 22 installed in the part where the temperature is predicted to be highest does not exceed a predetermined threshold. To do. Each time the detected value of the temperature sensor 22 exceeds the threshold value, the speed of the pump 14 is increased so that the flow rate detected by the flow rate sensor 21 increases by a predetermined value. On the contrary, every time the detected value of the temperature sensor 22 falls below the threshold value, the operation of decreasing the speed of the pump 14 is repeated so that the flow rate detected by the flow rate sensor 21 decreases by a predetermined value.

b.誘導式主電動機6a,6b,6c,6dの電流を検出するために設けたCT23の検出値に応じて、上記a項の閾値を連続的又は段階的に変更する。これによって、CT23の検出電流に応じて予め定められた冷媒が供給されるようにポンプ14の流量が制御される。 b. The threshold value of the a term is changed continuously or stepwise according to the detected value of CT 23 provided to detect the currents of the induction main motors 6a, 6b, 6c, 6d. As a result, the flow rate of the pump 14 is controlled such that a predetermined refrigerant is supplied according to the detected current of the CT 23.

c.上記a項及びb項の制御は主に電気車の走行中の制御であるが、電気車の停止時にはコンバータ装置3及びインバータ装置5a,5bの電流は実質的にゼロとなることから、上述したポンプ流量の定常値及び閾値を変更して運転する必要がある。そこで、流量制御部20はCT23の電流検出信号に基づき、電気車が走行中か停止中かを判定し、停止中には定常値及び閾値を変更して運転する。 c. The control of the above items a and b is mainly control during running of the electric vehicle, but the current of the converter device 3 and the inverter devices 5a and 5b becomes substantially zero when the electric vehicle is stopped. It is necessary to operate by changing the steady value and threshold value of the pump flow rate. Therefore, the flow control unit 20 determines whether the electric vehicle is running or stopped based on the current detection signal of the CT 23, and operates while changing the steady value and the threshold value during the stop.

上記の制御を実行することによって、発熱体であるスイッチング素子の温度を予め設定した値に抑えることができる。   By executing the above control, the temperature of the switching element, which is a heating element, can be suppressed to a preset value.

かくして、本実施形態によれば、発熱量が略同じになるようにコンバータ装置及びインバータ装置のスイッチング素子ユニットを組み合わせて二組の発熱体(又は被冷却単位)とし、冷媒を強制的に循環させる冷媒循環路の分岐路にそれぞれ熱的に結合させる構成により、装置の小型化が図られる。また、パワーユニット部7が収納される部位の温度、電動機の電流及び運転、停止の状態に応じてスイッチング素子の温度が閾値を越えないような制御が行われるため、信頼性が向上されると共に、経済性においても有利となる。   Thus, according to the present embodiment, the converter device and the switching device unit of the inverter device are combined to form two sets of heating elements (or units to be cooled) so that the calorific values are substantially the same, and the refrigerant is forcibly circulated. The size of the apparatus can be reduced by the configuration in which the refrigerant circulation path is thermally coupled to each branch path. In addition, since control is performed such that the temperature of the switching element does not exceed the threshold according to the temperature of the part in which the power unit unit 7 is stored, the current and operation of the motor, and the stop state, the reliability is improved, It is also advantageous in terms of economy.

また、上記の実施形態によれば、主変圧器2と、熱交換器15と、電力変換装置8とが互いに離隔配置されているため、熱交換器15に対する主変圧器2からの放熱の影響が避けられ、熱交換器15の冷却効率が高められるという効果もある。   Moreover, according to said embodiment, since the main transformer 2, the heat exchanger 15, and the power converter device 8 are mutually spaced apart, the influence of the thermal radiation from the main transformer 2 with respect to the heat exchanger 15 is carried out. Is avoided, and the cooling efficiency of the heat exchanger 15 is increased.

さらに、上記の実施形態によれば、1台のコンバータ装置と2台のインバータ装置を一組とする冷却方式であるため、台車及び個別方式に有効である。   Furthermore, according to the above-described embodiment, since the cooling system is a set of one converter device and two inverter devices, it is effective for the carriage and the individual system.

なお、上記実施形態ではパワーユニット部7が収納される部位の温度、電動機の電流及び運転、停止の状態に応じて冷媒の定常流量及び流量増減の閾値を変更したが、パワーユニット部7が収納される部位の温度のみによって流量制御しても、あるいは、パワーユニット部7が収納される部位の温度及び電動機の電流に応じて流量制御しても上述したものに準じた効果が得られる。   In the above-described embodiment, the steady flow rate of the refrigerant and the flow rate increase / decrease threshold are changed according to the temperature of the part in which the power unit unit 7 is stored, the current of the motor, the operation, and the stop state, but the power unit unit 7 is stored. Even if the flow rate is controlled only by the temperature of the part, or the flow rate is controlled according to the temperature of the part in which the power unit 7 is accommodated and the current of the electric motor, the same effect as described above can be obtained.

本発明を適用する電力変換装置の主回路の構成を示す回路図。The circuit diagram which shows the structure of the main circuit of the power converter device to which this invention is applied. 本発明に係る車両用電力変換装置の一実施形態の概略構成を示すブロック図。The block diagram which shows schematic structure of one Embodiment of the power converter device for vehicles which concerns on this invention. 図2に示した電力変換装置が装着された電気車の底面図。The bottom view of the electric vehicle with which the power converter device shown in FIG. 2 was mounted | worn. 図2に示した実施形態に関連する要素の取付状態を示した電気車の側面図及びその断面図。The side view and sectional drawing of the electric vehicle which showed the attachment state of the element relevant to embodiment shown in FIG. 従来の電気車用電力変換装置の構成を示す回路図。The circuit diagram which shows the structure of the conventional electric power converter for electric vehicles.

符号の説明Explanation of symbols

2 主変圧器
3 コンバータ装置
3a U相スイッチング素子ユニット
3b V相スイッチング素子ユニット
5a,5b インバータ装置
6a,6b,6c,6d 誘導式主電動機
7 パワーユニット部
8 電力変換装置
11 冷媒循環路
12,13 分岐部
14 ポンプ
15 熱交換器
20 流量制御部
21 流量センサ
22 温度センサ
23 CT
30 電気車
31,32 台車
2 Main transformer 3 Converter device 3a U-phase switching element unit 3b V-phase switching element unit 5a, 5b Inverter devices 6a, 6b, 6c, 6d Induction main motor 7 Power unit 8 Power converter 11 Refrigerant circulation path 12, 13 Branch Unit 14 Pump 15 Heat exchanger 20 Flow rate control unit 21 Flow rate sensor 22 Temperature sensor 23 CT
30 Electric cars 31, 32

Claims (7)

スイッチング素子が単相ブリッジ接続され、単相交流を直流に変換するコンバータ装置と、
スイッチング素子が3相ブリッジ接続され、前記コンバータ装置によって変換された直流をそれぞれ3相交流に変換する第1及び第2のインバータ装置と、
冷媒を循環させる配管経路の途中の区間が2つに分岐され、一方の分岐部が前記コンバータ装置のU相スイッチング素子ユニット及び前記第1のインバータ装置に熱的に結合され、他方の分岐部が前記コンバータ装置のV相スイッチング素子ユニット及び前記第2のインバータ装置に熱的に結合された冷媒循環路と、
前記冷媒循環路の主経路に設けられた冷媒循環用のポンプと、
前記冷媒循環路の主経路に設けられた熱交換器と、
を備えた電気車用電力変換装置。
A converter device in which a switching element is connected in a single-phase bridge, and converts a single-phase alternating current into a direct current;
A first and a second inverter device each having a switching element connected in a three-phase bridge and converting the direct current converted by the converter device into a three-phase alternating current;
A section in the middle of the piping path for circulating the refrigerant is branched into two, one branch is thermally coupled to the U-phase switching element unit of the converter device and the first inverter device, and the other branch is A refrigerant circuit thermally coupled to the V-phase switching element unit of the converter device and the second inverter device;
A refrigerant circulation pump provided in the main path of the refrigerant circulation path;
A heat exchanger provided in the main path of the refrigerant circuit;
An electric vehicle power conversion device comprising:
前記第1及び第2のコンバータ装置は互いに等しい容量を有し、前記分岐部は略等しい冷却性能を備えた、請求項1に記載の電気車用電力変換装置。   2. The electric power converter for an electric vehicle according to claim 1, wherein the first and second converter devices have the same capacity, and the branch portion has substantially the same cooling performance. 車両の床下に、風洞のスペースを残すように懸架され、その一部が気密部を形成するように区画された筐体を備え、前記コンバータ装置及びインバータ装置が前記筐体の気密部に収納され、前記ポンプが前記非気密部に収納された、請求項1又は2に記載の電気車用電力変換装置。   A casing suspended under the floor of the vehicle so as to leave a space in the wind tunnel, a part of which is partitioned to form an airtight portion, and the converter device and the inverter device are accommodated in the airtight portion of the housing. The electric power converter for an electric vehicle according to claim 1, wherein the pump is housed in the non-hermetic portion. 前記熱交換器は前記筐体から離隔して走行風によって自然冷却される部位に設置された、請求項1ないし3のいずれか1項に記載の電気車用電力変換装置。   The electric power converter for an electric vehicle according to any one of claims 1 to 3, wherein the heat exchanger is installed in a portion that is separated from the housing and is naturally cooled by traveling wind. 前記コンバータ装置及びインバータ装置が収納された気密部のうち、温度が最も高くなると予測される部位に設置された温度センサと、この温度センサの検出値が所定値を超えないように前記ポンプの流量を制御する流量制御部と、を備えた請求項3又は4に記載の電気車用電力変換装置。   Of the airtight part in which the converter device and the inverter device are housed, a temperature sensor installed at a portion where the temperature is predicted to be highest, and a flow rate of the pump so that a detection value of the temperature sensor does not exceed a predetermined value. The electric power converter for electric vehicles according to claim 3 or 4 provided with the flow control part which controls. 前記インバータによって駆動される主電動機の電流を検出する電流センサを備え、前記流量制御部は前記電流センサの検出電流に応じて予め定められた冷媒が供給されるように前記ポンプの流量を制御する、請求項6に記載の電気車用電力変換装置。   A current sensor for detecting a current of a main motor driven by the inverter is provided, and the flow rate control unit controls a flow rate of the pump so that a predetermined refrigerant is supplied according to a current detected by the current sensor. The electric power converter for electric vehicles according to claim 6. 電気車の走行、停止を検出する手段を備え、前記流量制御部は電気車の走行中と停止中とで流量を変更する請求項5又は6に記載の電気車用電力変換装置。   The electric vehicle power conversion device according to claim 5 or 6, further comprising means for detecting running and stopping of the electric vehicle, wherein the flow rate control unit changes the flow rate during and when the electric vehicle is running.
JP2003350663A 2003-10-09 2003-10-09 Power conversion device for electric vehicle Pending JP2005117819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003350663A JP2005117819A (en) 2003-10-09 2003-10-09 Power conversion device for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003350663A JP2005117819A (en) 2003-10-09 2003-10-09 Power conversion device for electric vehicle

Publications (1)

Publication Number Publication Date
JP2005117819A true JP2005117819A (en) 2005-04-28

Family

ID=34542149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003350663A Pending JP2005117819A (en) 2003-10-09 2003-10-09 Power conversion device for electric vehicle

Country Status (1)

Country Link
JP (1) JP2005117819A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152990A (en) * 2005-11-30 2007-06-21 Toshiba Corp Electric car control device
JP2007166804A (en) * 2005-12-14 2007-06-28 Toyota Motor Corp Motor drive and vehicle having the same
JP2008086078A (en) * 2006-09-26 2008-04-10 Toshiba Corp Electric car controller
JP2008228384A (en) * 2007-03-09 2008-09-25 Toshiba Corp Large-scale ac train set
WO2009040933A1 (en) * 2007-09-28 2009-04-02 Mitsubishi Electric Corporation Power converting device
JP2009516492A (en) * 2005-11-16 2009-04-16 シーメンス アクチエンゲゼルシヤフト Apparatus for current conversion in the field of high voltage distribution and high voltage transmission and method for reducing load fluctuation stress of power semiconductor units
JP2010199179A (en) * 2009-02-24 2010-09-09 Fuji Electric Systems Co Ltd Method for estimation of internal air temperature in enclosed type power conversion unit, and cooling system of power converter
WO2011067905A1 (en) * 2009-12-04 2011-06-09 ダイキン工業株式会社 Outdoor unit for air conditioner
JP2012222887A (en) * 2011-04-05 2012-11-12 Nippon Steel Corp Cooling system for motor drive control apparatus
KR101239303B1 (en) * 2013-01-16 2013-03-06 갑 동 김 Heat exchange type cooling system for transformer
JP2014147193A (en) * 2013-01-28 2014-08-14 Mitsubishi Motors Corp Cooling device for electric vehicle
JP2015506661A (en) * 2012-01-24 2015-03-02 アー・ファウ・エル・リスト・ゲー・エム・ベー・ハーAvl Listgmbh Electric drive
JP2015177708A (en) * 2014-03-18 2015-10-05 株式会社日立製作所 Power supply unit
CN105256675A (en) * 2015-11-03 2016-01-20 株洲南车时代电气股份有限公司 Electric transmission system of dual-power metro grinding car and power switching method
EP2966766A4 (en) * 2013-03-08 2016-12-28 Toshiba Kk Power converter for vehicle
WO2017010303A1 (en) * 2015-07-10 2017-01-19 株式会社日本製鋼所 Inverter cooling method for electric injection molding machine and inverter cooling device
WO2023157367A1 (en) * 2022-02-15 2023-08-24 三菱重工業株式会社 Control device, control system and control method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009516492A (en) * 2005-11-16 2009-04-16 シーメンス アクチエンゲゼルシヤフト Apparatus for current conversion in the field of high voltage distribution and high voltage transmission and method for reducing load fluctuation stress of power semiconductor units
JP2007152990A (en) * 2005-11-30 2007-06-21 Toshiba Corp Electric car control device
JP2007166804A (en) * 2005-12-14 2007-06-28 Toyota Motor Corp Motor drive and vehicle having the same
JP2008086078A (en) * 2006-09-26 2008-04-10 Toshiba Corp Electric car controller
JP2008228384A (en) * 2007-03-09 2008-09-25 Toshiba Corp Large-scale ac train set
WO2009040933A1 (en) * 2007-09-28 2009-04-02 Mitsubishi Electric Corporation Power converting device
JPWO2009040933A1 (en) * 2007-09-28 2011-01-13 三菱電機株式会社 Power converter
JP2010199179A (en) * 2009-02-24 2010-09-09 Fuji Electric Systems Co Ltd Method for estimation of internal air temperature in enclosed type power conversion unit, and cooling system of power converter
WO2011067905A1 (en) * 2009-12-04 2011-06-09 ダイキン工業株式会社 Outdoor unit for air conditioner
JP2011117677A (en) * 2009-12-04 2011-06-16 Daikin Industries Ltd Outdoor unit for air conditioning device
JP2012222887A (en) * 2011-04-05 2012-11-12 Nippon Steel Corp Cooling system for motor drive control apparatus
JP2015506661A (en) * 2012-01-24 2015-03-02 アー・ファウ・エル・リスト・ゲー・エム・ベー・ハーAvl Listgmbh Electric drive
KR101239303B1 (en) * 2013-01-16 2013-03-06 갑 동 김 Heat exchange type cooling system for transformer
CN103928216A (en) * 2013-01-16 2014-07-16 金甲东 Heat Exchange Type Cooling Apparatus For A Transformer
CN103928216B (en) * 2013-01-16 2017-03-01 金甲东 The transformer cooling device of heat exchange type
JP2014147193A (en) * 2013-01-28 2014-08-14 Mitsubishi Motors Corp Cooling device for electric vehicle
EP2966766A4 (en) * 2013-03-08 2016-12-28 Toshiba Kk Power converter for vehicle
JP2015177708A (en) * 2014-03-18 2015-10-05 株式会社日立製作所 Power supply unit
WO2017010303A1 (en) * 2015-07-10 2017-01-19 株式会社日本製鋼所 Inverter cooling method for electric injection molding machine and inverter cooling device
JP2017019173A (en) * 2015-07-10 2017-01-26 株式会社日本製鋼所 Inverter cooling method and inverter cooling device of electromotive injection molding machine
CN105256675A (en) * 2015-11-03 2016-01-20 株洲南车时代电气股份有限公司 Electric transmission system of dual-power metro grinding car and power switching method
WO2023157367A1 (en) * 2022-02-15 2023-08-24 三菱重工業株式会社 Control device, control system and control method

Similar Documents

Publication Publication Date Title
KR100272807B1 (en) Electric power transfer apparatus for electric vehicles
JP2005117819A (en) Power conversion device for electric vehicle
JP4243308B2 (en) Power converter
JP3314256B2 (en) Electric vehicle power converter
JP4106061B2 (en) Power unit device and power conversion device
JP2012200042A (en) Inverter controller and freezing/air conditioning device
JP3239310U (en) Cooling pulse inverter for operating electrical machines in automobiles
US10504820B2 (en) Semiconductor module and electric power conversion device
JP2008206345A (en) Power converter
JP2011109740A (en) Power conversion apparatus
JPWO2011070609A1 (en) Propulsion control device
JP4479305B2 (en) Power converter
JP2015164180A (en) Integrated device for attachment and cooling, electronic device, and vehicle
JP2003079162A (en) Power converter
JP2009029187A (en) Cooling device for electric power converter of hybrid vehicle
JP6827477B2 (en) Electric motor power system and electric vehicle
JP2006149199A (en) Power conversion apparatus for rail vehicle
JP3822612B2 (en) Railway vehicle power converter
JP2015033182A (en) Cooling system of semiconductor power converter
JP5058545B2 (en) Electric vehicle control device
CN214422040U (en) Energy conversion device based on elevator braking and elevator
JP2011160556A (en) System for driving electric pump for refrigerant
JP2019009907A (en) Power conversion device and electric vehicle with power conversion device
JPH118982A (en) Inverter device
US20190334448A1 (en) Inverter control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090811