JP3799352B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP3799352B2
JP3799352B2 JP2003424521A JP2003424521A JP3799352B2 JP 3799352 B2 JP3799352 B2 JP 3799352B2 JP 2003424521 A JP2003424521 A JP 2003424521A JP 2003424521 A JP2003424521 A JP 2003424521A JP 3799352 B2 JP3799352 B2 JP 3799352B2
Authority
JP
Japan
Prior art keywords
semiconductor element
heat
inverter circuit
groups
cooling unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003424521A
Other languages
Japanese (ja)
Other versions
JP2004096998A (en
Inventor
入 正 樹 宮
本 隆 橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32064811&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3799352(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003424521A priority Critical patent/JP3799352B2/en
Publication of JP2004096998A publication Critical patent/JP2004096998A/en
Application granted granted Critical
Publication of JP3799352B2 publication Critical patent/JP3799352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02T10/7216
    • Y02T10/7241

Landscapes

  • Inverter Devices (AREA)

Description

本発明は複数組の電力変換回路を収納した電力変換装置に関する。   The present invention relates to a power conversion device that houses a plurality of sets of power conversion circuits.

半導体素子で構成される電力変換回路には種々のものがあり、直流を交流に変換するインバータ回路や交流を直流に変換するコンバータ回路がある。また、インバータ回路には、交流出力の電圧、周波数を可変に制御する可変電圧可変周波数インバータ(以下、VVVFインバータと呼ぶ)回路や、交流出力の電圧、周波数を一定に制御する定電圧定周波数インバータ(以下、CVCFインバータと呼ぶ)回路等があり、これらが電力変換システムを構成している。   There are various types of power conversion circuits composed of semiconductor elements, including an inverter circuit that converts direct current into alternating current and a converter circuit that converts alternating current into direct current. The inverter circuit includes a variable voltage variable frequency inverter (hereinafter referred to as a VVVF inverter) circuit that variably controls the voltage and frequency of the AC output, and a constant voltage constant frequency inverter that controls the voltage and frequency of the AC output to be constant. There are circuits, etc. (hereinafter referred to as CVCF inverters), and these constitute a power conversion system.

鉄道車両システムを例にとると、車両駆動用として誘導電動機を制御するVVVFインバータ回路が、制御単位毎に複数群収納された電力変換装置が車両に取り付けられる。例えば、1台の誘導電動機をそれぞれ個別に制御するVVVFインバータ回路を一車両分すなわち4群を収納した電力変換装置が広く使用されている。この電力変換装置は、故障時には故障したVVVFインバータ回路を切り離すことによって運転が継続できるといった冗長性に優れたシステムである。また、補助電源システムにはCVCFインバータ回路が使われるが、最近は複数群のVVVFインバータ回路とCVCFインバータ回路とを一個の電力変換装置に収納し、CVCFインバータ回路が故障した場合には、VVVFインバータ回路のうちの一群をCVCFインバータ回路に切り替えて、鉄道車両システムとしての冗長性の向上を図ったシステムもある。   Taking a railway vehicle system as an example, a power conversion device in which a plurality of groups of VVVF inverter circuits for controlling an induction motor for driving a vehicle are housed for each control unit is attached to the vehicle. For example, a power converter that accommodates one vehicle, that is, four groups of VVVF inverter circuits that individually control one induction motor is widely used. This power conversion device is a system with excellent redundancy that operation can be continued by disconnecting the failed VVVF inverter circuit in the event of a failure. In addition, a CVCF inverter circuit is used in the auxiliary power supply system. Recently, a plurality of groups of VVVF inverter circuits and CVCF inverter circuits are housed in one power converter, and if the CVCF inverter circuit fails, the VVVF inverter circuit is used. In some systems, a group of circuits is switched to a CVCF inverter circuit to improve redundancy as a railway vehicle system.

交流電気車には、交流を直流に変換するコンバータ回路と、直流を交流に変換するインバータ回路とを組み合わせて出力電圧、出力周波数を制御して誘導電動機を駆動するシステムが一般的に使われている。これら種々の電力変換システムは、従来、別個の装置として車両に設置されていたが、最近では、設置スペースの縮小化、装置間を接続する配線本数を削減するための装置の集約化が行なわれ、1個の電力変換装置に種々の変換回路を収納する傾向にある。1個の装置の中に複数群の電力変換回路が収納される電力変換装置では、例えば、コンバータ変換回路部、インバータ変換回路部、制御基板部、制御電源部といった電気的な機能毎に、装置内を区画した領域に装着され、それぞれがユニットとして構成されることが多い。   In an AC electric vehicle, a system that drives an induction motor by controlling an output voltage and an output frequency by combining a converter circuit that converts AC to DC and an inverter circuit that converts DC to AC is generally used. Yes. Conventionally, these various power conversion systems have been installed in vehicles as separate devices. Recently, however, the installation space has been reduced and the devices have been consolidated to reduce the number of wires connecting between the devices. There is a tendency to store various conversion circuits in one power conversion device. In a power conversion device in which a plurality of groups of power conversion circuits are housed in one device, for example, for each electrical function such as a converter conversion circuit unit, an inverter conversion circuit unit, a control board unit, and a control power supply unit, In many cases, each is mounted in a region partitioned inside and is configured as a unit.

半導体素子を用いた変換回路部では半導体素子が発生する熱(以下、損失熱という)を装置外に排出し、半導体素子の温度を許容値以下で使用するための冷却器が必要になる。冷却器の基本構成は、半導体素子が取り付けられる受熱部と外気へ熱放散を行う放熱部とからなるが、受熱部は電力変換装置の密閉室部分に置かれ、放熱部は外気と通ずる開放室部分に置かれる。放熱部が置かれる開放室部分は装置の筐体より若干突出させて外気へ熱放散しやすくしたり、電動送風機により強制的に冷却風を流す冷却風洞としたり、鉄道車両の床下に設置される装置では車両走行時に装置の外表面を相対的に流れる走行風を受けやすい部位に設けたりしている。   In a conversion circuit unit using a semiconductor element, a cooler is required for discharging heat generated by the semiconductor element (hereinafter referred to as loss heat) to the outside of the apparatus and using the temperature of the semiconductor element below an allowable value. The basic configuration of the cooler consists of a heat receiving part to which a semiconductor element is attached and a heat radiating part that dissipates heat to the outside air. The heat receiving part is placed in a sealed chamber part of the power converter, and the heat radiating part is an open room that communicates with the outside air. Placed in the part. The open room part where the heat radiating part is placed protrudes slightly from the housing of the device to make it easy to dissipate heat to the outside air, or it is used as a cooling wind tunnel for forcing cooling air by an electric blower, or it is installed under the floor of a railway vehicle In the apparatus, it is provided in a portion where it is easy to receive a traveling wind relatively flowing on the outer surface of the apparatus when the vehicle is traveling.

このように複数群の変換回路を収納した従来の電力変換装置を以下に説明する。図11は鉄道車両駆動用の電力変換装置の回路図で、1両分の電動機、すなわち、4台の誘導電動機を個別に制御する4群のVVVFインバータ回路を収納した電力変換装置の回路図である。同図において、パンタグラフ1には、遮断器2及びフィルタリアクトル3を介して、VVVFインバータ回路4の正入力端が接続され、その負入力端は車輪を通じて接地されている。また、VVVFインバータ回路4の正、負入力端間にはそれぞれフィルタコンデンサ5が接続され、さらに、出力端には誘導電動機6が接続されている。このように4群の回路が並列に接続され、1両分で4台の誘導電動機6を4群のVVVFインバータ回路4が個別に制御する。この回路図に示される電気部品のうち、4群のVVVFインバータ回路4、フィルタコンデンサ5が一つの箱体に収納されて電力変換装置7Aが構成され、他の電気部品はそれぞれ単独にあるいは他の装置の箱体に収納され、これらが車体配線で電気的に接続されて鉄道車両駆動システムを構成している。   A conventional power conversion apparatus that houses a plurality of groups of conversion circuits as described above will be described below. FIG. 11 is a circuit diagram of a power conversion device for driving a railway vehicle. FIG. 11 is a circuit diagram of a power conversion device that houses one group of motors, that is, four groups of VVVF inverter circuits that individually control four induction motors. is there. In the figure, a pantograph 1 is connected to a positive input terminal of a VVVF inverter circuit 4 via a circuit breaker 2 and a filter reactor 3, and a negative input terminal thereof is grounded through a wheel. A filter capacitor 5 is connected between the positive and negative input terminals of the VVVF inverter circuit 4, and an induction motor 6 is connected to the output terminal. In this way, the four groups of circuits are connected in parallel, and the four groups of VVVF inverter circuits 4 individually control the four induction motors 6 for one car. Among the electrical components shown in this circuit diagram, four groups of VVVF inverter circuits 4 and filter capacitors 5 are housed in one box to constitute a power conversion device 7A, and the other electrical components are each independently or other It is housed in a box of the apparatus, and these are electrically connected by vehicle body wiring to constitute a railway vehicle drive system.

図12(a)は上述した電力変換装置7Aを鉄道車両の床下に装着した状態を示す斜視図であり、図12(b)は車両の進行方向から見た側面図であり、図13(a)は車両の底面に取り付けられる方向から見た電力変換装置7Aの平面図であり、図13(b)はその底面図である。これら各図において、電力変換装置7Aは半導体素子(例えば、IGBTにスナバー用のダイオードを並列接続したものを総称する)8を冷却する4個の冷却器9を備える。そして、1個の冷却器9にはVVVFインバータ回路の1群分の半導体素子8がまとめて収納され、フィルタコンデンサ5が一つの箱体に収納されている(例えば、特許文献1参照。)。   12A is a perspective view showing a state in which the above-described power conversion device 7A is mounted under the floor of the railway vehicle, and FIG. 12B is a side view seen from the traveling direction of the vehicle, and FIG. ) Is a plan view of the power conversion device 7A viewed from the direction of attachment to the bottom surface of the vehicle, and FIG. 13B is a bottom view thereof. In each of these drawings, the power conversion device 7A includes four coolers 9 for cooling a semiconductor element (for example, a collective term for a IGBT in which a snubber diode is connected in parallel). A single cooler 9 collectively stores a group of semiconductor elements 8 of the VVVF inverter circuit, and a filter capacitor 5 is stored in a single box (see, for example, Patent Document 1).

なお、1群のVVVFインバータ回路はU,V,Wの3相インバータ回路であるが、場合によっては、4群のVVVFインバータ回路の各1相分を1個の冷却器9にまとめて取り付け、これを3個並べて構成することもある。これは、各群のVVVFインバータ回路を構成する各1相分の半導体素子8を集約配置すれば、その周辺部品の配置、電気的な接続が容易になり、電力変換装置7Aが機能的に区分されて機能毎のユニット構成が可能になることから、冷却器9もこのような1群毎の変換回路でまとめられた形となる。   In addition, although one group of VVVF inverter circuits is a three-phase inverter circuit of U, V, and W, depending on the case, one phase of each of the four groups of VVVF inverter circuits is attached to one cooler 9, Three of these may be arranged side by side. This is because, if the semiconductor elements 8 for each phase constituting the VVVF inverter circuit of each group are collectively arranged, the peripheral components can be easily arranged and electrically connected, and the power converter 7A is functionally divided. As a result, a unit configuration for each function is possible, and thus the cooler 9 is also formed by such a group of conversion circuits.

図11〜13に示した冷却器9には、半導体素子8が取り付けられる受熱部と外気へ熱放散を行う放熱部とからなる冷却ユニットが装着されるが、受熱部は電力変換装置7Aの密閉室部分に置かれ、放熱部は外気と通ずる開放室部分に置かれる。放熱部の置かれる開放室部分は筐体より若干突出させて外気へ熱放散しやすくなっており、さらに、車両走行時に装置の外表面を相対的に流れる走行風を受けやすい構成になっている。   11 to 13 is mounted with a cooling unit including a heat receiving portion to which the semiconductor element 8 is attached and a heat radiating portion that dissipates heat to the outside air. The heat receiving portion is sealed by the power converter 7A. It is placed in the chamber part, and the heat radiating part is placed in the open chamber part communicating with the outside air. The open room where the heat dissipating part is placed is slightly protruded from the housing, making it easy to dissipate heat to the outside air. .

電力変換装置7Aの運転時には半導体素子8より損失熱が発生するがこれが冷却器9内に装着される冷却ユニットの受熱部へ熱伝導により伝わり、冷却ユニットの放熱部から外気に熱放散することによって半導体素子8が冷却され、許容温度以下での使用が可能となる。   During operation of the power converter 7A, heat loss is generated from the semiconductor element 8, but this is transferred to the heat receiving part of the cooling unit mounted in the cooler 9 by heat conduction, and is dissipated from the heat radiating part of the cooling unit to the outside air. The semiconductor element 8 is cooled and can be used at an allowable temperature or lower.

ところで、電力変換装置7Aを構成する4群のVVVFインバー夕が全て健全である運転時には、4群のVVVFインバー夕は個別に制御されるが、それぞれの群から発生する損失熱はぽぽ同等であり、それぞれの冷却器9ではぼぽ同等の損失熱が放散される。しかし、電力変換装置7Aの故障時には、故障した1群のVVVFインバータ回路を遮断器2によって切り離し、残りの群のVVVFインバータ回路で運転を継続できるようにシステムに冗長性を持たせたことが、この電力変換装置7Aの特徴になっている。   By the way, during the operation in which the four groups of VVVF inverters constituting the power converter 7A are all healthy, the four groups of VVVF inverters are individually controlled, but the heat loss generated from each group is the same. Yes, each of the coolers 9 dissipates almost the same amount of heat loss. However, at the time of failure of the power conversion device 7A, the group of VVVF inverter circuits that failed was disconnected by the circuit breaker 2, and the system was made redundant so that the operation could be continued with the remaining groups of VVVF inverter circuits. This is a feature of the power conversion device 7A.

1群のVVVFインバータ回路が故障したことにより、残り3群のVVVFインバータ回路で運転を継続した場合、運転を継続するVVVFインバータ回路を構成する半導体素子8には、4群全てのVVVFインバータ回路が健全な時と比べると大きな電流を流す必要がある。そのため、半導体素子8より発生する損失熱も健全時よりも多くなり、冷却器9の熱放散能力も健全時よりも高い性能が要求される。従って、それぞれの冷却器9は、4群のVVVFインバータ回路の全てが健全に運転されている時の熱損失だけでなく、健全時よりも増加している故障時の損失熱をも処理できる放熱能力を確保する必要がある。言い換えれば、健全時にはそれぞれの冷却器9は冷却能力に余裕があり、故障時には、故障により切り離されたVVVFインバータ回路の半導体素子8が取り付けられていた冷却器9は全く放熱処理を行わず、運転を継続する残りのVVVFインバータ回路の半導体素子8が取り付けられた冷却器9だけが放熱処理を行うことになる。   When the operation of the remaining three groups of VVVF inverter circuits is continued due to failure of the first group of VVVF inverter circuits, the semiconductor elements 8 constituting the VVVF inverter circuit that continues the operation include all the VVVF inverter circuits of the four groups. It is necessary to pass a larger current than when healthy. For this reason, the heat loss generated from the semiconductor element 8 is larger than that in a healthy state, and the heat dissipation capability of the cooler 9 is required to be higher than that in a healthy state. Accordingly, each of the coolers 9 can dissipate not only heat loss when all the four groups of VVVF inverter circuits are operating soundly but also heat loss due to failure that is increasing compared to the normal state. It is necessary to secure capacity. In other words, each cooler 9 has a sufficient cooling capacity at the time of soundness, and at the time of failure, the cooler 9 to which the semiconductor element 8 of the VVVF inverter circuit separated by the failure is attached does not perform the heat dissipation process at all. Only the cooler 9 to which the semiconductor element 8 of the remaining VVVF inverter circuit that continues the above is subjected to the heat dissipation process.

この結果、冷却器9を個々に大形化しなければならず、このことが電力変換装置7Aの小形、軽量化を阻害する要因になっていた。   As a result, the coolers 9 must be individually increased in size, which has been a factor that hinders the reduction in size and weight of the power conversion device 7A.

複数群の電力変換回路を収納した従来の他の電力変換装置を以下に説明する。図14は2群の車両駆動用のVVVFインバータ回路と、1群の車両電源用のCVCFインバータ回路17を同一システムとして構成した電力変換装置7Bの回路図であり、図中、図11と同一の要素には同一の符号を付してその説明を省略する。ここで、2群のVVVFインバータ回路のうちの1群は、CVCFインバータ回路の故障時にVVVFインバータ回路からCVCFインバータ回路に切り替えて運転することが可能に構成され、車両の電源を確保することによって車両システムとしての冗長性を高めたものである。   Another conventional power conversion device that houses a plurality of groups of power conversion circuits will be described below. FIG. 14 is a circuit diagram of a power conversion device 7B in which a group of VVVF inverter circuits for driving a vehicle and a group of vehicle power CVCF inverter circuits 17 are configured as the same system. Elements are denoted by the same reference numerals and description thereof is omitted. Here, one of the two groups of VVVF inverter circuits is configured to be able to be operated by switching from the VVVF inverter circuit to the CVCF inverter circuit when the CVCF inverter circuit fails, and by securing the vehicle power supply, The system has increased redundancy.

図15(a)は図14に示した電力変換装置が鉄道車両の床下に装着された状態を示す斜視図であり、図14(b)は車両の進行方向から見た側面図であり、図16(a)は車両の底面に取り付けられる方向から見た電力変換装置7の平面図であり、図16(b)はその底面図である。これは、図11〜13に示した従来装置と同様に、VVVFインバータ回路用の2個の冷却器9と、CVCFインバータ回路用の1個の冷却器9とを備えており、それぞれがユニット構成されている(例えば、特許文献2参照。)。   15A is a perspective view showing a state in which the power conversion device shown in FIG. 14 is mounted under the floor of the railway vehicle, and FIG. 14B is a side view seen from the traveling direction of the vehicle. 16 (a) is a plan view of the power conversion device 7 as viewed from the direction attached to the bottom surface of the vehicle, and FIG. 16 (b) is a bottom view thereof. This is provided with two coolers 9 for the VVVF inverter circuit and one cooler 9 for the CVCF inverter circuit, as in the conventional apparatus shown in FIGS. (For example, see Patent Document 2).

ここで、切り替え動作の詳細については省略するが、CVCFインバータ回路の故障時には、CVCFインバータ回路の半導体素子8が取り付けられている冷却器9は、もちろん、放熱処理を行わず、もともと、VVVFインバータ回路用として放熱処理を行っていた2個の冷却器がVVVFインバータ回路とCVCFインバータ回路用として働くことになる。VVVFインバータ回路として運転を継続する群の半導体素子8が取り付けられている冷却器9は図11〜13に示した従来装置と同様に、健全時と比べて高い放熱能力が要求され、この時の放熱能力に見合った冷却器9の外形形状とする必要がある。又、VVVFインバータ回路とCVCFインバータ回路とを共通に構成することが要求されるが、適用される車両システムによっては必ずしもVVVFインバータ回路とCVCFインバータ回路とで半導体素子8から発生する損失熱は等しくないにも拘わらず形状が同一の冷却器9を用いていたので、健全な運転時でも各々の冷却器9が全て均等に放熱処理を受け持っているとは言い難く、このこともまた,電力変換装置7Bの小形、軽量化を阻害する要因になっていた。   Here, although details of the switching operation are omitted, when the CVCF inverter circuit fails, the cooler 9 to which the semiconductor element 8 of the CVCF inverter circuit is attached does not, of course, perform the heat dissipation process, and originally the VVVF inverter circuit. The two coolers that have been subjected to the heat dissipation treatment will work for the VVVF inverter circuit and the CVCF inverter circuit. As in the conventional device shown in FIGS. 11 to 13, the cooler 9 to which the semiconductor element 8 of the group that continues to operate as a VVVF inverter circuit is required to have a high heat dissipation capability compared to the normal state. It is necessary to make the outer shape of the cooler 9 suitable for the heat dissipation capability. Further, although it is required that the VVVF inverter circuit and the CVCF inverter circuit are configured in common, the heat loss generated from the semiconductor element 8 is not necessarily equal between the VVVF inverter circuit and the CVCF inverter circuit depending on the applied vehicle system. Nevertheless, since the coolers 9 having the same shape are used, it is difficult to say that each cooler 9 is equally responsible for heat dissipation even during sound operation. 7B was a factor that hindered the small size and weight reduction.

さらに、複数群の変換回路を収納した従来のもう一つ他の電力変換装置について、図17〜19を参照して以下に説明する。図17はこの電力変換装置7Cの回路図であり、交流を入力としてこの交流を直流に変換する実質的に2組分のコンバータ回路18と、このコンバータ回路18により変換された直流を可変電圧、可変周波数制御された交流に変換するインバータ回路19とにより構成され、これによって鉄道車両の4台の誘導電動機6を駆動するシステムになっている。図18(a)はこの電力変換装置7Cを車両底部に装着する側から見た平面図、図18(b)は車両の進行方向から見た側面図であり、図19は図18(b)のA−A矢視断面図である。この電力変換装置7Cは2個の冷却ユニット9a,9bを備え、このうち、冷却ユニット9aにはコンバータ回路を構成する半導体素子8が、冷却ユニット9bにはインバータ回路を構成する半導体素子8がそれぞれ取り付けられており、電動送風機14により強制的に送風されて放熱を行う構成になっている(例えば、特許文献3参照。)。   Furthermore, another conventional power conversion device that houses a plurality of groups of conversion circuits will be described below with reference to FIGS. FIG. 17 is a circuit diagram of the power conversion device 7C, and substantially two sets of converter circuits 18 that convert the alternating current into direct current using alternating current as input, and the direct current converted by the converter circuit 18 with variable voltage, The inverter circuit 19 is configured to convert the variable frequency-controlled alternating current into an alternating current circuit, thereby forming a system for driving the four induction motors 6 of the railway vehicle. 18A is a plan view seen from the side where the power converter 7C is mounted on the bottom of the vehicle, FIG. 18B is a side view seen from the traveling direction of the vehicle, and FIG. 19 is FIG. It is AA arrow sectional drawing. The power conversion device 7C includes two cooling units 9a and 9b. Of these, the cooling unit 9a includes a semiconductor element 8 constituting a converter circuit, and the cooling unit 9b includes a semiconductor element 8 constituting an inverter circuit. It is attached and is configured to perform heat dissipation by being forcedly blown by the electric blower 14 (see, for example, Patent Document 3).

それぞれの変換回路より発生する損失熱は、同じタイミングで増減するのではなく、異なったタイミングで増減する。鉄道車両の比較的低速時、つまり、加減速時にはインバータ回路より発生する損失熱が大きく、比較的高速での運転時にはコンバータ回路より発生する損失熱が大きい。従って、冷却ユニット9a側からの熱放散が大きいときは冷却ユニット9b側からの熱放散は比較的小さく、冷却ユニット9b側からの熱放散が大きいときは冷却ユニット9a側からの熱放散は比較的小さいことになる。加えて、本装置では冷却ユニット9a,9bの放熱側を強制送風により冷却を行っているため、熱時定数が小さいので、それぞれの冷却ユニット9a,9bは最大損失熱でその大きさが決まってしまう。つまり、損失熱の増減に応じて冷却器の温度が短時間で追従するので、損失熱が時間に応じて変化する場合、短時間の最大損失熱での冷却を可能にしておく必要がある。
特開平10−66201号公報 特開2000−134701号公報 特開平9−118225号公報
The heat loss generated from each conversion circuit does not increase or decrease at the same timing, but increases or decreases at different timings. When the railway vehicle is relatively low speed, that is, when accelerating or decelerating, the heat loss generated from the inverter circuit is large, and when operating at a relatively high speed, the heat loss generated from the converter circuit is large. Therefore, when the heat dissipation from the cooling unit 9a is large, the heat dissipation from the cooling unit 9b is relatively small, and when the heat dissipation from the cooling unit 9b is large, the heat dissipation from the cooling unit 9a is relatively small. It will be small. In addition, in this apparatus, since the heat radiation side of the cooling units 9a and 9b is cooled by forced air blowing, the thermal time constant is small, so the size of each cooling unit 9a and 9b is determined by the maximum heat loss. End up. That is, since the temperature of the cooler follows in a short time according to the increase / decrease of the heat loss, when the heat loss changes according to the time, it is necessary to enable cooling with the maximum heat loss in a short time.
JP-A-10-66201 JP 2000-134701 A JP-A-9-118225

図17〜19に示した電力変換装置でも、図11〜13、あるいは、図14〜16に示した電力変換装置と同様に、複数群の変換回路毎にユニット構成とすることによって、それぞれの冷却器に印加される熱負荷が不平衡な状態になることが多く、その結果、冷却器が大形になり、装置の小形,軽量化を阻害していた。   In the power converters shown in FIGS. 17 to 19, as in the power converters shown in FIGS. 11 to 13 or FIGS. In many cases, the heat load applied to the cooler is in an unbalanced state, and as a result, the cooler becomes large and obstructs the miniaturization and weight reduction of the device.

本発明の目的は、上記の課題を解決するためになされたもので、複数個の冷却器に印加される損失熱の分担を平準化することによって、必要最小限の大きさの冷却構成を可能とすると共に、小形,軽量化を実現することのできる電力変換装置を提供することを目的とする。   An object of the present invention is to solve the above-described problem, and a cooling structure having a minimum necessary size can be realized by leveling the share of heat loss applied to a plurality of coolers. In addition, an object of the present invention is to provide a power conversion device that can be reduced in size and weight.

請求項1に係る発明は、並列に接続され、各々が独立して個別に運転可能な2群のインバータ回路を収納した電力変換装置において、前記2群のインバータ回路を構成する半導体素子を、受熱部および放熱部を有する1個の共通の冷却ユニットに取り付けたことを特徴とする。 The invention according to claim 1 is a power converter that houses two groups of inverter circuits that are connected in parallel and can be operated independently of each other. It attached to the common cooling unit which has a part and a thermal radiation part, It is characterized by the above-mentioned.

請求項2に係る発明は、並列に接続され、各々が独立して個別に運転される、可変電圧可変周波数制御を行なうインバータ回路の群と、定電圧定周波数制御を行なうインバータ回路の群の2群のインバータ回路を収納した電力変換装置において、前記2群のインバータ回路を構成する半導体素子を、受熱部および放熱部を有する1個の共通の冷却ユニットに取り付けたことを特徴とする。 The invention according to claim 2 includes two groups of inverter circuits that perform variable voltage and variable frequency control and inverter circuits that perform constant voltage and constant frequency control , which are connected in parallel and are independently operated individually. In a power conversion apparatus that houses a group of inverter circuits, the semiconductor elements constituting the two groups of inverter circuits are attached to one common cooling unit having a heat receiving portion and a heat radiating portion.

請求項3に係る発明は、請求項1または2に記載の電力変換装置において、前記冷却器受熱部の一方の面に一方のインバータ回路1相分を構成する半導体素子を、同じ冷却器受熱部のもう一方の面にもう一方のインバータ回路1相分を構成する半導体素子を取付けることを特徴とする。 Invention, in the power converter according to claim 1 or 2, the semiconductor elements constituting one phase one inverter circuit on one surface of the cooler heat receiving unit, the same cooler heat according to claim 3 A semiconductor element constituting one phase of the other inverter circuit is attached to the other surface of the part.

請求項4に係る発明は、請求項1または2に記載の電力変換装置において、前記冷却受熱部に一方のインバータ回路1相分の半導体素子ともう一方のインバータ回路1相分の半導体素子を並べて取付けることを特徴とする。 Invention, in the power converter according to claim 1 or 2, wherein the condenser to the heat receiving portion and one of the inverter circuit one phase of the semiconductor element other inverter circuit one phase of the semiconductor device according to claim 4 Are installed side by side.

本発明は、上記のように構成したことにより、複数個の冷却器に印加される損失熱の分担を平準化することによって、必要最小限の大きさの冷却構成を可能とすると共に、小形,軽量化を実現することのできる電力変換装置を提供することができる。   Since the present invention is configured as described above, the sharing of loss heat applied to a plurality of coolers is leveled, thereby enabling a cooling structure with a minimum required size, The power converter device which can implement | achieve weight reduction can be provided.

以下、本発明を図面に示す好適な実施形態に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on preferred embodiments shown in the drawings.

図1は本発明に係る電力変換装置の第1実施例の構成を示し、このうち(a)は車両の底面に取り付けられる方向から見た平面図であり、同図(b)はその底面図である。ここに示した電力変換装置7Dは、従来装置として図11に回路図を示した4群のVVVFインバータ回路に適用したもので、各群の構成部品が3個の冷却器9U,9V,9Wに相毎に分割収納された構成になっている。すなわち、4群のVVVFインバータ回路のうち、各群のU相の半導体素子8が冷却器9Uに収納され、各群のV相の半導体素子8が冷却器9Vに収納され、各群のW相の半導体素子8が冷却器9Wに収納されている。電力変換装置7Dには、さらに、4個の制御部15が収納され、それぞれ個別に4群のVVVFインバータ回路を制御するように構成されている。   FIG. 1 shows the configuration of a first embodiment of a power conversion device according to the present invention, in which (a) is a plan view seen from the direction attached to the bottom of a vehicle, and (b) is a bottom view thereof. It is. The power conversion device 7D shown here is applied to the four groups of VVVF inverter circuits whose circuit diagram is shown in FIG. 11 as a conventional device, and the components of each group include three coolers 9U, 9V, 9W. Each phase is divided and stored. That is, among the four groups of VVVF inverter circuits, the U-phase semiconductor elements 8 of each group are accommodated in the cooler 9U, the V-phase semiconductor elements 8 of each group are accommodated in the cooler 9V, and the W-phase of each group. The semiconductor element 8 is accommodated in the cooler 9W. The power conversion device 7D further accommodates four control units 15 and is configured to individually control four groups of VVVF inverter circuits.

ここで、4群のVVVFインバータ回路が健全に動作している状態では、半導体素子8から発生する損失熱は冷却器9U,9V,9Wにより外気に放出され、全ての半導体素子8は許容温度以下に冷却される。このとき、冷却器9U,9V,9Wのそれぞれには、ほぼ同量の損失熱が負荷されて半導体素子8が許容温度以下に冷却される。   Here, in a state where the four groups of VVVF inverter circuits are operating soundly, the heat loss generated from the semiconductor element 8 is released to the outside air by the coolers 9U, 9V, 9W, and all the semiconductor elements 8 are below the allowable temperature. To be cooled. At this time, each of the coolers 9U, 9V, and 9W is loaded with substantially the same amount of heat loss, and the semiconductor element 8 is cooled to an allowable temperature or less.

一方、4群のVVVFインバータ回路のうち1群が故障したことにより、この1群をシステムから切り離して運転するときは、運転を継続する残りのVVVFインバータ回路に通常時よりも大きな電流を流してシステムの性能低下を防止する必要がある。このとき、VVVFインバー夕回路を構成する半導体素子8の損失熱は増加する。しかし、3個の冷却器9U,9V,9Wの全てにほぼ均等に損失熱が負荷され、かつ、冷却器9U,9V,9Wは元来4群分の損失熱を冷却する能力を備えているため、3群分の損失熱が通常時よりも増加したとしても、十分な冷却が行われる。   On the other hand, when one group out of the four groups of VVVF inverter circuits has failed, when this group is separated from the system and operated, a larger current than normal is supplied to the remaining VVVF inverter circuits that continue operation. It is necessary to prevent system performance degradation. At this time, the heat loss of the semiconductor element 8 constituting the VVVF inverter circuit increases. However, all three coolers 9U, 9V, and 9W are loaded with heat loss almost evenly, and the coolers 9U, 9V, and 9W originally have the ability to cool the heat loss for four groups. Therefore, even if the heat loss for the three groups increases from the normal time, sufficient cooling is performed.

かくして、全ての群のVVVFインバータ回路が健全な通常運転時はもちろん、故障により1群のVVVFインバータ回路を切り離して残りの群のVVVFインバータ回路で運転する場合でも、複数個の冷却器全体が効率良く冷却性能を発揮する。一般的に、冷却器の大きさが電力変換装置の外形に占める比率は大きく、本発明によれば冷却系が効率良く冷却作用をするため、冷却器全体の小形化が可能になると共に、電力変換装置全体の小形軽量化が可能となる。   Thus, not only during normal normal operation of all groups of VVVF inverter circuits, but also when one group of VVVF inverter circuits is disconnected due to a failure and operated with the remaining groups of VVVF inverter circuits, the entire plurality of coolers are efficient. Good cooling performance. In general, the ratio of the size of the cooler to the outer shape of the power converter is large, and according to the present invention, the cooling system efficiently cools down, so that the entire cooler can be downsized and the power can be reduced. The entire conversion device can be reduced in size and weight.

図2は本発明に係る電力変換装置の第2実施例の構成を示し、このうち(a)は車両の底面に取り付けられる方向から見た平面図であり、(b)はその底面図である。ここに示した電力変換装置7Eは図14に回路図で示した2群のVVVFインバータ回路と1群のCVCFインバータ回路をそれぞれ構成する半導体素子8が相毎に分割収納されている。すなわち、3個の冷却器9U,9V,9Wのうち、冷却器9UにはVVVFインバータ回路のU相の2群分の半導体素子8とCVCFインバータ回路のU相の1群分の半導体素子8とが収納され、冷却器9VにはVVVFインバータ回路のV相の2群分の半導体素子8とCVCFインバータ回路のV相の1群分の半導体素子8とが収納され、冷却器9WにはVVVFインバータ回路のW相の2群分の半導体素子8とCVCFインバータ回路のW相の1群分の半導体素子8とが収納されている。この電力変換装置7Eには3個の制御部15も収納され、それぞれ個別に2群のVVVFインバータ回路と1群のCVCFインバータ回路を制御するように構成されている。   FIG. 2 shows the configuration of a second embodiment of the power converter according to the present invention, in which (a) is a plan view seen from the direction attached to the bottom of the vehicle, and (b) is a bottom view thereof. . In the power converter 7E shown here, the semiconductor elements 8 respectively constituting the two groups of VVVF inverter circuits and the group of CVCF inverter circuits shown in the circuit diagram of FIG. 14 are separately housed for each phase. That is, out of the three coolers 9U, 9V, and 9W, the cooler 9U includes two U-phase semiconductor elements 8 of the VVVF inverter circuit and one U-phase semiconductor element 8 of the CVCF inverter circuit. In the cooler 9V, two V-phase semiconductor elements 8 of the VVVF inverter circuit and one V-phase semiconductor element 8 in the CVCF inverter circuit are accommodated, and in the cooler 9W, the VVVF inverter The semiconductor elements 8 for two groups of the W phase of the circuit and the semiconductor elements 8 for one group of the W phase of the CVCF inverter circuit are housed. This power conversion device 7E also includes three control units 15, each configured to control two groups of VVVF inverter circuits and one group of CVCF inverter circuits.

ここで、2群のVVVFインバータ回路と1群のCVCFインバータ回路の回路の全てが健全な状態では、それぞれの冷却器9U,9V,9Wにほぼ同量の損失熱が負荷され、全ての半導体素子8から発生する損失熱は冷却器9U,9V,9Wにより外気に放出され、半導体素子8が許容温度以下に冷却される。   Here, when all of the circuits of the second group of VVVF inverter circuits and the first group of CVCF inverter circuits are in a healthy state, each of the coolers 9U, 9V, 9W is loaded with substantially the same amount of heat loss, and all the semiconductor elements Heat loss generated from the heat 8 is released to the outside air by the coolers 9U, 9V, and 9W, and the semiconductor element 8 is cooled to an allowable temperature or lower.

一方、CVCFインバータ回路が故障した場合、VVVFインバータ回路の1群がCVCFインバータ回路に切り替えられる。このとき、運転を続行する残りの1群のVVVFインバータ回路に通常時よりも大きな電流を流し、システムの性能低下を防止する必要がある。従って、運転を続行する残りのVVVFインバータ回路に、通常時よりも大きな電流を流してシステムの性能低下を防止する必要がある。これにより1個の半導体素子8から発生する損失熱は全てが健全な運転時よりも大きくなる。しかし、3個の冷却器9U,9V,9Wの全てにほぼ均等に損失熱が負荷され、かつ、冷却器9U,9V,9Wは元来2群分のVVVFインバータ回路の損失熱と、1群のCVCFインバータ回路の各半導体素子8の損失熱を放散する能力を備えているため、運転を続行する1群分の損失熱が通常時よりも増加したとしても、十分な冷却が行われる。   On the other hand, when the CVCF inverter circuit fails, a group of VVVF inverter circuits is switched to the CVCF inverter circuit. At this time, it is necessary to supply a larger current to the remaining one group of VVVF inverter circuits that continue to operate so as to prevent the system performance from being deteriorated. Therefore, it is necessary to prevent the system performance from deteriorating by flowing a larger current than usual in the remaining VVVF inverter circuit for continuing the operation. As a result, the heat loss generated from one semiconductor element 8 is all greater than during healthy operation. However, all three coolers 9U, 9V, and 9W are loaded with heat loss almost evenly, and the coolers 9U, 9V, and 9W originally have heat loss from the VVVF inverter circuit for two groups and one group. The CVCF inverter circuit is provided with the ability to dissipate the heat loss of each semiconductor element 8, so that even if the heat loss for one group that continues operation increases more than usual, sufficient cooling is performed.

かくして、第2実施例によれば、1群のCVCFインバータ回路が故障した場合でも、全ての冷却器が半導体素子の損失熱を放熱する働きをしており、冷却系に無駄のない、効率的な冷却システムが実現できる。この結果、冷却器全体の小形化が可能になると共に、電力変換装置全体の小形軽量化が可能となる。   Thus, according to the second embodiment, even when a group of CVCF inverter circuits fails, all the coolers function to dissipate the heat loss of the semiconductor elements, and the cooling system is efficient and efficient. A simple cooling system can be realized. As a result, the entire cooler can be reduced in size, and the entire power converter can be reduced in size and weight.

図3は本発明に係る電力変換装置の第3実施例の構成を示し、このうち(a)は車両の底面に取り付けられる方向から見た平面図であり、同図(b)は車両の進行方向から見た側面図である。ここに示した電力変換装置7Fは従来装置として図17に回路図で示した装置に適用したものであり、図中、図18と同一の要素には同一の符号を付してその説明を省略する。ここで、電力変換装置7Fは電動送風機14の送風経路に装着された冷却ユニット9cを備えている。この冷却ユニット9c上にインバータ回路を構成する半導体素子8がU,V,Wの相毎に収納されて送風経路の幅方向に3分割して装着され、コンバータ回路を構成する半導体素子8が正側と負側とに分割され、電動送風機14から見てインバータ回路を構成する半導体素子8の後方に、送風経路の幅方向に2分割して装着されている。   FIG. 3 shows the configuration of a third embodiment of the power conversion apparatus according to the present invention, in which (a) is a plan view seen from the direction of being attached to the bottom of the vehicle, and (b) is the progression of the vehicle. It is the side view seen from the direction. The power conversion device 7F shown here is applied to the device shown in the circuit diagram of FIG. 17 as a conventional device. In the figure, the same elements as in FIG. To do. Here, the power conversion device 7 </ b> F includes a cooling unit 9 c attached to the blowing path of the electric blower 14. On this cooling unit 9c, the semiconductor element 8 constituting the inverter circuit is housed for each phase of U, V, W and divided into three parts in the width direction of the blower path, and the semiconductor element 8 constituting the converter circuit is positively connected. It is divided into a side and a negative side, and is mounted in two in the width direction of the blower path behind the semiconductor element 8 constituting the inverter circuit when viewed from the electric blower 14.

以下にこの実施例の動作を説明する。低速時つまり加減速時には、主にインバータ回路の半導体素子8から損失熱が発生し、コンバータ回路からの損失熱は小さい。高速の運転時には、主にコンバータ回路の半導体素子8から損失熱が発生し、インバータ回路の半導体素子からの損失熱は小さい。以上のように、コンバータ回路より発生する損失熱とインバータ回路より発生する損失熱は、同じタイミングで増減することなく、異なったタイミングで損失熱が増減する。冷却ユニットは、コンバータ回路とインバータ回路をそれぞれ幅方向に均等に分割配置し、かつ、送風経路の前後に配置したことにより、全ての速度域においてぼぼ均等の損失熱を処理することができる。   The operation of this embodiment will be described below. At low speed, that is, at acceleration / deceleration, heat loss is mainly generated from the semiconductor element 8 of the inverter circuit, and heat loss from the converter circuit is small. During high-speed operation, heat loss is mainly generated from the semiconductor element 8 of the converter circuit, and heat loss from the semiconductor element of the inverter circuit is small. As described above, the heat loss generated from the converter circuit and the heat loss generated from the inverter circuit increase or decrease at different timings without increasing or decreasing at the same timing. In the cooling unit, the converter circuit and the inverter circuit are equally divided and arranged in the width direction, and are arranged before and after the air blowing path, so that it is possible to process almost uniform heat loss in all speed ranges.

このように、速度域によって異なる損失熱を発生するコンバータ回路とインバータ回路とを送風経路の前後方向に配置することにより、冷却ユニットには各速度域でぼぼ均等な損失熱が負荷され、冷却器全体で効率良く冷却性能が発揮され、冷却系に無駄のない、効率的な冷却システムが実現できる。   In this way, by arranging the converter circuit and the inverter circuit that generate heat loss that varies depending on the speed range in the front-rear direction of the air flow path, the cooling unit is loaded with heat loss that is substantially uniform in each speed range. As a whole, the cooling performance is efficiently demonstrated, and an efficient cooling system without waste in the cooling system can be realized.

かくして、第3実施例によっても、冷却器全体の小形化が可能になると共に、電力変換装置全体の小形軽量化が可能となる。   Thus, according to the third embodiment, it is possible to reduce the size of the entire cooler and to reduce the size and weight of the entire power conversion device.

図4は本発明に係る電力変換装置の第4実施例を示し、図11に示した4群のインバータ回路4の各半導体素子8を、共通の冷却ユニットに取り付けた例で、(a)は詳細な構成を示す平面図で、(b)はその断面図である。これら各図において、冷却ユニット30はその表面が平坦な受熱部31と、その裏面に形成された多数の放熱フィンでなる放熱部32とを備えている。そして、受熱部31の表面に4群のインバータ回路を構成する半導体素子8が、群毎に2行2列に装着されている。また、受熱部31の内部には4本のヒートパイプ33が、この受熱部31の均熱化を図るように適切な間隔にて平行に埋設されている。
ここで、冷却ユニット30の受熱部31に埋設されたヒートパイプ33は、受熱部31全体を熱的に平準化する効果を有するが、第1及び第2実施例にて説明した如く、故障によって切り離されて損失熱が印加されなくなった半導体素子の取付部にも熱輸送されるため、運転を続行する半導体素子8の損失熱を受熱部31全体に熱輸送して冷却が行われる。
FIG. 4 shows a fourth embodiment of the power conversion device according to the present invention, in which each semiconductor element 8 of the four groups of inverter circuits 4 shown in FIG. 11 is attached to a common cooling unit. It is a top view which shows a detailed structure, (b) is the sectional drawing. In each of these drawings, the cooling unit 30 includes a heat receiving portion 31 having a flat surface and a heat radiating portion 32 made up of a number of heat radiating fins formed on the back surface. And the semiconductor element 8 which comprises 4 groups of inverter circuits on the surface of the heat receiving part 31 is mounted | worn with 2 rows 2 columns for every group. In addition, four heat pipes 33 are embedded in the heat receiving portion 31 in parallel at appropriate intervals so as to equalize the heat receiving portion 31.
Here, the heat pipe 33 embedded in the heat receiving part 31 of the cooling unit 30 has the effect of thermally leveling the entire heat receiving part 31, but as described in the first and second embodiments, Since the heat is also transported to the mounting portion of the semiconductor element that has been cut off and no loss heat is applied, the heat loss of the semiconductor element 8 that continues to operate is transported to the entire heat receiving section 31 to be cooled.

かくして、冷却ユニット30の受熱部31に埋設されたヒートパイプ33により、健全時の運転はもちろん、故障時の運転においても、受熱部31の温度を平準化し、冷却ユニット30全体で複数群のインバータ回路の半導体素子8の損失熱を放散し、冷却系に無駄のない効率的な冷却システムが実現できる。これによって、冷却器全体の小形化が可能になると共に、電力変換装置全体の小形軽量化が可能となる。   Thus, the heat pipe 33 embedded in the heat receiving section 31 of the cooling unit 30 can equalize the temperature of the heat receiving section 31 not only during a sound operation but also during a failure, so that the cooling unit 30 as a whole can be divided into a plurality of inverters. The heat loss of the semiconductor element 8 of the circuit is dissipated, and an efficient cooling system without waste in the cooling system can be realized. As a result, the entire cooler can be reduced in size, and the entire power converter can be reduced in size and weight.

図5は本発明に係る電力変換装置の第5実施例を示し、図11に示した4群のインバータ回路4の各半導体素子8を、共通の冷却ユニットに取り付けた例で、(a)は詳細な構成を示す平面図で、(b)はその断面図である。これら各図において、冷却ユニット40は全体が扁平な箱型の受熱部41と、この受熱部41を略半分に分けた一方の外周部に多数の冷却フィンが連続的に形成されてなる放熱部42とを備え、残りの半分の表面に4群のインバータ回路を構成する半導体素子8が、群毎に2行2列に装着されている。また、受熱部41の内部にはフロリナート又は水でなる冷媒43が封入されている。   FIG. 5 shows a fifth embodiment of the power converter according to the present invention, in which each semiconductor element 8 of the four groups of inverter circuits 4 shown in FIG. 11 is attached to a common cooling unit. It is a top view which shows a detailed structure, (b) is the sectional drawing. In each of these drawings, the cooling unit 40 has a flat-shaped box-shaped heat receiving portion 41 and a heat radiating portion in which a large number of cooling fins are continuously formed on one outer peripheral portion of the heat receiving portion 41 divided into approximately half. 42, and the semiconductor elements 8 constituting the four groups of inverter circuits are mounted in two rows and two columns for each group on the other half of the surface. In addition, a refrigerant 43 made of fluorinate or water is sealed inside the heat receiving portion 41.

この冷却器ユニット40は沸騰冷却タイプであり、冷媒43によって半導体素子8の取付面の温度を効率的に平準化することができる。これによって、冷却器全体の小形化が可能になると共に、電力変換装置全体の小形軽量化が可能となる。   The cooler unit 40 is a boiling cooling type, and the temperature of the mounting surface of the semiconductor element 8 can be leveled efficiently by the refrigerant 43. As a result, the entire cooler can be reduced in size, and the entire power converter can be reduced in size and weight.

図6は本発明に係る電力変換装置の第6実施例を示し、図11に示した4群のインバータ回路を構成する半導体素子8を共通に装着する冷却ユニットの構成例で、(a)は詳細な構成を示す平面図で、(b)はその断面図である。これら各図において、冷却ユニット50は全体が扁平な箱型の受熱部51と、この受熱部51を略半分に分けた一方の外周部に多数の冷却フィンが連続的に形成された放熱部52とを備え、残りの半分の表面に6個の半導体素子8(図11に示した2群のインバータを構成するものに対応している)が2行3列に装着され、裏面にも6個の半導体素子8(図11に示した2群のインバータを構成するものに対応している)が表面と同様に装着されている。また、受熱部51の内部には冷媒53が封入されている。   FIG. 6 shows a sixth embodiment of the power conversion device according to the present invention, and is a configuration example of a cooling unit in which the semiconductor elements 8 constituting the four groups of inverter circuits shown in FIG. It is a top view which shows a detailed structure, (b) is the sectional drawing. In each of these drawings, the cooling unit 50 includes a box-shaped heat receiving portion 51 that is flat as a whole, and a heat radiating portion 52 in which a large number of cooling fins are continuously formed on one outer peripheral portion that divides the heat receiving portion 51 into approximately half. And six semiconductor elements 8 (corresponding to those constituting the two groups of inverters shown in FIG. 11) are mounted in two rows and three columns on the other half surface, and six on the back surface. The semiconductor elements 8 (corresponding to those constituting the two groups of inverters shown in FIG. 11) are mounted in the same manner as the surface. A refrigerant 53 is sealed inside the heat receiving portion 51.

この冷却ユニット50も沸騰冷却タイプであり、冷媒53によって半導体素子8の取付面の温度を効率的に平準化することができる。この場合、受熱部51の表面と裏面とに半導体素子8が分散配置されているため、図5に示した冷却ユニット40と比較して冷却効率がより高められ、さらに、半導体素子8を電気的に接続する導体の配置が単純化できるという効果も得られる。   This cooling unit 50 is also a boiling cooling type, and the temperature of the mounting surface of the semiconductor element 8 can be leveled efficiently by the refrigerant 53. In this case, since the semiconductor elements 8 are dispersedly arranged on the front and back surfaces of the heat receiving portion 51, the cooling efficiency is further improved as compared with the cooling unit 40 shown in FIG. There is also an effect that the arrangement of the conductors connected to can be simplified.

図7は本発明に係る電力変換装置の第7実施例を示し、図11に示した4群のインバータ回路4の各半導体素子8を、共通の冷却ユニットに取り付けた例であり、(a)は詳細な構成を示す平面図で、(b)はその断面図である。これら各図において、冷却ユニット60は全体が扁平な箱型の受熱部61と、この受熱部61を略半分に分けた一方の外周部に多数の冷却フィンが連続的に形成されてなる放熱部62とを備え、残りの半分の表面に各相の半導体素子8a及び8bが受熱部61の横幅方向に2行6列に、すなわち、相毎に装着されている。また、受熱部61の内部には冷媒63が封入されている。   FIG. 7 shows a seventh embodiment of the power conversion device according to the present invention, in which each semiconductor element 8 of the four groups of inverter circuits 4 shown in FIG. 11 is attached to a common cooling unit. Is a plan view showing a detailed configuration, and (b) is a cross-sectional view thereof. In each of these drawings, the cooling unit 60 includes a box-shaped heat receiving portion 61 that is flat as a whole, and a heat radiating portion in which a large number of cooling fins are continuously formed on one outer peripheral portion obtained by dividing the heat receiving portion 61 into approximately half. 62, and the semiconductor elements 8a and 8b of the respective phases are mounted in two rows and six columns in the width direction of the heat receiving portion 61, that is, for each phase, on the remaining half of the surface. A refrigerant 63 is sealed inside the heat receiving portion 61.

なお、この実施例は図11に示す4群のインバータ回路のうち、2群のインバータ回路と残りのインバータ回路とが、種類又は定格の異なる半導体素子を用いたことに対応して、2群のインバータ回路の半導体素子8aがU相分、V相分、W相分の順に間隔をおいて配置され、他の2群のインバータ回路の半導体素子8bがU相分、V相分、W相分の順にそれぞれ半導体素子8aに隣接して配置されている。   This embodiment corresponds to the fact that, among the four groups of inverter circuits shown in FIG. 11, the two groups of inverter circuits and the remaining inverter circuits use semiconductor elements of different types or ratings. The semiconductor elements 8a of the inverter circuit are arranged at intervals in the order of U phase, V phase, and W phase, and the semiconductor elements 8b of the other two groups of inverter circuits are U phase, V phase, and W phase. Are arranged adjacent to the semiconductor element 8a in this order.

この冷却ユニット60においても、故障時における受熱部61の温度が一部に偏ることなく平準化され、図5又は図6に示した冷却器よりも効率的な冷却システムが実現できる。   Also in this cooling unit 60, the temperature of the heat receiving portion 61 at the time of failure is leveled without being partially biased, and a cooling system more efficient than the cooler shown in FIG. 5 or FIG. 6 can be realized.

図8は本発明に係る電力変換装置の第8実施例を示し、図11に示した4群のインバータ回路4の各半導体素子8を、共通の冷却ユニットに取り付けた例であり、(a)は詳細な構成を示す平面図で、(b)はその側面図である。これら各図において、冷却ユニット70は全体が扁平な箱型の受熱部71と、この受熱部71を略半分に分けた一方の外周部に多数の冷却フィンが連続的に形成されてなる放熱部72とを備え、残りの半分の表面に前述した各相の半導体素子8a及び8bが受熱部61の横幅方向に2行6列に配置されている。また、受熱部61の内部には冷媒63が封入されている。   FIG. 8 shows an eighth embodiment of the power converter according to the present invention, in which each semiconductor element 8 of the four groups of inverter circuits 4 shown in FIG. 11 is attached to a common cooling unit. Is a plan view showing a detailed configuration, and (b) is a side view thereof. In each of these drawings, the cooling unit 70 has a flat-shaped box-shaped heat receiving portion 71 and a heat radiating portion in which a number of cooling fins are continuously formed on one outer peripheral portion obtained by dividing the heat receiving portion 71 into approximately half. 72, and the semiconductor elements 8a and 8b of the respective phases described above are arranged in 2 rows and 6 columns in the lateral width direction of the heat receiving portion 61 on the remaining half of the surface. A refrigerant 63 is sealed inside the heat receiving portion 61.

ここに示した冷却ユニット70は、半導体素子の電気接続用端子の高さが異なる際の高さ位置を揃えるために、高さの差ΔHだけ半導体素子8aの取付面を半導体素子8bの取付面よりも低くなるように受熱部71の表面に凹凸が形成されている。これによって、半導体素子8a,8bの電気接続用端子の高さが揃えられ、直線状の接続導体21によってそのまま接続することができ、半導体素子間の電気接続が容易になると同時に、構成が簡易化されると言う効果も得られる。   In the cooling unit 70 shown here, the mounting surface of the semiconductor element 8a is replaced by the mounting surface of the semiconductor element 8b by the height difference ΔH in order to align the height positions when the heights of the electrical connection terminals of the semiconductor elements are different. Irregularities are formed on the surface of the heat receiving portion 71 so as to be lower. As a result, the heights of the electrical connection terminals of the semiconductor elements 8a and 8b are made uniform and can be connected as they are by the straight connection conductors 21, and the electrical connection between the semiconductor elements becomes easy and the configuration is simplified. The effect of being done is also obtained.

図9は本発明に係る電力変換装置の第9実施例を示し、特に図3に示す第3実施例を構成する冷却ユニットの変形例を示したものである。図中(a)は冷却ユニットの詳細な構成と半導体素子の取付状態を示す平面図であり、(b)はその側面図である。ここで、冷却ユニット80は平板状の受熱部81を備えている。この受熱部81はその内部にヒートパイプを埋設したものであっても、あるいは、箱型に形成して内部に冷媒を密封する構造のものであってもよい。この受熱部81の表面にはインバータを構成する半導体素子8aと、コンバータを構成する半導体素子8bとが実装され、受熱部81の裏面には多数の冷却フィンを風の流れる方向に並設した放熱部82が形成されている。   FIG. 9 shows a ninth embodiment of the power conversion apparatus according to the present invention, and particularly shows a modification of the cooling unit constituting the third embodiment shown in FIG. (A) is a top view which shows the detailed structure of a cooling unit and the attachment state of a semiconductor element, and (b) is the side view. Here, the cooling unit 80 includes a flat heat receiving portion 81. The heat receiving portion 81 may have a heat pipe embedded therein, or may have a structure that is formed in a box shape and seals the refrigerant therein. A semiconductor element 8a constituting an inverter and a semiconductor element 8b constituting a converter are mounted on the surface of the heat receiving portion 81, and heat radiation is made by arranging a large number of cooling fins in parallel on the back surface of the heat receiving portion 81 in the wind flow direction. A portion 82 is formed.

この冷却ユニット80の受熱部81の表面に取り付けられる半導体素子8aは、3群のインバータ回路を構成するU相分の3組の半導体素子U1,U2,U3と、V相分の3組の半導体素子V1,V2,V3と、W相分の3組の半導体素子W1,W2,W3とを含み、半導体素子8bは3群のコンバータ回路を構成する3組の半導体素子Q1,Q2,Q3を含んでいる。   The semiconductor element 8a attached to the surface of the heat receiving portion 81 of the cooling unit 80 includes three sets of semiconductor elements U1, U2, U3 for the U phase constituting three groups of inverter circuits and three sets of semiconductors for the V phase. The elements V1, V2, V3 and three sets of semiconductor elements W1, W2, W3 for the W phase are included, and the semiconductor element 8b includes three sets of semiconductor elements Q1, Q2, Q3 constituting three groups of converter circuits. It is out.

これらの半導体素子は、風が放熱部82を通り抜ける方向で見て、インバータ回路のU相分の半導体素子U1,U2,U3と、V相分の半導体素子V1,V2,V3と、W相分の半導体素子W1,W2,W3とが順次列状に配置され、その側方にコンバータ回路の半導体素子Q1,Q2,Q3が一列に配置されている。この実施例の特徴は、風の流れる方向にU相分の半導体素子がU1,U2,U3の順に配置されているのに対して、V相分の半導体素子はV3,V1,V2の順に配置され、W相分の半導体素子がW2,W3,W1の順に配置されている点にある。   These semiconductor elements are seen in the direction in which the wind passes through the heat radiating portion 82, the semiconductor elements U 1, U 2, U 3 for the U phase of the inverter circuit, the semiconductor elements V 1, V 2, V 3 for the V phase, and the W phase component. The semiconductor elements W1, W2, and W3 are sequentially arranged in a row, and the semiconductor elements Q1, Q2, and Q3 of the converter circuit are arranged in a row on the side thereof. The feature of this embodiment is that the U-phase semiconductor elements are arranged in the order of U1, U2 and U3 in the wind flow direction, whereas the V-phase semiconductor elements are arranged in the order of V3, V1 and V2. The semiconductor elements for the W phase are arranged in the order of W2, W3 and W1.

周知の如く、冷却風が冷却ユニット80の冷却フィン82の間を通り抜ける間に半導体素子の損失熱によって、冷却風の温度は次第に上昇する。従って、上流に配置された半導体素子の冷却効率は高く、下流に配置された半導体素子の冷却効率は低い。そこで、上述したように、インバータ各群の半導体素子を冷却風の通過方向に規則的にその位置を変えることによって、半導体素子の温度上昇をインバータの群毎に平準化することができ、これによって効率的な冷却システムを実現することができる。   As is well known, the temperature of the cooling air gradually rises due to the heat loss of the semiconductor elements while the cooling air passes between the cooling fins 82 of the cooling unit 80. Therefore, the cooling efficiency of the semiconductor element arranged upstream is high, and the cooling efficiency of the semiconductor element arranged downstream is low. Therefore, as described above, the temperature of the semiconductor elements can be leveled for each group of inverters by changing the position of the semiconductor elements in each group of the inverters regularly in the cooling air passage direction. An efficient cooling system can be realized.

また、故障によって、1群のインバータを切り離して運転する際には、このインバータ回路の半導体素子からの損失熱が無くなり、残りのインバータの半導体素子の損失熱は増加するが、冷却能力に余裕があるため、故障時の冗長性に優れたシステムを構成することができる。   In addition, when a group of inverters is separated and operated due to a failure, the heat loss from the semiconductor elements of this inverter circuit is eliminated and the heat loss of the semiconductor elements of the remaining inverters increases, but there is a margin in the cooling capacity. Therefore, it is possible to configure a system with excellent redundancy at the time of failure.

図10は本発明に係る電力変換装置の第10実施例を示し、密閉室部分に隣接して配置される開放室部分に電動送風機を配置すると共に、2組の冷却ユニットと、これに関連する2組の周辺回路を風の流れる方向に並べて配置した構成であり、(a)はその平面図を、(b)はその側面図を示している。これら各図において、2組の冷却ユニット90a及び90bは図4に示した冷却ユニットと同様な形状を有し、冷却ユニット90aの受熱部の表面に6個の半導体素子8aが装着され、冷却ユニット90bの受熱部の表面に6個の半導体素子8bが装着されている。これらの冷却ユニット90a及び90bは半導体素子8a及び8bが密閉室部分12側に収納され、冷却フィンでなる放熱部が開放室部分13側に位置するように取り付けられている。この場合、冷却ユニット90a及び90bは電動送風機14によって風が送り込まれる方向と直交する方向に並べて配置される。一方、冷却ユニット90aに装着される半導体素子8aに関連する周辺回路22aが風の流れる方向で見て冷却ユニット90bの下流側の開放室部分に装着され、反対に、冷却ユニット90bに装着される半導体素子8bに関連する周辺回路22bが風の流れる方向で見て冷却ユニット90aの下流側の開放室部分に装着されている。すなわち、互いに関連する冷却ユニットと周辺回路とが、相互にその位置を入れ替えて実装されている。   FIG. 10 shows a tenth embodiment of the power conversion device according to the present invention, in which an electric blower is disposed in an open chamber portion disposed adjacent to the sealed chamber portion, and two sets of cooling units and the related units are related thereto. In this configuration, two sets of peripheral circuits are arranged side by side in the wind flow direction, (a) shows a plan view thereof, and (b) shows a side view thereof. In each of these drawings, two sets of cooling units 90a and 90b have the same shape as the cooling unit shown in FIG. 4, and six semiconductor elements 8a are mounted on the surface of the heat receiving portion of the cooling unit 90a. Six semiconductor elements 8b are mounted on the surface of the heat receiving portion 90b. These cooling units 90a and 90b are mounted such that the semiconductor elements 8a and 8b are housed on the sealed chamber portion 12 side, and a heat radiating portion made of cooling fins is located on the open chamber portion 13 side. In this case, the cooling units 90 a and 90 b are arranged side by side in a direction orthogonal to the direction in which the wind is sent by the electric blower 14. On the other hand, the peripheral circuit 22a related to the semiconductor element 8a attached to the cooling unit 90a is attached to the open chamber portion on the downstream side of the cooling unit 90b when viewed in the direction of the air flow, and conversely, attached to the cooling unit 90b. A peripheral circuit 22b related to the semiconductor element 8b is mounted in an open chamber portion on the downstream side of the cooling unit 90a when viewed in the direction of air flow. That is, the cooling unit and the peripheral circuit related to each other are mounted with their positions interchanged.

このように、周辺回路22a及び22bを互いに他の群の下流に配置することにより、複数群の変換回路が冷却風の流れに対して共通化され、冷却風の温度上昇が平準化される。また、図9に示した第9実施例と同様、故障によって一群を切り離す際は、周辺回路22a,22bとしては上流側の半導体素子8a,8bが装着された冷却ユニット90b,90aの損失熱が少なくなり、残りの群の運転により、発熱量が増加しても冷却能力に余裕があるため、故障時の冗長性に優れたシステムを構成することができる。   Thus, by arranging the peripheral circuits 22a and 22b downstream of each other group, a plurality of groups of conversion circuits are made common to the flow of the cooling air, and the temperature rise of the cooling air is leveled. Similarly to the ninth embodiment shown in FIG. 9, when a group is separated due to a failure, the heat loss of the cooling units 90b and 90a to which the upstream side semiconductor elements 8a and 8b are attached as the peripheral circuits 22a and 22b. With the remaining groups operating, there is a sufficient cooling capacity even if the amount of heat generated increases, so that a system with excellent redundancy at the time of failure can be configured.

本発明に係る電力変換装置の第1実施例を車両の底面に取り付けられる方向から見た平面図及びその底面図。The top view and the bottom view which looked at the 1st example of the power converter concerning the present invention from the direction attached to the bottom of vehicles. 本発明に係る電力変換装置の第2実施例を車両の底面に取り付けられる方向から見た平面図及びその底面図。The top view and the bottom view which looked at the 2nd example of the power converter concerning the present invention from the direction attached to the bottom of vehicles. 本発明に係る電力変換装置の第3実施例を車両の底面に取り付けられる方向から見た平面図及びその側面図。The top view and the side view which looked at 3rd Example of the power converter device which concerns on this invention from the direction attached to the bottom face of a vehicle. 本発明に係る電力変換装置の第4実施例を構成する冷却ユニット及び半導体素子の取り付け状態を示す平面図及びその断面図。The top view which shows the attachment state of the cooling unit which comprises 4th Example of the power converter device which concerns on this invention, and a semiconductor element, and its sectional drawing. 本発明に係る電力変換装置の第5実施例を構成する冷却ユニット及び半導体素子の取り付け状態を示す平面図及びその断面図。The top view which shows the attachment state of the cooling unit which comprises 5th Example of the power converter device which concerns on this invention, and a semiconductor element, and its sectional drawing. 本発明に係る電力変換装置の第6実施例を構成する冷却ユニット及び半導体素子の取り付け状態を示す平面図及びその断面図。The top view which shows the attachment state of the cooling unit which comprises 6th Example of the power converter device which concerns on this invention, and a semiconductor element, and its sectional drawing. 本発明に係る電力変換装置の第7実施例を構成する冷却ユニット及び半導体素子の取り付け状態を示す平面図及びその断面図。The top view which shows the attachment state of the cooling unit which comprises 7th Example of the power converter device which concerns on this invention, and a semiconductor element, and its sectional drawing. 本発明に係る電力変換装置の第8実施例を構成する冷却ユニット及び半導体素子の取り付け状態を示す平面図及びその側面図。The top view and its side view which show the attachment state of the cooling unit which comprises the 8th Example of the power converter device which concerns on this invention, and a semiconductor element. 本発明に係る電力変換装置の第9実施例を構成する冷却ユニット及び半導体素子の取り付け状態を示す平面図及びその側面図。The top view which shows the attachment state of the cooling unit and semiconductor element which comprise 9th Example of the power converter device which concerns on this invention, and its side view. 本発明に係る電力変換装置の第10実施例を構成する冷却ユニット及び半導体素子の取り付け状態を示す平面図及びその側面図。The top view which shows the attachment state of the cooling unit and semiconductor element which comprise 10th Example of the power converter device which concerns on this invention, and its side view. 従来の電力変換装置として、4群のVVVFインバータ回路を有する鉄道車両駆動用の電力変換装置の構成を示す回路図。The circuit diagram which shows the structure of the power converter device for a rail vehicle drive which has a 4 group VVVF inverter circuit as a conventional power converter device. 図11に示した電力変換装置を鉄道車両の床下に装着した状態を示す斜視図及び車両の進行方向から見た側面図。The perspective view which shows the state which mounted | worn the power converter device shown in FIG. 11 under the floor of a railway vehicle, and the side view seen from the advancing direction of the vehicle. 図11に示した電力変換装置を車両の底面に取り付けられる方向から見た平面図及びその底面図。The top view which looked at the power converter device shown in FIG. 11 from the direction attached to the bottom face of a vehicle, and its bottom view. 従来の他の電力変換装置として、2群のVVVFインバータ回路と、1群のCVCFインバータ回路を含む鉄道車両駆動用の電力変換装置の構成を示す回路図。The circuit diagram which shows the structure of the power converter device for a railway vehicle drive containing 2 groups of VVVF inverter circuits and 1 group of CVCF inverter circuits as another conventional power converter device. 図14に示した電力変換装置を鉄道車両の床下に装着した状態を示す斜視図及び車両の進行方向から見た側面図。The perspective view which shows the state which mounted | wore the underfloor of the rail vehicle with the power converter device shown in FIG. 14, and the side view seen from the advancing direction of the vehicle. 図14に示した電力変換装置を車両の底面に取り付けられる方向から見た平面図及びその底面図。The top view which looked at the power converter device shown in FIG. 14 from the direction attached to the bottom face of a vehicle, and its bottom view. 従来のもう一つ他の電力変換装置として、複数群の変換回路を収納した車両駆動用の電力変換装置の回路図。The circuit diagram of the power converter device for a vehicle drive which accommodated the multiple groups conversion circuit as another conventional power converter device. 図17に示した電力変換装置を車両底部に装着する側から見た平面図及び車両の進行方向から見た側面図。The top view seen from the side which mounts the power converter device shown in FIG. 17 in a vehicle bottom part, and the side view seen from the advancing direction of the vehicle. 図17に示した電力変換装置の縦断面図。The longitudinal cross-sectional view of the power converter device shown in FIG.

符号の説明Explanation of symbols

1 パンタグラフ
2 遮断機
3 フィルタリアクトル
4 VVVFインバータ回路
5 フィルタコンデンサ
6 誘導電動機
7A〜7F 電力変換装置
8,8a,8b 半導体素子
9,9U,9V,9W 冷却器
9a,9b,9c 冷却ユニット
12 密閉室部分
13 開放室部分
14 電動送風機
15 制御部
17 CVCFインバータ回路
18 コンバータ回路
19 インバータ回路
21 接続導体
22a,22b 周辺回路
30,40,50,60,70,80,90a,90b 冷却ユニット
31,41,51,61,71,81 受熱部
32,42,52,62,72,82 放熱部
33 ヒートパイプ
43,53,63 冷媒
DESCRIPTION OF SYMBOLS 1 Pantograph 2 Circuit breaker 3 Filter reactor 4 VVVF inverter circuit 5 Filter capacitor 6 Induction motors 7A-7F Power converters 8, 8a, 8b Semiconductor elements 9, 9U, 9V, 9W Coolers 9a, 9b, 9c Cooling unit 12 Sealed chamber Part 13 Opening room part 14 Electric blower 15 Control unit 17 CVCF inverter circuit 18 Converter circuit 19 Inverter circuit 21 Connection conductors 22a and 22b Peripheral circuits 30, 40, 50, 60, 70, 80, 90a, 90b Cooling units 31, 41, 51, 61, 71, 81 Heat receiving part 32, 42, 52, 62, 72, 82 Heat radiating part 33 Heat pipe
43, 53, 63 Refrigerant

Claims (4)

並列に接続され、各々が独立して個別に運転可能な2群のインバータ回路を収納した電力変換装置において、
前記2群のインバータ回路を構成する半導体素子を、受熱部および放熱部を有する1個の共通の冷却ユニットに取り付けたことを特徴とする電力変換装置。
In a power conversion device that houses two groups of inverter circuits that are connected in parallel and can be operated independently of each other ,
A power conversion device, wherein the semiconductor elements constituting the two groups of inverter circuits are attached to one common cooling unit having a heat receiving portion and a heat radiating portion.
並列に接続され、各々が独立して個別に運転される、可変電圧可変周波数制御を行なうインバータ回路と定電圧定周波数制御を行なうインバータ回路の2群のインバータ回路を収納した電力変換装置において、
前記2群のインバータ回路を構成する半導体素子を、受熱部および放熱部を有する1個の共通の冷却ユニットに取り付けたことを特徴とする電力変換装置。
In a power converter that houses two groups of inverter circuits, an inverter circuit that performs variable voltage variable frequency control and an inverter circuit that performs constant voltage constant frequency control , which are connected in parallel and each independently operated ,
A power conversion device, wherein the semiconductor elements constituting the two groups of inverter circuits are attached to one common cooling unit having a heat receiving portion and a heat radiating portion.
前記冷却器受熱部の一方の面に一方のインバータ回路1相分を構成する半導体素子を、同じ冷却器受熱部のもう一方の面にもう一方のインバータ回路1相分を構成する半導体素子を取付けることを特徴とする請求項1または2に記載の電力変換装置。   A semiconductor element constituting one phase of one inverter circuit is attached to one surface of the cooler heat receiving portion, and a semiconductor element constituting one phase of another inverter circuit is attached to the other surface of the same heat receiving portion. The power converter according to claim 1 or 2, wherein 前記冷却器受熱部に一方のインバータ回路1相分の半導体素子ともう一方のインバータ回路1相分の半導体素子を並べて取付けることを特徴とする請求項1または2に記載の電力変換装置。   The power converter according to claim 1 or 2, wherein a semiconductor element for one phase of one inverter circuit and a semiconductor element for one phase of another inverter circuit are mounted side by side on the cooler heat receiving portion.
JP2003424521A 2003-12-22 2003-12-22 Power converter Expired - Lifetime JP3799352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003424521A JP3799352B2 (en) 2003-12-22 2003-12-22 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003424521A JP3799352B2 (en) 2003-12-22 2003-12-22 Power converter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001059492A Division JP3563038B2 (en) 2001-03-05 2001-03-05 Power converter

Publications (2)

Publication Number Publication Date
JP2004096998A JP2004096998A (en) 2004-03-25
JP3799352B2 true JP3799352B2 (en) 2006-07-19

Family

ID=32064811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003424521A Expired - Lifetime JP3799352B2 (en) 2003-12-22 2003-12-22 Power converter

Country Status (1)

Country Link
JP (1) JP3799352B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4023810B2 (en) * 2004-03-29 2007-12-19 株式会社東芝 Standby power supply
JP2005304151A (en) * 2004-04-09 2005-10-27 Toshiba Corp Forced air-cooling power converter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3087859B2 (en) * 1991-03-29 2000-09-11 富士電機株式会社 Inverter device
JP3067399B2 (en) * 1992-07-03 2000-07-17 株式会社日立製作所 Semiconductor cooling device
JP2759587B2 (en) * 1992-11-25 1998-05-28 株式会社日立製作所 Inverter cooling system for electric vehicles
JPH086052A (en) * 1994-06-24 1996-01-12 Dainippon Printing Co Ltd Liquid crystal optical element
JP3254918B2 (en) * 1994-08-22 2002-02-12 富士電機株式会社 Power conversion unit for uninterruptible power supply
JPH1066201A (en) * 1996-08-15 1998-03-06 Toshiba Corp Controlling device for power supply for electric car
JP3386728B2 (en) * 1998-10-21 2003-03-17 株式会社東芝 Power conversion equipment for railway vehicles
JP2001016898A (en) * 1999-06-28 2001-01-19 Denso Corp Controller of ac motor

Also Published As

Publication number Publication date
JP2004096998A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
JP3563038B2 (en) Power converter
EP0794098B1 (en) Electric power transforming apparatus for electric rolling stock
JP3314256B2 (en) Electric vehicle power converter
JP5694278B2 (en) Power converter
EP2157685B1 (en) Power conversion device
JP4529706B2 (en) Semiconductor device and load driving device
WO2013080345A1 (en) Forced-air-cooled power conversion device
JP3386728B2 (en) Power conversion equipment for railway vehicles
JP6812317B2 (en) Vehicles equipped with power converters and power converters
JP2016213945A (en) Electric power conversion system and railway vehicle
JP2006149199A (en) Power conversion apparatus for rail vehicle
US7728535B2 (en) Chopper circuit topologies for adapting an electrical braking system in a traction vehicle
JP2004087711A (en) Forced air-cooled power conversion apparatus
JP3822612B2 (en) Railway vehicle power converter
JP2005117819A (en) Power conversion device for electric vehicle
EP0590502B1 (en) Inverter apparatus for electric rolling stock
JP4600052B2 (en) Semiconductor device
JPH11251499A (en) Power-conversion device
JP6827477B2 (en) Electric motor power system and electric vehicle
TW201601423A (en) Power conversion device and vehicle control device
WO2019146179A1 (en) Power conversion device and electric railroad vehicle equipped with power conversion device
JP5058545B2 (en) Electric vehicle control device
JP3799352B2 (en) Power converter
JP4997056B2 (en) Bus bar structure and power converter using the same
JP2011019305A (en) Inverter device for driving rolling stock motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3799352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term