JP3900317B2 - Resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device - Google Patents

Resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device Download PDF

Info

Publication number
JP3900317B2
JP3900317B2 JP23082097A JP23082097A JP3900317B2 JP 3900317 B2 JP3900317 B2 JP 3900317B2 JP 23082097 A JP23082097 A JP 23082097A JP 23082097 A JP23082097 A JP 23082097A JP 3900317 B2 JP3900317 B2 JP 3900317B2
Authority
JP
Japan
Prior art keywords
resin
weight
resin composition
epoxy
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23082097A
Other languages
Japanese (ja)
Other versions
JPH1160898A (en
Inventor
英雄 長瀬
輝樹 相沢
康之 平井
義則 佐藤
真一 鴨志田
稔 垣谷
俊一 沼田
文夫 古沢
昌信 藤井
愛彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP23082097A priority Critical patent/JP3900317B2/en
Publication of JPH1160898A publication Critical patent/JPH1160898A/en
Application granted granted Critical
Publication of JP3900317B2 publication Critical patent/JP3900317B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体封止用樹脂組成物及び樹脂封止型半導体装置に関し、特に従来一般に用いられているエポキシ樹脂封止材を難燃性、電気特性、耐リフロー性、保存安定性等において、総合的に陵駕するジヒドロベンゾオキサジン系樹脂の半導体封止用樹脂組成物及び樹脂封止型半導体装置に関する。
【0002】
【従来の技術】
樹脂封止型半導体装置には、従来エポキシ樹脂がそのバランスのとれた機械特性、耐熱性、生産性の高い成形性等により広く用いられている。しかし、半導体装置の薄型高密度化や表面実装方式の普及により半導体装置に求められる特性はより厳しくなり、それに伴ってエポキシ樹脂にもより優れた上記特性やより多くの機能が必要とされるようになった。そのような要求に応じるためにとられてきたエポキシ樹脂の改質方法としては、具体的には、可撓化剤での変成・アロイ化による低弾性率化、官能基密度の増加等が挙げられるが、これらの手法による改質も限界に近づきつつある。また更に近年は、環境保全の観点から、難燃性を維持する上で不可欠とされてきたアンチモン及びハロゲン化物の添加量の低減が進められており、この点からも新しい樹脂系の組成物が求められている。
上記の要求を達成する方法として、いくつかの試みが為されている。例えば、特開平2−3445号公報にはポリイミド樹脂を用いた組成物が半導体封止用樹脂組成物として例示されている。しかし、ポリイミド樹脂には可撓性、接着性が不十分であることに加え、極めて高価であり成形性も劣るという欠点がある。
そこで、新規の樹脂系としてジヒドロベンゾオキサジン化合物が提案されている(特開昭49−47387号公報、米国特許5152939号明細書)。この化合物の硬化反応は、エポキシ樹脂と類似の、ジヒドロベンゾオキサジン環の開環重合反応を利用するものであるため、揮発分の発生を殆ど伴わない特長がある。
一方、開環重合反応を利用したジヒドロベンゾオキサジン化合物の硬化物は、従来知られている熱硬化性樹脂と比較して耐熱性が良好であり、しかも高強度且つ可撓性に優れている。しかし、特開昭49−47387号公報に記載されている樹脂組成物では、硬化に長時間を要するという欠点があり、封止材用途としての十分な樹脂組成についての開示はない。また、特開平6−322121号公報に記載されている半導体封止用樹脂組成物では、硬化物の架橋密度が低くモールド成形直後の成形品の硬度が低く、抜型が難しいという欠点があった。
【0003】
【発明が解決しようとする課題】
本発明は、ジヒドロベンゾオキサジン環を有する熱硬化性樹脂の特長となる機械特性や低吸水率等の諸特性を低下させることなく硬化性を向上させ、且つ一般のエポキシ樹脂封止材の問題点である難燃剤の低減及び保存安定性に優れる半導体封止用樹脂組成物及び樹脂封止型半導体装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、ジヒドロベンゾオキサジン環を有する熱硬化性樹脂、1分子中にエポキシ基を3個以上有するエポキシ樹脂及びフェノール樹脂、及び特定量の無機質充填材を配合し、必要に応じてハロゲン化エポキシ樹脂を配合することにより、ジヒドロベンゾオキサジン環を有する熱硬化性樹脂とフェノール樹脂あるいはジヒドロベンゾオキサジン環を有する熱硬化性樹脂とエポキシ樹脂の組成物では、達し得なかった硬化性すなわち硬化速度、及びモールド成形直後の成形品の硬度を飛躍的に向上することができた。
ジヒドロベンゾオキサジン環を有する熱硬化性樹脂2〜87重量%、エポキシ樹脂3〜67重量%及びフェノール樹脂10〜31重量%からなる熱硬化性樹脂組成物であり、且つこの熱硬化性樹脂組成物の溶融粘度が2P以下とな、封止材用途として要求される無機質充填材の高充填化を可能とした。
すなわち、ジヒドロベンゾオキサジン環を有する熱硬化性樹脂に対して、多官能エポキシ樹脂とフェノール樹脂は架橋材として作用するが、エポキシ樹脂だけの配合組成では十分な硬化速度が得られず、フェノール樹脂だけの配合組成では十分な架橋密度が得られないため、これら3種の成分をバランス良く配合することにより十分な硬化性が得られ、しかも機械特性、低吸水率等の諸特性が低下することなく、難燃性及び保存安定性が良好であることを見出し、この知見に基づいて本発明を完成するに至った。
本発明は、上記熱硬化性樹脂組成物を必須成分として含有し、この熱硬化性樹脂組成物100重量部に対し、硬化促進剤、離型剤、接着性付与剤、着色剤及び難燃剤から選ばれる少なくとも1種からなる添加剤0.01〜35重量部及び無機質充填材200〜1200重量部からなる半導体封止用樹脂組成物及びそれを用いて得られる樹脂封止型半導体装置に関するものである。
【0005】
【発明の実施の形態】
本発明に用いられるジヒドロベンゾオキサジン環を有する熱硬化性樹脂としては、ジヒドロベンゾオキサジン環を有し、ジヒドロベンゾオキサジン環の開環重合反応により硬化する樹脂であれば特に限定されるものではなく、例えば、フェノール性水酸基を有する化合物と、1級アミンと、ホルマリンから下式のように合成される。
【0006】
【化1】

Figure 0003900317
(式中のR1はメチル基、フェニル基、又は少なくとも1つの炭素数1〜3のアルキル基若しくはアルコキシル基で置換されたフェニル基である。)
フェノール性水酸基を有する化合物としては、多官能フェノール、ビフェノール、ビスフェノール化合物、トリスフェノール化合物、フェノール樹脂等が挙げられる。多官能フェノールとしては、カテコール、ヒドロキノン、レゾルシノールが挙げられる。ビスフェノール化合物としては、ビスフェノールA、ビスフェノールF及びその位置異性体、ビスフェノールS、テトラフルオロビスフェノールA等が挙げられる。フェノール樹脂としては、3核体以下のノボラック型フェノール樹脂が挙げられる。
【0007】
1級アミンとしては、具体的にはメチルアミン、アニリン、トルイジン、アニシジン等の置換アニリン等が挙げられる。脂肪族アミンであると、得られた熱硬化性樹脂は硬化は速いが耐熱性に劣る。アニリンのような芳香族アミンであると、得られた熱硬化性樹脂を硬化させた硬化物の耐熱性はよいが、硬化が遅くなる。
上記のジヒドロベンゾオキサジン環を有する熱硬化性樹脂は、ヒドロキシル基のオルト位の少なくとも1つが水素であるヒドロキシフェニレン基を、1分子中に2以上有する化合物(以下反応しうるヒドロキシフェニレン基を有する化合物という。)と、1級アミンとの混合物を、70℃以上に加熱したホルマリン等のホルムアルデヒド類中に添加して、70〜110℃、好ましくは、90〜100℃で、20分〜2時間反応させ、その後、120℃以下の温度で減圧乾燥することによって得られる。
【0008】
上記反応においては、通常、反応し得るヒドロキシフェニレン基を有する化合物の全フェノール性ヒドロキシル基1モルに対し、1級アミンを0.5〜1.0モル、好ましくは0.6〜1.0モル、1級アミン1モルに対し、ホルムアルデヒド2モル以上の比で反応させる。1級アミンが0.5モルより少ないと、架橋密度の低下を招き、耐熱性が不十分となる場合がある。
上記のジヒドロベンゾオキサジン環を有する熱硬化性樹脂は、150℃以上、望ましくは170〜220℃に加熱することにより、触媒や硬化剤を用いないで、副生成物を生じることなく硬化する。
本発明に用いられるジヒドロベンゾオキサジン環を有する熱硬化性樹脂は、150℃での溶融粘度が3P以下好ましくは2P以下のものが用いられ2種類以上を組み合わせて用いることもできる。
本発明に用いられるエポキシ樹脂として、150℃での溶融粘度が6P以下のもの好ましくは3P以下のエポキシ樹脂が用いられる。特に好ましくは1分子中にエポキシ基を3個以上有するエポキシ樹脂が用いられ、ノボラック系エポキシ樹脂やクレゾールノボラック系エポキシ樹脂が挙げられる。また、1分子中にエポキシ基を2個有するエポキシ樹脂を併用することもでき、例えばビフェニル系エポキシ樹脂、ビスフェノールA系エポキシ樹脂が挙げられる。また場合によってはハロゲン化エポキシが用いられる。難燃性の点から臭素含有量が30〜50重量%の臭素化エポキシ樹脂が用いられ、特に好ましくは臭素化ノボラック系エポキシ樹脂、テトラブロモビスフェノールA系エポキシ樹脂が用いられる。
【0009】
上記エポキシ樹脂の配合割合は3〜67重量%、更に好ましくは5〜58重量%である。3重量%未満であると架橋密度が低く、成形直後の成形品に十分な硬度が得られず、67重量%以上では吸水率が上昇する。エポキシ樹脂の内、ハロゲン化エポキシ樹脂の配合割合は10重量%以下が適当であり、一般のエポキシ樹脂封止材に比べハロゲンの量が少なくなるだけでなく、三酸化アンチモンを使用せずに良好な難燃性が得られる。
【0010】
本発明において、前記熱硬化性樹脂に配合されるフェノール樹脂としては、150℃での溶融粘度が3P以下、特に好ましくは2P以下のノボラック型フェノール樹脂やキシリレン型フェノール樹脂が用いられる。ノボラック型フェノール樹脂としては、フェノールノボラック樹脂やビスフェノールノボラック樹脂、フェノール変性キシレン樹脂、アルキルフェノール樹脂等が挙げられる。
ジヒドロベンゾオキサジン環を有する熱硬化性樹脂は、自硬化性である硬化反応が遅い。そこで、フェノール樹脂を10〜31重量%、好ましくは13〜25重量%配合することにより、機械特性を低下させずに硬化性を向上させることができる。フェノール樹脂が10重量%未満の場合十分な硬化性が得られず、31重量%を超えると硬化性は向上するが吸水率が増加し、機械特性が低下することがある。
【0011】
本発明では、上記ジヒドロベンゾオキサジン環を有する熱硬化性樹脂、多官能エポキシ樹脂及びフェノール樹脂をそれぞれ所定量配合させて成る熱硬化性樹脂組成物であり、且つこの熱硬化性樹脂の150℃での溶融粘度が2P以下となることが良好な硬化性及び成形性を得るために重要である。溶融粘度が2Pを超えると無機質充填材の充填が困難となり、成形不良を生じることになる。
本発明において用いられる無機質充填材としては、溶融性二酸化珪素粉末、硼酸亜鉛、及び水酸化アルミニウム等が挙げられる。これらは、1種または2種以上の混合物として用いられる。溶融性二酸化珪素粉末は、球状のもの又は破砕状のものの何れをも用いることができ、あるいは両者を併用することも可能である。その粒径は0.5〜30μmが適当であり、この範囲を逸脱すると強度の低下あるいは成形不良が生じる。また、予め所定のカップリング剤で表面処理した無機質充填材を使用することもできる。無機質充填材料の配合量は、熱硬化性樹脂100重量部に対し、200〜1200重量部、更に好ましくは300〜800重量部が適当である。200重量部未満では強度の低下及び熱膨張係数の低減効果の低下が見られ、1200重量部を超えると成形が困難となる。
【0012】
本発明の半導体封止用樹脂組成物には、必要に応じ、硬化促進剤、離型剤、接着付与剤、着色剤、難燃剤等の添加剤を配合することができる。
硬化促進剤としては、カテコール、ビスフェノールA等の多官能フェノール化合物、p−トルエンスルホン酸、p−フェノールスルホン酸等のスルホン酸類、安息酸、サリチル酸、シュウ酸、アジピン酸等のカルボン酸類、コバルト(II)アセチルアセトネート、アルミニウム(III) アセチルアセトネートジルコニウム(IV)アセチルアセトネート等の金属錯体、酸化カルシウム、酸化コバルト、酸化マグネシウム、酸化鉄等の金属酸化物、水酸化カルシウム、特に好ましくはイミダゾール及びその誘導体、ジアザビシクロウンデセン、ジアザビシクロノネン等の第三級アミン及びこれらのフェノールノボラック塩、トリフェニルホスフィン、トリフェニルホスフィン・ベンゾキノン誘導体、トリフェニルホスフィン・トリフェニルボロン塩、テトラフェニルホスホニウム・テトラフェニルボレート等のリン系化合物及びその誘導体が挙げられる。これらは1種で又は2種以上の混合物として用いられる。硬化促進剤の配合量は、熱硬化性樹脂組成物100重量部に対し、5重量部以下、更に好ましくは3重量部以下であり、5重量部を超えると吸水率の増加及び保存安定性が悪化する。
【0013】
離型剤としては、モンタン酸エステルワックスやカルナバワックス等が、着色剤としてカーボンブラック等が用いることができる。
接着付与剤としては、シランカップリング剤、例えばアミノシラン、ジアミノシラン、トリアミノシラン、ウレイド変性アミノシラン、ビニルシラン、ビニルベンジルアミノシラン、ベンジルアミノシラン、カチオニックシラン、エポキシシラン、アニリノシラン等が挙げられる。これら1種で又は2種以上の混合物として用いられる。
また、必要に応じて三酸化アンチモンを難燃剤として用いることもできる。本発明において、必要に応じて前記熱硬化性樹脂組成物に配合されるエラストマーとしては、特に限定されないが、主鎖の構造単位の一部が構造単位同志で架橋されたエラストマー及びジヒドロベンゾオキサジン環を有する熱硬化性樹脂及びジヒドロベンゾオキサジン環が開環して生成するフェノール性水酸基と反応し得る官能基を有する液状エラストマーが好ましく用いられる。
【0014】
主鎖の構造単位の一部が構造単位同志で架橋されたエラストマーの場合、特に好ましくは、アクリロニトリル−ブタジエン共重合体エラストマーやシロキサン結合を有するモノマーを出発原料として合成されたシリコ−ンゲル(例えば特開昭63−241020号公報に示されるエポキシ及びアミノ変性シリコ−ンの混合物をフェノ−ルノボラックを分散媒且つ触媒として分散後ゲル化させたもの)が用いられる。また、エラストマー中にジヒドロベンゾオキサジン環を有する熱硬化性樹脂及びジヒドロベンゾオキサジン環が開環して生成するフェノール性水酸基と反応し得る、例えば、エポキシ基のような官能基、水酸基やカルボキシル基等の溶解度パラメーターの高い官能基を有するものが特に好ましい。これらのエラストマーの粒子径は0.2mm以下が好ましい。
これら架橋構造を有するエラストマーは、ジヒドロベンゾオキサジン環を有する熱硬化性樹脂と混合、硬化する際、粒子の凝集が起こらない限り、選択した粒子径をそのまま維持した海島型分散構造を容易に得ることができ靭性が向上する。これに対して架橋構造を有しないエラストマーを用いた場合のスピノーダル分解等の熱硬化性樹脂組成物中にエラストマーを析出分散させる方法では、エラストマーの粒子径の制御が難しく、均一な海島構造ができないことがある。
ジヒドロベンゾオキサジン環を有する熱硬化性樹脂及びジヒドロベンゾオキサジン環が開環して生成するフェノール性水酸基と反応し得る官能基を有する液状エラストマーの官能基としては、アミノ基、エポキシ基、カルボキシル基、フェノール性水酸基が挙げられる。
【0015】
上記のエラストマーの配合割合は、前記熱硬化性樹脂組成物100重量部に対して、好ましくは1〜50重量部、更に好ましくは2〜40重量部である。1重量部未満であると、靭性を向上させることが難しくなり、50重量部を超えると機械的特性が低下することがある。
また、本発明は上記樹脂組成物により、半導体素子を封止した樹脂封止型半導体装置も提供するものである。上記の樹脂封止型半導体装置の製造方法は、特に限定はされないが、加熱ロール等により60〜120℃で混練して樹脂組成物を調整し、然る後に金型内に半導体素子を配置し、次いで得られた樹脂組成物を160〜220℃、成形圧20〜120kgf/cm2 で1〜10分間圧縮成形または移送成形することにより硬化させ、更に160〜220℃で1〜6時間後硬化させることにより、より良好な特性を有する樹脂封止型半導体装置が得られる。
【0016】
【実施例】
以下、本発明の実施例及びその比較例によって、本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0017】
実施例1〜11、比較例1〜8
[1]ジヒドロベンゾオキサジン環を有する熱硬化性樹脂の合成(I)
ビスフェノールF1.0kg(5mol相当)、アニリン0.93kg(10mol相当)をメチルエチルケトン0.5kg中で混合し、80℃で5時間撹拌し、均一な混合溶液を調整した。5リットルフラスコ中に、ホルマリン1.62kgを仕込み90℃に加熱し、ここへビスフェノールF/アニリン/メチルエチルケトン混合溶液を30分間かけて少しずつ添加した。添加終了後30分間、還流温度に保ち、然る後に100℃で2時間6666.1Pa以下に減圧して縮合水を除去し、反応し得るヒドロキシル基の75%がジヒドロベンゾオキサジン化された熱硬化性樹脂を得た(溶融粘度:0.8P/150℃)。
[2]ジヒドロベンゾオキサジン環を有する熱硬化性樹脂の合成(II)
(1)フェノールノボラック樹脂の合成
フェノール1.9kg、ホルマリン(37%水溶液)1.15kg、シュウ酸4gを5リットルフラスコに仕込み、還流温度で6時間反応させた。引き続き、内部を6666.1Pa以下に減圧して未反応のフェノール及び水を除去した。得られた樹脂は軟化点89℃(環球法)、3〜多核体/2核体比89/11(ゲルパーミエーションクロマトグラフィーによるピーク面積比)であった。
(2)ジヒドロベンゾオキサジン環の導入
上記により合成したフェノールノボラック樹脂1.7kg(ヒドロキシル基16mol相当)をアニリン0.93kg(10mol相当)と混合し80℃で5時間撹拌し、均一な混合溶液を調整した。5リットルフラスコ中に、ホルマリン1.62kgを仕込み90℃に加熱し、ここへノボラック/アニリン混合溶液を30分間かけて少しずつ添加した。添加終了後30分間、還流温度に保ち、然る後に100℃で2時間6666.1Pa以下に減圧して縮合水を除去し、反応し得るヒドロキシル基の75%がジヒドロベンゾオキサジン化された熱硬化性樹脂を得た(溶融粘度:35P/150℃)。
【0018】
[3]ノボラック型フェノール樹脂の合成(A)
フェノール2.4kg、ホルマリン(37%水溶液)0.13kg、パラホルムアルデヒド0.5kg、シュウ酸3gを5リットルフラスコに仕込み、還流温度で4時間反応させた。引き続き、内部を6666.1Pa以下に減圧して未反応のフェノール及び水を除去した。(溶融粘度:2P/150℃)
[4]ノボラック型フェノール樹脂の合成(B)
フェノール2.8kg、ホルマリン(37%水溶液)0.25kg、パラホルムアルデヒド0.8kg、8%塩酸11g、シュウ酸8gを5リットルフラスコに仕込み、還流温度で6時間反応させた。引き続き、内部を6666.1Pa以下に減圧して未反応のフェノール及び水を除去した。(溶融粘度:10P/150℃)
[5]エポキシ樹脂
オルソクレゾールノボラック型エポキシ樹脂(住友化学工業株式会社製商品名ESCN−195 エポキシ当量:200g/eq溶融粘度:2.2P)
ビフェニル型エポキシ樹脂(油化シェルエポキシ株式会社製商品名YX−4000H エポキシ当量:192g/eq 溶融粘度:1.4P)
臭素化ノボラック型エポキシ樹脂(日本化薬株式会社製商品名 BREN−Sエポキシ当量:280g/eq 溶融粘度:2.6P 臭素含有率:36%)
[6]その他の配合物
エラストマーとしては、粒子径70nmの架橋アクリロニトリル−ブタジエン共重合体(日本合成ゴム株式会社製商品名XER−91、液状アクリロニトリル−ポリブタジエン共重合体(宇部興産株式会社製商品名ATBN1300X16、AN量1.65重量%、アミノ基含量、アミン当量900)を使用した。
また、シリコーンゲルについてはアミノシリコーン(信越化学工業株式会社製商品名KF−86 アミン当量2000)25gとエポキシシリコーン(信越化学工業株式会社製商品名X−22−163B エポキシ当量1800)45gを混合し、温度120℃で溶融している上記ノボラック型フェノール樹脂(A)210g中に添加して、均一に白濁するまで攪拌を行い、その後約120℃で1時 間加熱を続けてシリコーンゲル含有フェノール樹脂混合物を作製した
【0019】
[硬化]
表1及び表2に示す配合組成により原材料を混合し、二軸加熱ロールを用いて80℃で10分間混練後これを粉砕し、粉末状の樹脂組成物を作製した。なお、樹脂組成物中の溶融性二酸化珪素粉末の充填量は、標準70vol%とした。
次いで、移送成形機の金型キャビティ内に半導体素子を配置し、175℃、70kgf/cm 2 、90秒間の条件で上記金型内で各樹脂組成物の移送成形を行い、QFP54ピン(外寸20mm×14mm×2mm、リードフレーム材質42アロイ、半導体素子寸法8mm×10mm)の半導体装置を得た。また175℃、6時間の条件で後硬化を行った。
【0020】
[特性評価]
樹脂組成物の機械特性、耐熱性、難燃性、接着性等の一般特性を知るため、上記と同条件で板状の硬化物である試験片も作製した。
硬化物の特性は、機械特性・電気特性についてはJIS K6911に準じ、難燃性についてはUL−94に準じて測定した。
溶融粘度については、コーンプレート粘度計を用い、150℃の粘度を測定した。熱時硬度については、175℃で90秒間モールド成形した直後の成形品の硬度を測定した。
保存安定性については、熱硬化性樹脂測定を40℃高温槽中に放置し、30日経過後のゲル化時間の変化を調べた。
成形品の可撓性は、試験片を−55℃及び150℃に各30分間保持するヒートサイクル試験を行い、所定のサイクル毎のクラック発生率(試験片10個当たりのクラックの発生した試験片の数)を求めて評価した。更に、成形した半導体装置を85℃、85%RHの条件下で吸湿させた後、215℃で90秒間の熱処理を行い(リフロークラック試験)パッケージクラックの発生率(半導体装置10個当たりのパッケージクラックを生じた半導体装置の数)を求め、半導体装置の耐湿信頼性を評価した。
以下、各実施例、比較例における配合組成、測定結果を表1〜4に示す。なお、配合組成はすべて重量部で示した。
【0021】
【表1】
Figure 0003900317
【0022】
【表2】
Figure 0003900317
【0023】
【表3】
Figure 0003900317
【0024】
【表4】
Figure 0003900317
【0025】
【発明の効果】
本発明の半導体封止用樹脂組成物を用いることにより、低吸水率で機械特性、耐リフロー性が良好で且つ、従来のエポキシ樹脂系半導体封止用樹脂組成物では達成できなかった難燃剤の低減及び長期保存安定性が実現できた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin composition for semiconductor encapsulation and a resin-encapsulated semiconductor device, and in particular, an epoxy resin encapsulant generally used in the past in terms of flame retardancy, electrical characteristics, reflow resistance, storage stability, etc. The present invention relates to a resin composition for encapsulating a semiconductor of a dihydrobenzoxazine-based resin and a resin-encapsulated semiconductor device, which are comprehensively bound.
[0002]
[Prior art]
Conventionally, epoxy resins have been widely used in resin-encapsulated semiconductor devices due to their balanced mechanical properties, heat resistance, moldability with high productivity, and the like. However, the characteristics required of semiconductor devices have become more severe due to the thinning and high density of semiconductor devices and the spread of surface mounting methods, and accordingly, the above characteristics and more functions are required for epoxy resins. Became. Specific examples of the epoxy resin modification methods that have been adopted in order to meet such demands include lowering the modulus of elasticity by modification / alloying with a flexibilizer and increasing the functional group density. However, reforming by these methods is approaching its limit. Furthermore, in recent years, the addition amount of antimony and halide, which has been indispensable for maintaining flame retardancy, has been promoted from the viewpoint of environmental protection. From this point, a new resin-based composition has been developed. It has been demanded.
Several attempts have been made to achieve the above requirements. For example, JP-A-2-3445 exemplifies a composition using a polyimide resin as a semiconductor sealing resin composition. However, in addition to insufficient flexibility and adhesiveness, polyimide resins have the disadvantage of being extremely expensive and inferior in moldability.
Accordingly, dihydrobenzoxazine compounds have been proposed as a novel resin system (Japanese Patent Laid-Open No. 49-47387, US Pat. No. 5,152,939). Since the curing reaction of this compound uses a ring-opening polymerization reaction of a dihydrobenzoxazine ring similar to an epoxy resin, it has a feature that hardly generates volatile matter.
On the other hand, a cured product of a dihydrobenzoxazine compound utilizing a ring-opening polymerization reaction has good heat resistance as compared with conventionally known thermosetting resins, and also has high strength and excellent flexibility. However, the resin composition described in JP-A-49-47387 has a drawback that it takes a long time to cure, and there is no disclosure about a sufficient resin composition for use as a sealing material. Further, the resin composition for encapsulating a semiconductor described in JP-A-6-321221 has a drawback that the crosslink density of the cured product is low, the hardness of the molded product immediately after molding is low, and it is difficult to remove the mold.
[0003]
[Problems to be solved by the invention]
The present invention improves the curability without deteriorating various properties such as mechanical properties and low water absorption, which are the characteristics of the thermosetting resin having a dihydrobenzoxazine ring, and the problems of general epoxy resin sealing materials An object of the present invention is to provide a resin composition for semiconductor encapsulation and a resin-encapsulated semiconductor device which are excellent in reduction of flame retardant and storage stability.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that a thermosetting resin having a dihydrobenzoxazine ring, an epoxy resin having 3 or more epoxy groups in a molecule, a phenol resin, and a specific A thermosetting resin having a dihydrobenzoxazine ring and a phenol resin or a thermosetting resin having an dihydrobenzoxazine ring and an epoxy resin by blending an amount of an inorganic filler and, if necessary, a halogenated epoxy resin. With this composition, the curability that could not be achieved, that is, the curing rate, and the hardness of the molded product immediately after the molding could be dramatically improved.
A thermosetting resin composition comprising 2 to 87% by weight of a thermosetting resin having a dihydrobenzoxazine ring, 3 to 67% by weight of an epoxy resin, and 10 to 31% by weight of a phenol resin, and the thermosetting resin composition the melt viscosity of Ri follows Do 2P, allowed the high loading of the inorganic filler required as the sealing material applications.
That is, for thermosetting resins having a dihydrobenzoxazine ring, a polyfunctional epoxy resin and a phenol resin act as a cross-linking material. However, a sufficient curing rate cannot be obtained with a composition containing only an epoxy resin, only a phenol resin. Since a sufficient crosslinking density cannot be obtained with the blending composition, sufficient curability can be obtained by blending these three components in a well-balanced manner, and various characteristics such as mechanical properties and low water absorption are not deteriorated. The present inventors have found that flame retardancy and storage stability are good, and have completed the present invention based on this finding.
The present invention contains the above thermosetting resin composition as an essential component, and from 100 parts by weight of this thermosetting resin composition, from a curing accelerator, a release agent, an adhesion-imparting agent, a colorant and a flame retardant. The present invention relates to a semiconductor sealing resin composition comprising 0.01 to 35 parts by weight of at least one selected additive and 200 to 1200 parts by weight of an inorganic filler, and a resin-encapsulated semiconductor device obtained using the same. is there.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The thermosetting resin having a dihydrobenzoxazine ring used in the present invention is not particularly limited as long as it has a dihydrobenzoxazine ring and is cured by a ring-opening polymerization reaction of the dihydrobenzoxazine ring. For example, a compound having a phenolic hydroxyl group, a primary amine, and formalin are synthesized as follows.
[0006]
[Chemical 1]
Figure 0003900317
(R1 in the formula is a methyl group, a phenyl group, or a phenyl group substituted with at least one alkyl group having 1 to 3 carbon atoms or an alkoxyl group.)
Examples of the compound having a phenolic hydroxyl group include polyfunctional phenol, biphenol, bisphenol compound, trisphenol compound, and phenol resin. Examples of the polyfunctional phenol include catechol, hydroquinone, and resorcinol. Examples of the bisphenol compound include bisphenol A, bisphenol F and its positional isomer, bisphenol S, and tetrafluorobisphenol A. Examples of the phenol resin include novolak type phenol resins having three or less nuclei.
[0007]
Specific examples of the primary amine include substituted anilines such as methylamine, aniline, toluidine, and anisidine. When it is an aliphatic amine, the obtained thermosetting resin cures quickly but is inferior in heat resistance. When it is an aromatic amine such as aniline, the cured product obtained by curing the obtained thermosetting resin has good heat resistance but slows the curing.
The thermosetting resin having a dihydrobenzoxazine ring described above is a compound having at least one hydroxyphenylene group in which at least one of the ortho positions of the hydroxyl group is hydrogen (a compound having a hydroxyphenylene group which can be reacted hereinafter). And a primary amine are added to formaldehyde such as formalin heated to 70 ° C. or higher and reacted at 70 to 110 ° C., preferably 90 to 100 ° C. for 20 minutes to 2 hours. And then dried under reduced pressure at a temperature of 120 ° C. or lower.
[0008]
In the above reaction, the primary amine is usually 0.5 to 1.0 mol, preferably 0.6 to 1.0 mol, based on 1 mol of all phenolic hydroxyl groups of the compound having a hydroxyphenylene group that can react. The reaction is carried out at a ratio of 2 mol or more of formaldehyde to 1 mol of the primary amine. If the primary amine is less than 0.5 mol, the crosslinking density may be lowered and the heat resistance may be insufficient.
The above-mentioned thermosetting resin having a dihydrobenzoxazine ring is cured at 150 ° C. or higher, desirably 170 to 220 ° C., without using a catalyst or a curing agent and without generating a by-product.
The thermosetting resin having a dihydrobenzoxazine ring used in the present invention has a melt viscosity at 150 ° C. of 3 P or less, preferably 2 P or less, and two or more kinds can be used in combination.
As the epoxy resin used in the present invention, an epoxy resin having a melt viscosity at 150 ° C. of 6 P or less, preferably 3 P or less is used. Particularly preferably, an epoxy resin having 3 or more epoxy groups in one molecule is used, and examples thereof include novolak epoxy resins and cresol novolac epoxy resins. In addition, an epoxy resin having two epoxy groups in one molecule can be used in combination, and examples thereof include a biphenyl epoxy resin and a bisphenol A epoxy resin. In some cases, halogenated epoxy is used. From the viewpoint of flame retardancy, brominated epoxy resins having a bromine content of 30 to 50% by weight are used, and brominated novolak epoxy resins and tetrabromobisphenol A epoxy resins are particularly preferably used.
[0009]
The compounding ratio of the epoxy resin is 3 to 67% by weight, more preferably 5 to 58% by weight. If it is less than 3% by weight, the crosslinking density is low, and sufficient hardness cannot be obtained for the molded product immediately after molding, and if it is 67% by weight or more, the water absorption rate increases. Among epoxy resins, the proportion of halogenated epoxy resin is suitably 10% by weight or less. Not only the amount of halogen is reduced compared to general epoxy resin sealing materials, but also good without using antimony trioxide. Flame retardancy is obtained.
[0010]
In the present invention, as the phenol resin blended with the thermosetting resin, a novolak type phenol resin or a xylylene type phenol resin having a melt viscosity at 150 ° C. of 3 P or less, particularly preferably 2 P or less is used. Examples of novolak type phenol resins include phenol novolak resins, bisphenol novolac resins, phenol-modified xylene resins, alkylphenol resins, and the like.
Thermosetting having a dihydrobenzoxazine ring resins are self curable curing reaction is slow. Therefore, by adding 10 to 31% by weight, preferably 13 to 25% by weight of a phenol resin, curability can be improved without deteriorating mechanical properties. If the phenol resin is less than 10% by weight, sufficient curability cannot be obtained. If it exceeds 31% by weight, the curability is improved, but the water absorption is increased, and the mechanical properties may be deteriorated.
[0011]
The present invention is a thermosetting resin composition comprising a predetermined amount of each of the thermosetting resin having a dihydrobenzoxazine ring, a polyfunctional epoxy resin and a phenol resin, and the thermosetting resin at 150 ° C. It is important to obtain good curability and moldability that the melt viscosity of the resin is 2P or less. If the melt viscosity exceeds 2P, it becomes difficult to fill the inorganic filler, resulting in molding defects.
Examples of the inorganic filler used in the present invention include fusible silicon dioxide powder, zinc borate, and aluminum hydroxide. These are used as one kind or a mixture of two or more kinds. The fusible silicon dioxide powder can be either spherical or crushed, or a combination of both. The particle size is suitably from 0.5 to 30 μm. If the particle size is out of this range, the strength is lowered or molding failure occurs. An inorganic filler that has been surface-treated with a predetermined coupling agent in advance can also be used. The blending amount of the inorganic filling material is suitably 200 to 1200 parts by weight, more preferably 300 to 800 parts by weight with respect to 100 parts by weight of the thermosetting resin. If the amount is less than 200 parts by weight, the strength is lowered and the thermal expansion coefficient is reduced. If the amount exceeds 1200 parts by weight, molding becomes difficult.
[0012]
Additives such as a curing accelerator, a mold release agent, an adhesion-imparting agent, a colorant, and a flame retardant can be blended in the resin composition for semiconductor encapsulation of the present invention as necessary.
Curing accelerators include polyfunctional phenol compounds such as catechol and bisphenol A, sulfonic acids such as p-toluenesulfonic acid and p-phenolsulfonic acid, carboxylic acids such as benzoic acid, salicylic acid, oxalic acid and adipic acid, cobalt ( II) Metal complexes such as acetylacetonate and aluminum (III) acetylacetonate zirconium (IV) acetylacetonate, metal oxides such as calcium oxide, cobalt oxide, magnesium oxide and iron oxide, calcium hydroxide, particularly preferably imidazole And its derivatives, tertiary amines such as diazabicycloundecene and diazabicyclononene, and phenol novolac salts thereof, triphenylphosphine, triphenylphosphine / benzoquinone derivatives, triphenylphosphine / triphenylboron salts, Examples thereof include phosphorus compounds such as traphenylphosphonium tetraphenylborate and derivatives thereof. These are used alone or as a mixture of two or more. The blending amount of the curing accelerator is 5 parts by weight or less, more preferably 3 parts by weight or less with respect to 100 parts by weight of the thermosetting resin composition, and if it exceeds 5 parts by weight, the water absorption increases and the storage stability is increased. Getting worse.
[0013]
As the release agent, montanic acid ester wax or carnauba wax can be used, and as the colorant, carbon black or the like can be used.
Examples of the adhesion-imparting agent include silane coupling agents such as aminosilane, diaminosilane, triaminosilane, ureido-modified aminosilane, vinylsilane, vinylbenzylaminosilane, benzylaminosilane, cationic silane, epoxysilane, and anilinosilane. These are used alone or as a mixture of two or more.
Moreover, antimony trioxide can also be used as a flame retardant as needed. In the present invention, the elastomer blended in the thermosetting resin composition as required is not particularly limited, but an elastomer and a dihydrobenzoxazine ring in which a part of the structural unit of the main chain is cross-linked by the structural units. And a liquid elastomer having a functional group capable of reacting with a phenolic hydroxyl group formed by ring opening of a dihydrobenzoxazine ring.
[0014]
In the case of an elastomer in which a part of the structural unit of the main chain is cross-linked with each other, particularly preferred is a silicone gel (for example, specially synthesized from an acrylonitrile-butadiene copolymer elastomer or a monomer having a siloxane bond as a starting material. A mixture of an epoxy and an amino-modified silicone disclosed in Japanese Utility Model Laid-Open No. 63-241020 is used which is gelled after dispersion using phenol novolac as a dispersion medium and a catalyst. In addition, the thermosetting resin having a dihydrobenzoxazine ring in the elastomer and the phenolic hydroxyl group formed by opening the dihydrobenzoxazine ring can be reacted, for example, a functional group such as an epoxy group, a hydroxyl group, a carboxyl group, etc. Those having a functional group having a high solubility parameter are particularly preferred. The particle diameter of these elastomers is preferably 0.2 mm or less.
These cross-linked elastomers can easily obtain a sea-island-type dispersion structure that maintains the selected particle size as long as the particles do not aggregate when mixed and cured with a thermosetting resin having a dihydrobenzoxazine ring. Can improve toughness. On the other hand, the method of precipitating and dispersing the elastomer in the thermosetting resin composition such as spinodal decomposition when using an elastomer having no cross-linked structure makes it difficult to control the particle diameter of the elastomer, and a uniform sea-island structure cannot be obtained. Sometimes.
As the functional group of the liquid elastomer having a functional group capable of reacting with a phenolic hydroxyl group formed by opening a dihydrobenzoxazine ring and a thermosetting resin having a dihydrobenzoxazine ring, an amino group, an epoxy group, a carboxyl group, A phenolic hydroxyl group is mentioned.
[0015]
The blending ratio of the elastomer is preferably 1 to 50 parts by weight, more preferably 2 to 40 parts by weight with respect to 100 parts by weight of the thermosetting resin composition. When it is less than 1 part by weight, it becomes difficult to improve toughness, and when it exceeds 50 parts by weight, mechanical properties may be deteriorated.
The present invention also provides a resin-encapsulated semiconductor device in which a semiconductor element is encapsulated with the resin composition. The method for manufacturing the resin-encapsulated semiconductor device is not particularly limited, but the resin composition is prepared by kneading at 60 to 120 ° C. with a heating roll or the like, and then the semiconductor element is placed in the mold. Then, the obtained resin composition is cured by compression molding or transfer molding at 160 to 220 ° C. and a molding pressure of 20 to 120 kgf / cm 2 for 1 to 10 minutes, and further post-cured at 160 to 220 ° C. for 1 to 6 hours. By doing so, a resin-encapsulated semiconductor device having better characteristics can be obtained.
[0016]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples of the present invention and comparative examples thereof, but the present invention is not limited to these examples.
[0017]
Examples 1-11, Comparative Examples 1-8
[1] Synthesis of thermosetting resin having dihydrobenzoxazine ring (I)
Bisphenol F 1.0 kg (equivalent to 5 mol) and 0.93 kg of aniline (equivalent to 10 mol) were mixed in 0.5 kg of methyl ethyl ketone and stirred at 80 ° C. for 5 hours to prepare a uniform mixed solution. Into a 5 liter flask, 1.62 kg of formalin was charged and heated to 90 ° C., and a mixed solution of bisphenol F / aniline / methyl ethyl ketone was added little by little over 30 minutes. After completion of the addition, the temperature is maintained at the reflux temperature for 30 minutes, and then the pressure is reduced to 6666.1 Pa or less at 100 ° C. for 2 hours to remove the condensed water, and thermosetting in which 75% of the reactive hydroxyl groups are dihydrobenzoxazine converted. Resin was obtained (melt viscosity: 0.8 P / 150 ° C.).
[2] Synthesis of thermosetting resin having dihydrobenzoxazine ring (II)
(1) Synthesis of phenol novolac resin 1.9 kg of phenol, 1.15 kg of formalin (37% aqueous solution) and 4 g of oxalic acid were charged into a 5 liter flask and reacted at reflux temperature for 6 hours. Subsequently, the internal pressure was reduced to 6666.1 Pa or less to remove unreacted phenol and water. The obtained resin had a softening point of 89 ° C. (ring and ball method) and a 3-polynuclear / 2-nucleus ratio of 89/11 (peak area ratio by gel permeation chromatography).
(2) Introduction of dihydrobenzoxazine ring 1.7 kg of phenol novolac resin synthesized above (corresponding to 16 mol of hydroxyl group) was mixed with 0.93 kg of aniline (corresponding to 10 mol) and stirred at 80 ° C. for 5 hours to obtain a uniform mixed solution. It was adjusted. Into a 5 liter flask, 1.62 kg of formalin was charged and heated to 90 ° C., and the novolak / aniline mixed solution was added little by little over 30 minutes. After completion of the addition, the temperature is maintained at the reflux temperature for 30 minutes, and then the pressure is reduced to 6666.1 Pa or less at 100 ° C. for 2 hours to remove the condensed water, and thermosetting in which 75% of the reactive hydroxyl groups are dihydrobenzoxazine converted. Resin was obtained (melt viscosity: 35 P / 150 ° C.).
[0018]
[3] Synthesis of novolac type phenol resin (A)
2.4 kg of phenol, 0.13 kg of formalin (37% aqueous solution), 0.5 kg of paraformaldehyde, and 3 g of oxalic acid were charged into a 5 liter flask and reacted at reflux temperature for 4 hours. Subsequently, the internal pressure was reduced to 6666.1 Pa or less to remove unreacted phenol and water. (Melt viscosity: 2P / 150 ° C)
[4] Synthesis of novolac-type phenolic resin (B)
2.8 kg of phenol, 0.25 kg of formalin (37% aqueous solution), 0.8 kg of paraformaldehyde, 11 g of 8% hydrochloric acid and 8 g of oxalic acid were charged into a 5 liter flask and reacted at reflux temperature for 6 hours. Subsequently, the internal pressure was reduced to 6666.1 Pa or less to remove unreacted phenol and water. (Melt viscosity: 10P / 150 ° C)
[5] Epoxy resin orthocresol novolak type epoxy resin (trade name ESCN-195, manufactured by Sumitomo Chemical Co., Ltd. Epoxy equivalent: 200 g / eq melt viscosity: 2.2 P)
Biphenyl type epoxy resin (trade name YX-4000H manufactured by Yuka Shell Epoxy Co., Ltd. Epoxy equivalent: 192 g / eq Melt viscosity: 1.4P)
Brominated novolak-type epoxy resin (trade name BREN-S epoxy equivalent by Nippon Kayaku Co., Ltd .: 280 g / eq Melt viscosity: 2.6P Bromine content: 36%)
[6] Other compounded elastomers include 70-nm particle diameter crosslinked acrylonitrile-butadiene copolymer (trade name XER-91, manufactured by Nippon Synthetic Rubber Co., Ltd., liquid acrylonitrile-polybutadiene copolymer (trade name, manufactured by Ube Industries, Ltd.) ATBN 1300 × 16, AN amount 1.65% by weight, amino group content, amine equivalent 900) was used.
For silicone gel, 25 g of aminosilicone (trade name KF-86, amine equivalent 2000, manufactured by Shin-Etsu Chemical Co., Ltd.) and 45 g of epoxy silicone (trade name X-22-163B, epoxy equivalent 1800, manufactured by Shin-Etsu Chemical Co., Ltd.) are mixed. , was added to the novolak phenolic resin (a) in 210g that are melted at a temperature 120 ° C., the resulting mixture was being stirred until uniformly cloudy, continued heating for 1 hour thereafter about 120 ° C. silicone gel containing phenol resin A mixture was made .
[0019]
[Curing]
The raw materials were mixed according to the composition shown in Tables 1 and 2, kneaded at 80 ° C. for 10 minutes using a biaxial heating roll, and pulverized to prepare a powdery resin composition. The filling amount of the meltable silicon dioxide powder in the resin composition was standard 70 vol%.
Next, the semiconductor element is placed in the mold cavity of the transfer molding machine, and each resin composition is transferred and molded in the mold under the conditions of 175 ° C., 70 kgf / cm 2 , 90 seconds, and QFP 54 pin (outside dimension A semiconductor device having a size of 20 mm × 14 mm × 2 mm, a lead frame material 42 alloy, and a semiconductor element size 8 mm × 10 mm was obtained. Further, post-curing was performed at 175 ° C. for 6 hours.
[0020]
[Characteristic evaluation]
In order to know the general characteristics of the resin composition, such as mechanical properties, heat resistance, flame retardancy, and adhesiveness, a test piece that was a plate-like cured product was also produced under the same conditions as described above.
The properties of the cured product were measured according to JIS K6911 for mechanical properties and electrical properties, and according to UL-94 for flame retardancy.
About melt viscosity, the viscosity of 150 degreeC was measured using the cone plate viscometer. Regarding the hot hardness, the hardness of the molded product immediately after being molded at 175 ° C. for 90 seconds was measured.
For storage stability, the thermosetting resin measurement was left in a high temperature bath at 40 ° C., and the change in gelation time after 30 days was examined.
The flexibility of the molded product is determined by performing a heat cycle test in which the test piece is held at −55 ° C. and 150 ° C. for 30 minutes, and the crack generation rate per predetermined cycle (the test piece in which cracks occurred per 10 test pieces). Number) and evaluated. Further, the molded semiconductor device is moisture-absorbed under conditions of 85 ° C. and 85% RH, and then heat-treated at 215 ° C. for 90 seconds (reflow crack test) package crack occurrence rate (package cracks per 10 semiconductor devices) The number of the semiconductor devices that produced the above was determined, and the moisture resistance reliability of the semiconductor devices was evaluated.
Hereinafter, Tables 1 to 4 show formulation compositions and measurement results in Examples and Comparative Examples. In addition, all compounding composition was shown by the weight part.
[0021]
[Table 1]
Figure 0003900317
[0022]
[Table 2]
Figure 0003900317
[0023]
[Table 3]
Figure 0003900317
[0024]
[Table 4]
Figure 0003900317
[0025]
【The invention's effect】
By using the resin composition for encapsulating a semiconductor of the present invention, the mechanical properties and reflow resistance are low with a low water absorption rate, and a flame retardant that cannot be achieved with a conventional epoxy resin based semiconductor encapsulating resin composition. Reduction and long-term storage stability were achieved.

Claims (7)

ジヒドロベンゾオキサジン環を有する熱硬化性樹脂2〜87重量%、エポキシ樹脂3〜67重量%及びフェノール樹脂10〜31重量%からなり、且つこれら3成分の混合物の150℃での溶融粘度が2P以下となる熱硬化性樹脂組成物を必須成分として含有し、この熱硬化性樹脂組成物100重量部に対し、硬化促進剤、離型剤、接着性付与剤、着色剤及び難燃剤から選ばれる少なくとも1種からなる添加剤0.01〜35重量部、及び無機質充填材200〜1200重量部からなる半導体封止用樹脂組成物。  The thermosetting resin having a dihydrobenzoxazine ring is 2 to 87% by weight, the epoxy resin is 3 to 67% by weight, and the phenol resin is 10 to 31% by weight. Is contained as an essential component, and at least selected from a curing accelerator, a release agent, an adhesion-imparting agent, a colorant, and a flame retardant with respect to 100 parts by weight of the thermosetting resin composition. A resin composition for encapsulating a semiconductor comprising 0.01 to 35 parts by weight of one kind of additive and 200 to 1200 parts by weight of an inorganic filler. エポキシ樹脂が1分子中に3個以上のエポキシ基を有するもの、又はエポキシ樹脂が1分子中に3個以上のエポキシ基を有するものと1分子中にエポキシ基を2個有するエポキシ樹脂を併用したものである請求項1記載の半導体封止用樹脂組成物。An epoxy resin having three or more epoxy groups in one molecule , or an epoxy resin having three or more epoxy groups in one molecule and an epoxy resin having two epoxy groups in one molecule are used in combination. The resin composition for semiconductor encapsulation according to claim 1, which is a product. 熱硬化性樹脂組成物に含まれるエポキシ樹脂3〜67重量%の内、ハロゲン化エポキシ樹脂が10重量%以下である請求項2記載の半導体封止用樹脂組成物。3. The resin composition for encapsulating a semiconductor according to claim 2, wherein the halogenated epoxy resin is 10% by weight or less of 3 to 67% by weight of the epoxy resin contained in the thermosetting resin composition. 硬化促進剤が、第三級アミン、イミダゾール類、リン系化合物及びこれら化合物の誘導体から選ばれる1種または2種以上の混合物で、熱硬化性樹脂100重量部に対し、5重量部以下を含有する請求項1または2記載の半導体封止用樹脂組成物。The curing accelerator is a mixture of one or more selected from tertiary amines, imidazoles, phosphorus compounds and derivatives of these compounds, and contains 5 parts by weight or less with respect to 100 parts by weight of the thermosetting resin. The resin composition for semiconductor encapsulation according to claim 1 or 2. 熱硬化性樹脂100重量部に対し、更にエラストマー1〜50重量部を含有する請求項1または2記載の半導体封止用樹脂組成物。The resin composition for semiconductor encapsulation according to claim 1 or 2, further comprising 1 to 50 parts by weight of an elastomer with respect to 100 parts by weight of the thermosetting resin. 請求項1〜5のいずれか記載の半導体封止用樹脂組成物を硬化してなる樹脂硬化物。A cured resin product obtained by curing the semiconductor sealing resin composition according to claim 1. 請求項1〜5のいずれか記載の半導体封止用樹脂組成物により封止してなる樹脂封止型半導体装置。A resin-encapsulated semiconductor device formed by encapsulating with the semiconductor-encapsulating resin composition according to claim 1.
JP23082097A 1997-08-27 1997-08-27 Resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device Expired - Lifetime JP3900317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23082097A JP3900317B2 (en) 1997-08-27 1997-08-27 Resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23082097A JP3900317B2 (en) 1997-08-27 1997-08-27 Resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device

Publications (2)

Publication Number Publication Date
JPH1160898A JPH1160898A (en) 1999-03-05
JP3900317B2 true JP3900317B2 (en) 2007-04-04

Family

ID=16913801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23082097A Expired - Lifetime JP3900317B2 (en) 1997-08-27 1997-08-27 Resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device

Country Status (1)

Country Link
JP (1) JP3900317B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562241B2 (en) * 2000-05-19 2010-10-13 日本化薬株式会社 Epoxy resin composition
US6437026B1 (en) 2001-01-05 2002-08-20 Cookson Singapore Pte Ltd. Hardener for epoxy molding compounds
MY142518A (en) 2001-01-10 2010-12-15 Hitachi Chemical Co Ltd Dihydrobenzoxazine ring-containing resin, phenolic-triazine-aldehyde condensate and epoxy resin
US7157509B2 (en) * 2003-06-27 2007-01-02 Henkel Corporation Curable compositions
JP7384559B2 (en) * 2019-01-31 2023-11-21 京セラ株式会社 High frequency encapsulant resin composition and semiconductor device
CN113897025B (en) * 2021-09-24 2023-01-24 江南大学 Benzoxazine resin-based composition for packaging third-generation semiconductor device and preparation method thereof

Also Published As

Publication number Publication date
JPH1160898A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
KR101076977B1 (en) Resin composition for encapsulating semiconductor chip and semiconductor device
JPH05239321A (en) Epoxy resin composition and semiconductor-sealing arrangement
JP4207101B2 (en) Resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JP3861953B2 (en) Semiconductor encapsulating resin composition and resin encapsulated semiconductor device encapsulated with the composition
JP3900317B2 (en) Resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JP4054927B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPH08157561A (en) Semiconductor-sealing epoxy resin composition and semiconductor device
JP2000248151A (en) Semiconductor-sealing resin composition and resin-sealed type semiconductor device
JP3876944B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP3585615B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3440449B2 (en) Sealing resin composition and semiconductor sealing device
JP2003155326A (en) Resin composition and electronic part apparatus
JP2000265040A (en) Semiconductor sealing epoxy resin composition and resin- sealed semiconductor device
JPH0645740B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH11286594A (en) Resin composition for sealing and semiconductor-sealed device
JPH06271648A (en) Epoxy resin molding material for sealing electronic component
JP2004256729A (en) Epoxy resin composition and sealed semiconductor device
JP2751786B2 (en) Curing agent for epoxy resin, epoxy resin composition, and semiconductor device
JP2000026708A (en) Epoxy resin composition and semiconductor device
JP3675571B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3375204B2 (en) Epoxy resin composition
JP3255376B2 (en) Epoxy resin composition
JP3056634B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3298084B2 (en) Sealing resin composition and semiconductor sealing device
JPH09176286A (en) Epoxy resin composition and resin-sealed semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term