JP2004321965A - Dry air supplying apparatus and its operation method - Google Patents

Dry air supplying apparatus and its operation method Download PDF

Info

Publication number
JP2004321965A
JP2004321965A JP2003121221A JP2003121221A JP2004321965A JP 2004321965 A JP2004321965 A JP 2004321965A JP 2003121221 A JP2003121221 A JP 2003121221A JP 2003121221 A JP2003121221 A JP 2003121221A JP 2004321965 A JP2004321965 A JP 2004321965A
Authority
JP
Japan
Prior art keywords
dry air
regeneration
rotors
path
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003121221A
Other languages
Japanese (ja)
Other versions
JP3896344B2 (en
Inventor
Noriaki Kodama
法明 兒玉
Nobuaki Tanaka
伸明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Nichias Corp
Original Assignee
Tokyo Electron Ltd
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd, Nichias Corp filed Critical Tokyo Electron Ltd
Priority to JP2003121221A priority Critical patent/JP3896344B2/en
Publication of JP2004321965A publication Critical patent/JP2004321965A/en
Application granted granted Critical
Publication of JP3896344B2 publication Critical patent/JP3896344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1072Rotary wheel comprising two rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1088Rotary wheel comprising three flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dry air supplying apparatus constituted so that dry air having a low dew point can be supplied to the objective space immediately when required by keeping this apparatus in an operated state even when not required. <P>SOLUTION: This dry air supplying apparatus 1 is provided with two rotors 4a, 4b on each of which an adsorbent is deposited and the rotational area of each of which is partitioned by a partitioning member 3 into at least an adsorption zone S and a regeneration zone U, a driving means 5 for rotary driving the rotors 4a, 4b, a supply route 6 for supplying to the objective space the dry air obtained by making the sucked air pass through the zones S of the rotors 4a, 4b successively to remove moisture and organic matter and a regeneration route 7 for regenerating the adsorbent deposited on each of the rotors 4a, 4b by heating a part of the obtained dry air and making the heated dry air pass through the zones U of the rotors 4a, 4b successively. A return route 27 is arranged for returning the dry air from the side of an outlet of the route 6 to the side of an inlet. Valves 30, 31 are arranged respectively on the route 27 and on the side of the outlet of the route 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、乾燥空気供給装置及びその運転方法に関する。
【0002】
【従来の技術】
半導体装置の製造においては、被処理体例えば半導体ウエハに酸化、拡散、CVD等の各種の処理を施す工程があり、これらの工程を実行するために各種の処理装置(例えば熱処理装置等)が使用されている。例えば、縦型の熱処理装置においては、複数例えば25枚のウエハを収容した運搬容器と、前記ウエハを収容して所定の処理を施す処理容器との間でウエハの搬送を行う搬送空間(ローディングエリアとも言う)を有している。
【0003】
従来、前記搬送空間におけるウエハの自然酸化膜の成長を抑制するために、搬送空間に不活性ガス例えば窒素ガスを多量(250〜400リットル/分)に供給して、搬送空間の酸素濃度を30ppm以下の雰囲気にしていた。また、前記搬送空間における有機系のガスを除去するために、ケミカルフィルタを設けていた。しかしながら、高価な窒素ガスを多量に消費するためランニングコストが多くかかるだけでなく、窒素ガスによる酸欠の危険性があった。また、ケミカルフィルタにより有機物を除去することは可能であったが、ケミカルフィルタに付着した有機物を除去しケミカルフィルタを再生することは困難であった。
【0004】
そこで、この問題を解決するために、本出願人は、搬送空間に不活性ガスの代りに乾燥空気を供給することにより被処理体の自然酸化膜の成長を抑制することができ、また酸欠の危険性を回避することができると共にパーティクルの発生を防止することができる乾燥空気供給装置及び処理装置を先に出願した(特願2002−274214号、未公開)。
【0005】
なお、関連する技術として、搬送空間に低露点の乾燥気体を供給する発明(例えば、特開平6−267933号公報参照)や、低露点の乾燥気体を得る乾式減湿装置の発明(例えば、特開2000−296309号公報、特開昭63−50047号公報等参照)がなされている。
【0006】
【特許文献1】
特開平6−267933号公報
【特許文献2】
特開2000−296309号公報
【特許文献3】
特開昭63−50047号公報
【0007】
【発明が解決しようとする課題】
ところで、前記低露点の乾燥気体を得る乾式減湿装置や乾燥空気供給装置においては、乾燥空気を必要とする装置(例えば処理装置)側が停止している場合にはその停止期間だけ乾燥空気供給装置を停止させておき、装置側が稼動するときには同時に乾燥空気供給装置を稼動させるという運転方法が採用されている。しかしながら、この運転方法では、乾燥空気供給装置を停止している間に、ロータの吸着剤に水分が自然吸着されてしまい、その結果、目的とする低露点(例えば−70℃以下)の乾燥空気を得るまでに、稼動開始から数時間(4〜12時間)の試運転を要するという問題があった。また、乾燥空気供給装置から供給される乾燥空気の供給量は一定であるため、例えば必要な時に必要な量(例えば通常時の2倍程度の増量)の乾燥空気を必要とする場合などに対応することが困難であった。
【0008】
本発明は、前記事情を考慮してなされたもので、目的空間で乾燥空気を必要としない時でも稼動状態を維持することにより必要時に直ちに低露点の乾燥空気を供給することができる乾燥空気供給装置及びその運転方法を提供することを目的とする。また、本発明の目的は、必要な時に乾燥空気を増量して供給することができる乾燥空気供給装置及びその運転方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明のうち、請求項1の発明は、吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成される二つのロータと、両ロータを回転駆動する駆動手段と、吸引した空気を各ロータの吸着ゾーンに順に通過させて水分及び有機物を除去した乾燥空気を目的空間に供給する供給経路と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させることにより吸着剤を再生させる再生経路とを備えた乾燥空気供給装置の運転方法において、前記目的空間で乾燥空気を必要としないときに、前記供給経路の出口側へ向う乾燥空気を供給経路の入口側に戻して稼動状態を維持することを特徴とする。
【0010】
請求項2の発明は、吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成される二つのロータと、両ロータを回転駆動する駆動手段と、吸引した空気を各ロータの吸着ゾーンに順に通過させて水分及び有機物を除去した乾燥空気を目的空間に供給する供給経路と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させることにより吸着剤を再生させる再生経路とを備えた乾燥空気供給装置の運転方法において、前記目的空間で通常時の流量よりも多い乾燥空気を必要とするときに、前記再生経路に向かう乾燥空気の流れを減少または遮断して乾燥空気の供給量を増加させることを特徴とする。
【0011】
請求項3の発明は、吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成される二つのロータと、両ロータを回転駆動する駆動手段と、吸引した空気を各ロータの吸着ゾーンに順に通過させて水分及び有機物を除去した乾燥空気を目的空間に供給する供給経路と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させることにより吸着剤を再生させる再生経路とを備えた乾燥空気供給装置において、前記供給経路の出口側から入口側に乾燥空気を戻す戻り経路を設け、該戻り経路と供給経路の出口側とに弁を設けたことを特徴とする。
【0012】
請求項4の発明は、吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成される二つのロータと、両ロータを回転駆動する駆動手段と、吸引した空気を各ロータの吸着ゾーンに順に通過させて水分及び有機物を除去した乾燥空気を目的空間に供給する供給経路と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させることにより吸着剤を再生させる再生経路とを備えた乾燥空気供給装置において、前記再生経路に該再生経路に向かう乾燥空気の流れを減少または遮断して乾燥空気の供給量を増加させるための弁を設けたことを特徴とする。
【0013】
請求項5の発明は、請求項3または4記載の乾燥空気供給装置において、前記弁を制御する制御手段を備えたことを特徴とする。
【0014】
【発明の実施の形態】
以下に、本発明の実施の形態を添付図面に基いて詳述する。図1は本発明の実施の形態である乾燥空気供給装置の通常運転状態を示す概略的構成図、図2はウォーミングアップ運転状態を示す概略的構成図、図3は増量運転状態を示す概略的構成図、図4はロータの一例を示す斜視図、図5はロータを回転自在に支持する支持枠の一例を示す斜視図である。
【0015】
図1において、1は例えば処理装置の搬送空間等の目的空間に低露点の乾燥空気(ドライエア)を供給するための乾燥空気供給装置で、この乾燥空気供給装置1は後述の支持枠2(図5参照)に回転可能に支持され、吸着剤を担持して構成されると共に、支持枠2に設けた仕切部材3により両端の回転域が少なくとも吸着ゾーンS及び再生ゾーンUに区画形成された二つのロータ4a,4bと、両ロータ4a,4bを回転駆動する駆動手段例えば電動モータ5と、前記目的空間または室内から吸引した空気を各ロータ4a,4bの吸着ゾーンSに順に通過させて水分及び有機物を除去した乾燥空気を目的空間に供給する供給経路6と、前記乾燥空気の一部を加熱して各ロータ4a,4bの再生ゾーンUに通過させて吸着剤から水分及び有機物を脱離させ、吸着材を再生させる再生経路7とを備えている。
【0016】
前記ロータ4a,4bは、図4に示すように両端が開口された円筒体8と、この円筒体8の軸心部に配置された回転軸10と、この回転軸10から放射状に延びて円筒体8の内周面に固定されると共に円筒体8内を複数例えば8つの断面扇形の部屋に仕切るスポーク11と、各部屋内に取付けられ基材に吸着剤を担持させた断面扇形のハニカム構造体12とから主に構成されている。ハニカム構造体12はロータ4a,4bの軸方向に空気を通流させる過程で、空気中に含まれる水分や有機物を吸着剤に吸着させて除去し、乾燥空気を得ることができる。
【0017】
前段のロータ4aの吸着剤としては、プレ除湿(出口露点温度−20℃)として水分を効率良く吸着すると共に有機物をも効率よく吸着するために、例えばフォージャサイトY型のゼオライト(A56Si136384)が好ましい。後段のロータ2bの吸着剤としては、低露点除湿(出口露点温度−80℃)として水分を吸着するために、例えばフォージャサイトX型のゼオライト(A96Si96384)が好ましい。
【0018】
一方、ハニカム構造体12の基材としては、耐熱性、耐摩耗性等に優れることから、無機繊維紙が好ましい。ハニカム構造体12は、無機繊維紙をハニカム状に成形してなる。前記基材に吸着剤を担持させる方法としては、例えば、吸着剤を含有するスラリーをスプレーや刷毛塗り等により基材に含浸させ、乾燥する方法が用いられる。ロータ4a,4bは、回転軸10を有する場合には、例えば図5に示すような箱状または枠状の支持枠2に回転可能に支持されている。図示例の場合、支持枠2の両端部にはロータ4a,4bの両端部と対応する開口部13が形成され、この開口部13に仕切部材3が取付けられている。前記開口部13の中央部には前記回転軸10の両端部を回転自在に支持する軸受14が仕切部材3を介して設けられている。
【0019】
仕切部材3は、ロータないし円筒体8の端部の周縁部に対応する環状の周方向部材3aと、その中心例えば軸受から周方向部材3aにかけて設けられた径方向部材3bとからなり、径方向部材3bにはハニカム構造体12の端面(ロータの端面)に近接して隣接するゾーンS,U,T間をシールする径方向シール部材が設けられている。周方向部材3aには、ロータないし円筒体8の端縁に有するフランジ8aに近接してその内部と外部間をシールする周方向シール部材が設けられている。
【0020】
前段のロータ4aの両端の回転域には、吸着ゾーンS及び再生ゾーンUが仕切部材3により区画形成されている。後段のロータ4bの両端の回転域には、吸着ゾーンS及び再生ゾーンUの他に冷却ゾーンTが仕切部材3により区画形成されている。仕切部材3にはその表面を覆うカバー部材(図示省略)が設けられ、このカバー部材に各ゾーンS,U或いはTと連通する配管が連結される。
【0021】
供給経路6は、例えば前段のロータ4aの吸着ゾーンSに導入する吸引配管6aと、前段のロータ4aの吸着ゾーンSを通過して水分及び有機物が除去された低露点の乾燥空気を後段のロータ4bの吸着ゾーンSに導入する中間配管6bと、後段のロータ4bの吸着ゾーンSを通過して水分及び有機物が更に除去された低露点の乾燥空気を目的空間に供給(導入)する供給配管6cとから構成されている。
【0022】
前記吸引配管6aには目的空間または室内から空気を吸引し,ロータ4a,4bを介して目的空間へ送るためのファン15が設けられ、中間配管6bには水分及び有機物が除去された低露点の乾燥空気を所定の温度例えば15℃程度に冷却するための冷却手段であるクーラー16が設けられている。乾燥空気供給装置1に起因する目的空間である例えば搬送空間におけるウエハのパーティクル汚染を防止するために、前記供給経路6の出口側にはロータ4a,4bと仕切部材3のシール部材の接触部等から発生するパーティクルを除去するためのフィルタ(図示省略)が設けられていることが好ましい。
【0023】
前記再生経路7は、後段のロータ4b直後の供給配管6cから分岐され、低露点の清浄な乾燥空気の一部を取出して冷却用気体として後段のロータ4bの冷却ゾーンTに導入する第1配管7aと、該冷却ゾーンTを通過した乾燥空気を再生用気体として再生ゾーンUに導入する第2配管7bと、該再生ゾーンUを通過した空気を前段のロータ4aの再生ゾーンUに導入する第3配管7cと、該再生ゾーンUを通過した空気を例えば工場排気系に排気する第4配管7dとから構成されている。第2配管7bには空気を再生用気体とするために所定の温度に加熱する加熱手段例えばヒータ17が設けられ、第4配管7dには排気用のファン18が設けられている。
【0024】
通常運転時には、再生用の空気をヒータ17により130〜200℃程度の温度に加熱して再生ゾーンUに供給することにより吸着剤に吸着している水分やガス状不純物(有機物)を脱離させるが、高沸点有機化合物を吸着剤から脱離させる場合には、再生用の空気をヒータ17により250〜400℃程度の高温に加熱して再生ゾーンUに定期的に供給するようにすることが好ましい。
【0025】
図1において、20は乾燥空気供給装置の運転方法を実行するためのシステムであり、このシステム20には吸引配管6aの入口部21と、供給配管6cの出口部22と、第4配管7dの出口部23とが設けられている。吸引配管6aの入口部21には例えば目的空間或いは室内空間が配管を介して接続される。供給配管6cの出口部22から目的空間に配管を介して接続される。第4配管7dの出口部23には工場排気系が配管を介して接続される。
【0026】
ロータ4a,4bを回転駆動するためにモータ5の回転軸にはベルト車(プーリとも言う)25が取付けられ、このベルト車25とロータ4a,4bとの間に無端ベルト26が巻き掛けられている。2つのロータを2つのモータで個別に駆動するように構成されていてもよく、或いは共通の1つのモータで駆動するように構成されていてもよい。
【0027】
前後のロータにおけるハニカム構造体12に担持させた吸着剤に水分及び有機物を効率よく吸着させ、水分及び有機物を吸着した吸着剤から水分及び有機物を脱離させて吸着剤を効率よく再生するために、前段のロータ4aの吸着ゾーンSと再生ゾーンUの面積比(図示例では1:1)、或いは後段のロータ4bの吸着ゾーンSと再生ゾーンUと冷却ゾーンTの面積比(図示例では2:1:1)にもよるが、図示例の場合、例えば、前段のロータ4aの回転数が10r.p.h、後段のロータ4bの回転数が0.5r.p.hに調整ないし設定されている。
【0028】
前記目的空間で乾燥空気を必要としないときに、前記供給経路6の出口側へ向う乾燥空気を供給経路6の入口側に戻してロータ4a,4bの稼動状態を維持するために、前記供給経路6の出口側から入口側に乾燥空気を戻す戻り経路27が設けられ、該戻り経路27と供給経路6の出口側とに弁30,31が設けられている。弁30,31は乾燥空気の流路を切替えるための切替弁であり、弁31を開、弁30を閉にすると、通常運転を行うことができ、弁31を閉、弁30を開にすると、乾燥空気を供給経路6の出口側から入口側に戻すことができ、乾燥空気供給装置の稼動状態を維持することができる。このときの運転をウォーミングアップ運転といい、目的空間で乾燥空気を必要としない時(期間)にこのウォーミングアップ運転を行い、ロータ4a,4bに常に再生用の空気を供給しておくことで、ロータ4a,4bでの水分の自然吸着を防止し、目的空間で乾燥空気を必要になった時には弁30,31を切替えることにより直ちに低露点の清浄な乾燥空気を供給することができる。なお、戻り経路27の入口は供給配管6cの弁31よりも上流側に接続され、戻り経路27の出口は吸引配管6aに接続されている。
【0029】
一方、前記目的空間で通常時の流量よりも多い乾燥空気を必要とするときに、前記再生経路7に向かう乾燥空気の流れを減少または遮断して乾燥空気の供給量を増加させる増量運転を行うために、前記再生経路7には弁33が設けられている。この弁33は、再生経路7の第1配管7aに設けられていることが好ましい。通常運転時の乾燥吸気の供給量を2m/分とすると、再生経路7の弁33を絞ることにより目的空間への乾燥空気の供給量を2m/分以上から最大2倍の4m/分(全閉時、遮断時)にすることができる。なお、この増量運転時には、吸着剤の再生が減少または停止されるため、時間の経過と共に乾燥吸気の露点が上昇する。このため、前記増量運転は、乾燥空気の露点を検出し、所定の露点になるまでの所定時間例えば6〜9分間行い、その後、弁31を閉じ、弁33,30を開けることによりウォーミングアップ運転に切替えて吸着剤の再生を行う。すなわち、この増量運転は、必要なときに所定時間行ない、必要でないとき(例えば12〜14分)にはウォーミングアップに切替えられるという具合に、連続的ではなく間欠的に行われる。乾燥空気供給装置1は、前記種々のパターンの運転を容易に行うために、前述のように弁30,31,33を制御ないし切替制御する制御装置(制御手段)40を備えている。
【0030】
以上の構成において、通常運転時には、図1に示すように弁30が閉に、弁31,33が開にされており、供給経路6の吸引配管6aを通して例えば目的空間内の空気(温度が23℃程度、露点が1.96℃程度)或いは室内の空気が前段のロータ4aの吸着ゾーンSに導入され、ロータ4aに担持された吸着剤により減湿及び浄化がなされる(水分及び有機物が除去される)。この時点で、この清浄乾燥空気の温度が45℃程度、露点が−20℃程度となる。次いで、清浄乾燥空気はクーラー16で15℃程度に冷却された後、後段のロータ4bの吸着ゾーンSに導入され、更なる減湿及び浄化がなされ、供給配管6cを通じて温度が23℃、露点が−80℃の低露点の清浄な乾燥空気が目的空間に供給される。
【0031】
また、後段のロータ4bでは、低露点の浄化乾燥空気の一部が分岐管である再生経路7の第1配管7aを通じて冷却ゾーンTに導入されて冷却用気体として使用されると共に、その後第2配管7bのヒータ17により加熱されて再生用の加熱気体として再生ゾーンUに導入され、ロータ4bの吸着剤に吸着した水分や有機物を蒸発させて除去(脱離)する。再生ゾーンUから排出された空気(再生用気体)は、第3配管7cを介して前段のロータ4aの再生ゾーンUに導入され、この高温の再生用気体によりロータ4aの吸着剤に吸着した水分や有機物を蒸発させて除去(脱離)し、その排ガスが第4配管7dを通じて排気される。
【0032】
一方、乾燥空気の供給を受ける装置(例えば処理装置)側が目的空間での乾燥空気を必要としない工程に移った場合には、図2に示すように弁31を閉に、弁30を開に切替えることにより、供給経路6の出口側へ向う乾燥空気を供給経路6の入口側へ戻し、ロータ3a,3bの吸着剤の再生を行い、乾燥空気供給装置1の運転を停止することなく稼動状態を維持するウォーミングアップ運転を行う。この場合、乾燥空気が再生経路7から排気される分だけ空気を取り入れる必要があるため、供給経路6の吸引管6aを介して目的空間または室内の空気が取り入れられている。このようにウォーミングアップ運転を行っていることにより、装置側で乾燥空気を必要とする工程に移ったときに、直ちに低露点の清浄な乾燥空気を供給することができる。
【0033】
このように通常運転とウォーミングアップ運転とを組み合わせることにより、乾燥空気を必要とする装置側の待ち時間をなくすことができ、スループットの向上及び生産性の向上が図れる。また、乾燥空気を必要とする装置によっては、通常時よりも多い乾燥空気を連続的ではなく間欠的に必要とする場合があり、このような装置の場合には、図3に示すように弁30,33を閉、弁31を開にすることにより、前記再生経路7に向かう乾燥空気の流れを減少または遮断して乾燥空気の供給量を増加させる増量運転を行う。通常運転時の乾燥吸気の供給量を2m/分とすると、再生経路7の弁33を絞ることにより目的空間への乾燥空気の供給量を2m/分以上から最大2倍の4m/分(全閉時、遮断時)にすることができる。なお、この増量運転時には、吸着剤の再生が減少または停止されるため、時間の経過と共に乾燥吸気の露点が上昇する。このため、前記増量運転は、乾燥空気の露点を検出し、所定の露点になるまでの所定時間行い、その後、弁31を閉じ、弁30,33を開けることによりウォーミングアップ運転に切替えて吸着剤の再生を行う。すなわち、この増量運転は、ウォーミングアップ運転と組合せて交互に間欠的に行われる。
【0034】
以上、本発明の実施の形態を図面により詳述してきたが、本発明は前記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲での種々の設計変更等が可能である。例えば、前記仕切部材にはロータとの間をシールするためにロータに摺接する接触式のシール部材が用いられいるが、シール部材としては非接触式のものを採用することも可能である。また、2つのロータは仕切部材を介して直列に配置した一体的構造であっても良く、この場合、ロータ間の配管及びクーラーを省略することができ、装置のコンパクト化が図れる。この場合、前段のロータには後段のロータと対応するように冷却ゾーンが設けられ、再生用の乾燥空気が前段のロータの冷却ゾーンから後段のロータの冷却ゾーンに通流される。
【0035】
【発明の効果】
以上要するに本発明によれば、次のような効果を奏することができる。
【0036】
(1)請求項1の発明によれば、吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成される二つのロータと、両ロータを回転駆動する駆動手段と、吸引した空気を各ロータの吸着ゾーンに順に通過させて水分及び有機物を除去した乾燥空気を目的空間に供給する供給経路と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させることにより吸着剤を再生させる再生経路とを備えた乾燥空気供給装置の運転方法において、前記目的空間で乾燥空気を必要としないときに、前記供給経路の出口側へ向う乾燥空気を供給経路の入口側に戻して稼動状態を維持するため、目的空間で乾燥空気を必要としない時でも稼動状態を維持することにより必要時に直ちに低露点の乾燥空気を供給することができる。
【0037】
(2)請求項2の発明によれば、吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成される二つのロータと、両ロータを回転駆動する駆動手段と、吸引した空気を各ロータの吸着ゾーンに順に通過させて水分及び有機物を除去した乾燥空気を目的空間に供給する供給経路と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させることにより吸着剤を再生させる再生経路とを備えた乾燥空気供給装置の運転方法において、前記目的空間で通常時の流量よりも多い乾燥空気を必要とするときに、前記再生経路に向かう乾燥空気の流れを減少または遮断して乾燥空気の供給量を増加させるため、必要な時に乾燥空気を増量して供給することができる。
【0038】
(3)請求項3の発明によれば、吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成される二つのロータと、両ロータを回転駆動する駆動手段と、吸引した空気を各ロータの吸着ゾーンに順に通過させて水分及び有機物を除去した乾燥空気を目的空間に供給する供給経路と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させることにより吸着剤を再生させる再生経路とを備えた乾燥空気供給装置において、前記供給経路の出口側から入口側に乾燥空気を戻す戻り経路を設け、該戻り経路と供給経路の出口側とに弁を設けているため、目的空間で乾燥空気を必要としない時でも稼動状態を維持することにより必要時に直ちに低露点の乾燥空気を供給することができる。
【0039】
(4)請求項4の発明によれば、吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成される二つのロータと、両ロータを回転駆動する駆動手段と、吸引した空気を各ロータの吸着ゾーンに順に通過させて水分及び有機物を除去した乾燥空気を目的空間に供給する供給経路と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させることにより吸着剤を再生させる再生経路とを備えた乾燥空気供給装置において、前記再生経路に該再生経路に向かう乾燥空気の流れを減少または遮断して乾燥空気の供給量を増加させるための弁を設けているため、必要な時に乾燥空気を増量して供給することができる。
【0040】
(5)請求項5の発明によれば、前記弁を制御する制御手段を備えているため、種々のパターンの運転を容易に行うことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態である乾燥空気供給装置の通常運転状態を示す概略的構成図である。
【図2】ウォーミングアップ運転状態を示す概略的構成図である。
【図3】増量運転状態を示す概略的構成図である。
【図4】ロータの一例を示す斜視図である。
【図5】ロータを回転自在に支持する支持枠の一例を示す斜視図である。
【符号の説明】
1 乾燥空気供給装置
3 仕切部材
4a,4b ロータ
5 モータ(駆動手段)
6 供給経路
7 再生経路
27 戻り経路
30,31,33 弁
40 制御装置(制御手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dry air supply device and a method for operating the same.
[0002]
[Prior art]
2. Description of the Related Art In the manufacture of semiconductor devices, there are steps of performing various processes such as oxidation, diffusion, and CVD on an object to be processed, for example, a semiconductor wafer, and various processing apparatuses (for example, heat treatment apparatuses) are used to execute these steps. Have been. For example, in a vertical heat treatment apparatus, a transfer space (loading area) for transferring wafers between a transfer container that stores a plurality of, for example, 25 wafers, and a processing container that stores the wafers and performs predetermined processing. Also called).
[0003]
Conventionally, in order to suppress the growth of a natural oxide film on a wafer in the transfer space, an inert gas such as nitrogen gas is supplied to the transfer space in a large amount (250 to 400 liters / minute) to reduce the oxygen concentration in the transfer space to 30 ppm. The atmosphere was as follows. In addition, a chemical filter is provided to remove organic gas in the transfer space. However, since a large amount of expensive nitrogen gas is consumed, not only running cost is increased, but also there is a risk of oxygen deficiency due to nitrogen gas. Further, although it was possible to remove organic substances by using a chemical filter, it was difficult to remove organic substances attached to the chemical filter and regenerate the chemical filter.
[0004]
In order to solve this problem, the present applicant has been able to suppress the growth of the natural oxide film on the object to be processed by supplying dry air to the transfer space instead of the inert gas, The applicant has previously filed a dry air supply device and a processing device that can avoid the danger of generating particles and can prevent the generation of particles (Japanese Patent Application No. 2002-274214, not disclosed).
[0005]
As related techniques, an invention for supplying a dry gas with a low dew point to the transport space (for example, see Japanese Patent Application Laid-Open No. 6-267933) and an invention for a dry dehumidifier for obtaining a dry gas with a low dew point (for example, (See Japanese Unexamined Patent Publication No. 2000-296309 and Japanese Patent Application Laid-Open No. 63-50047).
[0006]
[Patent Document 1]
JP-A-6-267933 [Patent Document 2]
JP 2000-296309 A [Patent Document 3]
JP-A-63-50047
[Problems to be solved by the invention]
By the way, in a dry dehumidifier or a dry air supply device that obtains a dry gas having a low dew point, when a device (eg, a processing device) that requires dry air is stopped, the dry air supply device is stopped only during the stop period. Is stopped, and the dry air supply device is operated at the same time when the device is operated. However, in this operation method, moisture is naturally adsorbed to the adsorbent of the rotor while the dry air supply device is stopped, and as a result, the dry air having a low dew point (for example, −70 ° C. or less) as a target is obtained. There is a problem that a test run of several hours (4 to 12 hours) from the start of operation is required until the above is obtained. Further, since the supply amount of the dry air supplied from the dry air supply device is constant, it corresponds to, for example, a case where a necessary amount of the dry air (for example, about twice as much as the normal amount) is required. It was difficult to do.
[0008]
The present invention has been made in view of the above circumstances, and a dry air supply that can supply dry air with a low dew point immediately when necessary by maintaining an operating state even when dry air is not required in a target space. It is an object to provide a device and a method of operating the device. Another object of the present invention is to provide a dry air supply device capable of supplying an increased amount of dry air when necessary and a method of operating the same.
[0009]
[Means for Solving the Problems]
Among the present invention, the invention of claim 1 is configured to carry an adsorbent, and to rotate two rotors which are formed by a partition member and whose rotation area is divided at least into an adsorption zone and a regeneration zone, and to rotate both rotors. Driving means, a supply path for supplying the dried air from which moisture and organic substances have been removed by sequentially passing the sucked air through the adsorption zone of each rotor, and a supply path for heating a part of the dried air to each of the rotors, A method for operating a dry air supply device having a regeneration path for regenerating an adsorbent by passing through a regeneration zone, wherein when the dry air is not required in the target space, the dry air flowing toward the outlet side of the supply path Is returned to the inlet side of the supply path to maintain the operating state.
[0010]
The invention according to claim 2 is configured such that the two rotors are configured to support the adsorbent, and the rotation area is defined by the partition member at least in the adsorption zone and the regeneration zone, and driving means for rotating and driving both rotors; A supply path for supplying the sucked air to the target space by removing the moisture and organic substances by sequentially passing the sucked air through the adsorption zone of each rotor, and a part of the dry air being heated and passed through the regeneration zone of each rotor. In the operating method of the dry air supply device having a regeneration path for regenerating the adsorbent, when the target space requires more dry air than a normal flow rate, the dry air flowing toward the regeneration path It is characterized in that the flow is reduced or cut off to increase the supply of dry air.
[0011]
The invention according to claim 3 is configured such that the two rotors are configured to support the adsorbent, and the rotation area is formed at least in the adsorption zone and the regeneration zone by the partition member, and driving means for rotating and driving both rotors; A supply path for supplying the sucked air to the target space by removing the moisture and organic substances by sequentially passing the sucked air through the adsorption zone of each rotor, and a part of the dry air being heated and passed through the regeneration zone of each rotor. And a regeneration path for regenerating the adsorbent by providing a return path for returning dry air from the outlet side of the supply path to the inlet side, and providing valves on the return path and the exit side of the supply path. Is provided.
[0012]
The invention according to claim 4 is configured such that the two rotors are configured to support the adsorbent, and the rotation area is defined at least in the adsorption zone and the regeneration zone by the partition member, and driving means for rotating and driving both rotors, A supply path for supplying the sucked air to the target space by removing the moisture and organic substances by sequentially passing the sucked air through the adsorption zone of each rotor, and a part of the dry air being heated and passed through the regeneration zone of each rotor. A regeneration path for regenerating the adsorbent, thereby reducing or interrupting the flow of the dry air toward the regeneration path in the regeneration path, thereby increasing the supply amount of the dry air. It is characterized by having been provided.
[0013]
According to a fifth aspect of the present invention, in the dry air supply device according to the third or fourth aspect, a control means for controlling the valve is provided.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 is a schematic configuration diagram showing a normal operation state of a dry air supply device according to an embodiment of the present invention, FIG. 2 is a schematic configuration diagram showing a warm-up operation state, and FIG. 3 is a schematic configuration showing an increase operation state. FIG. 4 is a perspective view showing an example of the rotor, and FIG. 5 is a perspective view showing an example of a support frame for rotatably supporting the rotor.
[0015]
In FIG. 1, reference numeral 1 denotes a dry air supply device for supplying dry air (dry air) having a low dew point to a target space such as a transfer space of a processing apparatus, and the dry air supply device 1 includes a support frame 2 (see FIG. 5) that is rotatably supported and configured to carry an adsorbent, and that a partition member 3 provided on a support frame 2 defines rotation regions at both ends at least in an adsorption zone S and a regeneration zone U. One rotor 4a, 4b, a driving means for rotating both rotors 4a, 4b, such as an electric motor 5, and the air sucked from the target space or the room are sequentially passed through the adsorption zone S of each rotor 4a, 4b to remove moisture and water. A supply path 6 for supplying dry air from which organic matter has been removed to a target space, and a part of the dry air which is heated and passed through a regeneration zone U of each of the rotors 4a and 4b to remove moisture and organic matter from the adsorbent. Desorbed and a playback path 7 for regenerating the adsorbent.
[0016]
As shown in FIG. 4, the rotors 4a and 4b each include a cylindrical body 8 having both ends opened, a rotating shaft 10 disposed at an axial center of the cylindrical body 8, and a cylindrical member radially extending from the rotating shaft 10. Spokes 11 fixed to the inner peripheral surface of the body 8 and partitioning the inside of the cylindrical body 8 into a plurality of, for example, eight sector-shaped rooms, and a honeycomb structure having a sector-shaped cross-section attached to each room and carrying an adsorbent on a substrate. It is mainly composed of the body 12. In the process of flowing air in the axial direction of the rotors 4a and 4b, the honeycomb structure 12 removes moisture and organic substances contained in the air by adsorbing the adsorbent to obtain dry air.
[0017]
The adsorbent of the rotor 4a in the former stage is, for example, a faujasite Y-type zeolite (A 56 Si) in order to efficiently adsorb moisture as pre-dehumidification (exit dew point temperature −20 ° C.) and also efficiently adsorb organic matter. 136 O 384 ) are preferred. As the adsorbent for the rotor 2b at the subsequent stage, for example, a faujasite X-type zeolite (A 96 Si 96 O 384 ) is preferable in order to adsorb moisture as low dew point dehumidification (outlet dew point temperature −80 ° C.).
[0018]
On the other hand, as a substrate of the honeycomb structure 12, inorganic fiber paper is preferable because of excellent heat resistance, abrasion resistance and the like. The honeycomb structure 12 is formed by forming inorganic fiber paper into a honeycomb shape. As a method of supporting the adsorbent on the base material, for example, a method of impregnating the base material with a slurry containing the adsorbent by spraying, brushing, or the like, and drying is used. When the rotors 4a and 4b have the rotating shaft 10, they are rotatably supported by, for example, a box-shaped or frame-shaped support frame 2 as shown in FIG. In the illustrated example, openings 13 corresponding to both ends of the rotors 4 a and 4 b are formed at both ends of the support frame 2, and the partition member 3 is attached to the openings 13. A bearing 14 that rotatably supports both ends of the rotary shaft 10 is provided at the center of the opening 13 via a partition member 3.
[0019]
The partition member 3 includes an annular circumferential member 3a corresponding to the peripheral edge of the end of the rotor or the cylindrical body 8, and a radial member 3b provided at the center, for example, from the bearing to the circumferential member 3a. The member 3b is provided with a radial seal member that seals between the zones S, U, and T adjacent to and adjacent to the end face of the honeycomb structure 12 (end face of the rotor). The circumferential member 3a is provided with a circumferential seal member that seals between the inside and the outside in the vicinity of the flange 8a provided at the edge of the rotor or the cylindrical body 8.
[0020]
An adsorption zone S and a regeneration zone U are defined by the partition member 3 in the rotation regions at both ends of the preceding rotor 4a. A cooling zone T is defined by the partition member 3 in addition to the adsorption zone S and the regeneration zone U in the rotation regions at both ends of the rotor 4 b at the subsequent stage. The partition member 3 is provided with a cover member (not shown) for covering the surface thereof, and a pipe communicating with each zone S, U or T is connected to the cover member.
[0021]
The supply path 6 includes, for example, a suction pipe 6a that is introduced into the adsorption zone S of the preceding rotor 4a, and dry air with a low dew point from which moisture and organic substances have been removed through the adsorption zone S of the preceding rotor 4a. And a supply pipe 6c for supplying (introducing) dry air with a low dew point, which has passed through the adsorption zone S of the rotor 4b at the subsequent stage and has been further removed of moisture and organic substances, to the target space. It is composed of
[0022]
The suction pipe 6a is provided with a fan 15 for sucking air from a target space or a room and sending the air to the target space via the rotors 4a and 4b. The intermediate pipe 6b has a low dew point from which moisture and organic substances have been removed. A cooler 16 is provided as cooling means for cooling the dry air to a predetermined temperature, for example, about 15 ° C. In order to prevent particle contamination of a wafer in a target space caused by the dry air supply device 1, for example, a transfer space, a contact portion between the rotors 4a and 4b and a seal member of the partition member 3 is provided at an outlet side of the supply path 6. It is preferable that a filter (not shown) for removing particles generated from is provided.
[0023]
The regeneration path 7 is branched from a supply pipe 6c immediately after the latter rotor 4b, and is a first pipe for extracting a part of clean dry air having a low dew point and introducing it as a cooling gas into a cooling zone T of the latter rotor 4b. 7a, a second pipe 7b for introducing the dry air passing through the cooling zone T to the regeneration zone U as a regeneration gas, and a second pipe 7b for introducing the air passing through the regeneration zone U to the regeneration zone U of the preceding rotor 4a. It is composed of three pipes 7c and a fourth pipe 7d for exhausting the air passing through the regeneration zone U to, for example, a factory exhaust system. The second pipe 7b is provided with a heating means such as a heater 17 for heating the air to a predetermined temperature in order to use the air as a regeneration gas, and the fourth pipe 7d is provided with an exhaust fan 18.
[0024]
During normal operation, the air for regeneration is heated to a temperature of about 130 to 200 ° C. by the heater 17 and supplied to the regeneration zone U to desorb moisture and gaseous impurities (organic substances) adsorbed on the adsorbent. However, when the high boiling organic compound is desorbed from the adsorbent, the air for regeneration may be heated to a high temperature of about 250 to 400 ° C. by the heater 17 and supplied to the regeneration zone U periodically. preferable.
[0025]
In FIG. 1, reference numeral 20 denotes a system for executing a method of operating a dry air supply device. The system 20 includes an inlet 21 of a suction pipe 6a, an outlet 22 of a supply pipe 6c, and a fourth pipe 7d. An outlet 23 is provided. For example, a target space or an indoor space is connected to the inlet 21 of the suction pipe 6a via the pipe. The outlet section 22 of the supply pipe 6c is connected to a target space via a pipe. A factory exhaust system is connected to the outlet 23 of the fourth pipe 7d via a pipe.
[0026]
A belt wheel (also referred to as a pulley) 25 is attached to the rotation shaft of the motor 5 to rotationally drive the rotors 4a and 4b. An endless belt 26 is wound around the belt wheel 25 and the rotors 4a and 4b. I have. The two rotors may be configured to be driven individually by two motors, or may be configured to be driven by one common motor.
[0027]
In order to efficiently adsorb moisture and organic substances on the adsorbents carried on the honeycomb structure 12 in the front and rear rotors, and to desorb moisture and organic substances from the adsorbents adsorbing the moisture and organic substances to efficiently regenerate the adsorbents The area ratio between the adsorption zone S and the regeneration zone U of the preceding rotor 4a (1: 1 in the illustrated example), or the area ratio between the adsorption zone S, the regeneration zone U, and the cooling zone T of the subsequent rotor 4b (2 in the illustrated example). : 1: 1), in the case of the illustrated example, for example, when the rotation speed of the rotor 4a at the front stage is 10 r. p. h, the rotational speed of the rotor 4b at the subsequent stage is 0.5 r. p. h is adjusted or set.
[0028]
When dry air is not required in the target space, the supply path is used to return the dry air toward the outlet side of the supply path 6 to the inlet side of the supply path 6 and maintain the operating state of the rotors 4a and 4b. A return path 27 for returning dry air from the outlet side to the inlet side of the feed path 6 is provided, and valves 30 and 31 are provided on the return path 27 and the outlet side of the supply path 6. The valves 30 and 31 are switching valves for switching the flow path of the dry air. When the valve 31 is opened and the valve 30 is closed, normal operation can be performed. When the valve 31 is closed and the valve 30 is opened, The dry air can be returned from the outlet side of the supply path 6 to the inlet side, and the operating state of the dry air supply device can be maintained. The operation at this time is called a warm-up operation, and when dry air is not required in the target space (period), the warm-up operation is performed, and the air for regeneration is always supplied to the rotors 4a and 4b. , 4b to prevent natural adsorption of water, and when dry air is required in the target space, by switching valves 30 and 31, clean dry air with a low dew point can be supplied immediately. The inlet of the return path 27 is connected to the supply pipe 6c on the upstream side of the valve 31, and the outlet of the return path 27 is connected to the suction pipe 6a.
[0029]
On the other hand, when more dry air than the normal flow rate is required in the target space, an increasing operation is performed to reduce or cut off the flow of the dry air toward the regeneration path 7 to increase the supply amount of the dry air. Therefore, a valve 33 is provided in the regeneration path 7. This valve 33 is preferably provided in the first pipe 7a of the regeneration path 7. When the supply amount of the dry air during normal operation and 2m 3 / min, of up to twice the supply of dry air to the target space by squeezing the valve 33 of the playback path 7 from 2m 3 / min or more 4m 3 / Minutes (when fully closed or shut off). During the increasing operation, the regeneration of the adsorbent is reduced or stopped, so that the dew point of the dry intake air increases with time. For this reason, the increasing operation is performed for a predetermined time, for example, 6 to 9 minutes until the dew point of the dry air is detected, and then the valve 31 is closed and the valves 33 and 30 are opened to perform the warming-up operation. Switch to regenerate the adsorbent. That is, the increase operation is performed for a predetermined time when necessary, and when it is not necessary (for example, 12 to 14 minutes), the operation is switched to warm-up, so that it is performed intermittently instead of continuously. The dry air supply device 1 includes the control device (control means) 40 for controlling or switching the valves 30, 31, and 33 as described above in order to easily perform the operations of the various patterns.
[0030]
In the above configuration, during normal operation, the valve 30 is closed and the valves 31 and 33 are open as shown in FIG. ° C or a dew point of about 1.96 ° C) or indoor air is introduced into the adsorption zone S of the preceding rotor 4a, and the adsorbent carried on the rotor 4a performs dehumidification and purification (removal of moisture and organic substances). Is done). At this point, the temperature of the clean dry air is about 45 ° C and the dew point is about -20 ° C. Next, the clean dry air is cooled to about 15 ° C. by the cooler 16, and then introduced into the adsorption zone S of the rotor 4b at the subsequent stage, where further dehumidification and purification are performed. Clean dry air with a low dew point of -80 ° C is supplied to the target space.
[0031]
Further, in the rotor 4b at the subsequent stage, a part of the purified dry air having a low dew point is introduced into the cooling zone T through the first pipe 7a of the regeneration path 7, which is a branch pipe, to be used as a cooling gas, and then to the second pipe. Heated by the heater 17 of the pipe 7b and introduced into the regeneration zone U as a heated gas for regeneration, moisture and organic substances adsorbed by the adsorbent of the rotor 4b are removed by evaporation (desorption). The air (regeneration gas) discharged from the regeneration zone U is introduced into the regeneration zone U of the preceding rotor 4a via the third pipe 7c, and the water adsorbed on the adsorbent of the rotor 4a by the high-temperature regeneration gas is used. The organic matter is removed by evaporation (desorption), and the exhaust gas is exhausted through the fourth pipe 7d.
[0032]
On the other hand, when the apparatus receiving the supply of dry air (for example, a processing apparatus) shifts to a step that does not require dry air in the target space, the valve 31 is closed and the valve 30 is opened as shown in FIG. By switching, the dry air flowing toward the outlet side of the supply path 6 is returned to the inlet side of the supply path 6, the adsorbent of the rotors 3a and 3b is regenerated, and the operation of the dry air supply device 1 is stopped without stopping. Keep warm-up operation. In this case, since it is necessary to take in air as much as dry air is exhausted from the regeneration path 7, air in the target space or room is taken in through the suction pipe 6 a of the supply path 6. By performing the warm-up operation in this manner, when the apparatus shifts to a process requiring dry air, clean dry air having a low dew point can be supplied immediately.
[0033]
Thus, by combining the normal operation and the warm-up operation, the waiting time on the side of the apparatus that needs the dry air can be eliminated, and the throughput and the productivity can be improved. Further, some devices that require dry air may need more dry air intermittently than usual, rather than continuously. In such a device, as shown in FIG. By closing the valves 30 and 33 and opening the valve 31, the flow of the dry air toward the regeneration path 7 is reduced or cut off to increase the supply amount of the dry air. When the supply amount of the dry air during normal operation and 2m 3 / min, of up to twice the supply of dry air to the target space by squeezing the valve 33 of the playback path 7 from 2m 3 / min or more 4m 3 / Minutes (when fully closed or shut off). During the increasing operation, the regeneration of the adsorbent is reduced or stopped, so that the dew point of the dry intake air increases with time. Therefore, the increasing operation is performed for a predetermined time until the dew point of the dry air is detected and reaches a predetermined dew point. Thereafter, the valve 31 is closed and the valves 30 and 33 are opened to switch to the warming-up operation to switch the adsorbent. Perform playback. That is, this increasing operation is performed intermittently and alternately in combination with the warm-up operation.
[0034]
As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the present invention is not limited to the above embodiments, and various design changes and the like can be made without departing from the gist of the present invention. is there. For example, a contact-type seal member that slides on the rotor is used as the partition member to seal the space between the rotor and the rotor, but a non-contact type seal member may be used as the seal member. Further, the two rotors may have an integral structure arranged in series with a partition member interposed therebetween. In this case, piping and a cooler between the rotors can be omitted, and the apparatus can be made compact. In this case, a cooling zone is provided in the former rotor so as to correspond to the latter rotor, and dry air for regeneration flows from the cooling zone of the former rotor to the cooling zone of the latter rotor.
[0035]
【The invention's effect】
In short, according to the present invention, the following effects can be obtained.
[0036]
(1) According to the first aspect of the invention, the two rotors are configured to support the adsorbent, and the partition member has a rotation area defined at least in the adsorption zone and the regeneration zone. Driving means, a supply path for supplying the dried air from which moisture and organic substances have been removed by sequentially passing the sucked air through the adsorption zone of each rotor, and a supply path for heating a part of the dried air to each of the rotors, A method for operating a dry air supply device having a regeneration path for regenerating an adsorbent by passing through a regeneration zone, wherein when the dry air is not required in the target space, the dry air flowing toward the outlet side of the supply path Return to the inlet side of the supply path to maintain the operating state, so that even when dry air is not required in the target space, the operating state is maintained, so that dry air with a low dew point It can be supplied.
[0037]
(2) According to the second aspect of the present invention, the two rotors are configured to support the adsorbent, and the rotation area is formed at least into the adsorption zone and the regeneration zone by the partition member, and the two rotors are rotationally driven. Driving means, a supply path for supplying the dried air from which moisture and organic substances have been removed by sequentially passing the sucked air through the adsorption zone of each rotor, and a supply path for heating a part of the dried air to each of the rotors, A regeneration path for regenerating the adsorbent by passing through the regeneration zone, wherein when the target space requires more dry air than the normal flow rate, the regeneration path In order to increase or decrease the supply of the dry air by reducing or blocking the flow of the dry air toward the dry air, it is possible to increase and supply the dry air when necessary.
[0038]
(3) According to the third aspect of the present invention, the two rotors are configured to support the adsorbent, and the rotation area is formed at least in the adsorption zone and the regeneration zone by the partition member, and the two rotors are rotationally driven. Driving means, a supply path for supplying the dried air from which moisture and organic substances have been removed by sequentially passing the sucked air through the adsorption zone of each rotor, and a supply path for heating a part of the dried air to each of the rotors, In a dry air supply device having a regeneration path for regenerating an adsorbent by passing through a regeneration zone, a return path for returning dry air from an outlet side to an entrance side of the supply path is provided, and the return path and the supply path Since a valve is provided on the outlet side, even when dry air is not required in the target space, the operating state is maintained, so that dry air with a low dew point can be supplied immediately when necessary.
[0039]
(4) According to the fourth aspect of the present invention, the two rotors are configured to support the adsorbent, and the rotation region is formed by the partition member into at least the adsorption zone and the regeneration zone, and the two rotors are rotationally driven. Driving means, a supply path for supplying the dried air from which moisture and organic substances have been removed by sequentially passing the sucked air through the adsorption zone of each rotor, and a supply path for heating a part of the dried air to each of the rotors, In a dry air supply device having a regeneration path for regenerating an adsorbent by passing through a regeneration zone, the flow of dry air toward the regeneration path is reduced or cut off in the regeneration path to increase the supply amount of dry air. Since a valve is provided for drying, it is possible to increase and supply dry air when necessary.
[0040]
(5) According to the fifth aspect of the present invention, since the control means for controlling the valve is provided, various patterns of operation can be easily performed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a normal operation state of a dry air supply device according to an embodiment of the present invention.
FIG. 2 is a schematic configuration diagram showing a warm-up operation state.
FIG. 3 is a schematic configuration diagram showing a boost operation state.
FIG. 4 is a perspective view showing an example of a rotor.
FIG. 5 is a perspective view showing an example of a support frame that rotatably supports a rotor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dry air supply device 3 Partition member 4a, 4b Rotor 5 Motor (drive means)
6 Supply path 7 Regeneration path 27 Return paths 30, 31, 33 Valve 40 Controller (control means)

Claims (5)

吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成される二つのロータと、両ロータを回転駆動する駆動手段と、吸引した空気を各ロータの吸着ゾーンに順に通過させて水分及び有機物を除去した乾燥空気を目的空間に供給する供給経路と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させることにより吸着剤を再生させる再生経路とを備えた乾燥空気供給装置の運転方法において、前記目的空間で乾燥空気を必要としないときに、前記供給経路の出口側へ向う乾燥空気を供給経路の入口側に戻して稼動状態を維持することを特徴とする乾燥空気供給装置の運転方法。The two rotors are configured to carry the adsorbent, and the rotation area is formed by the partition member into at least the adsorption zone and the regeneration zone, driving means for rotating both rotors, and the sucked air of each rotor. A supply path for supplying dry air from which moisture and organic substances have been removed to the target space by sequentially passing through the adsorption zone, and a part of the dry air is heated to regenerate the adsorbent by passing through the regeneration zone of each rotor. In the method of operating a dry air supply device having a regeneration path, when dry air is not required in the target space, the dry air flowing toward the outlet side of the supply path is returned to the inlet side of the supply path to change the operation state. A method for operating a dry air supply device characterized by maintaining. 吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成される二つのロータと、両ロータを回転駆動する駆動手段と、吸引した空気を各ロータの吸着ゾーンに順に通過させて水分及び有機物を除去した乾燥空気を目的空間に供給する供給経路と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させることにより吸着剤を再生させる再生経路とを備えた乾燥空気供給装置の運転方法において、前記目的空間で通常時の流量よりも多い乾燥空気を必要とするときに、前記再生経路に向かう乾燥空気の流れを減少または遮断して乾燥空気の供給量を増加させることを特徴とする乾燥空気供給装置の運転方法。The two rotors are configured to carry the adsorbent, and the rotation area is formed by the partition member into at least the adsorption zone and the regeneration zone, driving means for rotating both rotors, and the sucked air of each rotor. A supply path for supplying dry air from which moisture and organic substances have been removed by sequentially passing through the adsorption zone to the target space, and a part of the dry air is heated to regenerate the adsorbent by passing through the regeneration zone of each rotor. In the method of operating a dry air supply device having a regeneration path, when the target space requires more dry air than a normal flow rate, the flow of the dry air toward the regeneration path is reduced or cut off. A method for operating a dry air supply device, characterized by increasing a supply amount of dry air. 吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成される二つのロータと、両ロータを回転駆動する駆動手段と、吸引した空気を各ロータの吸着ゾーンに順に通過させて水分及び有機物を除去した乾燥空気を目的空間に供給する供給経路と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させることにより吸着剤を再生させる再生経路とを備えた乾燥空気供給装置において、前記供給経路の出口側から入口側に乾燥空気を戻す戻り経路を設け、該戻り経路と供給経路の出口側とに弁を設けたことを特徴とする乾燥空気供給装置。The two rotors are configured to carry the adsorbent, and the rotation area is formed by the partition member into at least the adsorption zone and the regeneration zone, driving means for rotating both rotors, and the sucked air of each rotor. A supply path for supplying dry air from which moisture and organic substances have been removed to the target space by sequentially passing through the adsorption zone, and a part of the dry air is heated to regenerate the adsorbent by passing through the regeneration zone of each rotor. In a dry air supply device including a regeneration path, a return path for returning dry air from an outlet side of the supply path to an inlet side is provided, and a valve is provided on the return path and an outlet side of the supply path. Dry air supply device. 吸着剤を担持して構成されると共に、仕切部材により回転域が少なくとも吸着ゾーン及び再生ゾーンに区画形成される二つのロータと、両ロータを回転駆動する駆動手段と、吸引した空気を各ロータの吸着ゾーンに順に通過させて水分及び有機物を除去した乾燥空気を目的空間に供給する供給経路と、前記乾燥空気の一部を加熱して各ロータの再生ゾーンに通過させることにより吸着剤を再生させる再生経路とを備えた乾燥空気供給装置において、前記再生経路に該再生経路に向かう乾燥空気の流れを減少または遮断して乾燥空気の供給量を増加させるための弁を設けたことを特徴とする乾燥空気供給装置。The two rotors are configured to carry the adsorbent, and the rotation area is formed by the partition member into at least the adsorption zone and the regeneration zone, driving means for rotating both rotors, and the sucked air of each rotor. A supply path for supplying dry air from which moisture and organic substances have been removed to the target space by sequentially passing through the adsorption zone, and a part of the dry air is heated to regenerate the adsorbent by passing through the regeneration zone of each rotor. A dry air supply device having a regeneration path, wherein the regeneration path is provided with a valve for decreasing or cutting off the flow of the dry air toward the regeneration path to increase the supply amount of the dry air. Dry air supply. 前記弁を制御する制御手段を備えたことを特徴とする請求項3または4記載の乾燥空気供給装置。The dry air supply device according to claim 3 or 4, further comprising control means for controlling the valve.
JP2003121221A 2003-04-25 2003-04-25 Operation method of dry air supply device Expired - Fee Related JP3896344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121221A JP3896344B2 (en) 2003-04-25 2003-04-25 Operation method of dry air supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121221A JP3896344B2 (en) 2003-04-25 2003-04-25 Operation method of dry air supply device

Publications (2)

Publication Number Publication Date
JP2004321965A true JP2004321965A (en) 2004-11-18
JP3896344B2 JP3896344B2 (en) 2007-03-22

Family

ID=33499859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121221A Expired - Fee Related JP3896344B2 (en) 2003-04-25 2003-04-25 Operation method of dry air supply device

Country Status (1)

Country Link
JP (1) JP3896344B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075819A (en) * 2008-09-25 2010-04-08 Shin Nippon Air Technol Co Ltd Dehumidification apparatus and method for operation control of the same
JP2011104542A (en) * 2009-11-19 2011-06-02 Seibu Giken Co Ltd Adsorption-type dehumidifier
JP2012096165A (en) * 2010-11-02 2012-05-24 Shinwa Controls Co Ltd Low dew-point air generator
CN113278455A (en) * 2021-06-04 2021-08-20 邓燕龙 Natural gas dewatering device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010075819A (en) * 2008-09-25 2010-04-08 Shin Nippon Air Technol Co Ltd Dehumidification apparatus and method for operation control of the same
JP2011104542A (en) * 2009-11-19 2011-06-02 Seibu Giken Co Ltd Adsorption-type dehumidifier
JP2012096165A (en) * 2010-11-02 2012-05-24 Shinwa Controls Co Ltd Low dew-point air generator
CN113278455A (en) * 2021-06-04 2021-08-20 邓燕龙 Natural gas dewatering device
CN113278455B (en) * 2021-06-04 2023-09-08 邓燕龙 Natural gas dewatering device

Also Published As

Publication number Publication date
JP3896344B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP3896343B2 (en) Dry air supply device
JP2750996B2 (en) Organic solvent vapor adsorption device
WO2004026442A1 (en) Dry air-supplying apparatus and treating apparatus
US20070169628A1 (en) Gas purifier
KR20100051858A (en) Apparatus and method for in-situ high temperature regeneration of a rotor sorption concentrator
JP2001038137A (en) Production of clean air and supplying system
JP2011149661A (en) Clean room system and method of operating the same
JP2004160444A (en) Dry air feeding device and treatment apparatus
TWI763906B (en) Drying room for gas replacement
JP3896344B2 (en) Operation method of dry air supply device
JP4167114B2 (en) Processing apparatus and operation method thereof
JP4250380B2 (en) Gas concentrating device and gas concentrating method
JP4523146B2 (en) Organic solvent vapor processing equipment
JP3538725B2 (en) Exhaust gas treatment equipment
JP2006035188A (en) Dehumidification and cleaning apparatus for gas
JPH06343818A (en) Dry type dehumidifying device
TWI816980B (en) Drying room for gas replacement
JP2002186822A (en) Adsorbing and desorbing apparatus
JP2005152761A (en) Deodorization method and deodorization device
JP2004033925A (en) Clean air supply system and its operation method
JP2001205037A (en) Dry type dehumidification apparatus
JP2002143632A (en) Device for removing ethylene and refrigerator provided with device for removing ethylene
JP5823334B2 (en) Adsorption system
JP4236443B2 (en) Clean air generator
JP2002159821A (en) Organic gas concentration apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060426

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees