JP3896344B2 - Operation method of dry air supply device - Google Patents

Operation method of dry air supply device Download PDF

Info

Publication number
JP3896344B2
JP3896344B2 JP2003121221A JP2003121221A JP3896344B2 JP 3896344 B2 JP3896344 B2 JP 3896344B2 JP 2003121221 A JP2003121221 A JP 2003121221A JP 2003121221 A JP2003121221 A JP 2003121221A JP 3896344 B2 JP3896344 B2 JP 3896344B2
Authority
JP
Japan
Prior art keywords
dry air
rotor
supply
regeneration
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003121221A
Other languages
Japanese (ja)
Other versions
JP2004321965A (en
Inventor
法明 兒玉
伸明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Nichias Corp
Original Assignee
Tokyo Electron Ltd
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd, Nichias Corp filed Critical Tokyo Electron Ltd
Priority to JP2003121221A priority Critical patent/JP3896344B2/en
Publication of JP2004321965A publication Critical patent/JP2004321965A/en
Application granted granted Critical
Publication of JP3896344B2 publication Critical patent/JP3896344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1072Rotary wheel comprising two rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1088Rotary wheel comprising three flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Gases (AREA)
  • Central Air Conditioning (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、乾燥空気供給装置の運転方法に関する。
【0002】
【従来の技術】
半導体装置の製造においては、被処理体例えば半導体ウエハに酸化、拡散、CVD等の各種の処理を施す工程があり、これらの工程を実行するために各種の処理装置(例えば熱処理装置等)が使用されている。例えば、縦型の熱処理装置においては、複数例えば25枚のウエハを収容した運搬容器と、前記ウエハを収容して所定の処理を施す処理容器との間でウエハの搬送を行う搬送空間(ローディングエリアとも言う)を有している。
【0003】
従来、前記搬送空間におけるウエハの自然酸化膜の成長を抑制するために、搬送空間に不活性ガス例えば窒素ガスを多量(250〜400リットル/分)に供給して、搬送空間の酸素濃度を30ppm以下の雰囲気にしていた。また、前記搬送空間における有機系のガスを除去するために、ケミカルフィルタを設けていた。しかしながら、高価な窒素ガスを多量に消費するためランニングコストが多くかかるだけでなく、窒素ガスによる酸欠の危険性があった。また、ケミカルフィルタにより有機物を除去することは可能であったが、ケミカルフィルタに付着した有機物を除去しケミカルフィルタを再生することは困難であった。
【0004】
そこで、この問題を解決するために、本出願人は、搬送空間に不活性ガスの代りに乾燥空気を供給することにより被処理体の自然酸化膜の成長を抑制することができ、また酸欠の危険性を回避することができると共にパーティクルの発生を防止することができる乾燥空気供給装置及び処理装置を先に出願した(特願2002−274214号、未公開)。
【0005】
なお、関連する技術として、搬送空間に低露点の乾燥気体を供給する発明(例えば、特開平6−267933号公報参照)や、低露点の乾燥気体を得る乾式減湿装置の発明(例えば、特開2000−296309号公報、特開昭63−50047号公報等参照)がなされている。
【0006】
【特許文献1】
特開平6−267933号公報
【特許文献2】
特開2000−296309号公報
【特許文献3】
特開昭63−50047号公報
【0007】
【発明が解決しようとする課題】
ところで、前記低露点の乾燥気体を得る乾式減湿装置や乾燥空気供給装置においては、乾燥空気を必要とする装置(例えば処理装置)側が停止している場合にはその停止期間だけ乾燥空気供給装置を停止させておき、装置側が稼動するときには同時に乾燥空気供給装置を稼動させるという運転方法が採用されている。しかしながら、この運転方法では、乾燥空気供給装置を停止している間に、ロータの吸着剤に水分が自然吸着されてしまい、その結果、目的とする低露点(例えば−70℃以下)の乾燥空気を得るまでに、稼動開始から数時間(4〜12時間)の試運転を要するという問題があった。また、乾燥空気供給装置から供給される乾燥空気の供給量は一定であるため、例えば必要な時に必要な量(例えば通常時の2倍程度の増量)の乾燥空気を必要とする場合などに対応することが困難であった。
【0008】
本発明は、前記事情を考慮してなされたもので、目的空間で乾燥空気を必用としない時でも稼動状態を維持するウォーミングアップ運転を行うことにより必要時に直ちに低露点の乾燥空気を供給することができる乾燥空気供給装置の運転方法を提供することを目的とする。また、本発明はウォーミングアップ運転と組合せ、必要な時に乾燥空気を増量して供給することができる乾燥空気供給装置の運転方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明のうち、請求項1の発明は、吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成される二つのロータと、両ロータを回転駆動する駆動手段と、吸引した空気を各ロータの吸着ゾーンに順に通過させて水分及び有機物を除去した乾燥空気を目的空間に供給する供給経路と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させることにより吸着剤を再生させる再生経路とを備えた乾燥空気供給装置の運転方法において、前記目的空間で乾燥空気を必要としないときに、前記供給経路の出口側へ向う乾燥空気を供給経路の入口側に戻して稼動状態を維持するウォーミングアップ運転を行うことを特徴とする。
【0010】
請求項2の発明は、吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成される二つのロータと、両ロータを回転駆動する駆動手段と、吸引した空気を各ロータの吸着ゾーンに順に通過させて水分及び有機物を除去した乾燥空気を目的空間に供給する供給経路と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させることにより吸着剤を再生させる再生経路とを備えた乾燥空気供給装置の運転方法において、前記目的空間で乾燥空気を必要としないときに、前記供給経路の出口側へ向う乾燥空気を供給経路の入口側に戻して稼動状態を維持するウォーミングアップ運転と、前記目的空間で通常時の流量よりも多い乾燥空気を必要とするときに、前記再生経路に向かう乾燥空気の流れを減少または遮断して乾燥空気の供給量を増加させる増量運転とを交互に間欠的に行うことを特徴とする。
【0011】
請求項3の発明は、請求項1又は2に記載の乾燥空気供給装置の運転方法において、前段ロータの回転数が後段ロータの回転数よりも高く設定されていることを特徴とする。
【0014】
【発明の実施の形態】
以下に、本発明の実施の形態を添付図面に基いて詳述する。図1は本発明の実施の形態である乾燥空気供給装置の通常運転状態を示す概略的構成図、図2はウォーミングアップ運転状態を示す概略的構成図、図3は増量運転状態を示す概略的構成図、図4はロータの一例を示す斜視図、図5はロータを回転自在に支持する支持枠の一例を示す斜視図である。
【0015】
図1において、1は例えば処理装置の搬送空間等の目的空間に低露点の乾燥空気(ドライエア)を供給するための乾燥空気供給装置で、この乾燥空気供給装置1は後述の支持枠2(図5参照)に回転可能に支持され、吸着剤を担持して構成されると共に、支持枠2に設けた仕切部材3により両端の回転域が少なくとも吸着ゾーンS及び再生ゾーンUに区画形成された二つのロータ4a,4bと、両ロータ4a,4bを回転駆動する駆動手段例えば電動モータ5と、前記目的空間または室内から吸引した空気を各ロータ4a,4bの吸着ゾーンSに順に通過させて水分及び有機物を除去した乾燥空気を目的空間に供給する供給経路6と、前記乾燥空気の一部を加熱して各ロータ4a,4bの再生ゾーンUに通過させて吸着剤から水分及び有機物を脱離させ、吸着材を再生させる再生経路7とを備えている。
【0016】
前記ロータ4a,4bは、図4に示すように両端が開口された円筒体8と、この円筒体8の軸心部に配置された回転軸10と、この回転軸10から放射状に延びて円筒体8の内周面に固定されると共に円筒体8内を複数例えば8つの断面扇形の部屋に仕切るスポーク11と、各部屋内に取付けられ基材に吸着剤を担持させた断面扇形のハニカム構造体12とから主に構成されている。ハニカム構造体12はロータ4a,4bの軸方向に空気を通流させる過程で、空気中に含まれる水分や有機物を吸着剤に吸着させて除去し、乾燥空気を得ることができる。
【0017】
前段のロータ4aの吸着剤としては、プレ除湿(出口露点温度−20℃)として水分を効率良く吸着すると共に有機物をも効率よく吸着するために、例えばフォージャサイトY型のゼオライト(A56Si136384)が好ましい。後段のロータ2bの吸着剤としては、低露点除湿(出口露点温度−80℃)として水分を吸着するために、例えばフォージャサイトX型のゼオライト(A96Si96384)が好ましい。
【0018】
一方、ハニカム構造体12の基材としては、耐熱性、耐摩耗性等に優れることから、無機繊維紙が好ましい。ハニカム構造体12は、無機繊維紙をハニカム状に成形してなる。前記基材に吸着剤を担持させる方法としては、例えば、吸着剤を含有するスラリーをスプレーや刷毛塗り等により基材に含浸させ、乾燥する方法が用いられる。ロータ4a,4bは、回転軸10を有する場合には、例えば図5に示すような箱状または枠状の支持枠2に回転可能に支持されている。図示例の場合、支持枠2の両端部にはロータ4a,4bの両端部と対応する開口部13が形成され、この開口部13に仕切部材3が取付けられている。前記開口部13の中央部には前記回転軸10の両端部を回転自在に支持する軸受14が仕切部材3を介して設けられている。
【0019】
仕切部材3は、ロータないし円筒体8の端部の周縁部に対応する環状の周方向部材3aと、その中心例えば軸受から周方向部材3aにかけて設けられた径方向部材3bとからなり、径方向部材3bにはハニカム構造体12の端面(ロータの端面)に近接して隣接するゾーンS,U,T間をシールする径方向シール部材が設けられている。周方向部材3aには、ロータないし円筒体8の端縁に有するフランジ8aに近接してその内部と外部間をシールする周方向シール部材が設けられている。
【0020】
前段のロータ4aの両端の回転域には、吸着ゾーンS及び再生ゾーンUが仕切部材3により区画形成されている。後段のロータ4bの両端の回転域には、吸着ゾーンS及び再生ゾーンUの他に冷却ゾーンTが仕切部材3により区画形成されている。仕切部材3にはその表面を覆うカバー部材(図示省略)が設けられ、このカバー部材に各ゾーンS,U或いはTと連通する配管が連結される。
【0021】
供給経路6は、例えば前段のロータ4aの吸着ゾーンSに導入する吸引配管6aと、前段のロータ4aの吸着ゾーンSを通過して水分及び有機物が除去された低露点の乾燥空気を後段のロータ4bの吸着ゾーンSに導入する中間配管6bと、後段のロータ4bの吸着ゾーンSを通過して水分及び有機物が更に除去された低露点の乾燥空気を目的空間に供給(導入)する供給配管6cとから構成されている。
【0022】
前記吸引配管6aには目的空間または室内から空気を吸引し,ロータ4a,4bを介して目的空間へ送るためのファン15が設けられ、中間配管6bには水分及び有機物が除去された低露点の乾燥空気を所定の温度例えば15℃程度に冷却するための冷却手段であるクーラー16が設けられている。乾燥空気供給装置1に起因する目的空間である例えば搬送空間におけるウエハのパーティクル汚染を防止するために、前記供給経路6の出口側にはロータ4a,4bと仕切部材3のシール部材の接触部等から発生するパーティクルを除去するためのフィルタ(図示省略)が設けられていることが好ましい。
【0023】
前記再生経路7は、後段のロータ4b直後の供給配管6cから分岐され、低露点の清浄な乾燥空気の一部を取出して冷却用気体として後段のロータ4bの冷却ゾーンTに導入する第1配管7aと、該冷却ゾーンTを通過した乾燥空気を再生用気体として再生ゾーンUに導入する第2配管7bと、該再生ゾーンUを通過した空気を前段のロータ4aの再生ゾーンUに導入する第3配管7cと、該再生ゾーンUを通過した空気を例えば工場排気系に排気する第4配管7dとから構成されている。第2配管7bには空気を再生用気体とするために所定の温度に加熱する加熱手段例えばヒータ17が設けられ、第4配管7dには排気用のファン18が設けられている。
【0024】
通常運転時には、再生用の空気をヒータ17により130〜200℃程度の温度に加熱して再生ゾーンUに供給することにより吸着剤に吸着している水分やガス状不純物(有機物)を脱離させるが、高沸点有機化合物を吸着剤から脱離させる場合には、再生用の空気をヒータ17により250〜400℃程度の高温に加熱して再生ゾーンUに定期的に供給するようにすることが好ましい。
【0025】
図1において、20は乾燥空気供給装置の運転方法を実行するためのシステムであり、このシステム20には吸引配管6aの入口部21と、供給配管6cの出口部22と、第4配管7dの出口部23とが設けられている。吸引配管6aの入口部21には例えば目的空間或いは室内空間が配管を介して接続される。供給配管6cの出口部22から目的空間に配管を介して接続される。第4配管7dの出口部23には工場排気系が配管を介して接続される。
【0026】
ロータ4a,4bを回転駆動するためにモータ5の回転軸にはベルト車(プーリとも言う)25が取付けられ、このベルト車25とロータ4a,4bとの間に無端ベルト26が巻き掛けられている。2つのロータを2つのモータで個別に駆動するように構成されていてもよく、或いは共通の1つのモータで駆動するように構成されていてもよい。
【0027】
前後のロータにおけるハニカム構造体12に担持させた吸着剤に水分及び有機物を効率よく吸着させ、水分及び有機物を吸着した吸着剤から水分及び有機物を脱離させて吸着剤を効率よく再生するために、前段のロータ4aの吸着ゾーンSと再生ゾーンUの面積比(図示例では1:1)、或いは後段のロータ4bの吸着ゾーンSと再生ゾーンUと冷却ゾーンTの面積比(図示例では2:1:1)にもよるが、図示例の場合、例えば、前段のロータ4aの回転数が10r.p.h、後段のロータ4bの回転数が0.5r.p.hに調整ないし設定されている。
【0028】
前記目的空間で乾燥空気を必要としないときに、前記供給経路6の出口側へ向う乾燥空気を供給経路6の入口側に戻してロータ4a,4bの稼動状態を維持するために、前記供給経路6の出口側から入口側に乾燥空気を戻す戻り経路27が設けられ、該戻り経路27と供給経路6の出口側とに弁30,31が設けられている。弁30,31は乾燥空気の流路を切替えるための切替弁であり、弁31を開、弁30を閉にすると、通常運転を行うことができ、弁31を閉、弁30を開にすると、乾燥空気を供給経路6の出口側から入口側に戻すことができ、乾燥空気供給装置の稼動状態を維持することができる。このときの運転をウォーミングアップ運転といい、目的空間で乾燥空気を必要としない時(期間)にこのウォーミングアップ運転を行い、ロータ4a,4bに常に再生用の空気を供給しておくことで、ロータ4a,4bでの水分の自然吸着を防止し、目的空間で乾燥空気を必要になった時には弁30,31を切替えることにより直ちに低露点の清浄な乾燥空気を供給することができる。なお、戻り経路27の入口は供給配管6cの弁31よりも上流側に接続され、戻り経路27の出口は吸引配管6aに接続されている。
【0029】
一方、前記目的空間で通常時の流量よりも多い乾燥空気を必要とするときに、前記再生経路7に向かう乾燥空気の流れを減少または遮断して乾燥空気の供給量を増加させる増量運転を行うために、前記再生経路7には弁33が設けられている。この弁33は、再生経路7の第1配管7aに設けられていることが好ましい。通常運転時の乾燥吸気の供給量を2m/分とすると、再生経路7の弁33を絞ることにより目的空間への乾燥空気の供給量を2m/分以上から最大2倍の4m/分(全閉時、遮断時)にすることができる。なお、この増量運転時には、吸着剤の再生が減少または停止されるため、時間の経過と共に乾燥吸気の露点が上昇する。このため、前記増量運転は、乾燥空気の露点を検出し、所定の露点になるまでの所定時間例えば6〜9分間行い、その後、弁31を閉じ、弁33,30を開けることによりウォーミングアップ運転に切替えて吸着剤の再生を行う。すなわち、この増量運転は、必要なときに所定時間行ない、必要でないとき(例えば12〜14分)にはウォーミングアップに切替えられるという具合に、連続的ではなく間欠的に行われる。乾燥空気供給装置1は、前記種々のパターンの運転を容易に行うために、前述のように弁30,31,33を制御ないし切替制御する制御装置(制御手段)40を備えている。
【0030】
以上の構成において、通常運転時には、図1に示すように弁30が閉に、弁31,33が開にされており、供給経路6の吸引配管6aを通して例えば目的空間内の空気(温度が23℃程度、露点が1.96℃程度)或いは室内の空気が前段のロータ4aの吸着ゾーンSに導入され、ロータ4aに担持された吸着剤により減湿及び浄化がなされる(水分及び有機物が除去される)。この時点で、この清浄乾燥空気の温度が45℃程度、露点が−20℃程度となる。次いで、清浄乾燥空気はクーラー16で15℃程度に冷却された後、後段のロータ4bの吸着ゾーンSに導入され、更なる減湿及び浄化がなされ、供給配管6cを通じて温度が23℃、露点が−80℃の低露点の清浄な乾燥空気が目的空間に供給される。
【0031】
また、後段のロータ4bでは、低露点の浄化乾燥空気の一部が分岐管である再生経路7の第1配管7aを通じて冷却ゾーンTに導入されて冷却用気体として使用されると共に、その後第2配管7bのヒータ17により加熱されて再生用の加熱気体として再生ゾーンUに導入され、ロータ4bの吸着剤に吸着した水分や有機物を蒸発させて除去(脱離)する。再生ゾーンUから排出された空気(再生用気体)は、第3配管7cを介して前段のロータ4aの再生ゾーンUに導入され、この高温の再生用気体によりロータ4aの吸着剤に吸着した水分や有機物を蒸発させて除去(脱離)し、その排ガスが第4配管7dを通じて排気される。
【0032】
一方、乾燥空気の供給を受ける装置(例えば処理装置)側が目的空間での乾燥空気を必要としない工程に移った場合には、図2に示すように弁31を閉に、弁30を開に切替えることにより、供給経路6の出口側へ向う乾燥空気を供給経路6の入口側へ戻し、ロータ3a,3bの吸着剤の再生を行い、乾燥空気供給装置1の運転を停止することなく稼動状態を維持するウォーミングアップ運転を行う。この場合、乾燥空気が再生経路7から排気される分だけ空気を取り入れる必要があるため、供給経路6の吸引管6aを介して目的空間または室内の空気が取り入れられている。このようにウォーミングアップ運転を行っていることにより、装置側で乾燥空気を必要とする工程に移ったときに、直ちに低露点の清浄な乾燥空気を供給することができる。
【0033】
このように通常運転とウォーミングアップ運転とを組み合わせることにより、乾燥空気を必要とする装置側の待ち時間をなくすことができ、スループットの向上及び生産性の向上が図れる。また、乾燥空気を必要とする装置によっては、通常時よりも多い乾燥空気を連続的ではなく間欠的に必要とする場合があり、このような装置の場合には、図3に示すように弁30,33を閉、弁31を開にすることにより、前記再生経路7に向かう乾燥空気の流れを減少または遮断して乾燥空気の供給量を増加させる増量運転を行う。通常運転時の乾燥吸気の供給量を2m/分とすると、再生経路7の弁33を絞ることにより目的空間への乾燥空気の供給量を2m/分以上から最大2倍の4m/分(全閉時、遮断時)にすることができる。なお、この増量運転時には、吸着剤の再生が減少または停止されるため、時間の経過と共に乾燥吸気の露点が上昇する。このため、前記増量運転は、乾燥空気の露点を検出し、所定の露点になるまでの所定時間行い、その後、弁31を閉じ、弁30,33を開けることによりウォーミングアップ運転に切替えて吸着剤の再生を行う。すなわち、この増量運転は、ウォーミングアップ運転と組合せて交互に間欠的に行われる。
【0034】
以上、本発明の実施の形態を図面により詳述してきたが、本発明は前記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲での種々の設計変更等が可能である。例えば、前記仕切部材にはロータとの間をシールするためにロータに摺接する接触式のシール部材が用いられいるが、シール部材としては非接触式のものを採用することも可能である。また、2つのロータは仕切部材を介して直列に配置した一体的構造であっても良く、この場合、ロータ間の配管及びクーラーを省略することができ、装置のコンパクト化が図れる。この場合、前段のロータには後段のロータと対応するように冷却ゾーンが設けられ、再生用の乾燥空気が前段のロータの冷却ゾーンから後段のロータの冷却ゾーンに通流される。
【0035】
【発明の効果】
以上要するに本発明によれば、次のような効果を奏することができる。
【0036】
(1)請求項1の発明によれば、吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成される二つのロータと、両ロータを回転駆動する駆動手段と、吸引した空気を各ロータの吸着ゾーンに順に通過させて水分及び有機物を除去した乾燥空気を目的空間に供給する供給経路と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させることにより吸着剤を再生させる再生経路とを備えた乾燥空気供給装置の運転方法において、前記目的空間で乾燥空気を必要としないときに、前記供給経路の出口側へ向う乾燥空気を供給経路の入口側に戻して稼動状態を維持するウォーミングアップ運転を行うため、目的空間で乾燥空気を必要としない時でも稼動状態を維持することにより必要時に直ちに低露点の乾燥空気を供給することができる。
【0037】
(2)請求項2の発明によれば、吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成される二つのロータと、両ロータを回転駆動する駆動手段と、吸引した空気を各ロータの吸着ゾーンに順に通過させて水分及び有機物を除去した乾燥空気を目的空間に供給する供給経路と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させることにより吸着剤を再生させる再生経路とを備えた乾燥空気供給装置の運転方法において、前記目的空間で乾燥空気を必要としないときに、前記供給経路の出口側へ向う乾燥空気を供給経路の入口側に戻して稼動状態を維持するウォーミングアップ運転と、前記目的空間で通常時の流量よりも多い乾燥空気を必要とするときに、前記再生経路に向かう乾燥空気の流れを減少または遮断して乾燥空気の供給量を増加させる増量運転とを交互に間欠的に行うため、ウォーミングアップ運転と組合せ、必要な時に乾燥空気を増量して供給することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態である乾燥空気供給装置の通常運転状態を示す概略的構成図である。
【図2】ウォーミングアップ運転状態を示す概略的構成図である。
【図3】増量運転状態を示す概略的構成図である。
【図4】ロータの一例を示す斜視図である。
【図5】ロータを回転自在に支持する支持枠の一例を示す斜視図である。
【符号の説明】
1 乾燥空気供給装置
3 仕切部材
4a,4b ロータ
5 モータ(駆動手段)
6 供給経路
7 再生経路
27 戻り経路
30,31,33 弁
40 制御装置(制御手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates OPERATION The method of dry air supply equipment.
[0002]
[Prior art]
In the manufacture of semiconductor devices, there are processes for subjecting an object to be processed, such as a semiconductor wafer, to various processes such as oxidation, diffusion, and CVD, and various processing apparatuses (for example, a heat treatment apparatus) are used to perform these processes. Has been. For example, in a vertical heat treatment apparatus, a transfer space (loading area) in which a wafer is transferred between a transport container that stores a plurality of, for example, 25 wafers, and a processing container that stores the wafer and performs a predetermined process. Also called).
[0003]
Conventionally, in order to suppress the growth of the natural oxide film on the wafer in the transfer space, a large amount (250 to 400 liters / minute) of an inert gas such as nitrogen gas is supplied to the transfer space, and the oxygen concentration in the transfer space is set to 30 ppm. The atmosphere was as follows. In addition, a chemical filter is provided to remove the organic gas in the transfer space. However, since a large amount of expensive nitrogen gas is consumed, not only does the running cost increase, but there is a risk of oxygen deficiency due to nitrogen gas. Moreover, although it was possible to remove organic substances with a chemical filter, it was difficult to remove the organic substances adhering to the chemical filter and regenerate the chemical filter.
[0004]
Therefore, in order to solve this problem, the present applicant can suppress the growth of the natural oxide film of the object to be processed by supplying dry air instead of the inert gas to the transfer space, and also the oxygen deficiency. Have previously filed a dry air supply apparatus and a processing apparatus that can prevent the generation of particles and prevent the generation of particles (Japanese Patent Application No. 2002-274214, unpublished).
[0005]
In addition, as related technologies, an invention for supplying a dry gas having a low dew point to the conveyance space (for example, see JP-A-6-267933), an invention for a dry dehumidifier for obtaining a dry gas having a low dew point (for example, a special technique) No. 2000-296309, Japanese Patent Laid-Open No. 63-50047, etc.).
[0006]
[Patent Document 1]
JP-A-6-267933 [Patent Document 2]
JP 2000-296309 A [Patent Document 3]
Japanese Patent Laid-Open No. 63-50047 [0007]
[Problems to be solved by the invention]
By the way, in the dry-type dehumidifying device or the dry air supply device that obtains the dry gas having the low dew point, when the device (for example, the processing device) that requires the dry air is stopped, the dry air supply device is used only during the stop period. The operation method is employed in which the dry air supply device is operated at the same time when the apparatus side is operated. However, in this operation method, moisture is naturally adsorbed to the adsorbent of the rotor while the dry air supply device is stopped, and as a result, the desired dry air with a low dew point (for example, −70 ° C. or lower). There is a problem that a trial run of several hours (4 to 12 hours) is required from the start of operation until the value is obtained. In addition, since the supply amount of dry air supplied from the dry air supply device is constant, it corresponds to the case where the required amount of dry air is required when necessary (for example, an increase of about twice the normal amount). It was difficult to do.
[0008]
The present invention has been made in consideration of the above circumstances, and can supply dry air with a low dew point immediately when necessary by performing a warm-up operation that maintains the operating state even when dry air is not required in the target space. and to provide a OPERATION mETHOD dry air supply equipment possible. The present onset Ming aims to provide a warm-up operation and combination, dry air supply equipment OPERATION method of dry air can be supplied to increase when needed.
[0009]
[Means for Solving the Problems]
Among the present inventions, the invention according to claim 1 is configured to carry an adsorbent, and has two rotors that are partitioned by a partition member into at least an adsorption zone and a regeneration zone, and both rotors are driven to rotate. Driving means for supplying the target air with dry air from which moisture and organic substances have been removed by sequentially passing the sucked air through the adsorption zones of each rotor, and heating a part of the dry air to In the operation method of the dry air supply apparatus provided with the regeneration path for regenerating the adsorbent by passing through the regeneration zone, the dry air toward the outlet side of the supply path when no dry air is required in the target space Is returned to the inlet side of the supply path to perform a warm-up operation for maintaining the operating state.
[0010]
The invention of claim 2 is configured to carry an adsorbent, and has two rotors that are partitioned by a partition member into at least an adsorption zone and a regeneration zone, and a driving means that rotationally drives both rotors. The suction air is passed through the adsorption zones of each rotor in order to supply dry air from which moisture and organic substances have been removed to the target space, and a part of the dry air is heated and passed through the regeneration zone of each rotor. In the operation method of the dry air supply apparatus having a regeneration path for regenerating the adsorbent, when the dry air is not required in the target space, the dry air toward the outlet side of the supply path is supplied to the inlet of the supply path. a warm-up operation to maintain in operating state back to the side, when you need more dry air than the flow rate of the normal at the target space, dried toward the reproduction path And wherein the increment operation for increasing the supply amount of the air flow decreases or blocks the dry air alternately be performed intermittently.
[0011]
According to a third aspect of the present invention, in the operating method of the dry air supply apparatus according to the first or second aspect, the rotational speed of the front rotor is set higher than the rotational speed of the rear rotor.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 is a schematic configuration diagram showing a normal operation state of a dry air supply apparatus according to an embodiment of the present invention, FIG. 2 is a schematic configuration diagram showing a warm-up operation state, and FIG. 3 is a schematic configuration showing an increase operation state. 4 is a perspective view showing an example of a rotor, and FIG. 5 is a perspective view showing an example of a support frame that rotatably supports the rotor.
[0015]
In FIG. 1, reference numeral 1 denotes a dry air supply device for supplying dry air having a low dew point (dry air) to a target space such as a transfer space of a processing apparatus. The dry air supply device 1 includes a support frame 2 (described later). 5) and is configured to carry an adsorbent and to be divided into at least an adsorption zone S and a regeneration zone U by a partition member 3 provided on the support frame 2. One rotor 4a, 4b, driving means for rotating both the rotors 4a, 4b, for example, the electric motor 5, and the air sucked from the target space or room through the adsorption zones S of the rotors 4a, 4b in order, A supply path 6 for supplying dry air from which organic substances have been removed to the target space, and a part of the dry air is heated and passed through the regeneration zone U of each of the rotors 4a and 4b to allow moisture and organic substances from the adsorbent. Desorbed and a playback path 7 for regenerating the adsorbent.
[0016]
As shown in FIG. 4, the rotors 4 a and 4 b include a cylindrical body 8 having both ends opened, a rotating shaft 10 disposed at the axial center of the cylindrical body 8, and a cylinder extending radially from the rotating shaft 10. A spoke 11 that is fixed to the inner peripheral surface of the body 8 and partitions the inside of the cylindrical body 8 into a plurality of, for example, eight sectional fan-shaped chambers, and a sectional fan-shaped honeycomb structure that is attached to each chamber and has a base material carrying an adsorbent. The body 12 is mainly composed. In the honeycomb structure 12, in the process of flowing air in the axial direction of the rotors 4 a and 4 b, moisture and organic substances contained in the air can be adsorbed and removed by the adsorbent to obtain dry air.
[0017]
As an adsorbent for the rotor 4a in the previous stage, for example, a faujasite Y-type zeolite (A 56 Si) is used for pre-dehumidification (exit dew point temperature −20 ° C.) in order to efficiently adsorb moisture and also organic matter. 136 O 384 ) is preferred. As the adsorbent for the latter rotor 2b, for example, faujasite X type zeolite (A 96 Si 96 O 384 ) is preferable in order to adsorb moisture as low dew point dehumidification (exit dew point temperature −80 ° C.).
[0018]
On the other hand, as the base material of the honeycomb structure 12, inorganic fiber paper is preferable because of excellent heat resistance, wear resistance, and the like. The honeycomb structure 12 is formed by forming inorganic fiber paper into a honeycomb shape. As a method for supporting the adsorbent on the base material, for example, a method of impregnating the base material with a slurry containing the adsorbent by spraying or brushing and drying is used. When the rotor 4a, 4b has the rotating shaft 10, it is rotatably supported by a box-like or frame-like support frame 2 as shown in FIG. In the case of the illustrated example, openings 13 corresponding to both ends of the rotors 4 a and 4 b are formed at both ends of the support frame 2, and the partition member 3 is attached to the openings 13. A bearing 14 that rotatably supports both ends of the rotary shaft 10 is provided at the center of the opening 13 via the partition member 3.
[0019]
The partition member 3 includes an annular circumferential member 3a corresponding to the peripheral edge of the end of the rotor or the cylindrical body 8, and a radial member 3b provided at the center, for example, from the bearing to the circumferential member 3a. The member 3b is provided with a radial seal member that seals between adjacent zones S, U, T adjacent to the end face of the honeycomb structure 12 (end face of the rotor). The circumferential member 3a is provided with a circumferential sealing member that seals between the inside and the outside in the vicinity of the flange 8a at the end of the rotor or cylinder 8.
[0020]
An adsorption zone S and a regeneration zone U are partitioned by the partition member 3 in the rotation regions at both ends of the rotor 4a in the previous stage. In addition to the adsorption zone S and the regeneration zone U, a cooling zone T is partitioned by the partition member 3 in the rotation regions at both ends of the rotor 4b at the rear stage. The partition member 3 is provided with a cover member (not shown) that covers the surface thereof, and a pipe that communicates with each zone S, U, or T is connected to the cover member.
[0021]
The supply path 6 includes, for example, a suction pipe 6a that is introduced into the adsorption zone S of the former rotor 4a and low-dew point dry air that has passed through the adsorption zone S of the former rotor 4a to remove moisture and organic substances. An intermediate pipe 6b that is introduced into the adsorption zone S of 4b, and a supply pipe 6c that supplies (introduces) dry air having a low dew point that has passed through the adsorption zone S of the subsequent rotor 4b to further remove moisture and organic substances. It consists of and.
[0022]
The suction pipe 6a is provided with a fan 15 for sucking air from the target space or the room and sending it to the target space via the rotors 4a and 4b. The intermediate pipe 6b has a low dew point from which moisture and organic substances are removed. A cooler 16 serving as a cooling means for cooling the dry air to a predetermined temperature, for example, about 15 ° C. is provided. In order to prevent particle contamination of the wafer in the target space, for example, the transfer space, which is the target space due to the dry air supply apparatus 1, contact portions of the seal members of the rotors 4a and 4b and the partition member 3 are provided on the outlet side of the supply path 6. It is preferable to provide a filter (not shown) for removing particles generated from the.
[0023]
The regeneration path 7 is branched from a supply pipe 6c immediately after the latter stage rotor 4b, and takes out a part of clean dry air having a low dew point and introduces it into the cooling zone T of the latter stage rotor 4b as a cooling gas. 7a, a second pipe 7b for introducing the dry air that has passed through the cooling zone T into the regeneration zone U as a regeneration gas, and a second pipe for introducing the air that has passed through the regeneration zone U into the regeneration zone U of the rotor 4a at the preceding stage. 3 piping 7c and 4th piping 7d which exhausts the air which passed this reproduction | regeneration zone U to a factory exhaust system, for example. The second pipe 7b is provided with a heating means, for example, a heater 17, for heating the air to a predetermined temperature in order to use it as a regeneration gas, and the exhaust pipe 18 is provided with the fourth pipe 7d.
[0024]
During normal operation, regeneration air is heated to a temperature of about 130 to 200 ° C. by the heater 17 and supplied to the regeneration zone U, thereby desorbing moisture and gaseous impurities (organic matter) adsorbed on the adsorbent. However, when the high-boiling organic compound is desorbed from the adsorbent, the regeneration air is heated to a high temperature of about 250 to 400 ° C. by the heater 17 and periodically supplied to the regeneration zone U. preferable.
[0025]
In FIG. 1, reference numeral 20 denotes a system for executing a method of operating the dry air supply apparatus. This system 20 includes an inlet 21 of the suction pipe 6a, an outlet 22 of the supply pipe 6c, and a fourth pipe 7d. An outlet 23 is provided. For example, a target space or an indoor space is connected to the inlet 21 of the suction pipe 6a via a pipe. The outlet pipe 22 of the supply pipe 6c is connected to the target space via a pipe. A factory exhaust system is connected to the outlet 23 of the fourth pipe 7d through a pipe.
[0026]
In order to rotationally drive the rotors 4a and 4b, a belt wheel (also referred to as a pulley) 25 is attached to the rotation shaft of the motor 5, and an endless belt 26 is wound between the belt wheel 25 and the rotors 4a and 4b. Yes. The two rotors may be configured to be driven individually by two motors, or may be configured to be driven by a single common motor.
[0027]
To efficiently adsorb moisture and organic substances on the adsorbents supported on the honeycomb structure 12 in the front and rear rotors, and to desorb the moisture and organic substances from the adsorbents adsorbing moisture and organic substances, thereby efficiently regenerating the adsorbents. The area ratio between the adsorption zone S and the regeneration zone U of the front rotor 4a (1: 1 in the illustrated example), or the area ratio between the adsorption zone S, the regeneration zone U and the cooling zone T of the subsequent rotor 4b (2 in the illustrated example). : 1: 1), in the illustrated example, for example, the rotational speed of the rotor 4a in the previous stage is 10 r. p. h, the rotational speed of the latter rotor 4b is 0.5 r. p. It is adjusted or set to h.
[0028]
In order to maintain the operating state of the rotors 4a and 4b by returning the dry air toward the outlet side of the supply path 6 to the inlet side of the supply path 6 when dry air is not required in the target space. 6 is provided with a return path 27 for returning dry air from the outlet side to the inlet side, and valves 30 and 31 are provided on the return path 27 and the outlet side of the supply path 6. The valves 30 and 31 are switching valves for switching the flow path of the dry air. When the valve 31 is opened and the valve 30 is closed, normal operation can be performed, and when the valve 31 is closed and the valve 30 is opened. The dry air can be returned from the outlet side of the supply path 6 to the inlet side, and the operating state of the dry air supply device can be maintained. The operation at this time is called warming-up operation. When the dry air is not required (period) in the target space (period), the warming-up operation is performed and the air for regeneration is always supplied to the rotors 4a and 4b. , 4b is prevented, and when dry air is required in the target space, clean dry air with a low dew point can be immediately supplied by switching the valves 30 and 31. The inlet of the return path 27 is connected upstream of the valve 31 of the supply pipe 6c, and the outlet of the return path 27 is connected to the suction pipe 6a.
[0029]
On the other hand, when the target space requires more dry air than the normal flow rate, the increase operation is performed to increase or decrease the dry air flow toward the regeneration path 7 to increase the supply amount of the dry air. Therefore, a valve 33 is provided in the regeneration path 7. The valve 33 is preferably provided in the first pipe 7 a of the regeneration path 7. When the supply amount of the dry air during normal operation and 2m 3 / min, of up to twice the supply of dry air to the target space by squeezing the valve 33 of the playback path 7 from 2m 3 / min or more 4m 3 / Minutes (when fully closed or shut off). During the increase operation, since the regeneration of the adsorbent is reduced or stopped, the dew point of the dry intake air increases with the passage of time. For this reason, the increase operation is performed for a warm-up operation by detecting the dew point of the dry air and performing a predetermined time, for example, 6 to 9 minutes until the predetermined dew point is reached, and then closing the valve 31 and opening the valves 33 and 30. The adsorbent is regenerated by switching. That is, this increase operation is performed not for continuous operation but for a predetermined time, and when it is not necessary (for example, 12 to 14 minutes), it is switched to warm-up, not intermittently. The dry air supply device 1 includes a control device (control means) 40 for controlling or switching the valves 30, 31, and 33 as described above in order to easily perform the operation of the various patterns.
[0030]
In the above configuration, during normal operation, as shown in FIG. 1, the valve 30 is closed and the valves 31 and 33 are opened. For example, air in the target space (temperature is 23) through the suction pipe 6a of the supply path 6. C., dew point is about 1.96.degree. C.) or indoor air is introduced into the adsorption zone S of the rotor 4a in the previous stage, and the moisture is reduced and purified by the adsorbent carried on the rotor 4a (removing moisture and organic matter) ) At this time, the temperature of the clean dry air is about 45 ° C. and the dew point is about −20 ° C. Next, after the clean and dry air is cooled to about 15 ° C. by the cooler 16, it is introduced into the adsorption zone S of the rotor 4b at the subsequent stage to further dehumidify and purify, and the temperature is 23 ° C. through the supply pipe 6c, and the dew point is Clean air with a low dew point of −80 ° C. is supplied to the target space.
[0031]
Further, in the latter rotor 4b, a part of the purified dry air having a low dew point is introduced into the cooling zone T through the first pipe 7a of the regeneration path 7 which is a branch pipe and used as a cooling gas, and then the second Heated by the heater 17 of the pipe 7b and introduced into the regeneration zone U as a heating gas for regeneration, the water and organic matter adsorbed on the adsorbent of the rotor 4b are evaporated and removed (desorbed). The air (regeneration gas) discharged from the regeneration zone U is introduced into the regeneration zone U of the previous stage rotor 4a via the third pipe 7c, and the moisture adsorbed on the adsorbent of the rotor 4a by this high temperature regeneration gas. And organic substances are removed by evaporation (desorption), and the exhaust gas is exhausted through the fourth pipe 7d.
[0032]
On the other hand, when the apparatus (for example, the processing apparatus) that receives the supply of dry air moves to a process that does not require dry air in the target space, the valve 31 is closed and the valve 30 is opened as shown in FIG. By switching, the dry air toward the outlet side of the supply path 6 is returned to the inlet side of the supply path 6, the adsorbent of the rotors 3a and 3b is regenerated, and the operating state of the dry air supply apparatus 1 is not stopped. Warm-up operation to maintain. In this case, since it is necessary to take in air as much as dry air is exhausted from the regeneration path 7, air in the target space or room is taken in via the suction pipe 6 a of the supply path 6. By performing the warm-up operation in this way, clean dry air having a low dew point can be immediately supplied when the apparatus side moves to a process that requires dry air.
[0033]
By combining the normal operation and the warm-up operation in this way, the waiting time on the apparatus side that requires dry air can be eliminated, and throughput and productivity can be improved. In addition, depending on the device that requires dry air, more dry air may be required intermittently rather than continuously, and in such a device, as shown in FIG. By closing 30 and 33 and opening the valve 31, an increase operation is performed in which the flow of dry air toward the regeneration path 7 is reduced or blocked to increase the supply amount of dry air. When the supply amount of the dry air during normal operation and 2m 3 / min, of up to twice the supply of dry air to the target space by squeezing the valve 33 of the playback path 7 from 2m 3 / min or more 4m 3 / Minutes (when fully closed or shut off). During the increase operation, since the regeneration of the adsorbent is reduced or stopped, the dew point of the dry intake air increases with the passage of time. For this reason, the increasing operation is performed for a predetermined time until the dew point of the dry air is detected and the predetermined dew point is reached, and then the valve 31 is closed and the valves 30 and 33 are opened to switch to the warm-up operation. Perform playback. That is, this increase operation is intermittently performed alternately in combination with the warm-up operation.
[0034]
Although the embodiments of the present invention have been described in detail with reference to the drawings, the present invention is not limited to the above-described embodiments, and various design changes and the like can be made without departing from the scope of the present invention. is there. For example, a contact-type seal member that is in sliding contact with the rotor is used as the partition member to seal the rotor, but a non-contact type seal member can also be used. Further, the two rotors may have an integral structure arranged in series via a partition member. In this case, piping between the rotors and the cooler can be omitted, and the apparatus can be made compact. In this case, the former rotor is provided with a cooling zone corresponding to the latter rotor, and the dry air for regeneration is passed from the cooling zone of the former rotor to the cooling zone of the latter rotor.
[0035]
【The invention's effect】
In short, according to the present invention, the following effects can be obtained.
[0036]
(1) According to the first aspect of the present invention, two rotors that are configured to carry an adsorbent and whose rotation region is divided into at least an adsorption zone and a regeneration zone by a partition member, and both rotors are driven to rotate. Driving means for supplying the target air with dry air from which moisture and organic substances have been removed by sequentially passing the sucked air through the adsorption zones of each rotor, and heating a part of the dry air to In the operation method of the dry air supply apparatus provided with the regeneration path for regenerating the adsorbent by passing through the regeneration zone, the dry air toward the outlet side of the supply path when no dry air is required in the target space the order to perform a warm-up operation to maintain the operating state back to the inlet side of the supply path,必by maintaining the operating state even when not required for drying air in objective space Sometimes it can be immediately supplied to the low dew point dry air.
[0037]
(2) According to the invention of claim 2, the rotor is configured to carry the adsorbent, and the rotation member is rotationally driven by the partition member so that the rotation area is divided into at least the adsorption zone and the regeneration zone. Driving means for supplying the target air with dry air from which moisture and organic substances have been removed by sequentially passing the sucked air through the adsorption zones of each rotor, and heating a part of the dry air to In the operation method of the dry air supply apparatus provided with the regeneration path for regenerating the adsorbent by passing through the regeneration zone, the dry air toward the outlet side of the supply path when no dry air is required in the target space when the warm-up operation to maintain the operating state back to the inlet side of the supply path, it requires more drying air than the flow rate of the normal at the target space, the reproduction path To perform intermittently alternately quantity increasing operation and the flow of drying air is reduced or cut off to increase the supply amount of the dry air toward warm-up operation and the combination can be supplied by increasing the dry air when necessary .
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a normal operation state of a dry air supply apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic configuration diagram showing a warm-up operation state.
FIG. 3 is a schematic configuration diagram showing an increase operation state.
FIG. 4 is a perspective view showing an example of a rotor.
FIG. 5 is a perspective view showing an example of a support frame that rotatably supports a rotor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dry air supply apparatus 3 Partition member 4a, 4b Rotor 5 Motor (drive means)
6 Supply path 7 Regeneration path 27 Return path 30, 31, 33 Valve 40 Control device (control means)

Claims (3)

吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成される二つのロータと、両ロータを回転駆動する駆動手段と、吸引した空気を各ロータの吸着ゾーンに順に通過させて水分及び有機物を除去した乾燥空気を目的空間に供給する供給経路と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させることにより吸着剤を再生させる再生経路とを備えた乾燥空気供給装置の運転方法において、前記目的空間で乾燥空気を必要としないときに、前記供給経路の出口側へ向う乾燥空気を供給経路の入口側に戻して稼動状態を維持するウォーミングアップ運転を行うことを特徴とする乾燥空気供給装置の運転方法。Two rotors that are configured to carry an adsorbent and whose rotation region is divided into at least an adsorption zone and a regeneration zone by a partition member, drive means for rotationally driving both rotors, and sucked air from each rotor The adsorbent is regenerated by passing through the adsorption zone in order to supply dry air from which moisture and organic substances have been removed to the target space, and heating a portion of the dry air and passing it through the regeneration zone of each rotor. In the operation method of the dry air supply apparatus provided with the regeneration path, when the dry air is not required in the target space, the dry air directed toward the outlet side of the supply path is returned to the inlet side of the supply path to change the operating state. A method for operating a dry air supply apparatus, wherein a warm-up operation is performed . 吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成される二つのロータと、両ロータを回転駆動する駆動手段と、吸引した空気を各ロータの吸着ゾーンに順に通過させて水分及び有機物を除去した乾燥空気を目的空間に供給する供給経路と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させることにより吸着剤を再生させる再生経路とを備えた乾燥空気供給装置の運転方法において、前記目的空間で乾燥空気を必要としないときに、前記供給経路の出口側へ向う乾燥空気を供給経路の入口側に戻して稼動状態を維持するウォーミングアップ運転と、前記目的空間で通常時の流量よりも多い乾燥空気を必要とするときに、前記再生経路に向かう乾燥空気の流れを減少または遮断して乾燥空気の供給量を増加させる増量運転とを交互に間欠的に行うことを特徴とする乾燥空気供給装置の運転方法。Two rotors that are configured to carry an adsorbent and whose rotation region is divided into at least an adsorption zone and a regeneration zone by a partition member, drive means for rotationally driving both rotors, and sucked air from each rotor The adsorbent is regenerated by passing through the adsorption zone in order to supply dry air from which moisture and organic substances have been removed to the target space, and heating a portion of the dry air and passing it through the regeneration zone of each rotor. In the operation method of the dry air supply apparatus provided with the regeneration path, when the dry air is not required in the target space, the dry air directed toward the outlet side of the supply path is returned to the inlet side of the supply path to change the operating state. a warm-up operation to maintain, when in need of more dry air than the flow rate of the normal at the target space, or reducing the flow of dry air towards said reproduction path Drying method operation of the air supply device and carrying out intermittently alternating with increasing operation for increasing the supply amount of the dry air is blocked. 前段ロータの回転数が後段ロータの回転数よりも高く設定されていることを特徴とする請求項1又は2に記載の乾燥空気供給装置の運転方法。The operating method of the dry air supply device according to claim 1 or 2, wherein the rotational speed of the front rotor is set higher than the rotational speed of the rear rotor.
JP2003121221A 2003-04-25 2003-04-25 Operation method of dry air supply device Expired - Fee Related JP3896344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121221A JP3896344B2 (en) 2003-04-25 2003-04-25 Operation method of dry air supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121221A JP3896344B2 (en) 2003-04-25 2003-04-25 Operation method of dry air supply device

Publications (2)

Publication Number Publication Date
JP2004321965A JP2004321965A (en) 2004-11-18
JP3896344B2 true JP3896344B2 (en) 2007-03-22

Family

ID=33499859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121221A Expired - Fee Related JP3896344B2 (en) 2003-04-25 2003-04-25 Operation method of dry air supply device

Country Status (1)

Country Link
JP (1) JP3896344B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250362B2 (en) * 2008-09-25 2013-07-31 新日本空調株式会社 Dehumidifier and operation control method thereof
JP2011104542A (en) * 2009-11-19 2011-06-02 Seibu Giken Co Ltd Adsorption-type dehumidifier
JP5764813B2 (en) * 2010-11-02 2015-08-19 伸和コントロールズ株式会社 Low dew point air generator
CN113278455B (en) * 2021-06-04 2023-09-08 邓燕龙 Natural gas dewatering device

Also Published As

Publication number Publication date
JP2004321965A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP3896343B2 (en) Dry air supply device
JP2750996B2 (en) Organic solvent vapor adsorption device
WO2004026442A1 (en) Dry air-supplying apparatus and treating apparatus
KR100956356B1 (en) The system of treating odor and hazardrous gas with rotary regenerative heat exchanger and its apparatus
JP4010640B2 (en) Gas purification method and apparatus
WO2005094971A1 (en) Gas purifier
EP1275431B1 (en) Process and air filter for cleaning air in a clean room
JP4334688B2 (en) Clean air manufacturing method and supply system
JP2004160444A (en) Dry air feeding device and treatment apparatus
JP3896344B2 (en) Operation method of dry air supply device
JP4167114B2 (en) Processing apparatus and operation method thereof
JP3538725B2 (en) Exhaust gas treatment equipment
JP4250380B2 (en) Gas concentrating device and gas concentrating method
JP2006035188A (en) Dehumidification and cleaning apparatus for gas
JP2003112008A (en) Dehumidifying rotor and dehumidifying apparatus using the same
JPH06343818A (en) Dry type dehumidifying device
JP2003056898A (en) Air conditioner and method for manufacturing semiconductor device
JP2005152761A (en) Deodorization method and deodorization device
JP4236443B2 (en) Clean air generator
JP2002143632A (en) Device for removing ethylene and refrigerator provided with device for removing ethylene
JP2001070732A (en) Air cleaning apparatus, air cleaner and air conditioner
JP2001205037A (en) Dry type dehumidification apparatus
JP5823334B2 (en) Adsorption system
JP2002159821A (en) Organic gas concentration apparatus
JPH10288442A (en) Continuous cooling device for article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060426

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees