JP3895994B2 - 半導体集積回路 - Google Patents

半導体集積回路 Download PDF

Info

Publication number
JP3895994B2
JP3895994B2 JP2002015272A JP2002015272A JP3895994B2 JP 3895994 B2 JP3895994 B2 JP 3895994B2 JP 2002015272 A JP2002015272 A JP 2002015272A JP 2002015272 A JP2002015272 A JP 2002015272A JP 3895994 B2 JP3895994 B2 JP 3895994B2
Authority
JP
Japan
Prior art keywords
circuit
power supply
transistors
logic
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002015272A
Other languages
English (en)
Other versions
JP2003218681A (ja
JP2003218681A5 (ja
Inventor
英俊 田中
教夫 大久保
祐行 宮▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2002015272A priority Critical patent/JP3895994B2/ja
Publication of JP2003218681A publication Critical patent/JP2003218681A/ja
Publication of JP2003218681A5 publication Critical patent/JP2003218681A5/ja
Application granted granted Critical
Publication of JP3895994B2 publication Critical patent/JP3895994B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体集積回路に関し、特に携帯電話といった電池で動作する携帯機器のマイクロプロセッサなどにおいて、高速動作でしかも低消費電力動作を要求される半導体集積回路に関する。
【0002】
【従来の技術】
携帯電話などの携帯用通信機器の回路においては、高速動作でしかも低消費電力が要求されている。従来、このような低消費電力を要求される半導体集積回路においては、電源電圧(Vdd)を下げるかあるいは、半導体集積回路に内蔵される素子を微細化するなどの手法により低消費電力化を図っている。
【0003】
特に、マイクロプロセッサのような周波数信号に同期されるものにおいては、その動作周波数を必要に応じて切り替えることによって低消費電力化する技術があり、例えば、特開平3−068007号公報に記載されている。また、特開平5−108193号公報には、外部から供給される電源電圧(Vdd)と周波数とを内臓レジスタの設定値によって変更し、低消費電力化を図るようにしたマイクロプロセッサについて記載されている。さらに、特開平7−287699号公報には、外部から供給される動作周波数の変更後に電源電圧(Vdd)を変更することで、低消費電力化を図るようなデータ処理装置が記載されている。
【0004】
一方、特開2001−185689号公報には、動作周波数を低周波数に切り替えた際、基板バイアスを印加することでサブスレッシュホルドリーク電流の削減を図る方法について記載されている。
【0005】
【発明が解決しようとする課題】
上記の従来方法(特開平3−068007号公報、特開平5−108193号公報、特開平7−287699号公報など)では、消費電力の削減は可能であるが、LSIの最低動作電圧における動作周波数が必要とする最低動作周波数になるとは限らない。このため電源電圧(Vdd)と周波数を制御して、電源電圧(Vdd)をLSIが動作する最低電圧まで下げた後に、動作周波数を下げることにより消費電力の削減を行うことが出来る。この場合、LSIを構成する論理回路の駆動力が要求する動作周波数に対して余裕があるために、必要以上のサブスレッショルドリーク電流が流れる状態となる。
【0006】
上記の従来方法では、このような余剰となる駆動力のサブスレッショルドリーク電流の削減という点までは十分に考慮されていなかったので、低消費電力化に問題があった。
【0007】
なお、特開2001−185689号公報では、電源電圧(Vdd)の制御により、周波数を下げた場合のリーク電流の削減を実現する方法が記載されている。しかし、一般に電源電圧(Vdd)を下げると、高しきい値のトランジスタで構成された論理回路は同じ機能を持つ低しきい値のトランジスタで構成された論理回路に比べ論理回路1段あたりにおける遅延時間の増加比率が大きくなる。そのため高しきい値トランジスタと低しきい値トランジスタの両方の基盤バイアス制御を行うことは、低周波数動作において低しきい値トランジスタに余剰駆動力が生じてしまうため、本方法は動作速度が低い場合の低しきい値トランジスタのサブスレッショルドリーク電流の削減までは考慮されているとは言えない。
【0008】
本発明の目的は、半導体集積回路の低周波数動作時におけるサブスレッショルドリーク電流の削減機能を持った半導体集積回路を提供することにある。
【0009】
【課題を解決するための手段】
(1)本発明は、第1の論理回路とその入出力が互いに接続された第2の論理回路とからなり、高い動作周波数においては前記第2の論理回路を動作させ、
低い動作周波数においては前記第1の論理回路を動作させることを特徴とする半導体集積回路を提供する。
【0010】
ここで、低い動作周波数は、数KHz以上の周波数と高い動作周波数との範囲内の周波数である。
【0011】
また、前記第1の論理回路は、高いしきい値のトランジスタからなり、一方、前記第2の論理回路は、低いしきい値のトランジスタからなる。
【0012】
この構成により、低い動作周波数においては、高いしきい値のトランジスタが動作し、低いしきい値のトランジスタは動作しないために、余分なリーク電流の発生が抑制でき、一方、高い動作周波数においては、少なくとも低いしきい値のトランジスタが動作するので、高速化を図ることができる。
【0013】
(2)前記第1の論理回路で構成される論理回路網の中にある種々の信号経路の中で、信号が伝播する時間が所定のディレイ値より遅い経路が存在する場合、その遅い信号経路中にある前記第1の論理回路に、前記第2の論理回路を接続することを特徴とする。
【0014】
この構成により、ディレイ値が所定の値を満たさない論理回路のみに前記第2の論理回路を適用することで、低消費電力を維持しつつ、回路の高速化を図ることができる。
【0015】
(3)さらに、本発明により、低しきい値トランジスタからなる論理回路および高しきい値トランジスタからなる論理回路で構成された被制御回路と、前記低しきい値トランジスタの基板にバイアス電圧を印加する基板バイアス制御回路と、前記基板バイアス制御回路を介して、前記被制御回路に接続された周波数・電圧制御回路とを有し、前記基板バイアス制御回路は、前記周波数・電圧制御回路からの信号に応じて、前記低しきい値トランジスタの基板に印加するバイアス電圧を調整することを特徴とする半導体集積回路を提供する。
【0016】
【発明の実施の形態】
以下に、図を用いて本発明の実施例を説明する。併せて、トランジスタで構成された回路において電源電圧(Vdd)および動作周波数制御を行った場合におけるサブスレッショルドリーク電流の削減方法について説明する。
【0017】
【実施例】
<実施例1>
図1は、切り替えセル1(SCE1)および切り替えセル2(SCE2)を制御する実施例を示すブロック図である。切り替えセル1(SCE1)の論理回路106乃至108の各セルには、制御トランジスタ109乃至114が接続されている。さらに詳しく回路構成を述べると以下のようである。論理回路106には制御トランジスタ109と110を用い、論理回路108には制御トランジスタ113と114を用いる。電位の高い擬似電源線Vddi11とVddi12は、電位の高い電源線Vddに接続され、電位の低い擬似電源線Vssi11とVssi12は、電位の低い電源線Vssに接続され、制御回路(CLT)115から供給される制御信号を信号線Vsp1と信号線Vsn1を通して制御トランジスタを制御することで電源の供給および遮断を行う。
【0018】
また、論理回路107は制御トランジスタ111と112を用いて、電位の高い擬似電源線Vdd21は電位の高い電源線Vddと接続され、電位の低い擬似電源線Vssi21は電位の低い電源線Vssに接続され、制御回路(CLT)115から供給される制御信号を信号線Vsp2と信号線Vsn2を通し制御トランジスタを制御することで電源の供給および遮断を行う。また、切り替えセル内の論理回路を構成するトランジスタは、高しきい値トランジスタおよび低しきい値トランジスタといった多種しきい値のトランジスタを用いることに制限はない。また、切り替えセルの擬似電源線と電源線とを接続する制御トランジスタ109乃至114は、高しきい値トランジスタでも低しきい値トランジスタでも構わない。さらに、制御トランジスタは、電位の高い電源線に接続された制御トランジスタ109、111、113、あるいは電位の低い電源線に接続された制御トランジスタ110、112、114のどちらか一方でも構わない。
【0019】
図2は、切り替えセル1(SCE1)および切り替えセル2(SCE2)を制御する実施例を示すブロック図であり、制御トランジスタを共通化することを特徴としている。切り替えセル1(SCE1)の論理回路206と切り替えセル2(SCE2)の論理回路208の電源の供給および遮断は、制御トランジスタ209および210を介して、行われる。制御トランジスタ209は電位の高い擬似電源線Vddi1と電位の高い電源線Vddに接続され、制御トランジスタ210は低い擬似電源線Vssi1と電位の低い電源線Vssに接続されている。制御トランジスタ209、210は、制御回路(CTL)213から信号線Vsp1および信号線Vsn1を通して供給される制御信号により制御される。
【0020】
また、切り替えセル1(SCE1)の論理回路207は、電位の高い擬似電源線Vddi2と電位の高い電源線Vddを接続する制御トランジスタ211と、電位の低い擬似電源線Vssi2と電位の低い電源線Vssを接続する制御トランジスタ212を、信号線Vsp2およびVsn2を通して制御回路(CTL)213から供給される制御信号を制御トランジスタを介して制御することで、電源の供給および遮断を行っている。また、切り替えセル内の論理回路を構成するトランジスタは、高しきい値トランジスタおよび低しきい値トランジスタといった多種しきい値のトランジスタを混載することに制限はない。また、切り替えセルを電源線と接続する制御トランジスタ209乃至212は、高しきい値トランジスタでも低しきい値トランジスタでも構わない。さらに、制御トランジスタは電位の高い電源線に接続された制御トランジスタ209、211、あるいは電位の低い電源線に接続された制御トランジスタ210、212のどちらか一方でも構わない。
【0021】
<実施例2>
図3は第2の実施例を示すブロック図である。本実施例は周波数比較器301および302と、制御トランジスタを制御する制御回路(CTL)303および304と、制御トランジスタであるトランジスタ305乃至308と、論理回路309乃至316を有する被制御回路で構成される。ここで、制御回路(CTL)303は制御トランジスタ305および306に制御信号Vsp1およびVsn1を、制御回路(CTL)304は制御トランジスタ307および308に制御信号Vsp2およびVsn2を入力する。CIR外部から周波数信号が入力され、その周波数信号が周波数比較回路(fcomp)301および302に入力される。周波数比較回路(fcomp)303および304では、周波数信号と基準周波数Cref1、Cref2とを比較して周波数信号が基準周波数より高いか低いかを検出し、制御回路(CTL)303および304に信号を入力する。また、制御回路中の論理回路314および315は電位の高い擬似電源線Vddi1および電位の低い擬似電源線Vssi1に接続され、制御トランジスタ305および306を介して、電位の高い電源線Vddpおよび電位の低い電源線Vsspに接続されている。同様に、被制御回路中の論理回路316は電位の高い擬似電源線Vddi2および電位の低いVssi2に接続され、制御トランジスタ307および308を介して、電位の高い電源線Vddpおよび電位の低い電源線Vsspに接続されている。
【0022】
周波数信号の周波数を変化させた際における図3の回路動作の一例としては、周波数信号の周波数がCref1より低い場合制御トランジスタ305および306はオフ状態となり、論理回路314および315は電源線から切り離される。上記とは反対に、周波数信号の周波数がCref1より高い場合トランジスタ305および306はオン状態となり、論理回路314および315は電源線と接続される。また、周波数信号の周波数がCref2より低い場合トランジスタ307および308はオフ状態となり、論理回路316は電源線から切り離される。上記とは反対に、周波数信号の周波数がCref2より高い場合トランジスタ307および308はオン状態となり、論理回路316は電源線と接続される。待機状態以外では、周波数信号と周波数がどのような値をとっても論理回路309乃至313は常に電源と接続されて動作している。周波数信号の周波数がCref1およびCref2より低い場合には論理回路309乃至313だけが動作しているために、論理回路を構成するトランジスタのサブスレッショルドリーク電流を削減することができる。また、本回路動作は一例であり、これ以外の動作を行っても構わない。
【0023】
なお、ここでCIRの待機状態はトランジスタ317および318の両方またはどちらか一方を遮断することで実現でき、トランジスタの遮断は、それぞれのトランジスタの入力STPまたはSTNに送られる制御信号により行われる。
【0024】
図4は、第2の実施例を実現する別の実施例を示すブロック図である。本実施例は電圧比較器401および402と、制御トランジスタを制御する制御回路(CTL)403および404と、制御トランジスタ405乃至407と論理回路409乃至416を有する被制御回路(CCIR)から構成される。ここで、制御回路(CTL)403は制御トランジスタ405および406に制御信号Vsp1およびVsn1をそれぞれ入力し、制御回路(CTL)404は制御トランジスタ407および408に制御信号Vsp2およびVsn2を入力する。CIR外部から電源電圧(Vdd)が与えられ、その電源電圧(Vdd)が電圧比較回路(vcomp)401および402に入力される。上記電圧比較回路(vcomp)403および404では、電源電圧(Vdd)と基準電圧Vref1、Vref2とを比較して、電源電圧(Vdd)が基準電圧より高いか低いかを検出する。また、被制御回路(CCIR)中の論理回路414および415は、電位の高い擬似電源線Vddi1および電位の低い擬似電源線Vssi1に接続され、制御トランジスタ405および406を介して、電位の高い電源線Vddpおよび電位の低い電源線Vsspに接続される。同様に、被制御回路(CCIR)中の論理回路416は電位の高い擬似電源線Vddi2および電位の低い擬似電源線Vssi2に接続され、制御トランジスタ407および408を介して電位の高い電源線Vddpおよび電位の低い電源線Vsspに接続されている。
【0025】
電源電圧(Vdd)を変化させた際における図4の回路動作の一例としては、電源電圧(Vdd)がVref1より低い場合トランジスタ405および406はオフ状態となり、論理回路414および415は電源線から切り離される。反対に、電源電圧(Vdd)がVref2より高い場合トランジスタ405および406はオン状態となり、論理回路414および415は電源線と接続される。また、電源電圧(Vdd)がVref2より低い場合トランジスタ407および408はオフ状態となり、論理回路416は電源線から切り離される。反対に、電源電圧(Vdd)がVref2より高い場合トランジスタ407および408はオン状態となり、論理回路416は電源線と接続される。待機状態以外では、電源電圧(Vdd)がどのような値をとっても論理回路409乃至414は、常に電源線と接続されており動作している。電源電圧(Vdd)がVref1およびVref2より低い場合には論理回路409乃至413のみ動作させるために、論理回路を構成するトランジスタのサブスレッショルドリーク電流を削減することができる。また、本回路動作は一例であり、これ以外のどのような動作を行っても構わない。
【0026】
図5は、第2の実施例を実現する別の実施例を示すブロック図である。本実施例は周波数発生回路(PLL)501と、セレクタ回路(SELCIR)502と、周波数逓倍回路(mcir)503乃至505と、制御トランジスタを制御する制御回路(CTL)506および507と、制御トランジスタ508乃至511と論理回路512乃至516を有する被制御回路(CCIR)から構成される。
【0027】
ここで、制御回路(CTL)506は制御トランジスタ508および509にそれぞれ制御信号Vsp1およびVsn1を供給し、制御回路(CTL)507は制御トランジスタ510および511にそれぞれ制御信号Vsp2およびVsn2を供給する。CIR外部から入力される動作状態制御信号により、電源電圧(Vdd)と周波数が決められる。動作状態制御信号がセレクタ回路(SELCIR)502に入力されると、セレクタ回路(SELCIR)502により動作状態の判別を行い、周波数発生回路(PLL)501の周波数を逓倍回路(mcir)503乃至505の中からどれか一つを選択して、逓倍した後に被制御回路(CCIR)に入力する。論理回路の選択は、制御信号により制御トランジスタ508および509、制御トランジスタ510および511の制御を行う。制御信号がどのような値をとっても論理回路512乃至516は電源と接続されて動作している。ここで示す周波数逓倍回路(mcir)は、503の×1倍、504の×1/2倍、505の×1/n倍の一例であり、逓倍の倍率および個数に制限はなく、必要とする逓倍率および個数を揃えれば良い。動作選択信号(SELSIG)の選択方法によって、論理回路512乃至515のみを動作させることで被制御回路(CCIR)内の論理回路を構成するトランジスタのサブスレッショルドリーク電流の削減をすることができる。
【0028】
<実施例3>
図6は、上記図1および図2における切り替えセル1(SCE1)および切り替えセル2(SCE2)を実現するための実施例を示す回路図である。回路は2入力のNANDを例とした。本回路は高しきい値トランジスタ601乃至604で構成される基本論理回路と、低しきい値トランジスタ607乃至612で構成される切り替え回路(SCIR)と、切り替え回路(SCIR)を電位が高い擬似電源線Vddi1および電位が低い擬似電源線Vssi1と電位が高い電源線Vddおよび電位が低い電源線Vssとを接続する制御トランジスタである高しきい値トランジスタ609および610から構成される。基本論理回路と切り替え回路(SCIR)は入力a1同士、a2同士と出力zn同士で接続されている。609および610のトランジスタはそれぞれ制御信号SW1Pおよび反転制御信号SW1Nにより制御される。切り替え回路(SCIR)の擬似電源線Vddi1およびVssi1と電源線VddおよびVssとの接続はトランジスタ609および610で行う。
【0029】
ここで、擬似電源線と電源線を接続するトランジスタ609および610は一般に高しきい値トランジスタを用いるが、低しきい値トランジスタを用いてもよい。この場合SW1Pの電位はVssより低く、SW1Nの電位はVddより高くすることでサブスッショルドリーク電流を削減する。また、トランジスタ609および610はどちらか一方でも構わない。
【0030】
図7は、切り替え回路(SCIR)が少なくとも2つ以上ある場合であり、トランジスタ701乃至704で構成される基本回路(BCIR)と、トランジスタ705乃至708と、電位の高い電源線Vddと、電位の高い擬似電源線Vddi1を接続する高しきい値トランジスタ709と、電位の低い電源線Vssと、電位の低い擬似電源線Vssi1を接続する高しきい値トランジスタ710とで構成される切り替えセル1(SCE1)と、トランジスタ711乃至714と電位の高い電源線Vddと電位の高い擬似電源線Vddi2を接続する高しきい値トランジスタ715と電位の低い電源線Vssと電位の低い擬似電源線Vssi2を接続する高しきい値トランジスタ716から構成される。基本論理回路と切り替え回路(SCIR)は、入力a1同士、a2同士と出力zn同士で接続されている。切り替え回路(SCIR)は、トランジスタ709および719を用い切り替え回路1(SCIR1)への電源供給を行い、トランジスタ715および716を用いて切り替え回路2(SCIR2)への電源供給を行う。
【0031】
ここで、電源線と擬似電源線を接続するトランジスタ709と710と715と716は一般に高しきい値トランジスタを用いるが、低しきい値トランジスタを用いてもよい。この場合SW1PおよびSW2Pへの信号はVssより低く、SW1NおよびSW2Nへの信号はVddより高くすることで、切り替え回路(SCIR)内の論理回路を構成するトランジスタのサブスッショルドリーク電流を削減する。また、トランジスタ709と710、715と716はどちらか一方でも構わない。
【0032】
図8は、図6の回路が待機状態を実現する実施例である。回路は2入力のNANDを例とした。本回路は、トランジスタ801乃至804で構成される基本回路(BCIR)と、トランジスタ807乃至812で構成される切り替え回路(SCIR)と、切り替え回路(SCIR)を電位の高い擬似電源線Vddi1および電位の低い擬似電源線Vssi1と電位の高い擬似電源線Vddpおよび電位の低いVsspに接続され、高しきい値トランジスタからなる制御トランジスタ811および812と、基本回路(BCIR)と切り替え回路(SCIR)を擬似電源線VddpおよびVsspを介して電位の高い電源線Vddおよび電位の低い電源線Vssとに接続された高しきい値トランジスタからなる電源スイッチトランジスタ805および806とから構成される。基本論理回路と切り替え回路(SCIR)は入力a1同士、a2同士と出力zn同士が接続されている。811および812のトランジスタは、それぞれ制御信号SW1Pおよび反転制御信号SW1Nにより制御される。805および806のトランジスタは、それぞれ制御信号SW0Pおよび反転制御信号SW0Nによって制御される。待機状態における電源線との接続は基本回路(BCIR)、切り替え回路(SCIR)ともに共通の電源スイッチトランジスタ805および806で行う。なお、待機状態を実現するためのトランジスタは、805および806のうちどちらか一方でもよい。切り替え回路(SCIR)の擬似電源線との接続はトランジスタ811および812で行う。
【0033】
ここで、切り替え回路(SCIR)の擬似電源線と基本回路(BCIR)の電源線を接続するトランジスタ811および812は、一般に高しきい値トランジスタを用いるが、低しきい値トランジスタを用いてもよい。この場合SW1Pへの信号はVssより低く、SW1Nの信号はVddより高くすることで切り替え回路(SCIR)内の論理回路を構成するトランジスタのサブスッショルドリーク電流を削減する。また、トランジスタ811と812はどちらか一方でも構わない。
【0034】
図9は、図7の回路が待機状態を実現する実施例であり、切り替え回路(SCIR)を少なくとも2つ以上有し、トランジスタ901乃至904で構成される基本回路(BCIR)と、トランジスタ907乃至910および擬似電源線Vddpと擬似電源線Vddi1を接続する高しきい値トランジスタ911と、擬似電源線Vddpと擬似電源線Vssi1を接続する高しきい値トランジスタ912で構成される切り替え回路1(SCIR1)と、トランジスタ913乃至916および擬似電源線Vddpと擬似電源線Vddi2を接続する高しきい値トランジスタ917と、擬似電源線Vsspと擬似電源線Vssi2を接続する高しきい値トランジスタ918と、擬似電源線Vddpと電源線Vddを接続する電源スイッチとして用いる高しきい値トランジスタ905および擬似電源線Vsspと電源線Vssを接続する高しきい値トランジスタ906から構成される。切り替え回路(SCIR)はトランジスタ911および912を用い切り替え回路1(SCIR1)への電源供給を行い、トランジスタ917および918を用いて切り替え回路2(SCIR2)への電源供給を行う。なお、待機状態を実現するために電源スイッチ用トランジスタ905および906を用いる。なお待機状態を実現するためのトランジスタはトランジスタ908および914のどちらか一方でもよい。
【0035】
ここで、擬似電源線Vddp、Vsspと擬似電源線Vddi1、Vddi2、Vssi1、Vssi2とを接続するトランジスタ911、912、917および918は一般に高しきい値トランジスタを用いるが、低しきい値トランジスタを用いてもよい。この場合制御信号SW1PおよびSW2PはVssより低く、反転制御信号SW1NおよびSW2NはVddより高くすることで切り替え回路(SCIR)内の論理回路を構成するトランジスタのサブスッショルドリーク電流を削減する。また、トランジスタ911と912のどちらか、または917と918のどちらか一方でも構わない。
【0036】
図10は、図6の回路が待機状態を実現する実施例である。回路は2入力のNANDを例とした。本回路は、トランジスタ1001乃至1004で構成される基本論理回路と、トランジスタ1007乃至1010で構成される切り替え回路(SCIR)と、切り替え回路(SCIR)を電位の高い擬似電源線Vddi1と電位の低い擬似電源線Vssi1とを電位の高い電源線Vddと電位の低いVssとに接続する高しきい値トランジスタからなる制御トランジスタ1011、1012と、基本回路(BCIR)および切り替え回路(SCIR)を擬似電源線VddpおよびVsspと電源線VddおよびVssとを接続する電源スイッチ用トランジスタ1005および1006とから構成される。基本論理回路と切り替え回路(SCIR)は、入力a1同士、a2同士と出力zn同士が接続されている。1011および1012のトランジスタはそれぞれ制御信号SW1Pおよび反転制御信号SW1Nにより制御される。待機状態における基本回路(BCIR)と切り替え回路(SCIR)の電源線との接続はトランジスタ1005、1006、1011および1012で行う。
【0037】
なお、基本論理回路のスタンバイ状態を実現するためのトランジスタは、1005および1006のうちどちらか一方でもよい。切り替え回路(SCIR)と電源線と擬似電源線を接続するトランジスタ1011および1012は、一般に高しきい値トランジスタを用いるが、低しきい値トランジスタを用いてもよい。この場合制御信号SW1Pの電位はVssより低く、反転制御信号SW1Nの電位はVddより高くすることで、切り替え回路(SCIR)を構成する論理回路のサブスレッショルドリーク電流を削減する。また、トランジスタ1011と1012はどちらか一方でも構わない。
【0038】
図11は、図7の回路が待機状態を実現する実施例であり、切り替え回路(SCIR)を少なくとも2つ以上有し、トランジスタ1101乃至1104で構成される基本回路(BCIR)と、トランジスタ1107乃至1110と電位の高い擬似電源線Vddi1と電位の高い電源線Vddを接続する高しきい値トランジスタ1111と、電位の低い擬似電源線Vss1と電位の低い電源線Vssを接続する高しきい値トランジスタ1112で構成される切り替え回路1(SCIR1)と、トランジスタ1113乃至1116と電位の高い擬似電源線Vddi2と電位の高い電源線Vddを接続する高しきい値トランジスタ1117と、電位の低い擬似電源線Vssi2と電位の低い電源線Vssを接続する高しきい値トランジスタ1118と、電位の高い擬似電源線Vddpと電位の高い電源線Vddを接続および切り離しをする電源スイッチ用の高しきい値トランジスタ1105と、電位の低い擬似電源線Vsspと電位の低い電源線Vssを接続および切り離しをする高しきい値トランジスタ1106とから構成される。切り替え回路(SCIR)の切り替えは、トランジスタ1111および1112を用いて切り替え回路1(SCIR1)の接続を行い、トランジスタ1117および1118を用いて切り替え回路2(SCIR2)の接続を行う。なお、基本回路(BCIR)が待機状態を実現するためには、トランジスタ1105および1106を用いる。
【0039】
なお、基本回路(BCIR)のスタンバイ状態を実現するためのトランジスタは、トランジスタ1108および1114のどちらか一方でもよい。
【0040】
ここで、擬似電源線と電源線を接続するトランジスタ1111、1112、1117および1118は一般に高しきい値トランジスタを用いるが、低しきい値トランジスタを用いてもよい。この場合制御信号SW1PおよびSW2Pの電位はVssより低く、反転制御信号SW1NおよびSW2Nの電位はVddより高くすることで、切り替え回路(SCIR)内の論理回路を構成するトランジスタのサブスッショルドリーク電流を削減する。また、トランジスタ1111と1112のどちらか、あるいは1117と1118のどちらか一方でも構わない。
【0041】
<実施例4>
次に、論理回路を基本回路(BCIR)と切り替え回路(SCIR)で構成される切り替えセルに置き換える方法について説明する。図12は、半導体集積回路内における信号の伝播がディレイ要求を満たさない信号経路の一例で、論理回路1201乃至1225で構成された半導体集積回路であり、斜線で網掛けされた論理回路1201、1207、1214、1220および1225を通過する信号の伝播がディレイ要求を満たさないとする。
【0042】
図13は、図12の論理回路1201、1207、1214、1220および1225をそれぞれ論理回路1301、1302、1303、1304および1305と対応させ、図12の1207、1220の駆動負荷を図13の1302、1304の出力負荷1(CL1)および出力負荷2(CL2)に対応させている。出力負荷1(CL1)および出力2(CL2)が付いていることによって、論理回路1301乃至1305までを通過する信号経路のディレイ値が要求するディレイ値を満たさないとする。
【0043】
ここで、図12の論理回路1207と1220を基本回路(BCIR)と切り替え回路(SCIR)に置き換えることで、目標周波数を実現すると共に、低周波数時におけるリーク電流の削減可能を実現する。図13の切り替え回路(SCIR)における論理回路1302は、負荷1(CL1)を十分駆動できるような高しきい値および低しきい値の論理回路1306および1307を付加し、切り替えセル2(SCE2)における論理回路1304は負荷2(CL2)を十分駆動できるような高しきい値および低しきい値の論理回路1308を付加する。図13の論理回路1306はトランジスタ1309と1310を通して、論理回路1308はトランジスタ1313と1314を通して、制御回路(CTL)1399から供給される制御信号を信号線Vsp1および信号線Vsn1により制御トランジスタを制御することで、電位の高い擬似電源線Vddi1は電位の高い電源線Vddと電位の低い擬似電源線Vssi1は電位の低い電源線Vssと接続される。
【0044】
また、論理回路1307はトランジスタ1311と1312を通して、制御回路(CTL)1399から供給される制御信号を信号線Vsp2および信号線Vsn2により制御トランジスタの制御をすることで、電位の高い擬似電源線Vddi2は電位の高い電源線Vddと電位の低い擬似電源線Vssi2は電位の低い電源線Vssと接続される。切り替えセル1(SCE1)および切り替えセル2(SCE2)の論理回路の構成は一例であり、実施例の回路に限定されることはなく、切り替えセル内の論理回路の数および切り替え回路(SCIR)の数に制限はない。また、切り替えセル内の論理回路を構成するトランジスタは高しきい値トランジスタおよび低しきい値トランジスタ、複数のしきい値を混載することに制限はない。また、実施例2に示したように切り替えセル内の切り替え回路(SCIR)を電源線と接続するトランジスタは高しきい値トランジスタでも低しきい値トランジスタでも構わない。
<実施例5>
次にレイアウトについて説明する。図14は、2入力NANDにおける回路図であり、図15は、図14の回路におけるレイアウトパターンの一例である。a1とa2は入力端子であり、znは出力端子である。FGはFG-M1コンタクト(FG-M1cont)を通じて入力端子に接続されているトランジスタのゲートであり、N-wellとP-wellはそれぞれPトランジスタとNトランジスタを作成するウェルであり、P+とN+は拡散層(diff)である。Vddp、VsspおよびznはM0配線層で拡散層-M0コンタクト(diff-MOcont)を通じてP+とN+の拡散層と接続されており、VddpとVsspは擬似電源線に接続される。図15は、標準駆動力の2倍の駆動力を持つ回路レイアウトパターンである。
【0045】
図16は、2入力NANDにおける上記2倍の駆動力を1倍の駆動力を持つ高しきい値回路1と1倍の駆動力を持つ低しきい値回路を用いた回路図である。図17は、この2入力NANDの回路レイアウトパターンの一例である。図16および図17はそれぞれ、図14および図15の2倍のサイズを持つ基本回路(BCIR)を、1倍のサイズを持つ回路1と回路2の2つに分割したものに対応しており、入力端子a1同士とa2同士、さらに出力端子zn同士をそれぞれ接続したもので、FGはFG-M1コンタクト(FG-M1cont)を通じて入力端子と接続されているトランジスタのゲート、N-wellとP-wellは回路1のウェル、N-well2とP-well2は回路2のウェル、P+とN+はN-wellとP-wellの拡散層、P+2とN+2はN-well2とP-well2の拡散層に対応する。Vddp、Vssp、Vddi、Vssiおよびznは、M0配線層で拡散層-M0コンタクト(diff-MOcont)を通じてP+、N+、P+2およびN+2の拡散層と接続されている。VddpとVsspは擬似電源線に接続され、VddiとVssiは別の擬似電源線2に接続される。
【0046】
ここで、図16および図17の回路1を図14および図15の基本回路(BCIR)と見れば、回路2(CIR2)は切り替えセルと見ることができる。回路2(CIR2)のトランジスタにおける拡散層P+2とN+2のイオン注入濃度を変えて低しきい値とした際に、回路1(CIR1)に対して面積の増加なしに切り替えセルを実現できる。さらにより大きな駆動力が必要な場合、回路1(CIR1)を標準駆動力として回路2の駆動力を大きくすること、回路2(CIR2)を標準駆動力として回路1(CIR1)の駆動力を大きくすること、回路1(CIR1)と回路2(CIR2)の両方の駆動力を大きくすることおよび回路2(CIR2)のしきい値を標準的な低しきい値より下げることにより実現が可能である。
【0047】
図18は、本発明によるリーク電流削減の効果を示す。図中の実線が駆動力の切り替えを行わない場合であり、破線が駆動力の切り替えを行ってリーク電流を削減した場合を示すグラフである。この場合の駆動力切り替えセルは高しきい値と低しきい値の2種類の論理回路を用いた。最大周波数動作時における周波数と消費電力を100と規格化し動作周波数と電源電圧(Vdd)制御を行った場合の消費電力を示している。周波数が100と75の場合駆動力切り替えを行うと、目標周波数は達成できないので駆動力切り替えは行っていない。周波数が50と25の場合に駆動力切り替えを行って消費電力の削減効果を示した。周波数が25の場合周波数切り替えを行うと、低周波数動作時の消費電力を1/2に削減することが可能である。
【0048】
<実施例6>
図19は、本発明の他の実施例を示すブロック図である。本実施回路は、複数の高しきい値トランジスタ1906および1907と複数の低しきい値トランジスタ1904および1905で構成される被制御回路(CCIR)と、周波数・電圧制御回路(FVCTL)1901と、PMOS高しきい値用基板バイアス回路1902と、NMOS低しきい値用基板バイアス回路1903から構成される。図19のブロックは外部から電源電圧(Vdd)と周波数が印加されると、周波数・電圧制御回路(FVCTL)1901により周波数と電源電圧(Vdd)に応じた信号をPMOS用基板バイアス回路1902とNMOS用基板バイアス回路1903に入力し、各基盤バイアス回路から周波数と電源電圧(Vdd)に応じた基板バイアスVbpおよびVbnを被制御回路(CCIR)の低しきい値トランジスタに印加する。
【0049】
ここで、P低しきい値用基盤バイアス回路1902は被制御回路(CCIR)の低しきい値PMOSトランジスタの基盤バイアスVbpをNMOS低しきい値用基盤バイアス回路1903は被制御回路(CCIR)の低しきい値NMOSトランジスタ1904の基盤バイアスVbnをそれぞれコントロールする。被制御回路(CCIR)中の高しきい値のPMOSトランジスタ1905の基盤は電位の高い電源線Vddに、高しきい値のNMOSトランジスタ1906の基盤は電位の低い電源線Vssに接続する。
【0050】
図19の被制御回路(CCIR)において、低消費電力化のために周波数と電源電圧(Vdd)を下げると、被制御回路(CCIR)内における論理回路の遅延時間が低しきい値トランジスタで構成された論理回路に対して、高しきい値トランジスタで構成された論理回路の方が電源電圧(Vdd)の低下による遅延時間の依存を強く受け、遅延時間の増加率が大きくなる。そのため、低電圧における被制御回路(CCIR)の動作速度は、高しきい値トランジスタで構成されたパスに依存する。低電圧動作にした場合、低しきい値トランジスタで構成された論理回路のパスは駆動力に余裕が出るため、低しきい値トランジスタのしきい値を高くすることが可能になる。ここで、低しきい値トランジスタのしきい値を高くすることはサブスレッショルドリーク電流の削減になり、低周波数動作時における消費電力の削減につながる。これにより、本実施例は低消費電力化を実現する。
【0051】
なお、本発明で用いることのできる論理回路、切り替え回路(SCIR)の論理機能は2NANDに限定されるものではなく、あらゆる論理機能をもつ論理回路に適用可能である。
【0052】
【発明の効果】
本発明によれば、動作周波数に応じて切り替えセルにより駆動力を切り替えることで、低周波数動作時にサブスレッショルドリーク電流を削減することが可能となる。
【図面の簡単な説明】
【図1】本発明における切り替えセルの制御方法の一例を示すブロック図。
【図2】本発明における切り替えセルの制御方法の別の例を示すブロック図。
【図3】本発明の一実施例による半導体集積回路のブロック図。
【図4】本発明の一実施例による半導体集積回路のブロック図。
【図5】本発明の一実施例による半導体集積回路のブロック図。
【図6】本発明における切り替えセルの一例を示すトランジスタ構成図。
【図7】本発明における切り替えセルの一例を示すトランジスタ構成図。
【図8】本発明における切り替えセルの一例を示すトランジスタ構成図。
【図9】本発明における切り替えセルの一例を示すトランジスタ構成図。
【図10】本発明における切り替えセルの一例を示すトランジスタ構成図。
【図11】本発明における切り替えセルの一例を示すトランジスタ構成図。
【図12】ディレイ要求を満たさない信号経路の一例を示すブロック図。
【図13】ディレイ要求を満たさない信号経路に本発明の一例を適用したブロック図。
【図14】2入力NANDの回路図。
【図15】2入力NANDにおけるレイアウト図の一例。
【図16】2入力NANDに本発明を適用した回路図。
【図17】2入力NANDに本発明を適用したレイアウト図の一例。
【図18】本発明の低周波動作時における効果を示す図。
【図19】本発明の他の実施例を示す構成図。
【符号の説明】
115、213、303、304、403、404、506、507、1399・・・制御回路(CTL)、
301、302・・・周波数比較器(fcomp)、
401、402・・・電圧比較回路(vcomp)、
501・・・周波数発生回路(PLL)、
502・・ セレクタ回路(SELCIR)、
503、504、505・・・周波数逓倍回路(mcir)、
1901・・・周波数・電圧制御回路(FVCTL)、
1902・・・PMOS低しきい値用基板バイアス回路(PLVTHVBB)、
1903・・・NMOS低しきい値用基板バイアス回路(NLVTHVBB)、
101、201、309、409、512、1201、1301・・・論理回路、
109、209、305、405、508、601、701、801、901、
1001、1101、1309、1401、1601、1906・・・PMOSトランジスタ、
110、210、306、406、509、603、703、803、903、
1003、1103、1310、1403、1603、1907・・・NMOSトランジスタ、
1904・・・低しきい値PMOSトランジスタ、
1905・・・低しきい値NMOSトランジスタ。

Claims (6)

  1. 複数の第1の論理回路からなる第1回路と、
    前記第1の論理回路と同一論理機能を有するとともに、複数の前記第1の論理回路の少なくとも一つにその入出力が互いに接続された第2の論理回路と、前記第2の論理回路からなる第2回路と、前記第2の論理回路への電源の供給又は遮断を行う制御トランジスタと、前記制御トランジスタへ制御信号を送る制御回路とを有し、
    前記制御回路からの制御信号により、前記制御トランジスタの電源の供給又は遮断動作を切り替えることを特徴とする半導体集積回路。
  2. 前記第1の論理回路は同一または少なくとも一つが異なる論理機能を有する論理回路から構成されていることを特徴とする請求項1に記載の半導体集積回路。
  3. 前記第2の論理回路の電源は、一端が前記制御トランジスタを介して電位の高い電源線に接続され、他端が別の前記制御トランジスタを介して電位の低い電源線に接続されていることを特徴とする請求項1に記載の半導体集積回路。
  4. 複数の前記第1の論理回路からなる論理回路網において、前記論理回路網の入出力間を伝わる信号の伝播時間が、所定のディレイ値を満たさない信号経路が存在する場合、前記信号経路中にあって前記所定のディレイ値を満たさない第1の論理回路に、前記第2の論理回路を接続することを特徴とする請求項1に記載の半導体集積回路。
  5. 前記複数の第1の論理回路の少なくとも二つに、それぞれの入出力が互いに結線された前記第2の論理回路が接続され、該第2の論理回路のいずれかの少なくとも一つには、さらに前記第1もしくは第2の論理回路が並列に接続されていることを特徴とする請求項1に記載の半導体集積回路。
  6. 同一動作状態で動作する複数の第2の論理回路が存在する場合、それぞれの前記第2の論理回路の電源に接続された一つの前記制御トランジスタを共通に用いることを特徴とする請求項1に記載の半導体集積回路。
JP2002015272A 2002-01-24 2002-01-24 半導体集積回路 Expired - Fee Related JP3895994B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002015272A JP3895994B2 (ja) 2002-01-24 2002-01-24 半導体集積回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002015272A JP3895994B2 (ja) 2002-01-24 2002-01-24 半導体集積回路

Publications (3)

Publication Number Publication Date
JP2003218681A JP2003218681A (ja) 2003-07-31
JP2003218681A5 JP2003218681A5 (ja) 2005-08-11
JP3895994B2 true JP3895994B2 (ja) 2007-03-22

Family

ID=27651722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002015272A Expired - Fee Related JP3895994B2 (ja) 2002-01-24 2002-01-24 半導体集積回路

Country Status (1)

Country Link
JP (1) JP3895994B2 (ja)

Also Published As

Publication number Publication date
JP2003218681A (ja) 2003-07-31

Similar Documents

Publication Publication Date Title
US7576582B2 (en) Low-power clock gating circuit
US7639044B2 (en) Semiconductor integrated circuit, semiconductor integrated circuit control method, and signal transmission circuit
JP4832232B2 (ja) 半導体集積回路装置及び電子装置
JP2010519612A (ja) 選択的なバックバイアスを使用する動的リーク制御回路
JP2003031676A (ja) 半導体集積回路、該半導体集積回路の設計方法及び該半導体集積回路設計用プログラム
US6741098B2 (en) High speed semiconductor circuit having low power consumption
EP1170865B1 (en) Semiconductor integrated circuit, logic operation circuit, and flip flop
US6925026B2 (en) Semiconductor device adapted for power shutdown and power resumption
CN102957413B (zh) 可调体偏置电路与可调体偏置方法
JP3693911B2 (ja) 半導体集積回路
US20080098342A1 (en) Semiconductor integrated circuit designing method, semiconductor integrated circuit device, and electronic device
JP2005285895A (ja) 半導体回路装置
US20090009235A1 (en) Semiconductor memory device
US20040008075A1 (en) Semiconductor integrated circuit with stabilizing capacity
JP3895994B2 (ja) 半導体集積回路
KR100559738B1 (ko) 멀티-쓰래쉬홀드 시모스 제어 장치, 멀티-쓰래쉬홀드 시모스 집적 회로 및 멀티-쓰래쉬홀드 시모스 제어 방법
US9013228B2 (en) Method for providing a system on chip with power and body bias voltages
US6850094B2 (en) Semiconductor integrated circuit having a plurality of threshold voltages
JP4829034B2 (ja) 半導体集積回路
JPH11145397A (ja) 半導体集積回路装置
JP2007158035A (ja) 半導体集積回路
JP2003086693A (ja) 半導体集積回路
US6335650B1 (en) Method and apparatus for adjusting time delays in circuits with multiple operating supply voltages
US8587370B2 (en) Semiconductor device reducing leakage current of transistor
KR100914553B1 (ko) 반도체 집적회로

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees