JP3897296B2 - マイクロセンサおよびその製造方法 - Google Patents

マイクロセンサおよびその製造方法 Download PDF

Info

Publication number
JP3897296B2
JP3897296B2 JP2002256276A JP2002256276A JP3897296B2 JP 3897296 B2 JP3897296 B2 JP 3897296B2 JP 2002256276 A JP2002256276 A JP 2002256276A JP 2002256276 A JP2002256276 A JP 2002256276A JP 3897296 B2 JP3897296 B2 JP 3897296B2
Authority
JP
Japan
Prior art keywords
heater
insulating layer
substrate
electrode
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002256276A
Other languages
English (en)
Other versions
JP2004093425A (ja
Inventor
千保美 木村
力 柴田
祐子 手嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2002256276A priority Critical patent/JP3897296B2/ja
Publication of JP2004093425A publication Critical patent/JP2004093425A/ja
Application granted granted Critical
Publication of JP3897296B2 publication Critical patent/JP3897296B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、たとえば、温湿度センサ、流量センサ、真空度センサ、ガスセンサ等として利用し得るマイクロセンサおよびその製造方法に関する。
【従来の技術】
【0002】
従来、湿気、ガス等が特定材料層の電気的特性を変化させることを利用して湿度、ガスの種類や濃度等を検知するセンサが知られている。たとえば、特定材料層よりなるヒータ部の温度変化、即ち抵抗値変化として空気中の温湿度変化を検知する温湿度センサ、特定材料層よりなる2個のヒータ部間の温度差を利用して流量を検知する流量センサ、ヒータ部の近傍に電極を設けてヒータ部の温度変化、即ち抵抗値変化として真空度を検知する真空度センサ、ヒータ部の近傍にガス検知膜およびガス検知用の電極を設けてヒータ部に通電してガス検知膜上の抵抗値変化としてガスの種類、濃度等を検知するガスセンサなどが知られている。
【0003】
近年、これらのセンサとしては、ヒータ部に通電する際の熱時定数をできるだけ小さくして性能を安定化し、省電力化のためヒータ部に断続的に通電しても必要な加熱温度を得るように、また小型化の要望にも沿えるように、ヒータ部を基板から離して空中に浮かした構造としたマイクロセンサが使用されている(特開平11−83582号公報、特開平11−237267号公報)。通常、これらのマイクロセンサは、絶縁層上に特定材料層を付着形成した積層構造のヒータ部を有するとともに、そのヒータ部の両端または一端を基板に固定する一方、そのヒータ部の中間部を、基板上に形成した堀部分を挟んで基板から離して空中に浮かして設けた構造を有している。
【0004】
【発明が解決しようとする課題】
一般に、このような構造を有するマイクロセンサには、省電力化のため断続的に通電するため、約500℃の高温から常温まで繰返し温度変化を受け、この結果、絶縁層が膨張と収縮を繰返し受けて破壊、膜剥れ等を生じたり、絶縁層上に形成した特定材料層に断線、膜剥れ等を生じたりする問題があった。また、マイクロセンサに通電しなくても、高温から常温までの温度変化が繰返される環境に設置されると、同様に絶縁層の破壊、膜剥れ等を生じるおそれがあった。
【0005】
そこで、この発明の課題は、絶縁層上に特定材料層を付着形成した積層構造のヒータ部を有するとともに、そのヒータ部の両端または一端を基板に固定する一方、そのヒータ部の中間部を、基板上に形成した堀部分を挟んで基板から離して空中に浮かして設けたマイクロセンサにおいて、絶縁層の内部応力を低減し、マイクロセンサの温度変化に対する耐久性を高めて、絶縁層や特定材料層の断線、膜剥れ等の発生を防止することにある。
【0006】
【課題を解決するための手段】
そのため、請求項1に記載の発明は、絶縁層上に特定材料層を付着形成した積層構造のヒータ部を有するとともに、そのヒータ部の両端または一端を基板に固定する一方、そのヒータ部の中間部を、前記基板上に形成した堀部分を挟んで前記基板から離して空中に浮かして設けたマイクロセンサにおいて、前記絶縁層として、その絶縁層が結晶化する温度以上でアニール処理を行ったものを用いてなることを特徴とする。
【0007】
請求項2に記載のものは、請求項1に記載のマイクロセンサにおいて、前記ヒータ部の近傍に、検知用の電極を備えてなることを特徴とする。
【0008】
請求項3に記載のものは、請求項1に記載のマイクロセンサにおいて、前記ヒータ部の近傍に、ガス検知膜およびガス検知用の電極を備えてなることを特徴とする。
【0009】
請求項4に記載の発明は、基板上に絶縁層を形成し、その絶縁層上に特定材料層を付着形成した後、その上に保護用絶縁層を形成したものを、前記絶縁層が結晶化する温度以上でアニール処理を行い、次いで前記基板に堀部分を形成し、前記ヒータ部にリード線を取り付けることよりなる、請求項1に記載のマイクロセンサの製造方法である。
【0010】
請求項5に記載の発明は、請求項4に記載のマイクロセンサの製造方法において、前記絶縁層の形成、前記保護用絶縁層の形成および前記アニール処理を、絶縁層を作成するためのターゲットと基板加熱用のヒータとを具備するスパッタリング装置内で連続して行うことよりなることを特徴とする。
【0011】
請求項6に記載の発明は、絶縁層上に特定材料層を付着形成した積層構造のヒータ部を有し、そのヒータ部の両端または一端を基板に固定する一方、そのヒータ部の中間部を、前記基板上に形成した堀部分を挟んで前記基板から離して空中に浮かして設けたマイクロセンサにおいて、前記基板上に形成した前記堀部分の一部に、前記基板と前記積層構造とを部分的に連結する連結凸部を設けてなることを特徴とする。
【0012】
請求項7に記載のものは、請求項6に記載のマイクロセンサにおいて、前記ヒータ部の近傍に、検知用の電極を備えてなることを特徴とする。
【0013】
請求項8に記載のものは、請求項6に記載のマイクロセンサにおいて、前記ヒータ部の近傍に、ガス検知膜およびガス検知用の電極を備えてなることを特徴とする。
【0014】
請求項9に記載の発明は、請求項3または8のいずれかに記載のマイクロセンサを用いるガス漏れ警報器である。ここで、ガス漏れ警報器とは、ガス漏れ時に、単体で、たとえば警報を発したり、ガスの供給を停止させたりするものをいう。
【0015】
請求項10に記載の発明は、請求項3または8のいずれかに記載のマイクロセンサを用いるガス漏れ警報システムである。ここで、ガス漏れ警報システムとは、ガス漏れ時に、単体ではなく、たとえばガスメータ等と連動して、警報を発したり、ガスの供給を停止させたりするものをいう。
【0016】
【発明の実施の形態】
以下、図面を参照しつつ、この発明の実施の形態について説明する。
【0017】
実施例1
結晶化する温度以上でアニール処理を行った絶縁層を用いるマイクロガスセンサについて、以下に説明する。
【0018】
図1は、この発明のマイクロセンサの一例であるマイクロガスセンサの、(a)は上面概略構成説明図、(b)はそのB−B断面概略構成説明図である。
【0019】
このマイクロガスセンサは、絶縁層2上にヒータ(特定材料層)4を付着形成した積層構造のヒータ部を有するとともに、そのヒータ部の両端をシリコン基板1に固定する一方、そのヒータ部の中間部を、シリコン基板1上に形成した堀部分6を挟んでシリコン基板1から離して空中に浮かして設け、絶縁層として、その絶縁層が結晶化する温度以上でアニール処理を行ったものを用いてなる。そして、そのヒータ部の近傍に、ガス検知膜7およびガス検知用の電極3を備える。
【0020】
ここで、ガス検知膜7は、電極3に直接接触するようにガス検知膜用窓10を設けてガス検知膜材料を塗布して形成する。また、ヒ−タ4と電極3は、絶縁層を介するなどにより電気的に絶縁されていれば、同層上または他層上のいずれに設けてもよい。
【0021】
電極3としては、白金等の金属電極を用い、この電極3には、抵抗を測定するための電極用リード線8を取り付ける。
【0022】
ヒータ4としては、白金等を用い、このヒータ4には、電力を加えるためのヒータ用リード線9を取り付ける。
【0023】
このマイクロガスセンサを駆動するときは、ヒータ4に通電して適温に加熱し、ガス検知膜上の抵抗値変化を検知することにより、ガスの種類や濃度等を検知することができる。
【0024】
このマイクロガスセンサを製造するに際しては、まず、アンダーカットエッチングが容易な、たとえば結晶方位(110)の絶縁膜処理を施したシリコン基板1を利用し、そのシリコン基板1の上面の酸化膜をフッ酸を用いて除去する。このシリコン基板1の表面に、Taをスパッタリング法で、約1.6μmの厚さで製膜して絶縁層2を形成する。
【0025】
次いで、この絶縁層2上に電極3やヒ−タ4を形成するため、たとえば、白金等の金属薄膜をスパッタリング法で製膜し、さらに希望の電極やヒータ形状にパターニングするためのマスクを作成するため、たとえばTaをスパッタリング法で製膜し、電極やヒ−タの形状にフォトリソグラフィでパターニングした後、ケミカルドライエッチングにより電極やヒータ形状以外のTaを除去して、電極やヒータ形状のマスクとする。このマスクを利用して、逆スパッタリング等のドライエッチング法により、電極3およびヒータ4を形成する。
【0026】
これらのエッチング用のマスクを形成する方法は、電極やヒータ形状を作成し得るものであればよく、たとえば、白金等の金属薄膜の上にメタルマスクを乗せる方法などでもよい。
【0027】
こうして形成した電極3およびヒータ4を保護するため、たとえばTaをスパッタリング法で製膜して保護用絶縁層5を形成する。
【0028】
こうして得られる、基板1上に絶縁層2を、その上にヒ−タ4を、さらにその上に保護用絶縁層5を形成したものを、その絶縁層(Ta)が結晶化する温度(700℃)で1時間アニール処理を行う。この絶縁層のアニール処理により、マイクロガスセンサの温度変化に対する耐久性を高めることができる。この際、アニール処理の温度を絶縁層が結晶化する温度より低い温度、たとえば、600℃とすると、絶縁層(Ta)がアモルファスから結晶化する途中となり、絶縁層の内部応力が大きくなっているときに熱処理を中断することとなり、その結果、内部応力が絶縁層中に残り、温度変化に対する耐久性を悪化させてしまうこととなる。
【0029】
ここで、上述の基板1上への絶縁層2の形成、保護用絶縁層5の形成およびアニール処理のいずれをも、絶縁層を作成するためのターゲットと、アニール処理のための基板加熱用のヒ−タとを具備する、一つのスパッタリング装置内で連続して行うこともできる。
【0030】
次いで、後に形成するガス検知膜7が直接電極3に接触できるように、フォトリソグラフィでパターニングした後、ケミカルドライエッチング等のドライエッチングにより、ガス検知膜用窓10を形成する。
【0031】
さらに、堀形状にフォトリソグラフィでパターニングした後、ケミカルドライエッチング等のドライエッチングにより、堀部分6のTaを除去して堀部分6のマスクを形成する。次いで、エッチャントとして、たとえばKOH溶液を用いて、エッチャント温度80〜85℃で190分間、シリコン基板1をアンダーカットエッチング(異方性エッチング)して、堀部分6を形成する。
【0032】
このようにして、ブリッジ状センサ構造体が得られる。なお、上記例では、絶縁層としてTaを用いるが、たとえば、Si、SiO等を用いてもよい。また、上記例では、電極やヒータとして白金を用いるが、たとえば、Ni−Cr、Cr等の金属薄膜を用いてもよい。さらに、上記例では、アンダーカットエッチングの際のエッチャントとしてKOH溶液を用いるが、たとえば、NaOH溶液、ヒドラジン溶液、エチレンジアミンーピロカテコールー水溶液、水酸化テトラメチルアンモニウム溶液等を用いてもよい。
【0033】
こうして得られるブリッジ状センサ構造体に、ガス検知膜材料の溶液を用いて塗布した後、焼結して、ガス検知膜7を形成する。塗布法としては、たとえば、スピンコーティング法、ドクターブレード法、浸漬塗布法等が用いられる。
【0034】
最後に、電極3のパッド部分に電極用リード線8を取り付け、ヒータ4のパッド部分にヒータ用リード線9を取り付けると、ヒータ部の中間部を、基板上に形成した堀部分を挟んで基板から離してブリッジ状に空中に浮かして設けたブリッジ状構造(以下、空中に浮かしたブリッジ状構造と称す)とする、この発明のマイクロガスセンサが得られる。なお、上記例では、ヒータ部の両端をシリコン基板1に固定した例であるが、上記工程中でマスクの形状を変えるのみで、ヒータ部の一端をシリコン基板1に固定したものとすることもできる。
【0035】
以上は、空中に浮かしたブリッジ状構造とする場合であるが、図2に示すような空中に浮かした片持ち梁状構造とすることもできる。このような片持ち梁状構造とするマイクロガスセンサも、上記空中に浮かしたブリッジ状構造の場合と同様にして製造することができる。なお、図2中、21はシリコン基板、22は絶縁層、23は電極、24はヒータ、25は保護用絶縁層、26は堀部分、27はガス検知膜、28は電極用リード線、29はヒータ用リード線、20はガス検知膜用窓を示す。
【0036】
以上は、ヒータ部の中間部を、基板上に形成した堀部分を挟んで基板から離して空中に浮かして設けたマイクロセンサにおいて、絶縁層として、その絶縁層が結晶化する温度以上でアニール処理を行ったものを用いることにより、マイクロセンサの温度変化に対する耐久性を高めた実施例である。しかしながら、たとえば、次に示す実施例のように、ヒータ部の中間部を、基板上に形成した堀部分を挟んで基板から離して空中に浮かして設けたマイクロセンサにおいて、シリコン基板上に形成した堀部分の一部に、シリコン基板と積層構造とを部分的に連結する連結凸部を設ける構成とすることにより、マイクロセンサの温度変化に対する耐久性を高めることもできる。
【0037】
実施例2
シリコン基板上に形成した堀部分の一部に、シリコン基板と積層構造とを部分的に連結する連結凸部を設けるマイクロガスセンサについて、以下に説明する。
【0038】
図3は、マイクロガスセンサの、(a)は上面概略構成説明図、(b)はそのB−B断面概略構成説明図である。
【0039】
このマイクロガスセンサは、絶縁層32上にヒータ(特定材料層)34を付着形成した積層構造のヒータ部を有するとともに、そのヒータ部の両端をシリコン基板31に固定する一方、そのヒータ部の中間部を、シリコン基板31上に形成した堀部分36を挟んでシリコン基板31から離して空中に浮かして設け、シリコン基板31上に形成した堀部分36の一部に、シリコン基板31と積層構造とを部分的に連結する連結凸部(シリコン凸部)41を設けてなる。そして、そのヒータ部の近傍に、ガス検知膜37およびガス検知用の電極33を備える。
【0040】
ここで、ガス検知膜37は、電極33に直接接触するようにガス検知膜用窓30を設けてガス検知膜材料を塗布して形成する。また、ヒ−タ34と電極33は、絶縁層を介するなどにより電気的に絶縁されていれば、同層上または他層上のいずれに設けてもよい。
【0041】
電極33としては、白金等の金属電極を用い、この電極33には、抵抗を測定するための電極用リード線38を取り付ける。
【0042】
ヒータ34としては、白金等を用い、このヒータ34には、電力を加えるためのヒータ用リード線39を取り付ける。
【0043】
ここで、結晶方位(110)のシリコン基板を利用するとき、異方性エッチングによりブリッジ状構造を作成するには、設計方位に様々な制約があり、たとえば、ブリッジの根元にアンダーカットエッチングが入らず、深い堀部分を形成するには、結晶方位(110)のシリコン基板のオリフラ(Orientation Flat)から55°の角度が堀部分の縁になるように設計することが必要である。
【0044】
また、下記式のように設計することにより、ブリッジが完全にシリコン基板から離れない構造とすることができる。
ブリッジ幅≧ブリッジ長さ(堀部分幅)×Tan(19.47°)
【0045】
この際、シリコン基板のシリコン凸部がブリッジに接触している面積(以下、凸部接触面積と称す)の割合と、ブリッジ温度との間には、図4に示す関係がある。図4は、シリコン基板から完全に離れているブリッジが500℃に上昇する消費電力を用いて、ブリッジ面積(堀部分の上に張り出した部分の面積)に対する凸部接触面積の割合を変えて、そのときのブリッジ温度を測定した結果を示す図である。
【0046】
図4に示す結果によれば、ブリッジ面積に対する凸部接触面積の割合が、10%ではブリッジ温度が400℃を越えているが、20%では200℃以下に低下している。この結果から、ブリッジ面積に対する凸部接触面積の割合は10%以下であることが、その消費電力の点からみて望ましいことが分る。10%以下の場合には、シリコン基板から完全に離れているブリッジ構造の場合(ブリッジ面積に対する凸部接触面積の割合が0%の場合)よりも、ヒータの熱がシリコン基板へと逃げやすくなり、消費電力の点からは若干悪くなるが、十分に許容可能な範囲である。
【0047】
このマイクロガスセンサを駆動するときは、ヒータ34に通電して適温に加熱し、ガス検知膜上の抵抗値の変化を検知することにより、ガスの種類や濃度等を検知することができる。
【0048】
このマイクロガスセンサを製造するに際しては、まず、アンダーカットエッチングが容易な、たとえば結晶方位(110)の絶縁膜処理を施したシリコン基板31を利用し、そのシリコン基板31の上面の酸化膜をフッ酸を用いて除去する。このシリコン基板31の表面に、Taをスパッタリング法で、約1.6μmの厚さで製膜して絶縁層32を形成する。
【0049】
次いで、この絶縁層32上に電極33やヒ−タ34を形成するため、たとえば、白金等の金属薄膜をスパッタリング法で製膜し、さらに希望の電極やヒータ形状にパターニングするためのマスクを作成するため、たとえばTaをスパッタリング法で製膜し、電極やヒ−タの形状にフォトリソグラフィでパターニングした後、ケミカルドライエッチングにより電極やヒータ形状以外のTaを除去して、電極やヒータ形状のマスクとする。このマスクを利用して、逆スパッタリング等のドライエッチング法により、電極33およびヒータ34を形成する。
【0050】
これらのエッチング用のマスクを形成する方法は、電極やヒータ形状を作成し得るものであればよく、たとえば、白金等の金属薄膜の上にメタルマスクを乗せる方法などでもよい。
【0051】
こうして形成した電極33およびヒータ34を保護するため、たとえばTaをスパッタリング法で製膜して保護用絶縁層35を形成する。
【0052】
次いで、後に形成するガス検知膜37が直接電極33に接触できるように、フォトリソグラフィでパターニングした後、ケミカルドライエッチング等のドライエッチングにより、ガス検知膜用窓30を形成する。
【0053】
さらに、堀形状にフォトリソグラフィでパターニングした後、ケミカルドライエッチング等のドライエッチングにより、堀部分36のTaを除去して堀部分36のマスクを形成する。次いで、エッチャントとして、たとえばKOH溶液を用いて、エッチャント温度80〜85℃で230分間、シリコン基板31をアンダーカットエッチング(異方性エッチング)して、堀部分36を形成し、かつ、この堀部分36の一部に、シリコン基板31と積層構造とを部分的に連結するシリコン凸部41を形成する。
【0054】
このようにして、ブリッジ状センサ構造体が得られる。なお、上記例では、絶縁層としてTaを用いるが、たとえば、Si、SiO等を用いてもよい。また、上記例では、電極やヒータとして白金を用いるが、たとえば、Ni−Cr、Cr等の金属薄膜を用いてもよい。さらに、上記例では、アンダーカットエッチングの際のエッチャントとしてKOH溶液を用いるが、たとえば、NaOH溶液、ヒドラジン溶液、エチレンジアミンーピロカテコールー水溶液、水酸化テトラメチルアンモニウム溶液等を用いてもよい。
【0055】
こうして得られるブリッジ状センサ構造体に、ガス検知膜材料の溶液を用いて塗布した後、焼結して、ガス検知膜37を形成する。塗布法としては、たとえば、スピンコーティング法、ドクターブレード法、浸漬塗布法等が用いられる。
【0056】
最後に、電極33のパッド部分に電極用リード線38を取り付け、ヒータ34のパッド部分にヒータ用リード線39を取り付けると、空中に浮かしたブリッジ状構造とする、この発明のマイクロガスセンサが得られる。
【0057】
以上は、空中に浮かしたブリッジ状構造とする場合であるが、図5に示すような空中に浮かした片持ち梁状構造とすることもできる。このような片持ち梁状構造とするマイクロガスセンサも、上記空中に浮かしたブリッジ状構造の場合と同様にして製造することができる。なお、図5中、51はシリコン基板、52は絶縁層、53は電極、54はヒータ、55は保護用絶縁層、56は堀部分、57はガス検知膜、58は電極用リード線、59はヒータ用リード線、50はガス検知膜用窓、42はシリコン凸部を示す。
【0058】
実施例3
結晶化する温度以上でアニール処理を行った絶縁層を用いるマイクロ温湿度センサについて、以下に説明する。
【0059】
図6は、この発明のマイクロセンサの他例であるマイクロ温湿度センサの、(a)は上面概略構成説明図、(b)はそのB−B断面概略構成説明図である。
【0060】
このマイクロ温湿度センサは、絶縁層62上にヒータ(特定材料層)64を付着形成した積層構造のヒータ部を有するとともに、そのヒータ部の両端をシリコン基板61に固定する一方、そのヒータ部の中間部を、シリコン基板61上に形成した堀部分66を挟んでシリコン基板61から離して空中に浮かして設け、絶縁層として、その絶縁層が結晶化する温度以上でアニール処理を行ったものを用いてなる。
【0061】
ヒータ64としては、白金等を用い、このヒータ64には、電力を加えるためのヒータ用リード線69を取り付ける。
【0062】
このマイクロ温湿度センサは、ヒータ64に通電して適温に加熱し、その温度変化、即ち抵抗値変化を検知することにより、湿度を検知することができる。
【0063】
このマイクロ温湿度センサを製造するに際しては、まず、アンダーカットエッチングが容易な、たとえば結晶方位(110)の絶縁膜処理を施したシリコン基板61を利用し、そのシリコン基板61の上面の酸化膜をフッ酸を用いて除去する。このシリコン基板61の表面に、Taをスパッタリング法で、約1.6μmの厚さで製膜して絶縁層62を形成する。
【0064】
次いで、この絶縁層62上にヒ−タ64を形成するため、たとえば、白金等の金属薄膜をスパッタリング法で製膜し、さらに希望のヒータ形状にパターニングするためのマスクを作成するため、たとえばTaをスパッタリング法で製膜し、ヒ−タの形状にフォトリソグラフィでパターニングした後、ケミカルドライエッチングによりヒータ形状以外のTaを除去して、ヒータ形状のマスクとする。このマスクを利用して、逆スパッタリング等のドライエッチング法により、ヒータ64を形成する。
【0065】
これらのエッチング用のマスクを形成する方法は、ヒータ形状を作成し得るものであればよく、たとえば、白金等の金属薄膜の上にメタルマスクを乗せる方法などでもよい。
【0066】
こうして形成したヒータ64を保護するため、たとえばTaをスパッタリング法で製膜して保護用絶縁層65を形成する。
【0067】
こうして得られる、基板61上に絶縁層62を、その上にヒ−タ64を、さらにその上に保護用絶縁層65を形成したものを、その絶縁層(Ta)が結晶化する温度(700℃)で1時間アニール処理を行う。この絶縁層のアニール処理により、マイクロ温湿度センサの温度変化に対する耐久性を高めることができる。この際、アニール処理の温度を絶縁層が結晶化する温度より低い温度、たとえば、600℃とすると、絶縁層(Ta)がアモルファスから結晶化する途中となり、絶縁層の内部応力が大きくなっているときに熱処理を中断することとなり、その結果、内部応力が絶縁層中に残り、温度変化に対する耐久性を悪化させてしまうこととなる。
【0068】
ここで、上述の基板61上への絶縁層62の形成、保護用絶縁層65の形成およびアニール処理のいずれをも、絶縁層を作成するためのターゲットと、アニール処理のための基板加熱用のヒ−タとを具備する、一つのスパッタリング装置内で連続して行うこともできる。
【0069】
さらに、堀形状にフォトリソグラフィでパターニングした後、ケミカルドライエッチング等のドライエッチングにより、堀部分66のTaを除去して堀部分66のマスクを形成する。次いで、エッチャントとして、たとえばKOH溶液を用いて、エッチャント温度80〜85℃で190分間、シリコン基板61をアンダーカットエッチング(異方性エッチング)して、堀部分66を形成する。
【0070】
このようにして、ブリッジ状センサ構造体が得られる。なお、上記例では、絶縁層としてTaを用いるが、たとえば、Si、SiO等を用いてもよい。また、上記例では、ヒータとして白金を用いるが、たとえば、Ni−Cr、Cr等の金属薄膜を用いてもよい。さらに、上記例では、アンダーカットエッチングの際のエッチャントとしてKOH溶液を用いるが、たとえば、NaOH溶液、ヒドラジン溶液、エチレンジアミンーピロカテコールー水溶液、水酸化テトラメチルアンモニウム溶液等を用いてもよい。
【0071】
最後に、ヒータ64のパッド部分にヒータ用リード線69を取り付けると、空中に浮かしたブリッジ状構造とする、この発明のマイクロ温湿度センサが得られる。
【0072】
以上は、空中に浮かしたブリッジ状構造とする場合であるが、図7に示すような空中に浮かした片持ち梁状構造とすることもできる。このような片持ち梁状構造とするマイクロ温湿度センサも、上記空中に浮かしたブリッジ状構造の場合と同様にして製造することができる。なお、図7中、71はシリコン基板、72は絶縁層、74はヒータ、75は保護用絶縁層、76は堀部分、79はヒータ用リード線を示す。
【0073】
実施例4
シリコン基板上に形成した堀部分の一部に、シリコン基板と積層構造とを部分的に連結する連結凸部を設けるマイクロ温湿度センサについて、以下に説明する。
【0074】
図8は、マイクロ温湿度センサの、(a)は上面概略構成説明図、(b)はそのB−B断面概略構成説明図である。
【0075】
このマイクロ温湿度センサは、絶縁層82上にヒータ(特定材料層)84を付着形成した積層構造のヒータ部を有するとともに、そのヒータ部の両端をシリコン基板81に固定する一方、そのヒータ部の中間部を、シリコン基板81上に形成した堀部分86を挟んでシリコン基板81から離して空中に浮かして設け、シリコン基板81上に形成した堀部分86の一部に、シリコン基板81と積層構造とを部分的に連結する連結凸部(シリコン凸部)43を設けてなる。
【0076】
ヒータ84としては、白金等を用い、このヒータ84には、電力を加えるためのヒータ用リード線89を取り付ける。
【0077】
このマイクロ温湿度センサは、ヒータ84に通電して適温に加熱し、その温度変化、即ち抵抗値変化を検知することにより、湿度を検知することができる。
【0078】
このマイクロ温湿度センサを製造するに際しては、まず、アンダーカットエッチングが容易な、たとえば結晶方位(110)の絶縁膜処理を施したシリコン基板81を利用し、そのシリコン基板81の上面の酸化膜をフッ酸を用いて除去する。このシリコン基板81の表面に、Taをスパッタリング法で、約1.6μmの厚さで製膜して絶縁層82を形成する。
【0079】
次いで、この絶縁層82上にヒ−タ84を形成するため、たとえば、白金等の金属薄膜をスパッタリング法で製膜し、さらに希望のヒータ形状にパターニングするためのマスクを作成するため、たとえばTaをスパッタリング法で製膜し、ヒ−タの形状にフォトリソグラフィでパターニングした後、ケミカルドライエッチングによりヒータ形状以外のTaを除去して、ヒータ形状のマスクとする。このマスクを利用して、逆スパッタリング等のドライエッチング法により、ヒータ84を形成する。
【0080】
これらのエッチング用のマスクを形成する方法は、ヒータ形状を作成し得るものであればよく、たとえば、白金等の金属薄膜の上にメタルマスクを乗せる方法などでもよい。
【0081】
こうして形成したヒータ84を保護するため、たとえばTaをスパッタリング法で製膜して保護用絶縁層85を形成する。
【0082】
さらに、堀形状にフォトリソグラフィでパターニングした後、ケミカルドライエッチング等のドライエッチングにより、堀部分86のTaを除去して堀部分86のマスクを形成する。次いで、エッチャントとして、たとえばKOH溶液を用いて、エッチャント温度80〜85℃で230分間、シリコン基板81をアンダーカットエッチング(異方性エッチング)して、堀部分86を形成し、かつ、この堀部分86の一部に、シリコン基板81と積層構造とを部分的に連結するシリコン凸部43を形成する。
【0083】
このようにして、ブリッジ状センサ構造体が得られる。なお、上記例では、絶縁層としてTaを用いるが、たとえば、Si、SiO等を用いてもよい。また、上記例では、ヒータとして白金を用いるが、たとえば、Ni−Cr、Cr等の金属薄膜を用いてもよい。さらに、上記例では、アンダーカットエッチングの際のエッチャントとしてKOH溶液を用いるが、たとえば、NaOH溶液、ヒドラジン溶液、エチレンジアミンーピロカテコールー水溶液、水酸化テトラメチルアンモニウム溶液等を用いてもよい。
【0084】
最後に、ヒータ84のパッド部分にヒータ用リード線89を取り付けると、空中に浮かしたブリッジ状構造とする、この発明のマイクロ温湿度センサが得られる。
【0085】
以上は、空中に浮かしたブリッジ状構造とする場合であるが、図9に示すような空中に浮かした片持ち梁状構造とすることもできる。このような片持ち梁状構造とするマイクロ温湿度センサも、上記空中に浮かしたブリッジ状構造の場合と同様にして製造することができる。なお、図9中、91はシリコン基板、92は絶縁層、94はヒータ、95は保護用絶縁層、96は堀部分、99はヒータ用リード線、44はシリコン凸部を示す。
【0086】
実施例5
結晶化する温度以上でアニール処理を行った絶縁層を用いるマイクロ流量センサについて、以下に説明する。
【0087】
図10は、この発明のマイクロセンサの他例であるマイクロ流量センサの、(a)は上面概略構成説明図、(b)はそのB−B断面概略構成説明図である。
【0088】
このマイクロ流量センサは、絶縁層102上に2つのヒータ(特定材料層)104を付着形成した積層構造のヒータ部を有するとともに、そのヒータ部の両端をシリコン基板101に固定する一方、そのヒータ部の中間部を、シリコン基板101上に形成した堀部分106を挟んでシリコン基板101から離して空中に浮かして設け、絶縁層として、その絶縁層が結晶化する温度以上でアニール処理を行ったものを用いてなる。そして、そのヒータ部の近傍に、検知用の電極103を備える。
【0089】
電極103としては、白金等の金属電極を用い、この電極103には、抵抗を測定するための電極用リード線108を取り付ける。
【0090】
ヒータ104としては、白金等を用い、このヒータ104には、電力を加えるためのヒータ用リード線109を取り付ける。
【0091】
このマイクロ流量センサは、流れ方向に対して垂直にヒータ104と電極103を配置して、流れ方向について上流となる電極と下流となる電極との間の抵抗値変化を検知することにより、流量を検知することができる。
【0092】
このマイクロ流量センサを製造するに際しては、まず、アンダーカットエッチングが容易な、たとえば結晶方位(110)の絶縁膜処理を施したシリコン基板101を利用し、そのシリコン基板101の上面の酸化膜をフッ酸を用いて除去する。このシリコン基板101の表面に、Taをスパッタリング法で、約1.6μmの厚さで製膜して絶縁層102を形成する。
【0093】
次いで、この絶縁層102上に電極103やヒ−タ104を形成するため、たとえば、白金等の金属薄膜をスパッタリング法で製膜し、さらに希望の電極やヒータ形状にパターニングするためのマスクを作成するため、たとえばTaをスパッタリング法で製膜し、電極やヒ−タの形状にフォトリソグラフィでパターニングした後、ケミカルドライエッチングにより電極やヒータ形状以外のTaを除去して、電極やヒータ形状のマスクとする。このマスクを利用して、逆スパッタリング等のドライエッチング法により、電極103およびヒータ104を形成する。
【0094】
これらのエッチング用のマスクを形成する方法は、電極やヒータ形状を作成し得るものであればよく、たとえば、白金等の金属薄膜の上にメタルマスクを乗せる方法などでもよい。
【0095】
こうして形成した電極103およびヒータ104を保護するため、たとえばTaをスパッタリング法で製膜して保護用絶縁層105を形成する。
【0096】
こうして得られる、基板101上に絶縁層102を、その上にヒ−タ104を、さらにその上に保護用絶縁層105を形成したものを、その絶縁層(Ta)が結晶化する温度(700℃)で1時間アニール処理を行う。この絶縁層のアニール処理により、マイクロ流量センサの温度変化に対する耐久性を高めることができる。この際、アニール処理の温度を絶縁層が結晶化する温度より低い温度、たとえば、600℃とすると、絶縁層(Ta)がアモルファスから結晶化する途中となり、絶縁層の内部応力が大きくなっているときに熱処理を中断することとなり、その結果、内部応力が絶縁層中に残り、温度変化に対する耐久性を悪化させてしまうこととなる。
【0097】
ここで、上述の基板101上への絶縁層102の形成、保護用絶縁層105の形成およびアニール処理のいずれをも、絶縁層を作成するためのターゲットと、アニール処理のための基板加熱用のヒ−タとを具備する、一つのスパッタリング装置内で連続して行うこともできる。
【0098】
さらに、堀形状にフォトリソグラフィでパターニングした後、ケミカルドライエッチング等のドライエッチングにより、堀部分106のTaを除去して堀部分106のマスクを形成する。次いで、エッチャントとして、たとえばKOH溶液を用いて、エッチャント温度80〜85℃で190分間、シリコン基板101をアンダーカットエッチング(異方性エッチング)して、堀部分106を形成する。
【0099】
このようにして、ブリッジ状センサ構造体が得られる。なお、上記例では、絶縁層としてTaを用いるが、たとえば、Si、SiO等を用いてもよい。また、上記例では、電極やヒータとして白金を用いるが、たとえば、Ni−Cr、Cr等の金属薄膜を用いてもよい。さらに、上記例では、アンダーカットエッチングの際のエッチャントとしてKOH溶液を用いるが、たとえば、NaOH溶液、ヒドラジン溶液、エチレンジアミンーピロカテコールー水溶液、水酸化テトラメチルアンモニウム溶液等を用いてもよい。
【0100】
最後に、電極103のパッド部分に電極用リード線108を取り付け、ヒータ104のパッド部分にヒータ用リード線109を取り付けると、空中に浮かしたブリッジ状構造とする、この発明のマイクロ流量センサが得られる。
【0101】
以上は、空中に浮かしたブリッジ状構造とする場合であるが、図11に示すような空中に浮かした片持ち梁状構造とすることもできる。このような片持ち梁状構造とするマイクロ流量センサも、上記空中に浮かしたブリッジ状構造の場合と同様にして製造することができる。なお、図11中、111はシリコン基板、112は絶縁層、113は電極、114はヒータ、115は保護用絶縁層、116は堀部分、118は電極用リード線、119はヒータ用リード線を示す。
【0102】
実施例6
シリコン基板上に形成した堀部分の一部に、シリコン基板と積層構造とを部分的に連結する連結凸部を設けるマイクロ流量センサについて、以下に説明する。
【0103】
図12は、マイクロ流量センサの、(a)は上面概略構成説明図、(b)はそのB−B断面概略構成説明図である。
【0104】
このマイクロ流量センサは、絶縁層122上に2つのヒータ(特定材料層)124を付着形成した積層構造のヒータ部を有するとともに、そのヒータ部の両端をシリコン基板121に固定する一方、そのヒータ部の中間部を、シリコン基板121上に形成した堀部分126を挟んでシリコン基板121から離して空中に浮かして設け、シリコン基板121上に形成した堀部分126の一部に、シリコン基板121と積層構造とを部分的に連結する連結凸部(シリコン凸部)45を設けてなる。そして、そのヒータ部の近傍に、検知用の電極123を備える。
【0105】
電極123としては、白金等の金属電極を用い、この電極123には、抵抗を測定するための電極用リード線128を取り付ける。
【0106】
ヒータ124としては、白金等を用い、このヒータ124には、電力を加えるためのヒータ用リード線129を取り付ける。
【0107】
このマイクロ流量センサは、流れ方向に対して垂直にヒータ124と電極123を配置して、流れ方向について上流となる電極と下流となる電極との間の抵抗値変化を検知することにより、流量を検知することができる。
【0108】
このマイクロ流量センサを製造するに際しては、まず、アンダーカットエッチングが容易な、たとえば結晶方位(110)の絶縁膜処理を施したシリコン基板121を利用し、そのシリコン基板121の上面の酸化膜をフッ酸を用いて除去する。このシリコン基板121の表面に、Taをスパッタリング法で、約1.6μmの厚さで製膜して絶縁層122を形成する。
【0109】
次いで、この絶縁層122上に電極123やヒ−タ124を形成するため、たとえば、白金等の金属薄膜をスパッタリング法で製膜し、さらに希望の電極やヒータ形状にパターニングするためのマスクを作成するため、たとえばTaをスパッタリング法で製膜し、電極やヒ−タの形状にフォトリソグラフィでパターニングした後、ケミカルドライエッチングにより電極やヒータ形状以外のTaを除去して、電極やヒータ形状のマスクとする。このマスクを利用して、逆スパッタリング等のドライエッチング法により、電極123およびヒータ124を形成する。
【0110】
これらのエッチング用のマスクを形成する方法は、電極やヒータ形状を作成し得るものであればよく、たとえば、白金等の金属薄膜の上にメタルマスクを乗せる方法などでもよい。
【0111】
こうして形成した電極123およびヒータ124を保護するため、たとえばTaをスパッタリング法で製膜して保護用絶縁層125を形成する。
【0112】
さらに、堀形状にフォトリソグラフィでパターニングした後、ケミカルドライエッチング等のドライエッチングにより、堀部分126のTaを除去して堀部分126のマスクを形成する。次いで、エッチャントとして、たとえばKOH溶液を用いて、エッチャント温度80〜85℃で230分間、シリコン基板121をアンダーカットエッチング(異方性エッチング)して、堀部分126を形成し、かつ、この堀部分126の一部に、シリコン基板121と積層構造とを部分的に連結するシリコン凸部45を形成する。
【0113】
このようにして、ブリッジ状センサ構造体が得られる。なお、上記例では、絶縁層としてTaを用いるが、たとえば、Si、SiO等を用いてもよい。また、上記例では、電極やヒータとして白金を用いるが、たとえば、Ni−Cr、Cr等の金属薄膜を用いてもよい。さらに、上記例では、アンダーカットエッチングの際のエッチャントとしてKOH溶液を用いるが、たとえば、NaOH溶液、ヒドラジン溶液、エチレンジアミンーピロカテコールー水溶液、水酸化テトラメチルアンモニウム溶液等を用いてもよい。
【0114】
最後に、電極123のパッド部分に電極用リード線128を取り付け、ヒータ124のパッド部分にヒータ用リード線129を取り付けると、空中に浮かしたブリッジ状構造とする、この発明のマイクロ流量センサが得られる。
【0115】
以上は、空中に浮かしたブリッジ状構造とする場合であるが、図13に示すような空中に浮かした片持ち梁状構造とすることもできる。このような片持ち梁状構造とするマイクロ流量センサも、上記空中に浮かしたブリッジ状構造の場合と同様にして製造することができる。なお、図13中、131はシリコン基板、132は絶縁層、133は電極、134はヒータ、135は保護用絶縁層、136は堀部分、138は電極用リード線、139はヒータ用リード線、46はシリコン凸部を示す。
【0116】
【発明の効果】
請求項1に記載の発明によれば、絶縁層上に特定材料層を付着形成した積層構造のヒータ部を有するとともに、そのヒータ部の両端または一端を基板に固定する一方、そのヒータ部の中間部を、基板上に形成した堀部分を挟んで基板から離して空中に浮かして設けたマイクロセンサにおいて、絶縁層として、その絶縁層が結晶化する温度以上でアニール処理を行ったものを用いるので、絶縁層の内部応力を低減し、マイクロセンサの温度変化に対する耐久性を高め、絶縁層や特定材料層の断線、膜剥れ等の発生を防止することができる。請求項1に記載のものは、たとえば温湿度センサ等として用いることができる。
【0117】
請求項2または3に記載のものによれば、それぞれ、ヒータ部の近傍に、検知用の電極、またはガス検知膜およびガス検知用の電極を備えるので、それぞれ、たとえば、マイクロ流量センサ等、またはマイクロガスセンサ等として用いることができる。
【0118】
請求項4に記載の発明によれば、絶縁層が結晶化する温度以上でアニール処理を行っても、従来考えられていたように、内部応力が増加してブリッジの破壊を招くこともなく、絶縁層の内部応力を低減し、温度変化に対する耐久性を高めたマイクロセンサを簡易に提供することができる。
【0119】
請求項5に記載の発明によれば、絶縁層の形成、保護用絶縁層の形成およびアニール処理を、絶縁層を作成するためのターゲットと基板加熱用のヒータとを具備するスパッタリング装置内で連続して行うことより、製造工程を短縮・簡素化することができ、ダスト等の異物の混入を防止することができる。
【0120】
請求項6に記載の発明によれば、絶縁層上に特定材料層を付着形成した積層構造のヒータ部を有するとともに、そのヒータ部の両端または一端を基板に固定する一方、そのヒータ部の中間部を、基板上に形成した堀部分を挟んで基板から離して空中に浮かして設けたマイクロセンサにおいて、基板上に形成した堀部分の一部に基板と積層構造とを部分的に繋げる連結凸部を設けてなるので、マイクロセンサの温度変化に対する耐久性を高め、絶縁層や特定材料層の断線、膜剥れ等の発生を防止することができる。
【0121】
請求項7または8に記載のものによれば、それぞれ、ヒータ部の近傍に、検知用の電極、またはガス検知膜およびガス検知用の電極を備えるので、それぞれ、たとえば、マイクロ流量センサ等、またはマイクロガスセンサ等として用いることができる。
【0122】
請求項9に記載の発明によれば、請求項3または8のいずれかに記載のマイクロセンサを用いることにより、ガス漏れ時に単体で警報を発したりガスの供給を停止させたりするガス漏れ警報器を、簡易に提供することができる。
【0123】
請求項10に記載の発明によれば、請求項3または8のいずれかに記載のマイクロセンサを用いることにより、ガス漏れ時に、たとえばガスメータ等と連動して警報を発したりガスの供給を停止させたりするガス漏れ警報システムを、簡易に提供することができる。
【図面の簡単な説明】
【図1】この発明の実施例1のブリッジ状構造を有するマイクロガスセンサの、(a)は上面概略構成説明図、(b)はそのB−B断面概略構成説明図である。
【図2】この発明の実施例1の片持ち梁状構造を有するマイクロガスセンサの、(a)は上面概略構成説明図、(b)はそのB−B断面概略構成説明図である。
【図3】この発明の実施例2のブリッジ状構造を有するマイクロガスセンサの、(a)は上面概略構成説明図、(b)はそのB−B断面概略構成説明図である。
【図4】ブリッジ面積に対する凸部接触面積の割合を変えたときのブリッジ温度の測定結果を示す図である。
【図5】この発明の実施例2の片持ち梁状構造を有するマイクロガスセンサの、(a)は上面概略構成説明図、(b)はそのB−B断面概略構成説明図である。
【図6】この発明の実施例3のブリッジ状構造を有するマイクロ温湿度センサの、(a)は上面概略構成説明図、(b)はそのB−B断面概略構成説明図である。
【図7】この発明の実施例3の片持ち梁状構造を有するマイクロ温湿度センサの、(a)は上面概略構成説明図、(b)はそのB−B断面概略構成説明図である。
【図8】この発明の実施例4のブリッジ状構造を有するマイクロ温湿度センサの、(a)は上面概略構成説明図、(b)はそのB−B断面概略構成説明図である。
【図9】この発明の実施例4の片持ち梁状構造を有するマイクロ温湿度センサの、(a)は上面概略構成説明図、(b)はそのB−B断面概略構成説明図である。
【図10】この発明の実施例5のブリッジ状構造を有するマイクロ流量センサの、(a)は上面概略構成説明図、(b)はそのB−B断面概略構成説明図である。
【図11】この発明の実施例5の片持ち梁状構造を有するマイクロ流量センサの、(a)は上面概略構成説明図、(b)はそのB−B断面概略構成説明図である。
【図12】この発明の実施例6のブリッジ状構造を有するマイクロ流量センサの、(a)は上面概略構成説明図、(b)はそのB−B断面概略構成説明図である。
【図13】この発明の実施例6の片持ち梁状構造を有するマイクロ流量センサの、(a)は上面概略構成説明図、(b)はそのB−B断面概略構成説明図である。
【符号の説明】
1、21、31、51、61、71、81、91、101、111、121、131 シリコン基板(基板)
2、22、32、52、62、72、82、92、102、112、122、132 絶縁層
3、23、33、53、103、113、123、133 電極
4、24、34、54、64、74、84、94、104、114、124、134 ヒータ(特定材料層)
5、25、35、55、65、75、85、95、105、115、125、135 保護用絶縁層
6、26、36、56、66、76、86、96、106、116、126、136 堀部分
7、27、37、57 ガス検知膜
8、28、38、58、108、118、128、138 電極用リード線
9、29、39、59、69、79、89、99、109、119、129、139 ヒータ用リード線
10、20、30、50、 ガス検知膜用窓
41、42、43、44、45、46 シリコン凸部(連結凸部)

Claims (10)

  1. 絶縁層上に特定材料層を付着形成した積層構造のヒータ部を有するとともに、そのヒータ部の両端または一端を基板に固定する一方、そのヒータ部の中間部を、前記基板上に形成した堀部分を挟んで前記基板から離して空中に浮かして設けたマイクロセンサにおいて、前記絶縁層として、その絶縁層が結晶化する温度以上でアニール処理を行ったものを用いてなる、マイクロセンサ。
  2. 前記ヒータ部の近傍に、検知用の電極を備えてなる、請求項1に記載のマイクロセンサ。
  3. 前記ヒータ部の近傍に、ガス検知膜およびガス検知用の電極を備えてなる、請求項1に記載のマイクロセンサ。
  4. 基板上に絶縁層を形成し、その絶縁層上に特定材料層を付着形成した後、その上に保護用絶縁層を形成したものを、前記絶縁層が結晶化する温度以上でアニール処理を行い、次いで前記基板に堀部分を形成し、前記ヒータ部にリード線を取り付けることよりなる、請求項1に記載のマイクロセンサの製造方法。
  5. 前記絶縁層の形成、前記保護用絶縁層の形成および前記アニール処理を、絶縁層を作成するためのターゲットと基板加熱用のヒータとを具備するスパッタリング装置内で連続して行うことよりなる、請求項4に記載のマイクロセンサの製造方法。
  6. 絶縁層上に特定材料層を付着形成した積層構造のヒータ部を有するとともに、そのヒータ部の両端または一端を基板に固定する一方、そのヒータ部の中間部を、前記基板上に形成した堀部分を挟んで前記基板から離して空中に浮かして設けたマイクロセンサにおいて、前記基板上に形成した前記堀部分の一部に、前記基板と前記積層構造とを部分的に連結する連結凸部を設けてなる、マイクロセンサ。
  7. 前記ヒータ部の近傍に、検知用の電極を備えてなる、請求項6に記載のマイクロセンサ。
  8. 前記ヒータ部の近傍に、ガス検知膜およびガス検知用の電極を備えてなる、請求項6に記載のマイクロセンサ。
  9. 請求項3または8のいずれかに記載のマイクロセンサを用いるガス漏れ警報器。
  10. 請求項3または8のいずれかに記載のマイクロセンサを用いるガス漏れ警報システム。
JP2002256276A 2002-09-02 2002-09-02 マイクロセンサおよびその製造方法 Expired - Fee Related JP3897296B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002256276A JP3897296B2 (ja) 2002-09-02 2002-09-02 マイクロセンサおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002256276A JP3897296B2 (ja) 2002-09-02 2002-09-02 マイクロセンサおよびその製造方法

Publications (2)

Publication Number Publication Date
JP2004093425A JP2004093425A (ja) 2004-03-25
JP3897296B2 true JP3897296B2 (ja) 2007-03-22

Family

ID=32061549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002256276A Expired - Fee Related JP3897296B2 (ja) 2002-09-02 2002-09-02 マイクロセンサおよびその製造方法

Country Status (1)

Country Link
JP (1) JP3897296B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6385743B2 (ja) * 2013-07-16 2018-09-05 地方独立行政法人東京都立産業技術研究センター マイクロヒータ
CN108318548B (zh) * 2018-05-11 2024-03-15 微纳感知(合肥)技术有限公司 一种单悬梁气体传感器、传感器阵列及传感器的制备方法

Also Published As

Publication number Publication date
JP2004093425A (ja) 2004-03-25

Similar Documents

Publication Publication Date Title
KR100812996B1 (ko) 마이크로 가스 센서 및 그 제조방법
JP4873659B2 (ja) 流体の沸点をダイレクトに求める方法
JP4590764B2 (ja) ガスセンサ及びその製造方法
US10697920B2 (en) Gas sensor
US10180406B2 (en) Semiconductor gas sensor device and manufacturing method thereof
JP4801396B2 (ja) ガスセンサ及びガスセンサの製造方法
JPH10213470A (ja) 薄膜式抵抗体及びその製造方法、流量センサ、湿度センサ、ガスセンサ、温度センサ
JP3920247B2 (ja) 感熱式流量検出素子およびその製造方法
KR101078187B1 (ko) 마이크로 가스 센서 및 그 제조 방법
US6644113B2 (en) Flow-rate detecting device for heat-sensitive type flow sensor
JP3897296B2 (ja) マイクロセンサおよびその製造方法
JP4798961B2 (ja) ヒータデバイス及びこれを用いた気体センサ装置
JP4253969B2 (ja) マイクロヒータおよびその製造方法ならびにフローセンサ
JP2000002571A (ja) 熱線式マイクロヒータ
JP3601993B2 (ja) 熱型センサおよびその製造方法
JP3649412B2 (ja) Coセンサ
JPH11354302A (ja) 薄膜抵抗素子
JP2003021547A (ja) 薄膜式センサならびにフローセンサおよびその製造方法
JPH0755523A (ja) 流量センサ
US8076245B2 (en) MOS low power sensor with sacrificial membrane
KR101992022B1 (ko) 반도체식 가스센서
JPH10160698A (ja) マイクロセンサ
JP4258084B2 (ja) フローセンサおよびその製造方法
JP2002014070A (ja) 熱型センサ
JPH0618465A (ja) 複合センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061215

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees