JP3895294B2 - 分光スペクトル光度計用試料保持体および分光光度計 - Google Patents

分光スペクトル光度計用試料保持体および分光光度計 Download PDF

Info

Publication number
JP3895294B2
JP3895294B2 JP2003102160A JP2003102160A JP3895294B2 JP 3895294 B2 JP3895294 B2 JP 3895294B2 JP 2003102160 A JP2003102160 A JP 2003102160A JP 2003102160 A JP2003102160 A JP 2003102160A JP 3895294 B2 JP3895294 B2 JP 3895294B2
Authority
JP
Japan
Prior art keywords
spectrophotometer
light
sample
holding block
sample holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003102160A
Other languages
English (en)
Other versions
JP2004309274A (ja
Inventor
欽一 中山
真吾 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2003102160A priority Critical patent/JP3895294B2/ja
Publication of JP2004309274A publication Critical patent/JP2004309274A/ja
Application granted granted Critical
Publication of JP3895294B2 publication Critical patent/JP3895294B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特定波長の光を試料に照射してその吸収スペクトルを得ることにより、試料の分子構造を解析する際に、該試料を保持する試料保持体、およびこれを用いた分光光度計に関するものであり、特に、化学反応の進行過程で、たとえば、試料の近赤外および赤外吸収スペクトルやラマンスペクトルを測定するために用いられる試料保持体および分光光度計に関するものである。
【0002】
【従来の技術】
物質に種々の光を照射すると、吸収スペクトルや散乱光のスペクトル等が得られる。従来より、物質の分子構造を解析する目的で、上記吸収スペクトルや散乱スペクトル等を測定して利用するスペクトル分析法が実用化されている。
【0003】
たとえば、ある分子に赤外線を照射し、その波長を連続的に変化させていくと、分子の固有振動と同じ周波数の赤外線が吸収され、分子構造に応じた近赤外および赤外吸収スペクトル(以下、適宜、赤外スペクトルと略す)が得られる。このように、試料に赤外線を照射して得られる赤外スペクトルを測定することにより、試料の分子構造を解析することを赤外吸収スペクトル法という。
【0004】
また、物質に光を通すと入射光と等しい周波数を有する強い弾性散乱光と、入射光の周波数からわずかに周波数のずれた、非常に弱い非弾性散乱光とが散乱される。このうち、上記非弾性散乱光には、物質中の振動する原子やイオンによって散乱されるラマン散乱光が含まれる。このように、試料に光(特にレーザー光)を照射して得られるラマン散乱光のスペクトル(以下、適宜、ラマンスペクトルと略す)を測定することにより、試料の分子構造を解析することをラマン吸収スペクトル法という。
【0005】
これらスペクトル分析法では、解析対象となる物質を測定用の試料に調製するが、この試料に対して光を照射してスペクトルを測定する際には、通常、大気圧・室温の条件下(常温・常圧条件下)で実施される。
【0006】
具体的には、赤外吸収スペクトル法のひとつである加熱拡散反射法のように、試料に熱を加えながら赤外スペクトルを測定するような技術が知られている。(非特許文献1等)。
【0007】
上記非特許文献1において、上記加熱拡散反射法では、拡散反射装置(DRS)という赤外分光光度計を、試料として、測定対象の物質(固体)と臭化カリウム(KBr)とを均等に混ぜた粉末状のものを用いる。そして、粉末状の試料に赤外光を入射させることで、該赤外光が、そのもぐりこむ深さを異ならせて反射と屈折(透過)とを繰り返しつつ、結果的に、あらゆる方向へ反射される拡散反射現象が生じるため、これを利用して、効率良く赤外スペクトルを測定するようになっている。
【0008】
さらに上記非特許文献1では、上記の加熱拡散反射法では、常温・常圧条件下での測定が一般的であるが、触媒の分野において赤外スペクトルを測定する時には、表面吸着化学種の分析に利用するために、真空・加熱条件下で赤外スペクトルを測定する場合がある。この場合は、DRSのスペクトル測定室に、通常の測定用セルとは異なる真空加熱型の測定用セルが用いられることが記載されている。しかしあくまでも測定対象は固体であり、実際液状の試料に対してどのように加熱するかに関しては記載がない。また固定された、特定した装置に具備される形態であり、種々の方向への移動を可能にしさまざまな分光光度計に適応できる工夫に関しては何も記載されていない。
【0009】
また、反応およびプロセスコントロールにおける近赤外光ファイバー分析法と言われる方法で、分光器からの光を適当な光ファイバーによって試料の置かれている場所まで導き、試料からの透過あるいは反射光を分光器に戻して測定する技術が知られている。(非特許文献2等)。
【0010】
さらに上記非特許文献2では、通常の分光分析方では試料を分光器の試料室に置いてスペクトルが測定されるが、上記非特許文献2に記載されているのは、光ファイバー分析法では分光器からの光を適当な光ファイバーによって試料の置かれている場所まで導き、試料からの透過あるいは反射光を分光器に戻して測定する方法で、反応溶液は水で冷却された反応容器から石英製のバイパスを通ってセルに導く形態が記載されている。(上記非特許文献2、P150、図4.3.13)。しかし、水冷の状態で、メチルメタクリレート(MMA)の重合反応を追跡する形態が説明されているが、加熱をしながら当該スペクトルを測定する記載や、加熱してもいい記載や加熱するための具体的装置、構造体の記載は一切見受けられない。また、非特許文献2に記載される測定技術は、あくまでも分光器からの光を光ファイバーによって試料の置かれている場所まで導き、試料からの透過あるいは反射光を分光器に戻して測定する技術であり、本件が対象とする、分光スペクトル光度計の測定室に設置可能であり、かつ液状試料を保持する縦穴と該液状試料を加熱する機構を有する分光スペクトル光度計用試料保持体に関して具体的に示唆する記載はない。
【0011】
また、光学顕微鏡下で熱分析とスペクトル測定とを同時に行う熱分析・顕微分光方法及びその装置で、顕微鏡のステージに試料を搭載し、試料に赤外分光光度計の光源から赤外光を入射させ、試料にを透過した赤外光を顕微鏡の対物鏡及びアパーチャを通して赤外分光光度計に入射させ、試料の温度を変化させながら赤外分光光度計で特定波長の光強度を検出し特定波長の光の強度が急変する時の当該試料温度、および、その前後の試料温度での、当該試料の微小領域における赤外スペクトル測定を行うための顕微鏡に設置される熱分析・顕微分光方法に関する文献がある。(特許文献2)。
【0012】
また、上記特許文献2には、試料を加熱して、試料の官能基のスペクトル状態の変化から分子構造の関係を解析する点では本発明と共通するところがあるが、この装置は、固体試料を加熱してその試料の物性の変化を顕微鏡で観察するための装置である。具体的には、顕微鏡のステージに置かれた試料の温度を変化させて該試料の相状態の変化を顕微鏡で巨視的にとらえ、顕微鏡観察と赤外スペクトル観察を平行して行うことで、該試料の化学構造の変化や空間的分布の微小な変化を捉えるための装置である。しかし本願の測定対象は液状試料であり、本件とは測定対象である試料がそもそも異なる。あくまで顕微鏡装置に付属したものであり、本願の技術とは関係のない技術でる。また、本願のような分光光度計に同様の技術を応用できることを示唆する記載もない。
【0013】
また一方、中央部に内部反射エレメントが貫通して設けられ、内部エレメントの前後に窓が設けられたセル室に硬化性樹脂を注入し、窓から紫外線等を照射して樹脂を硬化させながら同時に、内部反射エレメントの一部から赤外光を入射して、当該内部反射エレメント内を全反射しながら伝播した赤外分光スペクトルの吸収を測定する測定装置が記載された文献がある。(特許文献3)。この技術は樹脂の硬化状態を、赤外スペクトルの内部反射用エレメントの表面からの反射スペクトルを測定する装置に関しての技術であり、本件の液状樹脂にスペクトル透過させた透過光を測定する技術とは別のスペクトル分析技術である。
【0014】
また、この特許文献3には、そもそもエレメントを移動させる必要がないので、移動装置に関しての記載は一切ない。よって、本願構成である、透過型の分光光度計内に設置するための装置とは無関係の文献である。また上記文献群はいずれも、本発明の第2の形態である極低温下で当該スペクトル測定を行うための冷媒を循環させることのできる当該保持体ブロックに関しても具体的に本発明の構成を着想する示唆のある記載はない。
【0015】
【非特許文献1】
『実験化学講座6 分光1 第4版』、社団法人日本化学会著、丸善、平成3(1991)年7月25日発行、(第230〜237頁等)
【0016】
【非特許文献2】
『近赤外分光法』、日本分光学会 測定法シリーズ32、尾崎洋・河田聡ら編集、株式会社 学会出版センター発行、1996年5月20日初版、1998年11月30日2版 (第148〜156貢等)
【0017】
【特許文献1】
特開平01−170843号公報(第1頁、第4〜6頁)
【0018】
【特許文献2】
特開平06−242005号公報(第1頁、第3頁)
【0019】
【発明が解決しようとする課題】
ところで、上述したスペクトル分析法では、上記のように、加熱拡散反射法では、固体の試料を加熱しながらスペクトルを測定する技術や光ファイバーを用いて溶液を常温下で測定する技術は知られているものの、測定対象となる試料が液体である場合に、該液状試料を加熱しながら反応状態のスペクトルを測定するような技術はほとんど知られていない。また極低温状態でスペクトルを測定するための技術に関してもほとんど知られていない。
【0020】
たとえば、各種有機化合物やポリマー(重合体)の合成等では、各種溶媒に原料となる化合物やモノマーを加えて合成を実施する液相条件が採用されることが多い。ここで、新規な化合物やポリマーの合成に際しては、その合成の過程を解析することが非常に重要であるが、このような液相での合成過程で、経時的に近赤外および赤外スペクトルを測定することは、実質的には困難となっている。特に低温状態での重合や反応形態が必要なポリマーや化合物の合成に関しての情報を得ることも難しい。
【0021】
つまり、従来の分光光度計では、上述したように、常温・常圧条件下で試料からスペクトルを測定することを想定しているため、液状試料に安定した条件で熱を加えるような使用法は想定されていない。また、試料への加熱温度によっては、分光光度計に対しても熱が加えられるおそれがあるため、上記のように、液状試料を加熱しながらスペクトルを測定するような用途では、精密機械である分光光度計に悪影響を与える。
【0022】
また、液相での合成過程で経時的にかつ正確な近赤外および赤外スペクトルを測定するためには、小スケールでの測定となる。それゆえ、試料に当てる照射光を微妙に調整する必要性があり、正確なスペクトル測定を妨げるような問題が生じる可能性がある。
【0023】
本発明は上記問題点に鑑みてなされたものであって、その目的は、液状試料を安定した条件で加熱しながら、しかも正確にスペクトルを測定することができる、分光光度計用の試料保持体と、該試料保持体を用いた分光光度計を提供することにある。
【0024】
【課題を解決するための手段】
本発明の構成は、以下である。
【0025】
透過型分光スペクトル光度計の測定室に設置され、液状試料を保持するための複数の孔と、さらに該分光スペクトル光度計の光照射手段から出射される分光スペクトル測定用の照射光を当該液状試料に透過させて導入する光導入路とが設けられた保持ブロック(11)と、さらに該液状試料を加熱するための加熱装置(2)を有する、透過型分光スペクトル光度計から取り外し可能な分光スペクトル光度計用試料保持体(3)であって上記分光スペクトル光度計用試料保持体における液状試料に分光スペクトル測定用の照射光を導入する光導入路の位置を、上記分光スペクトル測定用の照射光の進行経路に合わせて液状試料に導入されるように調節する光導入路水平方向位置調整手段(4)と、さらに当該照射光の進行経路に対して、当該保持体の光導入路の位置を上下方向に調節する光導入路上下方向位置調整手段(5)とを備え、さらに、上記保持ブロック(11)は、円柱状の形状を有し、保持ブロック(11)の底部に、保持ブロック(11)を回転させる保持ブロック回転手段(80)を備えることを特徴とする分光スペクトル光度計用試料保持体(3)である。なお上記孔は具体的には挿入口であって、さらには縦孔の形状が好ましい。また液状試料の保持に問題がなければ斜めであってもかまわない。
【0026】
さらに、上記分光スペクトル光度計用試料保持体(3)における保持ブロック(11)と、光導入路水平方向位置調整手段(4)および/または光導入路上下方向位置調整手段(5)との間に、断熱手段が備えられていることを特徴とする分光スペクトル光度計用試料保持体である。
【0027】
さらに、上記液状試料に導入されるように調節する光導入路水平方向位置調整手段(4)が、当該照射光の進行経路に沿ったX方向および、そのX方向と同一面上でありかつ直交するY方向に位置を調製するものであり、上記光導入路上下方向位置調整手段(5)が、上記X方向およびY方向に対して垂直となるZ方向に位置を調整するものであることを特徴とする分光スペクトル光度計用試料保持体(3)である。
【0028】
透過型分光スペクトル光度計の測定室に設置され、液状試料を保持するための複数の孔と、さらに該分光スペクトル光度計の光照射手段から出射される分光スペクトル測定用の照射光を当該液状試料に透過させて導入する光導入路とが設けられた保持ブロック(11)と、さらに保持ブロック(11)に該液状試料を10℃以下の低温状態にするための冷媒(50)を循環する機構(51)を有する分光スペクトル光度計用試料保持体(31)であって上記分光スペクトル光度計用試料保持体における液状試料に分光スペクトル測定用の照射光を導入する光導入路の位置を、上記分光スペクトル測定用の照射光の進行経路に合わせて液状試料に導入されるように調節する光導入路水平方向位置調整手段(4)を備え、さらに、上記保持ブロック(11)は、円柱状の形状を有し、保持ブロック(11)の底部に、保持ブロック(11)を回転させる保持ブロック回転手段(80)を備えることを特徴とする分光スペクトル光度計用試料保持体(31)である。
【0029】
さらに、上記冷媒(50)を循環する機構(51)を有する分光スペクトル光度計用試料保持体(31)が、さらに当該照射光の進行経路に対して、当該保持体の光導入路の位置を上下方向に調節する光導入路上下方向位置調整手段(5)とを備えていることを特徴とする分光スペクトル光度計用試料保持体(31)である。
【0030】
さらに、上記液状試料に導入されるように調節する光導入路水平方向位置調整手段(4)が、当該照射光の進行経路に沿ったX方向および、そのX方向と同一面上でありかつ直交するY方向に位置を調製するものであることを特徴とする分光スペクトル光度計用試料保持体(31)である。
【0031】
さらに、上記光導入路上下方向位置調整手段(5)が、上記X方向およびY方向に対して垂直となるZ方向に位置を調整するものであることを特徴とする分光スペクトル光度計用試料保持体(31)である。
【0032】
上記構成によれば、光導入路位置調整手段によって、照射光の進行経路に対する光導入路の相対的な位置を変化させることで、光照射手段から出射される照射光を確実に試料に導くことができる。そのため、加熱状態で安定して保持される液状試料から、スペクトルを即時的かつ経時的に検出することがより一層確実になる。その結果、特に、各種有機化合物やポリマー(重合体)の合成の過程で、スペクトルを測定することができる。
【0033】
本発明にかかる分光スペクトル光度計用試料保持体は、上記構成に加えて、さらに、上記液状試料を保持可能としており、かつ上記光導入路が設けられている保持ブロック11と、少なくとも、該保持ブロック11と上記光導入路位置調整手段との間に設けられる断熱手段とを備えていることを特徴としている。
【0034】
上記構成によれば、少なくとも、液状試料を加熱する保持ブロック11と、光導入位置調整手段とが、断熱手段によって断熱されている。そのため、保持ブロック11が有する熱を光導入路位置調整手段や分光光度計に伝達することを抑制または防止することができる。そのため、精密機械である光導入路位置調整手段や分光光度計に悪影響が及ぼされることがなくなる。特に本発明の第2の形態である冷媒を循環させ保持ブロック11を低温状態にする形態では余分な場所に露付きを防止することができるので好ましい形態である。
【0035】
また、本発明にかかる分光光度計は、上記の課題を解決するために、直線状に対向配置される光照射手段および光検出手段と、これらに挟持されるように配置される測定室と、該測定室に設置可能となっており液状試料を保持する試料保持体とを備えている分光光度計において、上記試料保持体には、液状試料に照射光を導入する光導入路が設けられ、該光導入路の配置位置が上記照射光の進行経路に対して平行となる位置であるとともに、さらに該試料保持体は、上記液状試料を加熱可能とする加熱手段と、上記進行経路に対する該光導入路の相対的な位置を、進行経路に沿ったX方向およびX方向に直行するY方向およびX方向およびY方向に対して垂直となるZ方向の少なくとも一方の方向に変化させ得る光導入路位置調整手段とを備えていることを特徴としている。
【0036】
上記構成によれば、加熱手段によって液状試料を加熱しながら、光導入路および光導入路位置調整手段によって、光照射手段から出射される照射光を確実に液状試料に導くことができる。特に、光導入路位置調整手段が、当該台座を光導入路の位置をX方向またはY方向および、X方向およびY方向に対して垂直となるZ方向への移動を調整可能としているので、より一層正確な位置調整ができる。
【0037】
その結果、台座の上に当該保持ブロックが積載されているので、保持ブロックへの照射光の照射位置の微調整が可能になる。そのため、加熱状態で安定して保持される液状試料から、スペクトルを即時的かつ経時的に検出することがより一層確実になる。その結果、特に、各種有機化合物やポリマー(重合体)の合成の過程で、スペクトルを測定することができる。また極低温状態で液状試料を測定するための冷媒を循環させることのできる機構が具備された保持体であると、極低温状態での反応機構、重合反応機構の詳細なスペクトル分析が合わせて可能になる。
【0038】
【発明の実施の形態】
本発明の実施の一形態について、図1ないし図9に基づいて説明すれば、以下の通りである。なお、本発明はこれに限定されるものではない。
【0039】
本発明の分光スペクトル光度計用試料保持体(10)における、保持ブロック11と光導入路調製手段12、(具体的には上記光導入路調整手段12とは、光導入路水平方向位置調整手段(12−1)および光導入路上下方向位置調整手段(12−2)とを備えたもの)、の構造例を図1(a)に模式的に示す。具体的には、当該柱状の保持ブロック11と該保持ブロック11の下方に設けられる光導入路位置合わせ機構12(本発明における光導入路位置調整手段の具体例)とを有する試料保持体10を挙げることができる。また、本発明にかかる分光光度計の一例としては、上記試料保持体10を備えた分光光度計である。なお図1では、光導入路水平方向位置調整手段(12−1)および光導入路上下方向位置調整手段(12−2)とは具体的には図示していない
【0040】
上記試料保持体10は、上記保持ブロック11および光導入孔位置合わせ機構12以外に、図1(a)・(b)に模式的に示すように、下方断熱部13、断熱カバー14、ヒーター15、温度センサー16等を備えている。勿論、他の構成や部材が備えられていてもよい。
【0041】
図1の上記保持ブロック11には、上下方向に沿って形成され、液状試料40の入った試料チューブ(測定用容器)30を内部に安定して保持可能とする試料保持孔111が設けられているとともに、該試料保持孔111に略直交するように、光導入孔(光導入路)112が設けられている。なお、光導入孔112は、保持ブロック11の底部に設けられるが、底部を円柱状のまま切削して設けてもよいし、図5で示すように、円柱の底部の一部を扇形柱状に切り出して設けてもよい。円柱の底部の一部を扇形柱状に切り出すことで、保持ブロック全体の重量を軽減できる。具体的には、図5の下図に示すように、円柱状の保持ブロック11の中心部を取り囲むように、保持ブロック11の底部に上記試料保持孔111が4箇所十字状に配置されている。つまり、その底部114は十字状に切り出されている形状であり、該試料保持孔111に略直交するように、光導入孔(光導入路)112が4箇所設けられている。
【0042】
図1(a)に模式的に示すように、本実施の形態における透過型分光スペクトル光度計は、直線状に対向配置される光照射部21および光検出部22と、これらの間に挟持されるように配置される測定室23とを少なくとも備えており、この測定室23内に、上記試料保持体10が設置される。このとき、図1(a)に示すように、試料保持体10に設けられている光導入孔112は、照射光の進行経路L、すなわち光照射部21から出射され光検出部22に達するまでの直線経路と略一致するような位置に配置されることになる。
【0043】
上記の試料保持体10に設けられている光導入孔112を、光照射部21から出射され光検出部22に達するまでの直線経路と略一致するような位置に配置するために、本発明の保持ブロック11が具備された分光スペクトル光度計用試料保持体3にあっては、光導入路水平方向位置調整手段4と、さらに当該照射光の進行経路に対して、当該保持体の光導入路の位置を上下方向に調節する光導入路上下方向位置調整手段5とを備えている。なお、図1には光導入路水平方向位置調整手段4とする光導入路上下方向位置調整手段5とは図示してない。後で詳細に説明する。
【0044】
そして、光照射部21から出射された分光スペクトル測定用の照射光が、上記液状試料に導入されるように調節する光導入路水平方向位置調整手段4が、当該照射光の進行経路に沿ったX方向および、そのX方向と同一面上でありかつ直交するY方向に位置を調製するものであり、上記光導入路上下方向位置調整手段5が、上記X方向およびY方向に対して垂直となるZ方向に位置を調整するものであることは好ましい形態となる。
【0045】
上記のように、本発明の保持ブロック11が具備された分光スペクトル光度計用試料保持体3は、保持ブロック11をX方向へ移動可能とするX方向操作部123、および、そのX方向と同一面上でありかつ直交するY方向へ移動可能とするY方向操作部124、および、上記X方向およびY方向に対して垂直となるZ方向へ移動可能とするY方向操作部127保有しているので、より正確に、保持ブロック11に設けられている光導入孔112を、分光スペクトル光度計の光照射部21から出射され光検出部22に達するまでの直線経路と略一致するような位置に配置することができる。また搭載される透過型分光スペクトル光度計のメーカーが異なっていてもより簡便に上記の位置調整が可能になる。なお、図1には、上記各操作部は図示していない。後で詳細に説明する。なお本発明では、上記各方向操作部は、各方向位置調整手段とする場合もある。なお、上記操作部と保持ブロックが搭載される各台座との関係を、図2、図3、図5、図6、図8、図9で示す。
【0046】
上記保持ブロック11は、試料保持孔111内に液状試料40(すなわち液状試料40を入れた試料チューブ30)を安定して保持した状態で、ヒーター15によって全体が加熱されることにより、試料チューブ30内の液状試料40を加熱するようになっている。したがって、その材質としては、熱伝導性が良いものが選択される。たとえば、本実施の形態では、アルミニウムや銅などの金属で形成されることが好ましく、より好ましくはアルミニウム製のアルミブロックである。保持ブロック11がアルミブロックである場合、単に熱伝導性が高いだけでなく、銅等に比較して軽量であるため、測定室23に試料保持体10を設置したり取り外したりする場合の取扱性を高めることができるため好ましい。
【0047】
上記保持ブロック11の形状としても特に限定されるものではないが、光照射部21からの照射光を確実かつ効率的に液状試料40に照射できるとともに、液状試料40からの照射光を確実かつ効率的に光検出部22で検出できるような形状となっていれば特に限定されるものではない。本実施の形態では、図1(b)および図4、図5、図9等に示すように、円柱状の形状を有する保持ブロック11が非常に好ましく用いられる。
【0048】
図4でさらに保持ブロック11を説明する。図4では、円柱の中心部を取り囲むように、上記試料保持孔111が4箇所十字状に形成されているとともに、2つの試料保持孔111の間に位置するように、ヒーター15を設置するヒーター用孔113が2箇所形成されている。勿論、試料保持孔111やヒーター用孔113の形成箇所の数や位置や形状については、保持ブロック11での加熱状態や、冷媒を循環させる機構を有する保持ブロック11の場合にその低温状態に影響がなければ、これに限定されるものではないが、少くとも試料保持孔111については、2箇所以上形成されることが好ましく、その形成箇所は、ヒーター用孔113から見て等距離となる位置であることは好ましい形態である。
【0049】
試料保持孔111が2箇所以上形成されており、ヒーター用孔113から見て等距離となっていれば、実際にスペクトルを測定する試料と比較対象(コントロール)の試料とを上記試料保持孔にて測定すれば、双方を、同一の条件で加熱しながら保持することができるため好ましい形態となる。
【0050】
また、保持ブロック11が円柱状になっていると、ヒーター15からの熱を複数の試料保持孔111に均等に伝達させやすくなる。さらに、保持ブロック11を回転させるだけで、測定対象となる試料チューブ30を容易に切り替えることができる。たとえば、図3中の矢印Bで示す位置が、光照射部21から照射光が出射される位置(照射光の進行経路Lに対応する位置)であるとすると、保持ブロック11を回転させるだけで、4箇所の試料保持孔111に保持されている試料チューブ30を容易に矢印Bの位置に移動させることが可能となる。よって本発明の保持ブロック11が円柱状であり、さらに保持ブロック11と光導入路位置調整手段12、具体的には、保持ブロック11の底部に、保持ブロック回転手段80が備えられている形態がより好ましい。保持ブロック回転手段80は保持ブロック11が回転できればよくその機構は特に限定されない。例えば保持ブロック11と、光導入路水平方向位置調整手段4または光導入路上下方向位置調整手段5との間に備えられていてもよい。但し、図1等には、上記保持ブロック回転手段80は記載していない。
【0051】
図2は、本発明の分光スペクトル光度計用試料保持体における液状試料に分光スペクトル測定用の照射光を導入する光導入路の位置を、上記分光スペクトル測定用の照射光の進行経路に合わせて液状試料に導入されるように調節する光導入路水平方向位置調整手段(4)と、さらに当該照射光の進行経路に対して、当該保持体の光導入路の位置を上下方向に調節する光導入路上下方向位置調整手段(5)とが具備された移動台座を持つ保持ブロック11の形態を、保持ブロック11の上面から見た平面図で示したものである。図3は、上記位置調製手段を、X方向操作部123、Y方向操作部124、Z方向操作部127として、台座部分の拡大した平面図および側面図を示したものである。
【0052】
また図4に示すように、本実施の形態における保持ブロック11の下方は、十字形状に突出する十字底部114となっている。この十字底部114は、上記4箇所の試料保持孔111の位置に合わせて、該試料保持孔111を残すように下方の4箇所を扇状に切り欠くことによって、十字状の凸部となっている。
【0053】
このように、保持ブロック11の下方側が十字底部114となっていれば、図4の下図に示すように、十字状に突出する部分の壁面に、光導入孔112が露出していることになる。そのため、図4の上図に示すように、光導入孔112は、保持ブロック11全体を貫通させる必要がなく、十字底部114の突出する部分のみを貫通するだけでよくなる。それゆえ、光導入孔112を短くすることが可能となり、後述する光導入孔位置合わせ機構12による位置合わせの精度を高めることができる。
【0054】
また、光導入孔112は、上下方向(縦方向)に形成される試料保持孔111に対して、水平方向(横方向)に形成されているが、上記十字底部114を貫通するように形成されているということは、光導入孔112は試料保持孔111の下方で交差することになる。試料保持孔111の下方に光導入孔112が交差していれば、試料保持孔111に保持される試料チューブ30内に分注される液状試料40の量(体積)が比較的少なくても、該液状試料40からスペクトルを測定することが可能になるので好ましい。
【0055】
なお、保持ブロック11の底部側の構造は、上記十字底部114に限定されるものではなく、比較的光導入孔112の距離を短くできるような構成であればよい。
【0056】
図1に示す試料保持体10では、保持ブロック11に、ヒーター15および温度センサー16が一体化されて形成されているように模式的に記載されているが、これは説明の便宜上のものであり、勿論、一体化されていてもよいが、本発明にかかる試料保持体10はこれに限定されるものではない。たとえば、図2に示すように、ヒーター15をヒーター用孔113に投入することで、保持ブロック11に設けるようになっていてもよい。同様に、温度センサー16については、図示しない温度センサー用孔を形成してそこに投入することで保持ブロック11に設けるようになっていてもよいが、好ましくは、上記4箇所形成されている試料保持孔111内に投入されることで保持ブロック11に設けられる。このようにすれば、加熱されている液状試料40に近い条件で、温度を測定することが可能になる。
【0057】
上記ヒーター15としては、具体的には特に限定されるものではなく、液状試料40を加熱可能とするヒーターあるいは熱媒であればよいが、好ましくは、本実施の形態のように、保持ブロック11全体を加熱することで、液状試料40を間接的に加熱するようなものであることが好ましい。これによって、ヒーター15で直接加熱するよりも、液状試料40をより安定した条件で加熱することができる。上記ヒーター15の具体的な構成としては、たとえば、一般に投げ込みヒーターと呼ばれる従来公知の構成のものを好適に用いることができる。あるいは、保持ブロック11の周囲に配管を設け、配管内に熱媒を流動させることで加熱する手法も挙げられる。上記温度センサー16としても、特に限定されるものではなく、従来公知の各種温度計やセンサー類を用いることができる。
【0058】
上記ヒーター15および温度センサー16は、図1(a)に示すように、温度コントローラー17に電気的に接続されている。この温度コントローラー17は、温度センサー16で測定された温度に基づいて、ヒーター15による加熱温度を調整・制御できるようになっていれば、その構成は特に限定されるものではない。また、この温度コントローラー17は、分光光度計本体に一体化されていてもよいし、試料保持体10に含まれる構成となっていてもよいし、試料保持体10からも分光光度計本体からも独立したオプション構成となっていてもよい。
【0059】
なお、本発明におけるヒーター15による加熱温度については、特に限定されるものではないが、上記のように、後述する実施例のように、アクリル酸メチル等のモノマーをポリマー化するなどの用途であれば、上限を200℃程度にしておけばよい。この程度までの加熱が可能であれば、十分ポリマー化を進行させることができる。また、あまり加熱温度が高くなりすぎると、下方断熱部13等の断熱手段を用いても、分光光度計本体や、光導入孔位置合わせ機構12に熱による悪影響を与えることがあるため、好ましくない。
【0060】
また本発明の第2の形態である、該液状試料を0℃以下の低温状態にするために冷媒50を循環する機構51を有する分光スペクトル光度計用試料保持体31にあっては、上記保持ブロック11においては図9に示す様に、冷媒50を循環し、保持ブロック11を低温にして液状試料を低温状態にするための機構51が備わっている。具体的には、液体窒素等の冷媒50を貯槽55から供給する弁51を介して配管53により、冷媒が保持ブロック11の周りに循環される。上記機構51は、上記保持ブロックの周囲に配管を使用して冷媒を循環させる機構であることは好ましい形態である。また上記機構として、保持ブロック11内部の液状試料保持部近傍に冷媒を循環させるための孔を設けて、冷媒を循環させてもよい。
【0061】
また冷媒としては、液体窒素や、エチレングリコール等の不凍液が使用される。液体窒素等の循環による低温状態と、エチレングリコール等の溶媒による低温状態は適切な温度範囲が少し異なる。また冷媒を循環させるための機構も若干異なる。この代表的な形態を図9として示す。図9には、液体窒素を循環させるためのタンク55および、エチレングリコール等の冷媒50に切り替えて運転できるクールニクス60を併用できる形態を示した。図中(L)は、分光スペクトル測定用の照射光である。(M)は液状試料に上記分光スペクトル測定中に、さらに照射させることのできる照射光とは異なる、UV光やラマン光等である。UV等で励起される状態を好ましく測定することができる。また本発明の第1の発明の加熱装置が具備された保持ブロックにおいても、上記照射光とは異なる、UV光やラマン光等を照射しながら分光スペクトルを測定してもよい。この場合は図9に準じた孔を保持ブロックに設け、その孔から分光スペクトル以外のUV光やラマン光等を試料に照射することのできる保持ブロックの形状とすればよい。
【0062】
具体的には、10℃〜−30℃までの低温範囲では、冷媒としてエチレングリコール等の不凍液を用いてクールニクス60を使用して冷媒50を配管53により保持ブロック11の周りに循環させ、保持ブロックの温度を所定の低温状態にコントロールする。また冷媒として液体窒素を使用すると、保持ブロック11は、−30℃から−150℃のさらに低い極低温範囲にコントロールすることができる。液体窒素の場合は、図9では液体窒素タンク55に貯蔵され、液体窒素供給弁51を介して配管53に供給される。
【0063】
また図9では、各方向操作部123、124,127を簡略化して示した。また、各方向移動台もX方向の移動台121、Y方向の移動台122、Z方向の移動台129を簡略化して示した。
【0064】
上記液体窒素供給弁51が好ましくは電磁弁になっており、上記保持ブロック11に備えられた温度センサー16を介して、温度コントロール装置17と上記、液体窒素供給弁51がリレー回路で接続されており、所望の温度調節のために当該弁51を開閉して冷媒の量を調節する。
【0065】
また本発明の第2発明の、該液状試料を0℃以下の低温状態にするための冷媒50を循環する機構51を有する分光スペクトル光度計用試料保持体31であっても、本発明の第1発明で説明した当該断熱部を有することは好ましい形態である。具体的には10℃〜−30℃までの低温コントロール時、あるいは、特に−30℃から−150℃の範囲の極低温に調節する場合、上記断熱部があると、XまたはY方向、あるいはZ方向に各移動台が移動する構成である光導入孔位置合わせ機構への霜付き等を防止できる。また同様に断熱カバー14があることで、特に特に−30℃から−150℃の範囲の極低温に調節する場合、極低温の温度調節が容易に行える。
【0066】
また、特に−10℃以下に冷却すると雰囲気湿度にも影響するが霜(水滴)が付きやすくなる。よって、測定対象物によっては露付きが影響するときもある。この場合、保持体に乾燥気体を流し露付きを防止すればよい。また液状試料を挿入する挿入孔にも乾燥気体を供給でき、当該挿入孔中の雰囲気を乾燥気体で置換するような配管が接続されている形態は好ましい実施形態である。特に好ましくは上記断熱カバー内に乾燥気体を供給し、雰囲気を乾燥状態にすることで上記露つきを効果的に防止することができる。なお、本発明の第2発明の、該液状試料を0℃以下の低温状態にするための冷媒(50)を循環する機構(51)を有する分光スペクトル光度計用試料保持体の実施形態である図9では、上記の、断熱カバーおよび乾燥気体を置換できる配管が具備されている。(但し図9には示されていない。)
また、本発明の第2に形態では、温度センサー16と併用される第2温度センサー18センサーが具備されている形態は好ましい。単に液状試料40の温度を測定するだけでもよいが、温度コントローラー17に接続されて、温度センサー16と同様に、冷媒を循環させる量を調節する電磁弁51を調節する形態であればより綿密に低温状態をコントロールすることができる。または温度コントローラー17から電気的信号でクールニクス60ないしは、弁51を調節して冷媒や液体窒素の供給量を調節し、所定の温度にあわせる。また必要に応じてリレー回路によりヒーターが作動することにより綿密な温度コントロールが可能になる。また低温状態での測定では露付き現象が起こりえるので電気経路、ヒーター、センサー等は漏電防止のために防水仕様となっている形態が好ましい。
【0067】
以下にその具体的温度調節形態を説明する。
【0068】
<IR測定用冷媒循環冷却方式(10℃から−30℃)>
(イ)10℃〜―30℃位までの冷却法では、冷媒50としてエチレングリコールを用いてクールニクス60による冷却で、図9の液体窒素タンク55をクールニクス60に取り替えて使用する。
(ロ)ジョイント61を外して液体窒素の容器を取り外す。各ジョイントを取り付けてクールニクス60をセットする。
(ハ)クールニクスの電源をONにして、冷媒50であるエチレングリコールを配管53に循環させ、10℃〜―30℃位までの温度をコントロールする。
【0069】
<IR液体窒素冷却方式 (−30℃から−150℃)>
(A)各ジョイント61,63,64,65を取り外し、5分間、配管53の中にジョイント63から乾燥窒素で配管に残存する冷媒をパージする。
(B)液体窒素の容器を取り付け、61のジョイントで配管53と接続し、各ジョイントを配管に接続する。
(C)窒素ガスを流し液体窒素容器のゲージで約0.1MPa程度圧をかける。
(D)温度コントローラーを冷却させたい目的の温度にセットすれば電磁弁が、on,offして液体窒素が配管の中を循環し、保持体11が設定温度まで下がる。
【0070】
本発明にかかる試料保持体10が備える光導入孔位置合わせ機構12としては、図1(a)に示すように、光照射部21から出射される上記進行経路Lに対する、上記光導入孔112の相対的な位置を、進行経路Lに沿ったX方向および、該X方向と同一面上でありかつ直交するY方向に調整する光導入路水平方向位置調整手段(4)および、上記X方向およびY方向に対して垂直となるZ方向に位置を調整する上記光導入路上下方向位置調整手段(5)の両方が具備された機構である。
【0071】
上記試料保持体の位置を光照射部に合わせX方向とY方向とZ方向の三つの方向に微調整できる機構を保有することで、種々の構造分析機器や、光照射部の位置が微妙に異なる異種メーカーの分析機器にも、本発明のスペクトル試料保持体を適応させることができる。
【0072】
また、本発明の第2発明である、本発明にかかる試料保持体10が、冷媒を循環する機構を備えるものである場合には、光導入孔位置合わせ機構12としては、図1(a)に示すように、光照射部21から出射される上記進行経路Lに対する、上記光導入孔112の相対的な位置を、進行経路Lに沿ったX方向および、該X方向と同一面上でありかつ直交するY方向に調整する光導入路水平方向位置調整手段(4)であることは好ましい実施形態である。
【0073】
また、上記光導入孔位置合わせ機構12に、さらに、上記X方向およびY方向に対して垂直となるZ方向に位置を調整する上記光導入路上下方向位置調整手段(5)が具備された機構であることはより好ましい形態となる。本発明にかかる試料保持体10が、冷媒を循環する機構を備えるものである場合であっても、同様に、上記の様に位置を、光照射部に合わせX方向とY方向とZ方向の3方向に調整できる機構を保有することで、種々の構造分析機器や、光照射部の位置が微妙に異なる異種メーカーの分析機器にも、本発明のスペクトル試料保持体を適応させることができる。
【0074】
また図3では、X方向が図示された下部の図に当該位置調整手段の側面図を示した。またY方向が図示された上部の図に当該位置調整手段の上から見た平面図を示した。また上部の平面図には隠れており図示していないが、下部の側面図には、Z方向へ位置調整が可能となる光導入路上下方向位置調整手段(5)の一例を示した。(図中で模様を付記している。)
また、図8は、Z方向位置調整手段としてのZ方向操作部127、Z方向移動台129と設置固定台120との関係を示す拡大図である。なお400は、Z方向を模式図的に矢印で示したものである。Z方向操作部127の回転ノズルを右に回すとZ方向移動台129が上に移動する。Z方向操作部127の回転ノズルを左に回すとZ方向移動台129が上に移動する。
【0075】
具体的には、図3の上図および下図に示すように、本実施の形態にかかる光導入孔位置合わせ機構12では、設置固定台120と、この設置台120上にX方向に移動可能に設けられるX方向移動台121と、Y方向に移動可能に設けられるY方向移動台122、およびZ方向に移動可能に設けられるZ方向移動台129を備えている。そして、図3の上図にも示すように、上記移動台121をX方向に移動させるX方向操作部123と、同じく移動台122をY方向に移動させるY方向操作部124と、同じく移動台129をZ方向に移動させるZ方向操作部127と、移動台121のX方向の位置を決定した後に固定するX方向位置固定ネジ部125と、移動台122のY方向の位置を決定した後に固定するY方向位置固定ネジ部126と、さらに移動台129のZ方向の位置を決定した後固定するZ方向位置固定ネジ部128を備えている。
【0076】
なお、Z方向に移動可能に設けられるZ方向移動台129は、図6で示す様に、Z方向操作部127を回転することで、内装されたジャッキ機構を上下に移動させることのできる構造になっている。またZ方向に移動可能に設けられる移動台129は、移動台121あるいは、移動台122で隠れている形態もありえる。よって図3では、Z方向移動台129は判りやすい一例として、斜線で図示し、設置固定台120は、移動台の一番下に設ける形態を示した。
【0077】
設置固定台120・X方向への移動台121、Y方向への移動台122およびZ方向への移動台129の具体的な形状は特に限定されるものではない。通常、図2や図3に示すように、測定室23の形状に合わせて双方ともに正方形状となっていればよい。
【0078】
上記、X方向操作部123、Y方向操作部124およびZ方向操作部127の操作機構等の構成についても特に限定されるものではなく、それぞれの方向に移動操作が可能で、出射光の進行経路Lに対して上記光導入孔112の位置を正確に合わせることができるようになっていればよい。本実施の形態では、図3に示すように、移動台121や122におけるX方向またはY方向に対応する各辺に設けられるマイクロメーター等のように、回転によりXまたはY方向に各移動台が移動する構成、そしてZ方向には、回転により移動台129が上下するジャッキ機構の構成を用いた形態が好ましい。
【0079】
また、上記のZ方向移動台129の設置位置であるが、図3や図5のように設置固定台→移動台129→移動台121→移動台122の順番でもよいし、特に限定されない。また、設置固定台→移動台121→移動台129→移動台122のように、間に介在してもよい。このような構成であれば、移動台121、122、129上に設けられる保持ブロック11の位置、すなわち光導入孔112の位置を、X方向、Y方向およびZ方向から正確にかつ精密に合わせることができる。またZ方向操作部127と移動台129の拡大図を図6と図8に示す。
【0080】
また、上記X方向位置固定ネジ部125、Y方向位置固定ネジ部126およびZ方向位置固定ネジ部128の具体的な構成についても特に限定されるものではなく、図3に示すように、移動台122の側面に設けられるボルト状(またはネジ状)の構成を用いている。なお上記の、光照射部に合わせX方向とY方向、あるいはさらにZ方向の3方向に調整できる機構を保有する機構は、本発明の第2発明である、該液状試料を0℃以下の低温状態にするための冷媒50を循環する機構51を有する分光スペクトル光度計用試料保持体31についても付属する機構として好ましい形態である。内容は上記と同じ説明であるので省略する。
【0081】
本発明にかかる試料保持体10または分光光度計においては、図1(a)・(b)に示すように、上記保持ブロック11と上記光導入孔位置合わせ機構12との間に、下方断熱部13が設けられることが好ましく、さらに、図1(b)に示すように、保持ブロック11の周囲を覆うように断熱カバー14が設けられていることがより好ましい。
【0082】
保持ブロック11と光導入位置合わせ機構12との間に、下方断熱部13や断熱カバー14が設けられていることによって、保持ブロック11と光導入位置合わせ機構12とが断熱されている。そのため、液状試料40を加熱するための熱、すなわち保持ブロック11が有する熱が、光導入孔位置合わせ機構12や、測定室23、引いては分光光度計に伝達することを抑制または防止することができる。また断熱カバー14があることで放散が抑えられ温度調節が容易に行える。
【0083】
また、保持ブロック11の周囲を覆うように断熱カバー14が設けられていると、保持ブロック11からの熱を測定室23に放散することを抑制または防止することができる。そのため、上記下方断熱部13と同様に、測定室23、引いては分光光度計に伝達することを抑制または防止することができる。それゆえ、ヒーター15による加熱効率の低下を回避して、ヒーター15にかかる負荷を低減することができる。また、上記放熱の防止だけでなく、保持ブロック11が外気より影響を受けることもないので、液状試料40の温度の低下・不安定化を防止することができる。本発明の第2の発明では、保持体を低温状態でコントロールする必要があるので、上記断熱カバーが非常に好ましい形態となる。
【0084】
本実施の形態では、保持ブロック11を加熱することで、間接的に液状試料40を加熱することになるが、保持ブロック11から熱が逃げれば、保持ブロック11の温度も下がり、その結果、液状試料40の温度を略一定に維持することができなくなる。しかしながら、保持ブロック11の周囲を断熱カバー14で覆えば、保持ブロック11からの熱の放散を抑制または防止できるため、保持ブロック11の温度を、ヒーター15・温度センサー16・温度コントローラー17によって正確に制御することが可能になる。その結果、液状試料40の温度を略一定に維持することが可能になる。
【0085】
本実施の第2の形態では、保持ブロック11に冷媒を循環させ冷却し低温にすることで、間接的に液状試料40を低温にすることになるが、保持ブロック11に外部から熱伝達すれば、保持ブロック11の温度が影響を受け上昇し、その結果、液状試料40の温度を略一定に維持することができなくなる。しかしながら、保持ブロック11の周囲を断熱カバー14で覆えば、保持ブロック11に外部からの熱の伝達が防止できるため、保持ブロック11の温度を、ヒーター15・温度センサー16・温度コントローラー17によって正確に制御することが可能になる。その結果、液状試料40の温度を所定の低温状態に維持することが可能になる。
【0086】
上記下方断熱部13および断熱カバー14は、まとめて保持ブロック11からの熱の放散を抑制または防止する断熱手段となっているが、断熱手段の構成は、これらに限定されるものではない。たとえば、本実施の形態では、下方断熱部13としてフッ素樹脂製の板状部材またはシート状部材が好適に用いられるが、これに代えて、保持ブロック11と光導入孔位置合わせ機構12との間に一定の空間を確保するような間隔保持部材を用いてもよい。
【0087】
さらに、上記下方断熱部13となる断熱手段としては、上記板状部材やシート状部材と間隔保持部材とを組み合わせてもよい。すなわち、フッ素樹脂製の部材で保持ブロック11と光導入孔位置合わせ機構12との間に一定の空間を確保できるようになっていてもよい。さらに、この場合、板状部材やシート状部材に適宜孔を形成し、そこから窒素等の不活性ガスを吹き込んだり、板状部材やシート状部材を二重にして空間を形成し、その間に窒素等の不活性ガスを吹き込んだりすることで、断熱効果を高めてもよい。
【0088】
本発明にかかる試料保持体10または分光光度計においては、図1(b)に示すように、保持ブロック11の側方から試料保持孔111に向かって貫通する温度測定側孔115を形成し、ここから第2温度センサー18を用いて、内部の液状試料40の温度を直接測定するようになっているとより好ましい。なお、第2温度センサー18は、単に液状試料40の温度を測定するだけでもよいが、温度コントローラー17に接続されて、ヒーター15の加熱温度を制御できるようになっていると、液状試料40に対してより正確な温度で加熱ができるため好ましい。
【0089】
また、本発明の第2に形態では、この第2温度センサー18は、単に液状試料40の温度を測定するだけでもよいが、温度コントローラー17に接続されて、温度センサー16と同様に、冷媒を循環させる量を調節する電磁弁51を調節する。または温度コントローラー17からクールニクス60を調節して所定の温度にあわせる。
【0090】
本実施の形態では、試料チューブ30(すなわち液状試料40)を保持していない試料保持孔111に対して、温度センサー16を投入して該試料保持孔111内の温度(すなわち保持ブロック11の温度)を測定することで、液状試料40の温度に代えている。しかしながら、液状試料40の発熱等によっては、必ずしも試料保持孔111内の温度と、液状試料40との温度が一致しないことはあり得る。そこで、本実施の形態では、上記温度測定側孔115を形成して、液状試料40の温度を直接測定することが好ましい。
【0091】
ヒーター15による加熱温度または冷媒50による低温状態と、液状試料40の温度との間には差が生じる可能性があり、特に、後述するように、液状試料40が化学反応を進行している状態であれば、加熱温度と反応温度、あるいは低温状態と反応温度との間には差が生じ易くなる。そこで、上記第2温度センサー18で液状試料40の温度(反応温度等)を正確にモニターすることで、液状試料40の正確な温度を把握することができる。
【0092】
上記温度測定側孔115から液状試料40の温度を測定するための第2温度センサー18としては、非接触で液状試料40の温度を測定できる構成のものが好ましい。具体的には、たとえば赤外センサー等を挙げることができる。上記試料保持孔111内では、液状試料40は、実際には、試料チューブ30内に分注されているので、直接試料チューブ30内に測定部を投入して内部の温度を測定することは困難となる。そこで、赤外センサーのような非接触方式の第2温度センサー18を用いることが好ましい。また、このように温度測定側孔115から液状試料40の温度を直接測定することで、液状試料40が化学反応を起こしている場合では、該液状試料40の反応温度を測定することもできる。
【0093】
本発明の第1の形態である試料保持体をヒーター等の加熱手段で加熱する形態におうては、かかる試料保持体10には、加熱手段だけでなく冷却手段が備えられていてもよい。たとえば、冷却手段としては、特に限定されるものではないが、冷却水等の冷媒を用いて保持ブロック11を冷却する構成(水冷方式)や、冷却ファンを用いて保持ブロック11を冷却する構成(空冷方式)等が挙げられる。ただし、本発明にかかる試料保持体10は、測定室23内に設置できる程度の大きさである必要があるため、冷却手段についてもこの点を考慮する必要がある。たとえば、赤外分光光度計等では、測定室23の面積は20×20cm程度の大きさであるものが多い。それゆえ、試料保持体10に一体化させるのであればコンパクト化できる水冷方式が比較的好ましく、分光光度計に一体化させるのであれば測定室23に空冷方式の冷却手段を設ける例が好ましく挙げられる。
【0094】
上記冷却手段が設けられている場合、加熱手段によって保持ブロック11が過剰に加熱された場合でも迅速に冷却することができる。そのため、液状試料40の温度が設定温度から外れるような事態を回避することが可能になり、温度コントロールの精度をより向上することができる。また、液状試料40によっては、スペクトル測定時に加熱せず冷却するような用途も考えられるが、このような用途にも十分対応することができる。また本発明の第2の形態である、冷媒で当該保持体を低温にコントロールする保持体にあっても、必要であれば加熱手段が併用されていてもよい。
【0095】
本発明にかかる分光光度計は、上述した試料保持体10を備えるものであるが、測定するスペクトルの種類、すなわち分光光度計そのものの種類については特に限定されるものではない。本実施の形態では、特に近赤外および赤外スペクトルを測定する赤外分光光度計や、ラマンスペクトルを測定するラマン分光光度計を好適に用いることができる。したがって、図1(a)に示す光照射部21としては、赤外分光光度計の場合、赤外光源を含んでいればよく、ラマン分光光度計の場合、各種レーザー光源を含んでいればよい。同様に、光検出部22についても、赤外分光光度計の場合、赤外光を検出できる光センサー類であればよく、ラマン分光光度計の場合、散乱光を検出できる光センサー類であればよい。
【0096】
上記光照射部21には、光源から照射光を、光導入孔112を介して保持ブロック11内の液状試料40に照射するための各種光学系が含まれていることが好ましい。同様に、上記光検出部22にも、光導入孔112を介して保持ブロック11内の液状試料40から出射する照射光を、光センサーに導くための各種光学系が含まれていることが好ましい。したがって、本発明にかかる分光光度計では、光導入孔112に沿って照射光の進行経路Lを形成できるようになっていればよく、光源と測定室23と光センサーとが必ずしも一直線となっている必要はない。
【0097】
本発明にかかる試料保持体10または分光光度計を用いたスペクトルの測定においては、液状試料40を加熱(状況によっては冷却)状態で安定して保持しながらスペクトルを即時的かつ経時的に測定することができる。そのため、特に好ましくは、各種有機化合物やポリマー(重合体)の合成前の原料混合物、すなわち、化学反応進行前の物質の混合物を用いることができる。これによって、たとえば各種有機化合物やポリマー(重合体)の合成の過程で、経時的にスペクトルを測定することができる。
【0098】
たとえば、ポリマーの合成においては、溶媒、モノマーおよび触媒等を試料チューブ30に仕込んで液状試料40とし、反応条件に基づいて、試料保持体10で加熱を行うことができる。あるいは本発明の第2の形態である、冷媒を循環させての冷却を行うことができる。このとき、経時的にスペクトルを測定すれば、モノマーに特異的なスペクトルのパターンから、ポリマーに特異的なスペクトルのパターンへの変化を経時的に測定することができる。同様に化合物の合成であれば、出発化合物に特異的なスペクトルのパターンから、生成化合物に特異的なスペクトルのパターンへの変化を経時的に測定することができる。その結果、化学反応のメカニズムを解析することができる。
【0099】
より具体的には、後述する実施例で述べるように、たとえばアクリル酸メチルモノマーの赤外スペクトルを測定すると、6100cm−1〜6250cm−1前後にビニル基の炭素・炭素二重結合(C=C−HのC−H)のピークが生じる。アクリル酸メチルの重合が進むと、このピークは徐々に減少していくことになる。そこで、既知のポリアクリル酸メチルと、アクリル酸メチルモノマーとの赤外スペクトルを事前に測定しておき、これを基準として、上記ピークの減少に基づいて反応の進行速度を解析することができる。勿論、ピークの変化から、その他の知見が得られる可能性もあるため、アクリル酸メチルの重合反応のメカニズムの解析が可能となる。
【0100】
従来の分光光度計では、スペクトルを測定しながら、液状試料40に加熱、あるいは本発明の第2の形態である冷却(極低温での冷却)を施すことが難しく、それゆえ、上記のような経時的なスペクトルの測定は通常では困難であったが、本発明では、加熱しながらスペクトルが測定できるので、化学反応の進行過程をスペクトルで解析することが可能になる。そのため、公知の化学反応においても、従来知られていなかった知見を得ることが可能となり、特に、各種化合物の研究開発分野で有効に利用することができる。
【0101】
本発明では、保持ブロック11にて、液状試料40を加熱しながら保持することになる。また本発明の第2の形態では当該保持ブロック11に冷媒を循環させて、液状試料40を低温状態にしながら保持することになる。そして照射光は、光導入孔112を介して液状試料40に照射することになる。しかしながら、測定室23の大きさから見ても、液状試料40の入った試料チューブ30としては小さなものしか用いることができず、また、このような小さな試料チューブ30を安定して加熱・あるいは低温状態に保持するためには、試料保持孔111に交差するように形成される光導入孔112のサイズをあまり大きくすることは温度を正確にコントロールする意味から不利である。
【0102】
本発明では、上記のような小さな照射ターゲット(液状試料40の入った試料チューブ30およびそこに至る光導入孔112)に正確かつ確実に照射光を到達させるために、光導入孔位置合わせ機構12が設けられている。この光導入孔位置合わせ機構12を用いることで、保持ブロック11の位置を変更したような場合でも、照射光の進行経路Lに対する光導入孔112の位置を容易に微調整することができる。そのため、光照射部21から出射される照射光を確実に液状試料40に導くことができる。特に上記のZ方向への調節機構があるために、より正確に上記位置合わせが可能になり、光照射部21から出射される照射光を確実に液状試料40に導くことができる。
【0103】
特に、本実施の形態では、図2に示すような、円柱状で、中心から等距離となる位置に試料保持孔111を複数形成した保持ブロック11が好適に用いられる。このような円柱状の保持ブロック11では、上述したように、これを回転させることで、4つの異なる液状試料40からスペクトルを測定することが可能になる。しかしながら、保持ブロック11の回転に伴って照射光の進行経路Lに対する光導入孔112の位置がずれる場合がある。これに対して、上記光導入孔位置合わせ機構12で光導入孔112の位置を微調整することで、照射光を確実に液状試料40に導き、正確なスペクトルを測定することができる。
【0104】
また、本実施の形態では、図2、図3、図5に示すような、進行経路Lに沿ったX方向およびX方向に直行するY方向およびX方向、Y方向に対して垂直となるZ方向の位置合わせができるX−Y−Z軸可動型(三次元位置調整型)の光導入孔位置合わせ手段を用いている。そのため、X方向の調整により液状試料40と照射光の出射部位との距離を調整でき、Y方向およびZ方向の調整により、進行経路Lに対する光導入孔112の相対的な位置を微調整して、照射光が確実に液状試料40に当たるようにすることができる。
【0105】
近赤外光、赤外光がアルミブロックの光路の中心なっている事を確認するには、試料保持体(X−Y−Z−アルミブロック)を赤外本体の試料室にセットして、赤外分光光度計のモニターでインターフェログラムの強度を見ながら、X−Y−Zで近赤外光、赤外光がアルミブロックの光路の中心になるように調整を行う。最終の微調整は、赤外分光光度計本体のインターフェログラムの値で一番高い感度値(セットアップ後の値)をアルミブロックの光路の中心とする。
【0106】
本発明において用いられる試料チューブ30としては、上述したように、試料保持体10が測定室23内に収納できるサイズである必要があるため、これに合わせた小さいサイズのチューブであることが好ましいが、具体的には、核磁気共鳴分光法(NMR)に用いられるNMR用サンプリングチューブが特に好ましい。NMR用サンプリングチューブであれば、サイズは十分小さく、かつ、NMR測定用に製造されているため、スペクトル測定に悪影響を及ぼすような要素もないという利点がある。
【0107】
勿論、本発明で液状試料40を入れるために用いられる容器は、チューブ状の容器に限定されるものではないが、保持ブロック11に縦孔(試料保持孔111)を形成して該容器を保持する観点から、チューブ状の容器が特に好ましい。フラスコのような形状であれば、チューブ状容器に比べて、試料保持孔111の内壁と容器の外壁との接触面積が減少するため、安定保持や安定加熱あるいは安定に低温状態を保つことができなくなる恐れがある。
【0108】
以上のように、本発明にかかる試料保持体10および分光光度径では、液状試料40、特に反応前の物質の混合物を加熱しながら保持して、スペクトルを測定することで、上記のように、反応過程でのスペクトル測定が可能になる。その結果、従来では全く分からなかった、in situ でのスペクトル測定とこれに基づく解析が可能になる。それゆえ、公知の化学反応においても、従来知られていなかった知見を得ることが可能となり、特に、各種化合物の研究開発分野で有効に利用することができる。
【0109】
【実施例】
以下、具体的な実施例および測定結果、図7(a)〜(c)に基づいて本発明の測定形態をより詳細に説明する。なお、本発明はこれに限定されるものではない。
【0110】
〔試料保持体例〕
前記実施の形態で説明した構成の試料保持体を備える赤外分光光度計(以下、IR計と略す)を用いて、アクリル酸メチルの重合プロセスについて、赤外スペクトルを測定した。
【0111】
保持ブロックとしては、アルミニウム製で、直径90mm、高さ62mmの円柱状のものを用いた。ヒーター用孔の径は20mm、試料保持孔の径は6mm、十字底部の突出高さは28mm、光導入孔の径は4mmとした。下方断熱部としてはフッ素樹脂製のものを用い、断熱カバーとしてはアルミ製のものを用いた。試料チューブとしては、径5mmのNMR用サンプリングチューブを用いた。
【0112】
ヒーターとしては500Wの出力のものを、温度センサーとしてはCA線を用い、温度コントローラーとしては、東京理工舎製ヒータコントローラまたは富士電機製マイクロコントローラX、形式PTZを用いた。
【0113】
〔実施測定例1〕
事前にアクリル酸メチル(CH2 =CHCOOCH3 )の赤外スペクトルを測定した。その結果を図7(a)に示す。なお、図7(a)では、横軸が波数(単位cm−1)であり、縦軸が吸収強度(単位Abs)である。このスペクトルにおいて、アクリル酸メチルに特異的なビニル基の吸収ピーク(ビニルピークと称する)が6100cm−1〜6250cm−1前後にビニル基の炭素・炭素二重結合の由来する(C=C−HのC−H)のピークが生じていることがわかる。
【0114】
その後、アクリル酸メチル10mlに対して、過酸化ベンゾイル0.02gを添加し、窒素で15秒間バブリングして、測定用の液状試料40を調製した。この液状試料40を上記NMR用サンプリングチューブに仕込んだ。一方、IR計の測定室に上記試料保持体を設置し、この試料保持体の試料保持孔に上記NMR用サンプリングチューブをセットした。その後、ヒーターで70℃まで加熱し、赤外スペクトルをマルチスキャンで経時的に測定した。なお、測定波数の範囲はC−Hの倍音吸収の範囲である5800cm−1〜6300cm−1とし、吸収強度測定波数は6170cm−1を用いた。その結果を図7(b)の経時変化のグラフに示す。なお、図7(b)では、横軸が時間(単位分)であり、縦軸が上記ビニルピークの吸収強度である。
【0115】
また、反応前の液状試料40と反応終了後の液状試料40のスペクトルを比較した。その結果を図7(c)に示す。図7(c)では、横軸が波数(単位cm−1)であり、縦軸が吸収強度(単位Abs)である。
【0116】
図7(b)から明らかなように、本発明にかかる試料保持体およびIR計を用いれば、アクリル酸メチルのビニルピークの吸収強度が反応の進行に伴って減少していくことが分かる。それゆえ、この吸収強度の変化から、アクリル酸メチルの重合速度等を解析することが可能となる。
【0117】
また、図7(c)に示すように、反応前では十分な強度のあったビニルピークが反応後にはほぼ完全に消失している。このように、反応前後で明らかに変化する吸収ピークを利用することで、化学反応を赤外スペクトルおよび近赤外スペクトルで解析することが可能になる。また、上記で使用した赤外分光光度計とは別のメーカの赤外分光光度計についても同様に測定した。メーカーが異なっているために、照射光の高さ(Z方向への位置合わせ)調節が必要であった。しかし、同等のスペクトルを測定することができ、異なるメーカーの赤外分光光度計であっても、容易に照射光の高さ(Z方向への位置合わせ)調節が可能であることが判った。
【0118】
〔実施測定例2〕
本発明の第2の発明である、保持ブロック(11)に該液状試料を10℃以下の低温状態にするための冷媒(50)を循環する機構(51)を有する分光スペクトル光度計用試料保持体(31)冷媒を使用したスペクトル測定用保持体を利用した測定例として、重量平均分子量(Mw)が1000万以上の超高分子量の重合体の重合体挙動を、実施測定例1において、保持ブロックを図9に示すような保持体を使用する以外は同様にして測定を行った。冷媒としてクールニクスを−5℃に設定し冷媒を循環させ、重合を開始させ、その挙動を観察した。その結果、実施測定例1と同様に低温でのMMAの重合挙動が観察できた。上記冷媒としてはエチレングリコールを使用した。
【0119】
またブタジエン系やゴム系の重合体の重合温度は一般に低温であるので、本発明の第2の発明である、保持ブロック(11)に該液状試料を10℃以下の低温状態にするための冷媒(50)を循環する機構(51)を有する分光スペクトル光度計用試料保持体(31)冷媒を使用したスペクトル測定用保持体を使用して当該ゴム系重合体の重合挙動を分析することができ、種々の構造のゴム系重合体の重合条件、構造条件を決定するときのデータを取得することができる事がわかった。
【0120】
【発明の効果】
以上のように、本発明にかかる分光スペクトル光度計用試料保持体および分光光度計は、該試料保持体に、上記液状試料に照射光を導入する光導入路が設けられ、該光導入路が上記照射光の進行経路に対して平行となる位置に形成されるとともに、上記液状試料を加熱可能とする加熱手段と、上記進行経路に対する該光導入路の相対的な位置を、進行経路に沿ったX方向およびX方向に直行するY方向およびX方向,Y方向に対して垂直となるZ方向の少なくとも一方の方向に変化させ得る光導入路位置調整手段とを備え、さらに、上記保持ブロック(11)は、円柱状の形状を有し、保持ブロック(11)の底部に、保持ブロック(11)を回転させる保持ブロック回転手段(80)を備える構成である。上記分光スペクトル光度計用試料保持体は、Z方向への光導入路位置調整手段を備えているので、種々のメーカーへの分光光度計に容易に適応が可能である。
【0121】
また、試料保持体を試料室に取り付け試料を入れない状態で、進行経路に対する該光導入路の相対的な位置を、進行経路に沿ったX方向およびX方向に直行するY方向およびX方向,Y方向に対して垂直となるZ方向の少なくとも一方の方向に変化させ得る光導入路位置調整手段で、分光光度計の光が行路の中心を通過し検出されている事の確認手段および分光光度計の感度、インターフェログラムのエネルギー確認がより一層確実になる。
【0122】
また、上記構成では、液状試料を加熱しながら、光導入路および光導入路位置調整手段によって、光照射手段から出射される照射光を確実に液状試料に導くことができる。特に、光導入路位置調整手段が、光導入路の位置をX方向またはY方向およびX方向、Y方向に対して垂直となるZ方向の少なくとも一方に調整可能としていれば、より一層正確な位置調整ができる。そのたえ、試料保持体を取り外して、他の装置の試料室に取り付けた場合でも、加熱状態で安定して保持される液状試料から、スペクトルを即時的かつ経時的に検出することがより一層確実になる。
【0123】
それゆえ、上記構成では、液状試料を加熱しながら、光導入路および光導入路位置調整手段によって、光照射手段から出射される照射光を確実に液状試料に導くことができる。特に、光導入路位置調整手段が、光導入路の位置をX方向またはY方向およびX方向、Y方向に対して垂直となるZ方向の少なくとも一方に調整可能としていれば、より一層正確な位置調整ができる。そのため、加熱状態で安定して保持される液状試料から、スペクトルを即時的かつ経時的に検出することがより一層確実になる。
【0124】
その結果、従来では全く分からなかったスペクトル測定とこれに基づく解析が可能になる。それゆえ、公知の化学反応においても、従来知られていなかった知見を得ることが可能となり、特に、各種化合物の研究開発分野で有効に利用することができるという効果を奏する。
【0125】
また本発明の第2の実施形態にあっては、透過型分光スペクトル光度計の測定室に設置され、液状試料を保持するための複数の孔と、さらに該分光スペクトル光度計の光照射手段から出射される分光スペクトル測定用の照射光を当該液状試料に透過させて導入する光導入路とが設けられた保持ブロック(11)と、さらに該液状試料を0℃以下の低温状態にするための冷媒(50)を循環する機構(51)を有する、透過型分光スペクトル光度計から取り外し可能な分光スペクトル光度計用試料保持体(31)であって上記分光スペクトル光度計用試料保持体における液状試料に分光スペクトル測定用の照射光を導入する光導入路の位置を、上記分光スペクトル測定用の照射光の進行経路に合わせて液状試料に導入されるように調節する光導入路水平方向位置調整手段(4)を備え、さらに、上記保持ブロック(11)は、円柱状の形状を有し、保持ブロック(11)の底部に、保持ブロック(11)を回転させる保持ブロック回転手段(80)を備えることを特徴とする分光スペクトル光度計用試料保持体(31)および当該保持体が設置された分光光度計である。上記構成を採用することで、当該液状試料を低温状態、あるいは、さらに低い極低温状態にコントロールすることができ、その低温状態、あるいは極低温状態での各種スペクトル分析が可能になる。その結果低温状態での反応挙動のスペクトル観察が可能になり、種々の機能を有する化合物の合成や種々の機能を重合体に付与するときの反応挙動の解析が容易に達成できる。また、分光スペクトル測定用の照射光の進行経路に合わせて液状試料に導入されるように調節する光導入路水平方向位置調整手段(4)を備えているので容易に位置合わせが可能になる。
【図面の簡単な説明】
【図1】 図1(a)は、本発明の実施形態にかかる試料保持体の概略構成の一例を示す模式図であり、(b)は、(a)に示す試料保持体が備える保持ブロック11の概略構成の一例を示す斜視図である。
【図2】 図2は、本発明の保持体における、保持ブロック11の位置調整手段として、当該照射光の進行経路に沿ったX方向への位置を調製するX方向操作部123と、そのX方向と同一面上で直交するY方向への位置を調製するY方向操作部124と、さらに上記X方向およびY方向に対して垂直となるZ方向位置を調製するZ方向操作部127とが具備された各移動台の上方からの俯瞰図(上図)である。
【図3】 図3は、図2の位置調整手段の具体的な構成の一例を示す上方からの俯瞰図(上図)および側面図(下図)であり、斜線部分はZ台座部であり、さらにX−Y−Z軸の調整用ノブおよび固定用ねじ、X方向,Y方向,Z方向に移動可能な各ステージ等を示す図である。
【図4】 図4の上図は、熱保持ブロックの中にある試料挿入口と、ヒーターの位置関係を示す図であり、分光光度計から光を照射して試料を透過して出射している図である。
【図5】 図5は、保持ブロックと位置調整手段としてのX方向、Y方向、Z方向位置調整用機構と、各台座の関係を示した図である。その右はX−Y−Z軸の動きを示す模式図である。
【図6】 図6は、Z台座上下機構を持ったZ方向移動可能固定台129の構成を示す図であり、ジャッキ機構で上下に動く方式である。Z方向操作部127を右に回転で上に、左回転で下に作動するようになっている。
【図7】 (a)は、本発明の一実施例において、測定対象の試料として用いたアクリル酸メチルの赤外および近赤外吸収スペクトルを示すチャートであり、(b)は、本発明にかかる試料保持体および分光光度計を用いて得られた、アクリル酸メチルに特異的なビニル基のピークの吸光強度の経時的変化を示すグラフであり、(c)は、ポリアクリル酸メチルの吸収スペクトルと、アクリル酸メチルモノマーの吸収スペクトルとを比較したチャートである。
【図8】 図8は、Z方向操作部127、Z方向移動台129と設置固定台120との関係を示す拡大図である。
【図9】 本発明の第2の形態である、該液状試料を0℃以下の低温状態にするための冷媒(50)を循環する機構(51)を有する分光スペクトル光度計用試料保持体(31)の具体的構造を示す図である。
【符号の説明】
10 試料保持体(分光スペクトル光度計用試料保持体)
11 保持ブロック
12 光導入孔位置合わせ機構(光導入路位置調整手段)
13 下方断熱部(断熱手段)
14 断熱カバー(断熱手段)
15 ヒーター(加熱手段)
21 光照射部(光照射手段)
22 光検出部(光検出手段)
23 測定室
40 液状試料
112 光導入孔(光導入路)
L 照射光の進行経路
M 測定用スペクトル以外の紫外光等の光の進行経路

Claims (19)

  1. 透過型分光スペクトル光度計の測定室に設置され、液状試料を保持するための複数の孔と、さらに該分光スペクトル光度計の光照射手段から出射される分光スペクトル測定用の照射光を当該液状試料に透過させて導入する光導入路とが設けられた保持ブロック(11)と、さらに該液状試料を加熱するための加熱装置(2)を有する、透過型分光スペクトル光度計から取り外し可能な分光スペクトル光度計用試料保持体(3)であって
    上記分光スペクトル光度計用試料保持体における液状試料に分光スペクトル測定用の照射光を導入する光導入路の位置を、上記分光スペクトル測定用の照射光の進行経路に合わせて液状試料に導入されるように調節する光導入路水平方向位置調整手段(4)と、さらに当該照射光の進行経路に対して、当該保持体の光導入路の位置を上下方向に調節する光導入路上下方向位置調整手段(5)とを備え、
    さらに、上記保持ブロック(11)は、円柱状の形状を有し、保持ブロック(11)の底部に、保持ブロック(11)を回転させる保持ブロック回転手段(80)を備えることを特徴とする分光スペクトル光度計用試料保持体(3)
  2. 上記保持ブロック(11)には、上記加熱装置(2)を設置するための複数のヒーター用孔が形成されており、
    上記ヒーター用孔を中心として等距離となる位置に、液状試料を保持するための上記孔が形成されていることを特徴とする請求項1に記載の分光スペクトル光度計用試料保持体(3)
  3. 液状試料を保持するための上記孔は、保持ブロック(11)の上記円柱の中心部を取り囲むように形成されていることを特徴とする請求項1又は2に記載の分光スペクトル光度計用試料保持体(3)
  4. 液状試料を保持するための上記孔は、保持ブロック(11)の上記円柱の中心部を取り囲むように4箇所十字状に形成されており、
    上記ヒーター用孔は、液状試料を保持するための2箇所の上記孔の間に位置するように、2箇所形成されていることを特徴とする請求項1〜3の何れか1項に記載の分光スペクトル光度計用試料保持体(3)
  5. 上記分光スペクトル光度計用試料保持体(3)における保持ブロック(11)と、光導入路水平方向位置調整手段(4)および/または光導入路上下方向位置調整手段(5)との間に、断熱手段が備えられていることを特徴とする請求項1〜4の何れか1項に記載の分光スペクトル光度計用試料保持体(3)
  6. 上記断熱手段は、上記保持ブロック(11)の周囲を覆うように設けられた断熱カバーを備えていることを特徴とする請求項5に記載の分光スペクトル光度計用試料保持体(3)
  7. 分光スペクトル光度計用(3)が、上記液体試料の温度を測定する温度センサーと、上記温度センサーで測定された温度に基づいて、上記加熱手段による加熱温度を制御する温度コントローラーとを備えていることを特徴とする請求項1〜6の何れか1項に記載の分光スペクトル光度計用試料保持体(3)。
  8. 上記液状試料に導入されるように調節する光導入路水平方向位置調整手段(4)が、当該照射光の進行経路に沿ったX方向および、そのX方向と同一面上でありかつ直交するY方向に位置を調製するものであり、上記光導入路上下方向位置調整手段(5)が、上記X方向およびY方向に対して垂直となるZ方向に位置を調整するものであることを特徴とする請求項1〜7の何れか1項に記載の分光スペクトル光度計用試料保持体(3)
  9. さらに、冷却手段を備えていることを特徴とする請求項1〜8の何れか1項に記載の分光スペクトル光度計用試料保持体(3)
  10. 上記保持ブロック(11)は、アルミニウム製のアルミブロックであることを特徴とする請求項1〜9の何れか1項に記載の分光スペクトル光度計用試料保持体(3)。
  11. 上記液状試料は、NMR用サンプリングチューブに入っていることを特徴とする請求項1〜10の何れか1項に記載の分光スペクトル光度計用試料保持体(3)。
  12. 請求項1〜11の何れか1項に記載の分光スペクトル光度計用試料保持体(3)が測定室に設置されたことを特徴とする透過型分光スペクトル光度計。
  13. 透過型分光スペクトル光度計の測定室に設置され、液状試料を保持するための複数の孔と、さらに該分光スペクトル光度計の光照射手段から出射される分光スペクトル測定用の照射光を当該液状試料に透過させて導入する光導入路とが設けられた保持ブロック(11)と、さらに保持ブロック(11)に該液状試料を10℃以下の低温状態にするための冷媒(50)を循環する機構(51)を有する、透過型分光スペクトル光度計から取り外し可能な分光スペクトル光度計用試料保持体(31)であって
    上記分光スペクトル光度計用試料保持体における液状試料に分光スペクトル測定用の照射光を導入する光導入路の位置を、上記分光スペクトル測定用の照射光の進行経路に合わせて液状試料に導入されるように調節する光導入路水平方向位置調整手段(4)を備え、
    さらに、上記保持ブロック(11)は、円柱状の形状を有し、保持ブロック(11)の底部に、保持ブロック(11)を回転させる保持ブロック回転手段(80)を備えることを特徴とする分光スペクトル光度計用試料保持体(31)
  14. 上記液状試料に導入されるように調節する光導入路水平方向位置調整手段(4)が、当該照射光の進行経路に沿ったX方向および、そのX方向と同一面上でありかつ直交するY方向に位置を調製するものであることを特徴とする請求項13記載の分光スペクトル光度計用試料保持体(31)
  15. 上記冷媒(50)を循環する機構(51)を有する分光スペクトル光度計用試料保持体(31)が、さらに当該照射光の進行経路に対して、当該保持体の光導入路の位置を上下方向に調節する光導入路上下方向位置調整手段(5)を備えていることを特徴とする請求項13又は14に記載の分光スペクトル光度計用試料保持体(31)
  16. 上記光導入路上下方向位置調整手段(5)が、上記X方向およびY方向に対して垂直となるZ方向に位置を調整するものであることを特徴とする請求項15記載の分光スペクトル光度計用試料保持体(31)
  17. 上記保持ブロック(11)は、アルミニウム製のアルミブロックであることを特徴とする請求項13〜16の何れか1項に記載の分光スペクトル光度計用試料保持体(31)。
  18. 上記液状試料は、NMR用サンプリングチューブに入っていることを特徴とする請求項13〜17の何れか1項に記載の分光スペクトル光度計用試料保持体(31)。
  19. 請求項13〜18の何れか1項に記載の分光スペクトル光度計用試料保持体(31)が 測定室に設置されたことを特徴とする透過型分光スペクトル光度計。
JP2003102160A 2003-04-04 2003-04-04 分光スペクトル光度計用試料保持体および分光光度計 Expired - Fee Related JP3895294B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102160A JP3895294B2 (ja) 2003-04-04 2003-04-04 分光スペクトル光度計用試料保持体および分光光度計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102160A JP3895294B2 (ja) 2003-04-04 2003-04-04 分光スペクトル光度計用試料保持体および分光光度計

Publications (2)

Publication Number Publication Date
JP2004309274A JP2004309274A (ja) 2004-11-04
JP3895294B2 true JP3895294B2 (ja) 2007-03-22

Family

ID=33465729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102160A Expired - Fee Related JP3895294B2 (ja) 2003-04-04 2003-04-04 分光スペクトル光度計用試料保持体および分光光度計

Country Status (1)

Country Link
JP (1) JP3895294B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100353171C (zh) * 2004-12-23 2007-12-05 中国科学院半导体研究所 用于电调制光致发光光谱测量的样品架
JP4696934B2 (ja) * 2006-01-27 2011-06-08 和光純薬工業株式会社 分析装置
JP6891391B2 (ja) * 2015-10-02 2021-06-18 ウシオ電機株式会社 光学測定器
JP6578188B2 (ja) * 2015-11-05 2019-09-18 ウシオ電機株式会社 光学測定器
CN106596244B (zh) * 2016-12-14 2023-06-23 宁海德宝立新材料有限公司 一种控温样品台
JP7072433B2 (ja) * 2018-04-24 2022-05-20 株式会社Ihiプラント タンクの液密度測定装置および方法
CN113533229A (zh) * 2021-06-25 2021-10-22 华东师范大学 一种分光光度计的便携式控温装置

Also Published As

Publication number Publication date
JP2004309274A (ja) 2004-11-04

Similar Documents

Publication Publication Date Title
US6992759B2 (en) Sample holder for spectrum measurement and spectrophotometer
JP3513485B2 (ja) サンプル間のクロストークを減少させるルミノメータ
US7307730B2 (en) Apparatus and method for measuring temperature dependent properties of liquid
JP3895294B2 (ja) 分光スペクトル光度計用試料保持体および分光光度計
Bravo-Suárez et al. Design characteristics of in situ and operando ultraviolet-visible and vibrational spectroscopic reaction cells for heterogeneous catalysis
CN116577317B (zh) 一种拉曼-激光剥蚀-质谱的联用检测装置及联用检测方法
US20130088232A1 (en) Solid-State NMR Spectrometer, Sample Holder Therefor, and Method of Solid-State NMR Spectroscopy
KR101710090B1 (ko) Uv-led 광원기반의 휴대용 형광 측정 장치 및 uv-led 광원을 이용한 형광 측정 방법
JP3895317B2 (ja) 分光光度計用試料保持体および分光光度計
JP2004128509A (ja) 低温で基板を試験するプローバ
JP3763405B2 (ja) スペクトル測定用試料保持体、分光光度計、およびスペクトル測定方法
US10890523B2 (en) Multi-temperature optical spectrometer modules, systems and methods of using the same
KR101504959B1 (ko) 액체 샘플 장착 장치, 액체 분광기 및 이를 이용한 액체 샘플의 광학 파라미터 검출 방법
CN217304869U (zh) 紫外可见微型光谱仪
KR102455161B1 (ko) 전기장과 자기장 및 led를 이용한 분광 장치
US8587779B2 (en) Spectrometer
CN113376098A (zh) 一种原位监测半导体材料成膜和结晶的监测装置及使用方法
Jones et al. Phase references and cell effects in photoacoustic spectroscopy
CN220399318U (zh) 一种超快差示扫描量热和激光拉曼光谱的联用测试装置
CN113390789A (zh) 用于低温超导磁体的腔内显微拉曼光谱测试系统、其测试方法和应用
Rouillé et al. Cavity ring-down laser absorption spectroscopy of jet-cooled L-tryptophan
JP2004347412A (ja) ゲル状試料用分光測定装置
CN117607058B (zh) 近红外双光源光热分析传感成像装置
WO2014005986A1 (en) An add-on system including a micro-reactor for an atr-ir spectrometer
CN118150507A (zh) 煤样检测系统及煤样检测方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees