JP3893875B2 - Anti-skid control device for four-wheel drive vehicle - Google Patents

Anti-skid control device for four-wheel drive vehicle Download PDF

Info

Publication number
JP3893875B2
JP3893875B2 JP2000396394A JP2000396394A JP3893875B2 JP 3893875 B2 JP3893875 B2 JP 3893875B2 JP 2000396394 A JP2000396394 A JP 2000396394A JP 2000396394 A JP2000396394 A JP 2000396394A JP 3893875 B2 JP3893875 B2 JP 3893875B2
Authority
JP
Japan
Prior art keywords
driving force
road surface
force distribution
wheel
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000396394A
Other languages
Japanese (ja)
Other versions
JP2002193085A (en
Inventor
亨 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000396394A priority Critical patent/JP3893875B2/en
Publication of JP2002193085A publication Critical patent/JP2002193085A/en
Application granted granted Critical
Publication of JP3893875B2 publication Critical patent/JP3893875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、4輪駆動車両の4輪同期ロックを防止するアンチスキッド制御装置に関する。
【0002】
【従来の技術】
車両が4輪駆動状態の場合、走行中にブレーキをかけると、路面状態が低μ路面ほど前後輪速度が同期して4輪同期ロックに至りやすい。この点を考慮した従来の4輪駆動車両のアンチスキッド制御装置としては、例えば、特開平10−6964号公報に記載されているような技術が知られている。
【0003】
上記公報によれば、4輪駆動車両のアンチスキッド制御装置は、車輪速度センサによって各車輪の車輪速度を検出し、その車輪速度から推定車体速度を求め、推定車体速度の減速度が所定値より大きい場合、前輪と後輪との車輪速度差(以下、前後輪速差ともいう)を求め、その車輪速度差が所定値より小さいとき、4輪同期ロックの状態にあると判断し、低μ路面に対応したアンチスキッド制御を実行するようになっていた。
【0004】
【発明が解決しようとする課題】
しかしながら、このような従来の4輪駆動車両のアンチスキッド制御装置は、車両の制動力の前後配分の設定のしかたによっては、前後輪の制動力が同じとなる領域が生じ、高μ路面の制動時にその領域で前後輪速差が小さくなる場合があるため、低μ路面での4輪同期ロックの状態であると誤判断してしまい、不要に低μ路面に対応したアンチスキッド制御を実行するおそれがあるという問題があった。
【0005】
また、制御1サイクル目において推定車体速度の減速度を固定値としている場合、制御1サイクル目では高μ路面での急制動のときと推定車体速度の減速度の区別がつかず、実際の車体減速度が高μ路面での急制動の時に、誤って低μ路面での4輪同期ロックの状態と判断してしまい、不要に低μ路面に対応したアンチスキッド制御を実行するおそれがある上、早期に低μ路面での4輪同期ロックの状態を判断し対応することができないという問題があった。
【0006】
また、推定車体速の減速度が所定値より大きいとき、すなわち制動開始してから、4輪同期ロックの状態にあると判断するので、減速度の所定値の設定の仕方によっては、その判断前に4輪同期ロックの状態に至るおそれもあるため、やはり未然に判断できることが好ましい。
【0007】
本発明は、このような従来の問題点に着目してなされたもので、制動開始の未然に路面状態の判断ができ、さらに路面状態の誤判断がなく、確実に4輪同期ロックを防止することができる4輪駆動車両のアンチスキッド制御装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記問題を解決するために、請求項1に係る4輪駆動車両の制御装置は、駆動源からの駆動力を前後輪に分配伝達し、アンチスキッド非制御中は前後輪の駆動力配分比率に差がある状態から前後輪回転速度差に応じて駆動力配分を算出して前輪と後輪との駆動力配分を制御する駆動力配分制御手段と、アンチスキッド制御手段と、を備える4輪駆動車両の制御装置において、
低μ路面を走行中であるか否かを判断する低μ路面判断手段を備え、前記低μ路面判断手段が低μ路面と判断し、かつアンチスキッド非制御中にブレーキ操作していると判断した場合には、アンチスキッド制御開始するまでの間、後輪の制動力の増加勾配を前輪に対し減少させ、
前記低μ路面判断手段は、エンジン出力トルク値が所定値以下で、かつ前後輪の駆動力配分状態が所定の配分比率値より前輪50%:後輪50%に近い配分比率値のときに、低μ路面と判断することを特徴とした。
【0009】
また、請求項2に係る4輪駆動車両の制御装置は、駆動源からの駆動力を前後輪に分配伝達し、アンチスキッド非制御中は前後輪の駆動力配分比率に差がある状態から前後輪回転速度差に応じて駆動力配分を算出して前輪と後輪との駆動力配分を制御する駆動力配分制御手段と、アンチスキッド制御手段と、を備える4輪駆動車両の制御装置において、
低μ路面を走行中であるか否かを判断する低μ路面判断手段を備え、前記低μ路面判断手段が低μ路面と判断し、かつアンチスキッド非制御中にブレーキ操作していると判断した場合には、アンチスキッド制御開始するまでの間、前後のうちのどちらか一方の輪への駆動力配分をゼロとする指令を前記駆動力配分制御手段へ出力し、
前記低μ路面判断手段は、エンジン出力トルク値が所定値以下で、かつ前後輪の駆動力配分状態が所定の配分比率値より前輪50%:後輪50%に近い配分比率値のときに、低μ路面と判断することを特徴とした。
【0011】
また、請求項に係る4輪駆動車両のアンチスキッド制御装置は、請求項1または請求項2に記載の4輪駆動車両のアンチスキッド制御装置において、低μ路面判断に用いるエンジン出力トルク値と駆動力配分比率値との少なくとも一方は、それぞれの複数の過去の値の平均を取った移動平均値とすることを特徴とした。
【0012】
【発明の効果】
請求項1に係る発明によれば、ブレーキ操作開始からアンチスキッド制御開始までの間、後輪の制動力の増加勾配を前輪に対し減少させることで、前輪に対し後輪の車輪速度をずらすことができるため、前後輪速の同期を防いで、確実に4輪同期ロックを防止することができるという効果が得られる。
【0013】
また、請求項2に係る発明によれば、ブレーキ操作開始からアンチスキッド制御開始までの間、前後輪のどちらか一方への駆動力配分をゼロにすることで、前後輪の締結力をなくし、前後輪速の同期を防いで、確実に4輪同期ロックを防止することができるという効果が得られる。
【0014】
また、請求項1または請求項2の発明において、エンジン出力トルク値と前後輪の駆動力配分状態とから低μ路面であるか否かを判断することができるため、制動開始前であっても未然に低μ路面判断することができ、また車両の制動力の前後配分の設定のしかたに影響されず確実に低μ路面判断できるという効果が得られる。
【0015】
また、請求項に係る発明によれば、請求項1または請求項2の発明において、エンジン出力トルク値が、ラフなアクセル操作や路面の凸凹によるアクセル開度変動により不安定となる場合や、駆動力配分比率値が低μ路面において頻繁に変動し不安定となる場合であっても、それぞれの移動平均値を用いることによって値が安定するため、それらの外乱などによる過渡的な値に振られることなく安定した制御が可能となるという効果が得られる。
【0016】
【発明の実施の形態】
まず、本発明の第一の実施の形態を図面に基づいて説明する。図1は本発明の実施の形態の全体構成を示す図である。また、本実施の形態は、通常は後輪を駆動する2輪駆動を基本に4輪駆動可能な車両について説明する。
【0017】
図中、4輪駆動車両のエンジン1の出力は、トランスミッション2を介して駆動力配分制御アクチュエーター3で前後輪の駆動力配分を行い、フロントプロペラシャフト4とリヤプロペラシャフト5に伝達する。フロントプロペラシャフト4に伝達された駆動力はフロントデフ6と前軸7とを介して右前輪10FR,左前輪10FLに伝達される。同様に、リヤプロペラシャフト5に伝達された駆動力はリヤデフ8と後軸9とを介して右後輪10RR,左後輪10RLに伝達される。
【0018】
車両の各車輪10FR,10FL,10RR,10RLには車輪速度センサー12FR,12FL,12RR,12RLが備えられ、それぞれの検出値をアンチスキッド制御コントローラ13へ出力する。
【0019】
また、エンジン1の吸気スロットル開度を検出する、すなわちエンジン出力トルク推定値を検出するためのスロットル開度センサー14と、ブレーキ操作の有無を検出するブレーキスイッチ15とは、それぞれの検出値をアンチスキッド制御コントローラ13へ出力する。
【0020】
また、駆動力配分制御コントローラ11とアンチスキッド制御コントローラ13とは、通信線により互いに通信可能となっており、駆動力配分制御コントローラ11はアンチスキッド制御コントローラ13から車輪速度センサー12FR,12FL,12RR,12RLの検出値を入力し、例えば本出願人が先に提案した第2534732号特許公報の図9の演算処理にしたがって、通常は前後輪の駆動力配分比率が前輪0%:後輪100%の状態から、前後輪回転速度差に応じて駆動力配分指令値を算出し駆動力配分制御アクチュエーター3へ出力し、駆動力配分制御アクチュエーター3は例えば油圧クラッチの締結力を制御することで、前輪への駆動力配分を制御する。なお、アンチスキッド制御実行中には前後輪の駆動力配分比率が前輪0%:後輪100%の状態とするようにしている。このような演算処理を通常の駆動力配分制御ルーチンとして実行している。また、算出した駆動力配分指令値をアンチスキッド制御コントローラ13へも出力するようになっている。
【0021】
また、アンチスキッド制御コントローラ13は、例えば本出願人が先に提案した特開平8−324415号公報の図5の演算処理にしたがって、入力した車輪速度センサー12FR,12FL,12RR,12RLの検出値から車輪速度を算出し、車輪速度からスリップ率を算出するとともに、車輪加速度を算出し、これら車輪速度、車輪加速度、及び基準スリップ率を満足する目標車輪速度に基づいてアンチスキッドアクチュエーター16に対する制御信号を出力し、各車輪がロックしないようにホイルシリンダ17FR,17FL,17RR,17RLの液圧を制御する。このような演算処理を通常のアンチスキッド制御ルーチンとして実行している。
【0022】
次に、作用を図2に基づいて説明する。図2は本発明の第一の実施の形態の制御処理の概要を示すフローチャート図である。この図2の演算処理は、前述したアンチスキッド制御の演算処理と同じ所定サンプリング時間△T毎のタイマ割り込みとして実行される。
【0023】
まず、ステップS1にてアンチスキッド制御コントローラ13は、後輪パルス増圧フラグが0であるか否かを判断し、0の場合は、ステップS2へ移行する。0でない場合は、ステップS14へ移行する。ステップS2では、車輪速度センサー12FR,12FL,12RR,12RLが検出した各検出値を入力し、車輪速度を算出し、ステップS3にて駆動力配分制御コントローラ11へ出力する。駆動力配分制御コントローラ11は、入力した各車輪速度を基に前後輪の車輪速度差を算出し、その車輪速度差に応じて駆動力配分比率指令値を算出する。
【0024】
そして、ステップS4にてアンチスキッド制御コントローラ13は、駆動力配分制御コントローラ11から駆動力配分比率指令値を入力し、ステップS5にて入力した駆動力配分比率指令値から駆動力配分比率指令値の移動平均値を算出する。駆動力配分比率指令値の移動平均値の算出は、例えば過去の980msec前から140msec刻みに現在までの8つのスロットル開度検出値の平均値を算出する。16ビットのマイクロコンピューターの場合、データ構成上8つのデータであるとシフト演算しやすい。なお、もちろん8つのデータの平均値でなくともよく、過去100msecの間のデータを演算周期の10msec刻みで10ケのデータの平均値としたり、過去1000msecの間のデータを間引きして25ケのデータの平均値としてもよい。よって、車両特性やチューニング思想により制御の応答性と安定性とのバランスをとりながら設定すればよい。
【0025】
そして、ステップS6にてスロットル開度センサー14が出力するスロットル開度信号を入力し、ステップS7にて読込んだスロットル開度信号からスロットル開度移動平均値を算出する。
【0026】
スロットル開度移動平均値の算出は、駆動力配分比率指令値の移動平均値と同様に、例えば過去の700msec前から100msec刻みに現在までの8つのスロットル開度検出値の平均値を算出する。16ビットのマイクロコンピューターの場合、データ構成上8つのデータであるとシフト演算しやすい。なお、もちろん8つのデータの平均値でなくともよく、過去100msecの間のデータを演算周期の10msec刻みで10ケのデータの平均値としたり、過去1000msecの間のデータを間引きして25ケのデータの平均値としてもよい。よって、車両特性やチューニング思想により制御の応答性と安定性とのバランスをとりながら設定すればよい。
【0027】
そして、ステップS8にてステップS5で算出した駆動力配分比率指令値の移動平均値が所定の配分比率値より前輪50%:後輪50%の比率に近いか否かを判断する。例えば、所定の配分比率値が前輪25%:後輪75%とした場合、仮にステップS5で算出した駆動力配分比率指令値の移動平均値が前輪40%:後輪60%であれば、所定の配分比率値より前輪50%:後輪50%の比率に近いと判断し、また仮にステップS5で算出した駆動力配分比率指令値の移動平均値が前輪10%:後輪90%であれば、所定の配分比率値より前輪50%:後輪50%の比率に近くないと判断する。所定の配分比率値より前輪50%:後輪50%の比率に近いと判断した場合はステップS9に移行し、所定の配分比率値より前輪50%:後輪50%の比率に近くないと判断した場合は、リターンに至る。
【0028】
次にステップS9にてステップS7で算出したスロットル開度移動平均値が所定値以下(例えばスロットル開度1/4以下)、すなわちエンジン出力トルク推定値の移動平均値が所定値以下であるか否かを判断する。なお、エンジン出力トルクが大きいとき、すなわちアクセル全開のときには、高μ路面であっても、ステップS5で算出した駆動力配分比率指令値の移動平均値が、所定の配分比率値より前輪50%:後輪50%の比率に近いと判断する場合があるため、エンジン出力トルクが小さく、かつ駆動力配分比率指令値の移動平均値が所定の配分比率値より前輪50%:後輪50%の比率に近い場合、すなわち低μ路面であるために駆動力配分比率が変化している場合に、低μ路面であることを判断する。ステップS9にて所定値以下と判断した場合は、ステップS10に移行し、所定値より大きいと判断した場合は、リターンに至る。
【0029】
次にステップS10にてアンチスキッド制御実行中か否かを判断する。アンチスキッド制御実行していなと判断した場合は、ステップS11に移行し、アンチスキッド制御実行中と判断した場合は、アンチスキッド制御ルーチンへ至る。
【0030】
ステップS11では、ブレーキスイッチ15からの出力がONかOFFか判断する。ONの場合は、ステップS12に移行して後輪パルス増圧フラグ=1とし、ステップS13にて、後輪のみパルス増圧する、すなわち後輪の制動力の増加勾配を前輪に対し減少させる制御をアンチスキッドアクチュエーター16に指令する。ステップS11で、ブレーキスイッチ15からの出力がOFFの場合は、リターンに至る。
【0031】
また、ステップS14では、アンチスキッド制御実行中か否かを判断する。アンチスキッド制御実行していなと判断した場合は、ステップS2に移行し、アンチスキッド制御実行中と判断した場合は、ステップS15にて後輪パルス増圧フラグをクリアして、アンチスキッド制御ルーチンへ至る。
【0032】
更に図3に基づいて説明する。図3は本発明の第一の実施の形態のタイムチャート図である。ここで、図3aには車体速度Vcar,前右輪速度VwFR,後右輪速度VwRRの各経時変化を、同図bには前後輪の駆動力配分指令値の経時変化を、同図cには前後輪の駆動力配分指令値の移動平均値の経時変化を、同図dにはスロットル開度信号値の経時変化を、同図eにはスロットル開度信号値の移動平均値の経時変化を、同図fには低μ判定フラグを、同図gにはブレーキスイッチを、同図hにはアンチスキッド制御作動フラグを、同図iには前輪ホイルシリンダの液圧,後輪ホイルシリンダの液圧の経時変化を示している。
【0033】
また、前左輪17FL,後左輪17RLは、前右輪17FR,後右輪17RRと同様に変化し、それに対して同様の制御が行われ、その制御に対して、前述した演算処理が同様に行われたものとする。
【0034】
まず、走行中に路面が低μ路面になると、スロットル開度が大きくなくとも前後輪速差が生じ、前輪の駆動力配分比率が増加し後輪の駆動力配分比率が減少する。よって、図3bに示す駆動力配分指令値は、前後輪速差に応じて前輪50%:後輪50%の方向へ変動する。また、低μ路面に入ったことで頻繁に駆動力配分指令値が前輪50%:後輪50%の方向へ変動するため、時間の経過とともに、図3cに示す駆動力配分指令値の移動平均値は増加してくる。また、低μ路面のためドライバーがアクセルを多く操作しないため、図3dに示すスロットル開度信号値は大きな値を検出していない。また、それに伴い図3eに示すスロットル開度信号値の移動平均値も所定値の1/4開度以下のままである。
【0035】
そして、増加してくる駆動力配分比率の移動平均値が所定の比率の前輪25%:後輪75%より前輪50%:後輪50%に近い状態で、かつスロットル開度移動平均値が所定値の1/4開度以下であるt1の時点で、低μ路面を走行していると判断し、図3fに示す低μ判定フラグが1となる。
【0036】
その後、上記の状態で、ブレーキスイッチがONとなったt2の時点で、まだアンチスキッド制御は実行されていないので、後輪パルス増圧要と判断し、後輪パルス増圧を実行させる。後輪パルス増圧を実行させると、後輪の制動液圧は前輪に対し遅れて増加するため、前後輪の車輪速度の同期を避けられ4輪同期ロックを防止することができる。
【0037】
なお、前輪をパルス増圧しても良いが、もともと前輪は後輪に比べ制動力配分が大きいため、短時間であっても前輪パルス増圧による制動力不足になるおそれがあるため好ましくない。
【0038】
その後、図3aに示す前右輪速度VwFRがアンチスキッド制御しきい値(図中の減圧しきい値)以下となり、アンチスキッド制御開始となったt3の時点で、後輪パルス増圧フラグがクリアされると共に、後輪パルス増圧制御指令は解除され通常のアンチスキッド制御ルーチンへと移行しアンチスキッド制御を実行する。
なお、t3の時点で通常の駆動力配分制御ルーチンにより前輪への駆動力は配分されなくなり、前輪0%:後輪100%の配分比率となる。
【0039】
次に、本発明の第二の実施の形態について説明する。全体構成は第一の実施の形態の図1と同様である。
【0040】
次に、作用を図4に基づいて説明する。図4は本発明の第二の実施の形態の制御処理の概要を示すフローチャート図である。この図4の演算処理は、図2の演算処理と同様に前述したアンチスキッド制御の演算処理と同じ所定サンプリング時間△T毎のタイマ割り込みとして実行される。
【0041】
なお、ステップS22からステップS31までおよびステップS34の処理は第一の実施の形態のステップS2からステップS11までおよびステップS14の処理と同様で、第一の実施の形態のステップS1、ステップS12、ステップS13、ステップS15に相当するステップS21、ステップS32、ステップS33、ステップS35の処理が異なる。以下、第一の実施の形態と異なるステップについてのみ説明する。
【0042】
ステップS21では、前輪への駆動力配分をゼロとする指令フラグが0か否かを判断する。0の場合はステップS22へ移行し、0でない場合はステップS34へ移行する。
【0043】
また、ステップS31にてブレーキスイッチ15からの出力がONの場合は、ステップS32に移行して前輪の駆動力配分比率をゼロ(前輪0%:後輪100%)とする駆動力配分比率ゼロ指令フラグ=1とし、前輪の駆動力配分比率をゼロとする指令を駆動力配分制御コントローラ11へ出力する。
【0044】
なお、後輪の駆動力配分比率をゼロ(前輪100%:後輪0%)としてもかまわない。
【0045】
また、ステップS34にてアンチスキッド制御実行中と判断した場合は、ステップS35に移行し駆動力配分比率ゼロ指令フラグをクリアすると共に、前輪の駆動力配分比率をゼロとする指令を解除して通常の駆動力配分制御ルーチンへと移行する。
【0046】
なお、通常の駆動力配分制御ルーチンにおいて、アンチスキッド制御中は前輪の駆動力配分比率をゼロとするのであれば、前輪の駆動力配分比率をゼロとする指令を解除せず継続する処理としてもよい。
【0047】
更に図5に基づいて説明する。図5は本発明の第二の実施の形態のタイムチャート図である。図示の条件は前記図3と同様である。
【0048】
まず、走行中に路面が低μ路面になると、スロットル開度が大きくなくとも前後輪速差が生じ、前輪の駆動力配分比率が増加し後輪の駆動力配分比率が減少する。よって、図5bに示す駆動力配分指令値は、前後輪速差に応じて前輪50%:後輪50%の方向へ変動する。また、低μ路面に入ったことで頻繁に駆動力配分指令値が前輪50%:後輪50%の方向へ変動するため、時間の経過とともに、図3cに示す駆動力配分指令値の移動平均値は増加してくる。また、低μ路面のためドライバーがアクセルを多く操作しないため、図5dに示すスロットル開度信号値は大きな値を検出していない。また、それに伴い図5eに示すスロットル開度信号値の移動平均値も所定値の1/4開度以下のままである。
【0049】
そして、増加してくる駆動力配分比率の移動平均値が所定の比率の前輪25%:後輪75%より前輪50%:後輪50%に近い状態で、かつスロットル開度移動平均値が所定値の1/4開度以下であるt11の時点で、低μ路面を走行していると判断し、図5fに示す低μ判定フラグが1となる。
【0050】
その後、上記の状態で、ブレーキスイッチがONとなったt12の時点で、まだアンチスキッド制御は実行されていないので、前輪の駆動力配分比率をゼロとする必要ありと判断し、前輪の駆動力配分比率をゼロとする指令を駆動力配分制御コントローラ11へ出力することで、前輪の駆動力配分比率をゼロとする駆動力配分制御を実行させる。その結果、2輪駆動車両と同様に前後輪の締結力がなくなるため、前後輪の車輪速度は同期することがなく4輪同期ロックを防止することができる。
【0051】
その後、図5aに示す前右輪速度VwFRがアンチスキッド制御しきい値(図中の減圧しきい値)以下となり、アンチスキッド制御開始となったt13の時点で、駆動力配分比率ゼロ指令フラグをクリアし、前輪の駆動力配分比率をゼロとする指令を解除して通常の駆動力配分制御ルーチンへと移行すると共に、アンチスキッド制御を実行する。
【0052】
なお、t13の時点で前輪の駆動力配分比率をゼロとする指令を解除するが、通常の駆動力配分制御ルーチンにより、制動中には2輪駆動傾向となる駆動力配分に制御されるので前輪への駆動力は配分されなくなり、前輪0%:後輪100%の配分比率となる。よって、結果的に制動開始してから実行している前輪の駆動力配分比率をゼロとする制御を通常の駆動力配分制御ルーチンによって継続される。
【0053】
以上説明したように、本発明を実施することで、駆動力配分制御手段を備える4輪駆動車両において、制動開始前であっても未然に低μ路面判断することができ、また車両の制動力の前後配分の設定の仕方や、制御1サイクル目の推定車体速度の減速度が固定値か否かに、関わらず、確実に低μ路面判断することができるため、低μ路面での4輪同期ロックを確実に防止することができる。
【0054】
また、図2の演算処理のステップS8〜ステップS9および図4の演算処理のステップS28〜ステップS29が、本発明の低μ路面判断手段を構成している。
なお、上記実施の形態では、エンジン1の吸気スロットル開度を検出するスロットル開度センサー14の出力を用いた場合について説明したが、アクセル開度センサーや所定の開度でONとなるアクセル開度スイッチの出力を用いてもよいし、またエンジンへの燃料噴射量やエンジン回転数などのエンジン情報からエンジン出力トルクを推定算出して実施してもよい。
【0055】
また、上記実施の形態では、駆動力配分制御コントローラ11とアンチスキッド制御コントローラ13とが別体で通信によって繋がれている場合について説明したが、もちろんコントローラが一体であっても構わないし、アンチスキッド制御コントローラ13が、駆動力配分制御コントローラ11へ駆動力配分をゼロとする指令を出力する替わりに、駆動力配分制御コントローラ11自体が低μ路面を判断するための情報を得て低μ路面か否かを判断することで、駆動力配分制御の中で同様な処理を実行させても構わない。
【0056】
なお、上記実施の形態では、通常は後輪を駆動する2輪駆動を基本に4輪駆動可能な車両について説明したが、駆動力配分を制御できる4輪駆動可能な車両であれば他の形態であっても適用可能である。
【図面の簡単な説明】
【図1】本発明の実施の形態の全体構成を示す図である。
【図2】本発明の第一の実施の形態の制御フローチャート図である。
【図3】本発明の第一の実施の形態のタイムチャート図である。
【図4】本発明の第二の実施の形態の制御フローチャート図である。
【図5】本発明の第二の実施の形態のタイムチャート図である。
【符号の説明】
1:エンジン
3:駆動力配分制御アクチュエーター
11:駆動力配分制御コントローラ
12FR,12FL,12RR,12RL:車輪速度センサー
13:アンチスキッド制御コントローラ
14:スロットル開度センサー
15:ブレーキスイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anti-skid control device for preventing a four-wheel synchronous lock of a four-wheel drive vehicle.
[0002]
[Prior art]
When the vehicle is in a four-wheel drive state, if the brake is applied during traveling, the front and rear wheel speeds are synchronized and the four-wheel synchronous lock is likely to occur when the road surface state is low μ road surface. As a conventional anti-skid control device for a four-wheel drive vehicle in consideration of this point, for example, a technique described in Japanese Patent Laid-Open No. 10-6964 is known.
[0003]
According to the above publication, the anti-skid control device for a four-wheel drive vehicle detects the wheel speed of each wheel by the wheel speed sensor, obtains the estimated vehicle speed from the wheel speed, and the deceleration of the estimated vehicle speed is greater than a predetermined value. If it is larger, the wheel speed difference between the front wheels and the rear wheels (hereinafter also referred to as the front and rear wheel speed difference) is obtained, and when the wheel speed difference is smaller than a predetermined value, it is determined that the four-wheel synchronous lock is in effect, and the low μ Anti-skid control corresponding to the road surface was executed.
[0004]
[Problems to be solved by the invention]
However, in such a conventional anti-skid control device for a four-wheel drive vehicle, depending on the setting of the front-rear distribution of the braking force of the vehicle, an area where the braking force of the front and rear wheels is the same is generated, and braking on a high μ road surface is caused. Sometimes the difference between the front and rear wheel speeds may be small in that region, so it is erroneously determined that the four-wheel synchronous lock is on the low μ road surface, and anti-skid control corresponding to the low μ road surface is executed unnecessarily. There was a problem of fear.
[0005]
Also, if the deceleration of the estimated vehicle speed is fixed in the first control cycle, the actual vehicle body cannot be distinguished in the first control cycle between sudden braking on a high μ road surface and the estimated vehicle speed deceleration. When sudden braking is performed on a road surface with a high μ road, it may be erroneously determined as a four-wheel synchronous lock on a low road surface, and anti-skid control corresponding to a low road surface may be executed unnecessarily. There is a problem that the state of the four-wheel synchronous lock on the low μ road surface cannot be determined and dealt with early.
[0006]
In addition, when the estimated vehicle speed deceleration is greater than a predetermined value, that is, after starting braking, it is determined that the four-wheel synchronous lock is in effect. In addition, since there is a possibility of reaching a four-wheel synchronous lock state, it is preferable that the determination can be made in advance.
[0007]
The present invention has been made paying attention to such a conventional problem, and can determine the road surface state before the start of braking, and further prevents erroneous determination of the road surface state and reliably prevents four-wheel synchronous lock. An object of the present invention is to provide an anti-skid control device for a four-wheel drive vehicle.
[0008]
[Means for Solving the Problems]
To solve the above problems, the control device of a four-wheel drive vehicle according to claim 1, the driving force from the driving source to distribute transmitted to front and rear wheels, during antiskid uncontrolled driving force distribution ratio between the front and rear wheels 4 wheels comprising driving force distribution control means for controlling the driving force distribution between the front wheels and the rear wheels by calculating the driving force distribution according to the difference between the front and rear wheel rotational speeds from the state where there is a difference between the two wheels, and the anti-skid control means in the control device for a drive vehicle,
A low μ road surface judging means for judging whether or not the vehicle is traveling on a low μ road surface is provided, the low μ road surface judging means judges that the road surface is a low μ road surface, and judges that the brake is being operated during anti-skid non-control. In that case, until the anti-skid control starts, the increase gradient of the braking force of the rear wheel is decreased with respect to the front wheel,
The low μ road surface judging means has an engine output torque value equal to or less than a predetermined value, and when the driving force distribution state of the front and rear wheels is a distribution ratio value closer to the front wheel 50%: rear wheel 50% than the predetermined distribution ratio value, The road surface is judged to be a low μ road surface.
[0009]
Further, from the state control device for a four-wheel drive vehicle according to claim 2, the driving force from the driving source to distribute transmitted to front and rear wheels, during antiskid uncontrolled there is a difference in the driving force distribution ratio between the front and rear wheels a driving force distribution control means for controlling the driving force distribution between the front and rear wheels to calculate the driving force distribution in accordance with the front and rear wheel rotational speed difference, the control device of a four-wheel drive vehicle equipped with anti-skid control means, the In
A low μ road surface judging means for judging whether or not the vehicle is traveling on a low μ road surface is provided, the low μ road surface judging means judges that the road surface is a low μ road surface, and judges that the brake is being operated during anti-skid non-control. In that case, until the start of anti-skid control, a command to zero the driving force distribution to either of the front and rear wheels is output to the driving force distribution control means,
The low μ road surface judging means has an engine output torque value equal to or less than a predetermined value, and when the driving force distribution state of the front and rear wheels is a distribution ratio value closer to the front wheel 50%: rear wheel 50% than the predetermined distribution ratio value, The road surface is judged to be a low μ road surface.
[0011]
An anti-skid control device for a four-wheel drive vehicle according to claim 3 is the anti-skid control device for a four-wheel drive vehicle according to claim 1 or 2, wherein the engine output torque value used for low μ road surface judgment is At least one of the driving force distribution ratio values is a moving average value obtained by averaging each of a plurality of past values.
[0012]
【The invention's effect】
According to the first aspect of the invention, the wheel speed of the rear wheel is shifted with respect to the front wheel by decreasing the increase gradient of the braking force of the rear wheel with respect to the front wheel from the start of the brake operation to the start of the anti-skid control. Therefore, it is possible to prevent the synchronization of the front and rear wheel speeds and to reliably prevent the four-wheel synchronization lock.
[0013]
Further, according to the invention according to claim 2, between the start of braking operation and the start of anti-skid control, the driving force distribution to either one of the front and rear wheels is made zero, thereby eliminating the fastening force of the front and rear wheels. It is possible to prevent the synchronization of the front and rear wheel speeds and to reliably prevent the four-wheel synchronization lock.
[0014]
Further, in the invention Motomeko 1 or claim 2, it is possible to determine whether the low μ road surface and a driving force distribution state of the engine output torque value and the front and rear wheels, a front start braking However, the low μ road surface can be determined in advance, and the low μ road surface can be surely determined without being affected by the setting of the front / rear distribution of the braking force of the vehicle.
[0015]
Further, according to the invention according to claim 3 , in the invention of claim 1 or 2 , the engine output torque value becomes unstable due to a rough accelerator operation or a change in accelerator opening due to unevenness of the road surface, Even if the driving force distribution ratio value fluctuates frequently on the low μ road surface and becomes unstable, the value is stabilized by using each moving average value. The effect that the stable control becomes possible without being obtained is obtained.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
First, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an overall configuration of an embodiment of the present invention. In the present embodiment, a vehicle capable of four-wheel drive based on two-wheel drive that normally drives the rear wheels will be described.
[0017]
In the figure, the output of the engine 1 of the four-wheel drive vehicle is transmitted to the front propeller shaft 4 and the rear propeller shaft 5 by distributing the driving force of the front and rear wheels by the driving force distribution control actuator 3 via the transmission 2. The driving force transmitted to the front propeller shaft 4 is transmitted to the right front wheel 10FR and the left front wheel 10FL via the front differential 6 and the front shaft 7. Similarly, the driving force transmitted to the rear propeller shaft 5 is transmitted to the right rear wheel 10RR and the left rear wheel 10RL via the rear differential 8 and the rear shaft 9.
[0018]
Each wheel 10FR, 10FL, 10RR, 10RL of the vehicle is provided with a wheel speed sensor 12FR, 12FL, 12RR, 12RL, and outputs each detected value to the anti-skid control controller 13.
[0019]
Further, the throttle opening sensor 14 for detecting the intake throttle opening of the engine 1, that is, the engine output torque estimation value, and the brake switch 15 for detecting the presence or absence of the brake operation, each detect the detected value. Output to the skid controller 13.
[0020]
The driving force distribution control controller 11 and the anti-skid control controller 13 can communicate with each other through a communication line. The driving force distribution control controller 11 receives wheel speed sensors 12FR, 12FL, 12RR, The detection value of 12 RL is input, and the driving force distribution ratio of the front and rear wheels is normally set to 0% for the front wheels: 100% for the rear wheels, for example, according to the arithmetic processing of FIG. 9 of the Japanese Patent No. 2534732 previously proposed by the present applicant. From the state, a driving force distribution command value is calculated according to the front and rear wheel rotational speed difference and output to the driving force distribution control actuator 3. The driving force distribution control actuator 3 controls, for example, the engaging force of the hydraulic clutch to the front wheels. To control the driving force distribution. During the execution of the anti-skid control, the driving force distribution ratio of the front and rear wheels is set to a state where the front wheel is 0% and the rear wheel is 100%. Such calculation processing is executed as a normal driving force distribution control routine. Further, the calculated driving force distribution command value is also output to the anti-skid control controller 13.
[0021]
Further, the anti-skid control controller 13 can detect the detected values of the wheel speed sensors 12FR, 12FL, 12RR, and 12RL according to the arithmetic processing of FIG. 5 of Japanese Patent Application Laid-Open No. 8-324415 previously proposed by the applicant. The wheel speed is calculated, the slip ratio is calculated from the wheel speed, the wheel acceleration is calculated, and a control signal for the anti-skid actuator 16 is generated based on the target wheel speed that satisfies the wheel speed, the wheel acceleration, and the reference slip ratio. The hydraulic pressure of the wheel cylinders 17FR, 17FL, 17RR, 17RL is controlled so that the wheels are not locked. Such calculation processing is executed as a normal anti-skid control routine.
[0022]
Next, the operation will be described with reference to FIG. FIG. 2 is a flowchart showing an outline of the control processing according to the first embodiment of this invention. The arithmetic processing in FIG. 2 is executed as a timer interrupt every predetermined sampling time ΔT, which is the same as the anti-skid control arithmetic processing described above.
[0023]
First, in step S1, the anti-skid controller 13 determines whether or not the rear wheel pulse pressure increase flag is 0. If it is 0, the process proceeds to step S2. If it is not 0, the process proceeds to step S14. In step S2, the detection values detected by the wheel speed sensors 12FR, 12FL, 12RR, and 12RL are input, the wheel speed is calculated, and output to the driving force distribution controller 11 in step S3. The driving force distribution controller 11 calculates a wheel speed difference between the front and rear wheels based on the input wheel speeds, and calculates a driving force distribution ratio command value according to the wheel speed difference.
[0024]
In step S4, the anti-skid controller 13 receives the driving force distribution ratio command value from the driving force distribution controller 11, and the driving force distribution ratio command value is calculated from the driving force distribution ratio command value input in step S5. Calculate the moving average value. The moving average value of the driving force distribution ratio command value is calculated by, for example, calculating the average value of the eight throttle opening detection values up to the present in 140 msec increments from the past 980 msec. In the case of a 16-bit microcomputer, it is easy to perform a shift operation if the data is 8 data. Of course, it may not be the average value of the eight data. The data for the past 100 msec is averaged for 10 data in 10 msec increments of the calculation cycle, or the data for the past 1000 msec is thinned to obtain 25 data. It is good also as an average value of data. Therefore, it may be set while balancing the response and stability of the control according to the vehicle characteristics and the tuning concept.
[0025]
In step S6, the throttle opening signal output from the throttle opening sensor 14 is input, and the throttle opening moving average value is calculated from the throttle opening signal read in step S7.
[0026]
The calculation of the throttle opening moving average value is similar to the moving average value of the driving force distribution ratio command value, for example, by calculating the average value of eight throttle opening detection values from the previous 700 msec before to the present every 100 msec. In the case of a 16-bit microcomputer, it is easy to perform a shift operation if the data is 8 data. Of course, it may not be the average value of the eight data. The data for the past 100 msec is averaged for 10 data in 10 msec increments of the calculation cycle, or the data for the past 1000 msec is thinned to obtain 25 data. It is good also as an average value of data. Therefore, it may be set while balancing the response and stability of the control according to the vehicle characteristics and the tuning concept.
[0027]
Then, in step S8, it is determined whether or not the moving average value of the driving force distribution ratio command value calculated in step S5 is closer to the ratio of the front wheel 50%: rear wheel 50% than the predetermined distribution ratio value. For example, if the predetermined distribution ratio value is 25% for the front wheels: 75% for the rear wheels, if the moving average value of the driving force distribution ratio command value calculated in step S5 is 40% for the front wheels: 60% for the rear wheels, the predetermined distribution ratio value is predetermined. If the moving average value of the driving force distribution ratio command value calculated in step S5 is 10% for the front wheels: 90% for the rear wheels, it is determined that the ratio is 50% for the front wheels and 50% for the rear wheels. Then, it is determined that the ratio is not close to the ratio of front wheel 50%: rear wheel 50% from a predetermined distribution ratio value. If it is determined that the front wheel 50% is closer to the rear wheel 50% than the predetermined distribution ratio value, the process proceeds to step S9, and it is determined that the front wheel 50% is less than the rear wheel 50% than the predetermined distribution ratio value. If you do, you will return.
[0028]
Next, in step S9, whether or not the throttle opening moving average value calculated in step S7 is not more than a predetermined value (for example, throttle opening 1/4 or less), that is, whether or not the moving average value of the estimated engine output torque is not more than a predetermined value. Determine whether. When the engine output torque is large, that is, when the accelerator is fully open, the moving average value of the driving force distribution ratio command value calculated in step S5 is 50% of the front wheels from the predetermined distribution ratio value even on a high μ road surface: Since it may be determined that the ratio of the rear wheels is close to 50%, the engine output torque is small, and the moving average value of the driving force distribution ratio command value is a ratio of the front wheels 50% to the rear wheels 50% from a predetermined distribution ratio value. If the driving force distribution ratio changes because the road surface is low, it is determined that the road surface is low μ. If it is determined in step S9 that the value is equal to or smaller than the predetermined value, the process proceeds to step S10. If it is determined that the value is larger than the predetermined value, the process returns.
[0029]
Next, in step S10, it is determined whether or not anti-skid control is being executed. If it is determined that the anti-skid control is not being executed, the process proceeds to step S11. If it is determined that the anti-skid control is being executed, the process proceeds to an anti-skid control routine.
[0030]
In step S11, it is determined whether the output from the brake switch 15 is ON or OFF. If it is ON, the process proceeds to step S12 to set the rear wheel pulse pressure increase flag = 1, and in step S13, control is performed to increase the pressure of only the rear wheel, that is, to reduce the increase gradient of the braking force of the rear wheel relative to the front wheel. Command the anti-skid actuator 16. If the output from the brake switch 15 is OFF in step S11, the process returns.
[0031]
In step S14, it is determined whether or not anti-skid control is being executed. If it is determined that the anti-skid control is not being executed, the process proceeds to step S2. If it is determined that the anti-skid control is being executed, the rear wheel pulse pressure increasing flag is cleared in step S15, and the process proceeds to the anti-skid control routine. It reaches.
[0032]
Further description will be given with reference to FIG. FIG. 3 is a time chart of the first embodiment of the present invention. Here, FIG. 3a shows changes with time of the vehicle body speed Vcar, front right wheel speed VwFR, and rear right wheel speed VwRR, FIG. 3b shows changes with time of the driving force distribution command values for the front and rear wheels, and FIG. Is the change over time of the moving average value of the driving force distribution command values for the front and rear wheels, FIG. D is the change over time of the throttle opening signal value, and FIG. E is the change over time of the moving average value of the throttle opening signal value. Fig. 8f shows a low μ determination flag, Fig. G shows a brake switch, Fig. H shows an anti-skid control operation flag, Fig. I shows the hydraulic pressure of the front wheel cylinder, and the rear wheel wheel cylinder. The change with time of the hydraulic pressure is shown.
[0033]
Further, the front left wheel 17FL and the rear left wheel 17RL change in the same manner as the front right wheel 17FR and the rear right wheel 17RR, and the same control is performed on the same, and the above-described arithmetic processing is performed in the same manner. It shall be
[0034]
First, when the road surface becomes a low μ road surface during traveling, even if the throttle opening is not large, a front-rear wheel speed difference occurs, the front wheel driving force distribution ratio increases, and the rear wheel driving force distribution ratio decreases. Therefore, the driving force distribution command value shown in FIG. 3b varies in the direction of front wheel 50%: rear wheel 50% in accordance with the front and rear wheel speed difference. Further, since the driving force distribution command value frequently fluctuates in the direction of 50% front wheel: 50% rear wheel due to entering the low μ road surface, the moving average of the driving force distribution command value shown in FIG. The value will increase. Further, since the driver does not operate the accelerator much because of the low μ road surface, the throttle opening signal value shown in FIG. 3d does not detect a large value. Accordingly, the moving average value of the throttle opening signal value shown in FIG. 3e also remains below the 1/4 opening of the predetermined value.
[0035]
The moving average value of the increasing driving force distribution ratio is closer to the predetermined ratio of the front wheel 25%: rear wheel 75% than the front wheel 50%: rear wheel 50%, and the throttle opening moving average value is predetermined. It is determined that the vehicle is traveling on a low μ road surface at time t1 that is equal to or less than ¼ of the value, and the low μ determination flag shown in FIG.
[0036]
Thereafter, at the time t2 when the brake switch is turned on in the above state, the anti-skid control has not been executed yet, so it is determined that the rear wheel pulse pressure increase is necessary, and the rear wheel pulse pressure increase is executed. When the rear wheel pulse pressure increase is executed, the brake fluid pressure of the rear wheel increases with a delay with respect to the front wheel, so that synchronization of the wheel speeds of the front and rear wheels can be avoided and four-wheel synchronization lock can be prevented.
[0037]
Although the front wheels may be pressure-intensified, the front wheels originally have a larger distribution of braking force than the rear wheels, which is not preferable because the braking force may be insufficient due to the front wheel pulse pressure increase even for a short time.
[0038]
After that, the front right wheel speed VwFR shown in FIG. 3a becomes equal to or lower than the anti-skid control threshold value (decompression threshold value in the figure), and the anti-skid control is started at time t3, the rear wheel pulse pressure increase flag is cleared. At the same time, the rear wheel pulse pressure increase control command is canceled and the routine proceeds to a normal anti-skid control routine to execute anti-skid control.
At time t3, the driving force is not distributed to the front wheels by the normal driving force distribution control routine, and the distribution ratio is 0% for the front wheels: 100% for the rear wheels.
[0039]
Next, a second embodiment of the present invention will be described. The overall configuration is the same as in FIG. 1 of the first embodiment.
[0040]
Next, the operation will be described with reference to FIG. FIG. 4 is a flowchart showing an outline of the control processing according to the second embodiment of the present invention. The arithmetic processing of FIG. 4 is executed as a timer interrupt every predetermined sampling time ΔT, which is the same as the arithmetic processing of the anti-skid control described above, similarly to the arithmetic processing of FIG.
[0041]
The processing from step S22 to step S31 and step S34 is the same as the processing from step S2 to step S11 and step S14 in the first embodiment, and step S1, step S12, step in the first embodiment. Steps S21, S32, S33, and S35 corresponding to S13 and S15 are different. Only the steps different from those of the first embodiment will be described below.
[0042]
In step S21, it is determined whether or not a command flag for setting the driving force distribution to the front wheels to zero is zero. If it is 0, the process proceeds to step S22. If it is not 0, the process proceeds to step S34.
[0043]
If the output from the brake switch 15 is ON in step S31, the process proceeds to step S32 and the driving force distribution ratio zero command is set to zero (front wheel 0%: rear wheel 100%). A command to set the flag = 1 and set the driving force distribution ratio of the front wheels to zero is output to the driving force distribution controller 11.
[0044]
The driving force distribution ratio of the rear wheels may be zero (front wheel 100%: rear wheel 0%).
[0045]
If it is determined in step S34 that the anti-skid control is being executed, the process proceeds to step S35, the driving force distribution ratio zero command flag is cleared, and the command to set the driving force distribution ratio of the front wheels to zero is canceled and normal. Shifts to the driving force distribution control routine.
[0046]
In the normal driving force distribution control routine, if the driving force distribution ratio of the front wheels is set to zero during anti-skid control, the command for continuing the driving force distribution ratio of the front wheels to zero can be continued without canceling the command. Good.
[0047]
Further description will be given with reference to FIG. FIG. 5 is a time chart of the second embodiment of the present invention. The illustrated conditions are the same as those in FIG.
[0048]
First, when the road surface becomes a low μ road surface during traveling, even if the throttle opening is not large, a front-rear wheel speed difference occurs, the front wheel driving force distribution ratio increases, and the rear wheel driving force distribution ratio decreases. Therefore, the driving force distribution command value shown in FIG. 5b varies in the direction of front wheel 50%: rear wheel 50% in accordance with the front and rear wheel speed difference. Further, since the driving force distribution command value frequently fluctuates in the direction of 50% front wheel: 50% rear wheel due to entering the low μ road surface, the moving average of the driving force distribution command value shown in FIG. The value will increase. Further, since the driver does not operate many accelerators due to the low μ road surface, the throttle opening signal value shown in FIG. 5d does not detect a large value. Accordingly, the moving average value of the throttle opening signal value shown in FIG. 5e also remains below the 1/4 opening of the predetermined value.
[0049]
The moving average value of the increasing driving force distribution ratio is closer to the predetermined ratio of the front wheel 25%: rear wheel 75% than the front wheel 50%: rear wheel 50%, and the throttle opening moving average value is predetermined. It is determined that the vehicle is traveling on a low μ road surface at time t11 that is equal to or less than ¼ opening of the value, and the low μ determination flag shown in FIG.
[0050]
After that, at the time t12 when the brake switch is turned on in the above state, the anti-skid control is not yet executed, so it is determined that the driving force distribution ratio of the front wheels needs to be zero, and the driving force of the front wheels is determined. By outputting a command for setting the distribution ratio to zero to the driving force distribution control controller 11, the driving force distribution control for setting the front wheel driving force distribution ratio to zero is executed. As a result, since the fastening force of the front and rear wheels is lost as in the two-wheel drive vehicle, the wheel speeds of the front and rear wheels are not synchronized, and the four-wheel synchronous lock can be prevented.
[0051]
After that, when the front right wheel speed VwFR shown in FIG. 5a is equal to or lower than the anti-skid control threshold value (decompression threshold value in the figure) and the anti-skid control starts, the driving force distribution ratio zero command flag is set. The command is cleared, the command to set the driving force distribution ratio of the front wheels to zero is canceled and the routine proceeds to a normal driving force distribution control routine, and anti-skid control is executed.
[0052]
Although the command to set the front wheel driving force distribution ratio to zero is canceled at time t13, the front wheel is controlled by the normal driving force distribution control routine so that the driving force distribution tends to drive two wheels during braking. The driving force is not distributed, and the distribution ratio is 0% for the front wheels and 100% for the rear wheels. Therefore, as a result, the control that makes the driving force distribution ratio of the front wheels executed after the start of braking zero is continued by the normal driving force distribution control routine.
[0053]
As described above, by implementing the present invention, in a four-wheel drive vehicle equipped with a driving force distribution control means, it is possible to make a low μ road surface determination even before the start of braking, and the braking force of the vehicle. Regardless of how to set the front / rear distribution and whether the deceleration of the estimated vehicle speed in the first control cycle is a fixed value, it is possible to reliably determine the low μ road surface. Synchronization lock can be reliably prevented.
[0054]
Further, steps S8 to S9 of the calculation process of FIG. 2 and steps S28 to S29 of the calculation process of FIG. 4 constitute the low μ road surface judging means of the present invention.
In the above-described embodiment, the case where the output of the throttle opening sensor 14 that detects the intake throttle opening of the engine 1 is used has been described. However, the accelerator opening sensor or the accelerator opening that is turned on at a predetermined opening is used. The output of the switch may be used, or the engine output torque may be estimated and calculated from engine information such as the amount of fuel injected into the engine and the engine speed.
[0055]
In the above-described embodiment, the case where the driving force distribution controller 11 and the anti-skid controller 13 are separately connected by communication has been described. Of course, the controller may be integrated, or the anti-skid controller. Instead of the controller 13 outputting a command to set the driving force distribution to zero to the driving force distribution controller 11, the driving force distribution controller 11 itself obtains information for determining the low μ road surface and determines whether the low μ road surface. By determining whether or not, similar processing may be executed in the driving force distribution control.
[0056]
In the above-described embodiment, a vehicle that can drive four wheels based on a two-wheel drive that normally drives the rear wheels has been described. Even so, it is applicable.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of an embodiment of the present invention.
FIG. 2 is a control flowchart of the first embodiment of the present invention.
FIG. 3 is a time chart of the first embodiment of the present invention.
FIG. 4 is a control flowchart of the second embodiment of the present invention.
FIG. 5 is a time chart of the second embodiment of the present invention.
[Explanation of symbols]
1: Engine 3: Driving force distribution control actuator 11: Driving force distribution control controller 12FR, 12FL, 12RR, 12RL: Wheel speed sensor 13: Anti-skid control controller 14: Throttle opening sensor 15: Brake switch

Claims (3)

駆動源からの駆動力を前後輪に分配伝達し、アンチスキッド非制御中は前後輪の駆動力配分比率に差がある状態から前後輪回転速度差に応じて駆動力配分を算出して前輪と後輪との駆動力配分を制御する駆動力配分制御手段と、アンチスキッド制御手段と、を備える4輪駆動車両の制御装置において、
低μ路面を走行中であるか否かを判断する低μ路面判断手段を備え、前記低μ路面判断手段が低μ路面と判断し、かつアンチスキッド非制御中にブレーキ操作していると判断した場合には、アンチスキッド制御開始するまでの間、後輪の制動力の増加勾配を前輪に対し減少させ、
前記低μ路面判断手段は、エンジン出力トルク値が所定値以下で、かつ前後輪の駆動力配分状態が所定の配分比率値より前輪50%:後輪50%に近い配分比率値のときに、低μ路面と判断することを特徴とする4輪駆動車両の制御装置。
The driving force from the driving source is distributed and transmitted to the front and rear wheels.During anti-skid non-control, the driving force distribution is calculated according to the front and rear wheel rotational speed difference from the state where the driving force distribution ratio of the front and rear wheels is different. a driving force distribution control means for controlling the driving force distribution between the rear wheels, and the anti-skid control means, the control apparatus of a four-wheel drive vehicle equipped with,
A low μ road surface judging means for judging whether or not the vehicle is traveling on a low μ road surface is provided, the low μ road surface judging means judges that the road surface is a low μ road surface, and judges that the brake is being operated during anti-skid non-control. In that case, until the anti-skid control starts, the increase gradient of the braking force of the rear wheel is decreased with respect to the front wheel,
The low μ road surface judging means has an engine output torque value equal to or less than a predetermined value, and when the driving force distribution state of the front and rear wheels is a distribution ratio value closer to the front wheel 50%: rear wheel 50% than the predetermined distribution ratio value, the control device of a four-wheel drive vehicle and determines that the low μ road surface.
駆動源からの駆動力を前後輪に分配伝達し、アンチスキッド非制御中は前後輪の駆動力配分比率に差がある状態から前後輪回転速度差に応じて駆動力配分を算出して前輪と後輪との駆動力配分を制御する駆動力配分制御手段と、アンチスキッド制御手段と、を備える4輪駆動車両の制御装置において、
低μ路面を走行中であるか否かを判断する低μ路面判断手段を備え、前記低μ路面判断手段が低μ路面と判断し、かつアンチスキッド非制御中にブレーキ操作していると判断した場合には、アンチスキッド制御開始するまでの間、前後のうちのどちらか一方の輪への駆動力配分をゼロとする指令を前記駆動力配分制御手段へ出力し、
前記低μ路面判断手段は、エンジン出力トルク値が所定値以下で、かつ前後輪の駆動力配分状態が所定の配分比率値より前輪50%:後輪50%に近い配分比率値のときに、低μ路面と判断することを特徴とする4輪駆動車両の制御装置。
The driving force from the driving source is distributed and transmitted to the front and rear wheels.During anti-skid non-control, the driving force distribution is calculated according to the front and rear wheel rotational speed difference from the state where the driving force distribution ratio of the front and rear wheels is different. a driving force distribution control means for controlling the driving force distribution between the rear wheels, and the anti-skid control means, the control apparatus of a four-wheel drive vehicle equipped with,
A low μ road surface judging means for judging whether or not the vehicle is traveling on a low μ road surface is provided, the low μ road surface judging means judges that the road surface is a low μ road surface, and judges that the brake is being operated during anti-skid non-control. In that case, until the start of anti-skid control, a command to zero the driving force distribution to either of the front and rear wheels is output to the driving force distribution control means,
The low μ road surface judging means has an engine output torque value equal to or less than a predetermined value, and when the driving force distribution state of the front and rear wheels is a distribution ratio value closer to the front wheel 50%: rear wheel 50% than the predetermined distribution ratio value, the control device of a four-wheel drive vehicle and determines that the low μ road surface.
前記低μ路面判断に用いるエンジン出力トルク値と駆動力配分比率値との少なくとも一方は、それぞれの複数の過去の値の平均を取った移動平均値とすることを特徴とする請求項1または請求項2に記載の4輪駆動車両のアンチスキッド制御装置。  The at least one of the engine output torque value and the driving force distribution ratio value used for the low μ road surface judgment is a moving average value obtained by averaging each of a plurality of past values. Item 4. An anti-skid control device for a four-wheel drive vehicle according to Item 2.
JP2000396394A 2000-12-27 2000-12-27 Anti-skid control device for four-wheel drive vehicle Expired - Fee Related JP3893875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000396394A JP3893875B2 (en) 2000-12-27 2000-12-27 Anti-skid control device for four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000396394A JP3893875B2 (en) 2000-12-27 2000-12-27 Anti-skid control device for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JP2002193085A JP2002193085A (en) 2002-07-10
JP3893875B2 true JP3893875B2 (en) 2007-03-14

Family

ID=18861695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000396394A Expired - Fee Related JP3893875B2 (en) 2000-12-27 2000-12-27 Anti-skid control device for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JP3893875B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4539198B2 (en) 2004-07-02 2010-09-08 株式会社アドヴィックス Vehicle motion state estimation device and vehicle motion control device

Also Published As

Publication number Publication date
JP2002193085A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
JP4396002B2 (en) Vehicle traction control device
JP4955482B2 (en) Driving force distribution control device for four-wheel drive vehicles
US10392008B2 (en) Control device for four-wheel drive vehicle
US20040267427A1 (en) Vehicle dynamics control apparatus
JPH0732905A (en) Differential limiting toque control device
JP3607985B2 (en) Vehicle body speed estimation device and control device
US5594648A (en) Antiskid control apparatus
JP2000344091A (en) Wheel speed abnormality detecting device
US20060052927A1 (en) Vehicle slip state determination system and traveling state control system
JP3410112B2 (en) Simulated vehicle speed calculation method for four-wheel drive vehicles
JP3893875B2 (en) Anti-skid control device for four-wheel drive vehicle
JP2004352166A (en) Behavior control device for four-wheel drive vehicle
JP3626568B2 (en) Control method in vehicle braking force control device
JP2004155303A (en) Braking force control device for vehicle
JPH082278A (en) Driving force control device for four-wheel drive vehicle
JP3582375B2 (en) 4 wheel drive vehicle
JP3239606B2 (en) Anti-skid controller for four-wheel drive vehicles
JP2507608B2 (en) Driving force distribution control device
JP3988968B2 (en) Traction control device
JP3738748B2 (en) Torque distribution control device for four-wheel drive vehicles
JP3426265B2 (en) Drive torque distribution control device
JP3802853B2 (en) Control method in vehicle braking force control apparatus
JP3551038B2 (en) Torque distribution device for four-wheel drive vehicles
JP2896383B2 (en) Vehicle driving force control device
JP2701308B2 (en) Differential limit torque control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060331

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees