JP3886662B2 - Case for electronic parts and electronic parts and electrolytic capacitors using the same - Google Patents

Case for electronic parts and electronic parts and electrolytic capacitors using the same Download PDF

Info

Publication number
JP3886662B2
JP3886662B2 JP09075499A JP9075499A JP3886662B2 JP 3886662 B2 JP3886662 B2 JP 3886662B2 JP 09075499 A JP09075499 A JP 09075499A JP 9075499 A JP9075499 A JP 9075499A JP 3886662 B2 JP3886662 B2 JP 3886662B2
Authority
JP
Japan
Prior art keywords
case
resin
electronic component
electronic parts
resin composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09075499A
Other languages
Japanese (ja)
Other versions
JP2000286170A (en
Inventor
俊彦 中村
慎一 曽我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP09075499A priority Critical patent/JP3886662B2/en
Publication of JP2000286170A publication Critical patent/JP2000286170A/en
Application granted granted Critical
Publication of JP3886662B2 publication Critical patent/JP3886662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Casings For Electric Apparatus (AREA)
  • Packaging Frangible Articles (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明品は各種素子を気密封止するための電子部品用ケースと、これを用いた電子部品、特に電解コンデンサーに関する。
【0002】
【従来の技術】
電解コンデンサーの構造は、図5に示すように、金属製のケース11内に電解コンデンサー素子15を配置し、これに接続する電極端子14、14を封口栓12で保持し、この封口栓12の周囲でケース11をかしめて固定したものである。また、上記電解コンデンサー素子15は陽極箔と陰極箔間にクラフト紙を介在させて巻回し、電解液を含浸したものであり、上記電極端子14、14は各陽極箔と陰極箔に接続している。
【0003】
ところで、この電解コンデンサーでは、内部の電解液や水蒸気が外部に漏れないようにシール性を維持する必要があるが、その反面、過大電流が流れるとケース11内で水素ガスが発生して内圧が増大し、ケース11が破損してしまうと問題がある。そこで、発生した水素ガスは逃がすが、電解液や水蒸気は逃がさないような構造が求められている。
【0004】
そのために、例えば上記封口栓12をポリサルファイド変性エポキシ樹脂等のガス選択透過樹脂で形成し、発生する水素ガスのみを外部に放出させることが行われている。
【0005】
【発明が解決しようとする課題】
ところが、上記のガス選択透過樹脂からなる封口栓12を用いた電解コンデンサーでは水素ガスの透過速度が遅く、急激なガス発生に対応できないため、内圧増大によるケース11の破損の恐れがあった。
【0006】
また、金属製のケース11と封口栓12とのかしめによる封止部におけるシール性が不十分であり、内部の電解液等が漏れてしまう恐れがあった。
【0007】
さらに、従来の電解コンデンサーは、電極端子14を備えた構造であり、表面実装することができなかった。
【0008】
【課題を解決するための手段】
そこで本発明は、各種素子を収納するためのケースにおいて、その一部に平均細孔径が0.01〜2μmの樹脂複合体からなるガス透過部を備えたことを特徴とする。
【0009】
また、本発明は、上記電子部品用ケースに各種素子を収納し、これと接続する電極端子をケースの外部表面に備えて電子部品を構成したことを特徴とする。
【0010】
さらに、本発明は、上記の電子部品用ケースに電解コンデンサー素子を収納し、これと接続する電極端子をケースの外部表面に備えて電解コンデンサーを構成したことを特徴とする。
【0011】
【作用】
本発明によれば、電子部品用ケースに平均細孔径が0.01〜2μmの樹脂複合体からなるガス透過部を備えたことによって、電解液や水蒸気は遮断するとともに、水素ガスを急激に逃がすことができ、内圧増大による破損の恐れをなくすることができる。
【0012】
また、ケース自体を樹脂複合体で形成すれば、シーラーを用いた気密封止が容易であり、さらに、ケース自体の表面に電極端子を備えれば表面実装も可能となる。
【0013】
【発明の実施の形態】
以下本発明の実施形態を図によって説明する。
【0014】
図1(a)に示す電子部品ケースは、収納部1aを備えたベース1とキャップ2から構成され、上記ベース1は緻密質樹脂複合体や、緻密質セラミックスからなり、キャップ2は全体が樹脂複合体で形成されてガス透過部3を成している。
【0015】
また、他の実施形態を図1(b)に示すように、キャップ2を緻密質樹脂複合体や、緻密質セラミックスで形成するとともに、その一部に樹脂複合体からなるガス透過部3を備えたものでも良い。
【0016】
次に、このケースを用いた電解コンデンサーを図2に示す。図1(a)のケースを用いて、ベースの収納部1aに電解コンデンサー素子5を収納し、これと接続する電極端子4aをベース1の貫通孔1bから下面に導出し、この下面の表面に外部端子4bを形成してある。さらに、ベース1の上面に、ガラスやシーラー等のシール材6を介してキャップ2を接合し、封止してある。
【0017】
上記ガス透過部3を成す樹脂複合体は図3に拡大図を示すように、互いに連する細孔32を有し、その細孔32の平均径が0.01〜2μmとなっているため、水素ガスは透過するが、電解液や水蒸気の透過は遮断することができる。そのため、過大電流が流れた時に収納部1a内のコンデンサー素子5で発生する水素ガスはガス透過部3を透過して外部へ逃がすことができるとともに、収納部1a内の電解液や水蒸気等を逃がすことなく、また外部から水蒸気等が浸水することも防止できる。
【0018】
ここで、ガス透過部3を成す樹脂複合体の平均細孔径を0.01〜2μmとしたのは、0.01μm未満では水素ガスの透過速度が極めて遅くなり、一方2μmを越えると、電解液が漏れてしまうためである。
【0019】
また、ガス透過部3の気孔率については5〜40%の範囲とすることが好ましい。これは、気孔率が5%未満では緻密化してガス透過ができず、一方40%を越えると樹脂複合体の加熱硬化時収縮が大きく寸法バラツキが大きくなるためである。
【0020】
なお、これらの平均細孔径や気孔率については、水銀圧入法により測定することができる。
【0021】
また、上記ガス透過部3を成す樹脂複合体の材質は、10〜70体積%の熱硬化性樹脂と、残部が平均粒径40μm以下のフィラーからなり、この原料粉末を常温にて所定形状に加圧成形した後、離型して100〜250℃で加熱硬化する工程からなる樹脂複合材料である。使用される熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、メラミン樹脂、シリコーン樹脂を用い、フィラーとしては、アルミナ、シリカ、ムライト、ステアタイト、フルステライト等を用いれば良い。
【0022】
そして、上記樹脂複合材を加熱硬化することによって、各粒子31が一部で接合した状態で硬化し、各粒子31間の隙間を細孔32とすることができる。
【0023】
このようにすれば、ガス透過部3を成す樹脂複合体は、各細孔32が互いに連鎖した構造となり、水素ガスを急速に透過させることができる。また、用いる粒子31のフィラー径を変化させることによって、細孔32の平均径を自由に調整することができるため、所定の平均細孔径を持ったガス透過部3を容易に得ることができる。例えば、上述したように平均細孔径が0.01〜2μmの範囲とするためには、用いる粒子31のフィラー径を1〜40μmの範囲としておけば良い。
【0024】
なお、上記ガス透過部3を成す樹脂複合材料の特性としては、荷重たわみ温度250℃以上、耐トラッキングとして200v以上を有する材料が好ましい。
【0025】
一方、ベース1や図1(b)の実施形態におけるキャップ2は、緻密質樹脂複合体で形成するが、その材質としては、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、メラミン樹脂、シリコーン樹脂等を用い、好ましくはガス透過部3を成す樹脂複合体と同種のものを用いる。
【0026】
また、図2のように、このベース1の表面に外部端子4bを形成する場合は、Cuメッキを樹脂複合体表面に施すことにより、容易に所定形状の外部端子4bを形成することができる。そして、この外部端子4をベース1の下面に形成してあることにより、この下面を回路基板上に載置して表面実装することができる。
【0027】
次に、本発明の実施形態を説明する。図4に示す電子部品は、リレーやスイッチ等の接点を成す素子23を収納したものであり、その電極端子24を保持する基体22を上述した樹脂複合体で形成して、ガス透過部としてある。また、この基体22を樹脂や金属等の蓋体21で覆って封止してある。上記接点を成す素子23からは放電によりオゾン等のガスが発生するが、ガス透過部を成す基体22から良好にガスを放出できる。
【0028】
さらに他の実施形態として、図5に示す構造の電解コンデンサーにおいて、封口栓12を上記樹脂複合体で形成することもできる。
【0029】
なお、以上の実施形態では電解コンデンサーや接点素子について述べたが、本発明の電子部品ケースは、これ以外に電気二重層コンデンサー等の各種素子を収納する用途に用いることができる。
【0030】
【実施例】
以下本発明の実施例を説明する。
【0031】
本発明の実施例として、図2に示す電解コンデンサーを製作した。ベース1は加熱硬化樹脂としてフェノールを使用し、フィラーとしてはアルミナを使用した。その配合比は、樹脂70体積%、アルミナ30体積%とした材料にて形成した。その寸法は7×5×4mmとした。ガス透過部を兼用するキャップ2は表1に示すような種々の平均細孔径を有する樹脂複合体で形成し、その寸法は7×5×1mmとした。上記ベース1の収納部1aにコンデンサー素子5を収納してエポキシ系のシール材6でキャップ2を接合して電解コンデンサーを得た。
【0032】
一方、比較例として図5に示す従来の電解コンデンサーを用意した。これらの電解コンデンサーを各々3個ずつ用意し、1A/個、電圧フリーの逆電圧試験を実施し、水素ガスを発生させて5分経過後の容器の破損発生率を調べた。また、内部の電解液の漏れの有無も調べた。
【0033】
結果は表1に示すように、図5に示す比較例の電解コンデンサーでは、生じた水素ガスを逃がす速度が遅いため、破損の発生率が高かった。
【0034】
また、図2に示す本発明の電解コンデンサーでも、ガス透過部3の平均細孔径が0.01μm未満のものでは、水素ガスを逃がしにくいことから破損発生率が高かった。一方、平均細孔径が2μmを越えるものでは、電解液の漏れが発生した
これらに対し、ガス透過部の平均細孔径を0.01〜2μmの範囲内とした本発明実施例では、水素ガスを急速に逃がすことができるため、破損発生率が低く、また電解液の漏れも生じないことから、極めて優れた結果であった。
【0035】
【表1】

Figure 0003886662
【0036】
【発明の効果】
以上のように本発明によれば、電子部品を収納するためのケースであって、その一部に平均細孔径が0.01〜2μmの樹脂複合体からなるガス透過部を備えたことによって、電解液や水蒸気は透過させずに、水素ガスのみを透過させることができる。
【0037】
また本発明は、上記の電子部品用ケースにコンデンサー素子を収納し、これと接続する電極端子をケースの外部表面に備えて電解コンデンサーを構成したことによって、過大電流が流れた場合に生じる水素ガスを急速に逃がすことができ、内圧増大によるケースの破損を防止できる。しかも、内部の電解液や水蒸気の漏れは遮断できることにより、コンデンサー素子を安定して保持することができる。
【0038】
さらに、ケースを樹脂複合体で形成してあり、その表面に電極端子を備えることによって、回路基板上に表面実装することも可能となる。
【図面の簡単な説明】
【図1】(a)(b)は本発明の電子部品用ケースを示す分解斜視図である。
【図2】本発明の電解コンデンサーを示す断面図である。
【図3】本発明の電子部品ケースのガス透過の拡大図である。
【図4】本発明の電子部品ケースの他の実施形態を示す断面図である。
【図5】従来の電解コンデンサーを示す断面図である。
【符号の説明】
1:ベース
1a:収納部
2:キャップ
3:ガス透過部
4a:電極端子
4b:外部電極
5:コンデンサー素子
6:シール材[0001]
BACKGROUND OF THE INVENTION
The product of the present invention relates to a case for an electronic component for hermetically sealing various elements, and an electronic component using the case, particularly an electrolytic capacitor.
[0002]
[Prior art]
As shown in FIG. 5, the electrolytic capacitor has a structure in which an electrolytic capacitor element 15 is disposed in a metal case 11, and electrode terminals 14 and 14 connected thereto are held by a sealing plug 12. The case 11 is caulked and fixed around. The electrolytic capacitor element 15 is wound with kraft paper interposed between the anode foil and the cathode foil and impregnated with an electrolyte solution. The electrode terminals 14 and 14 are connected to the anode foil and the cathode foil, respectively. Yes.
[0003]
By the way, in this electrolytic capacitor, it is necessary to maintain the sealing property so that the internal electrolytic solution and water vapor do not leak to the outside. On the other hand, when excessive current flows, hydrogen gas is generated in the case 11 and the internal pressure is increased. There is a problem if the case 11 is increased and the case 11 is damaged. Therefore, there is a demand for a structure that allows the generated hydrogen gas to escape but not the electrolyte or water vapor.
[0004]
For this purpose, for example, the sealing plug 12 is formed of a gas selective permeable resin such as polysulfide-modified epoxy resin, and only the generated hydrogen gas is released to the outside.
[0005]
[Problems to be solved by the invention]
However, the electrolytic capacitor using the sealing plug 12 made of the above gas selective permeable resin has a slow hydrogen gas permeation rate and cannot cope with rapid gas generation. Therefore, the case 11 may be damaged due to an increase in internal pressure.
[0006]
Moreover, the sealing property in the sealing part by the caulking between the metal case 11 and the sealing plug 12 is insufficient, and there is a possibility that the internal electrolyte or the like leaks.
[0007]
Furthermore, the conventional electrolytic capacitor has a structure including the electrode terminals 14 and cannot be surface-mounted.
[0008]
[Means for Solving the Problems]
Therefore, the present invention is characterized in that in a case for housing various elements, a gas permeable portion made of a resin composite having an average pore diameter of 0.01 to 2 μm is provided in a part thereof.
[0009]
In addition, the present invention is characterized in that an electronic component is configured by housing various elements in the electronic component case and providing electrode terminals connected to the device on the outer surface of the case.
[0010]
Furthermore, the present invention is characterized in that the electrolytic capacitor element is housed in the above-mentioned case for electronic parts, and an electrode terminal connected to this is provided on the outer surface of the case to constitute the electrolytic capacitor.
[0011]
[Action]
According to the present invention, by providing the electronic component case with a gas permeable portion made of a resin composite having an average pore diameter of 0.01 to 2 μm, the electrolytic solution and water vapor are blocked and hydrogen gas is allowed to escape rapidly. And the risk of damage due to increased internal pressure can be eliminated.
[0012]
Further, if the case itself is formed of a resin composite, airtight sealing using a sealer is easy, and surface mounting is also possible if an electrode terminal is provided on the surface of the case itself.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0014]
The electronic component case shown in FIG. 1 (a) is composed of a base 1 and a cap 2 provided with a storage portion 1a. The base 1 is made of a dense resin composite or a dense ceramic, and the cap 2 is entirely made of resin. The gas permeable part 3 is formed by a composite.
[0015]
Further, as shown in FIG. 1B, in another embodiment, the cap 2 is formed of a dense resin composite or a dense ceramic, and a gas permeable portion 3 made of the resin composite is provided in a part thereof. It may be good.
[0016]
Next, an electrolytic capacitor using this case is shown in FIG. Using the case of FIG. 1 (a), the electrolytic capacitor element 5 is housed in the housing portion 1a of the base, and the electrode terminal 4a connected thereto is led out from the through hole 1b of the base 1 to the lower surface, An external terminal 4b is formed. Further, the cap 2 is bonded to the upper surface of the base 1 through a sealing material 6 such as glass or sealer and sealed.
[0017]
As shown in the enlarged view of FIG. 3, the resin composite that forms the gas permeable portion 3 has pores 32 that are continuous with each other, and the average diameter of the pores 32 is 0.01 to 2 μm. Hydrogen gas permeates, but electrolyte and water vapor can be blocked. Therefore, hydrogen gas generated in the capacitor element 5 in the storage portion 1a when an excessive current flows can pass through the gas permeation portion 3 and escape to the outside, and also escapes the electrolyte, water vapor, etc. in the storage portion 1a. In addition, it is possible to prevent water vapor or the like from entering from the outside.
[0018]
Here, the average pore diameter of the resin composite constituting the gas permeable portion 3 is set to 0.01 to 2 μm. When the average pore diameter is less than 0.01 μm, the permeation rate of hydrogen gas is extremely slow. This is because it leaks.
[0019]
Further, the porosity of the gas permeable portion 3 is preferably in the range of 5 to 40%. This is because if the porosity is less than 5%, the resin cannot be densified and gas permeates, whereas if it exceeds 40%, the resin composite shrinks when heated and cured, resulting in large dimensional variations.
[0020]
These average pore diameters and porosity can be measured by mercury porosimetry.
[0021]
The material of the resin composite constituting the gas permeable part 3 is composed of 10 to 70% by volume of a thermosetting resin and the balance is a filler having an average particle size of 40 μm or less. It is a resin composite material composed of a step of mold-molding and then releasing and heat-curing at 100 to 250 ° C. As the thermosetting resin to be used, phenol resin, epoxy resin, polyimide resin, melamine resin, or silicone resin may be used, and as the filler, alumina, silica, mullite, steatite, fullsterite, or the like may be used.
[0022]
Then, by curing the resin composite material by heating, each particle 31 is cured in a partially bonded state, and the gaps between the particles 31 can be made into the pores 32.
[0023]
If it does in this way, the resin composite which comprises gas permeation | transmission part 3 becomes a structure where each pore 32 was mutually connected, and can permeate | transmit hydrogen gas rapidly. Further, since the average diameter of the pores 32 can be freely adjusted by changing the filler diameter of the particles 31 to be used, the gas permeation section 3 having a predetermined average pore diameter can be easily obtained. For example, as described above, in order to set the average pore diameter in the range of 0.01 to 2 μm, the filler diameter of the particles 31 to be used may be set in the range of 1 to 40 μm.
[0024]
In addition, as a characteristic of the resin composite material which comprises the said gas permeation | transmission part 3, the material which has a deflection temperature under load 250 degreeC or more and 200v or more as tracking resistance is preferable.
[0025]
On the other hand, the base 1 and the cap 2 in the embodiment of FIG. 1B are formed of a dense resin composite, and as the material thereof, phenol resin, epoxy resin, polyimide resin, melamine resin, silicone resin or the like is used. Preferably, the same type of resin composite as the gas permeable portion 3 is used.
[0026]
Further, as shown in FIG. 2, when the external terminal 4b is formed on the surface of the base 1, the external terminal 4b having a predetermined shape can be easily formed by applying Cu plating to the surface of the resin composite. Since the external terminals 4 are formed on the lower surface of the base 1, the lower surface can be mounted on the circuit board and surface-mounted.
[0027]
Next, an embodiment of the present invention will be described. The electronic component shown in FIG. 4 accommodates an element 23 that forms a contact point such as a relay or a switch, and the base 22 for holding the electrode terminal 24 is formed of the above-described resin composite to serve as a gas permeable portion. . The base 22 is covered and sealed with a lid 21 made of resin or metal. Although gas such as ozone is generated by the discharge from the element 23 forming the contact point, the gas can be favorably released from the base 22 forming the gas permeable portion.
[0028]
As still another embodiment, in the electrolytic capacitor having the structure shown in FIG. 5, the sealing plug 12 can be formed of the resin composite.
[0029]
In addition, although the electrolytic capacitor and the contact element were described in the above embodiment, the electronic component case of this invention can be used for the use which accommodates various elements, such as an electric double layer capacitor, in addition to this.
[0030]
【Example】
Examples of the present invention will be described below.
[0031]
As an example of the present invention, an electrolytic capacitor shown in FIG. 2 was manufactured. Base 1 used phenol as the thermosetting resin and alumina as the filler. The blending ratio was made of a material with 70 volume% resin and 30 volume% alumina. The dimensions were 7 × 5 × 4 mm. The cap 2 also serving as the gas permeable part was formed of resin composites having various average pore diameters as shown in Table 1, and the dimensions were 7 × 5 × 1 mm. The capacitor element 5 was housed in the housing portion 1a of the base 1, and the cap 2 was joined with an epoxy sealant 6 to obtain an electrolytic capacitor.
[0032]
On the other hand, a conventional electrolytic capacitor shown in FIG. 5 was prepared as a comparative example. Three each of these electrolytic capacitors were prepared, a 1A / piece, voltage-free reverse voltage test was performed, hydrogen gas was generated, and the rate of breakage of the container after 5 minutes was examined. In addition, the presence or absence of leakage of the internal electrolyte was also examined.
[0033]
As a result, as shown in Table 1, in the electrolytic capacitor of the comparative example shown in FIG. 5, the rate of releasing the generated hydrogen gas was slow, so the occurrence rate of breakage was high.
[0034]
Further, even in the electrolytic capacitor of the present invention shown in FIG. 2, when the average pore diameter of the gas permeation part 3 is less than 0.01 μm, the rate of breakage is high because hydrogen gas is difficult to escape. On the other hand, in the case where the average pore diameter exceeds 2 μm, leakage of the electrolytic solution occurred, whereas in the embodiment of the present invention in which the average pore diameter of the gas permeation portion is in the range of 0.01 to 2 μm, hydrogen gas is used. Since it can be released quickly, the rate of breakage is low and the electrolyte does not leak, which is an excellent result.
[0035]
[Table 1]
Figure 0003886662
[0036]
【The invention's effect】
As described above, according to the present invention, it is a case for storing an electronic component, and a gas permeable portion made of a resin composite having an average pore diameter of 0.01 to 2 μm is provided in a part thereof. Only hydrogen gas can be permeated without permeating the electrolyte and water vapor.
[0037]
Further, the present invention provides a hydrogen gas generated when an excessive current flows by accommodating a capacitor element in the above-described electronic component case and providing an electrolytic capacitor with electrode terminals connected to the case on the outer surface of the case. Can be released rapidly, and the case can be prevented from being damaged due to an increase in internal pressure. In addition, since the leakage of the internal electrolyte and water vapor can be blocked, the capacitor element can be stably held.
[0038]
Furthermore, the case is formed of a resin composite, and by providing electrode terminals on the surface thereof, it is possible to surface-mount on the circuit board.
[Brief description of the drawings]
FIGS. 1A and 1B are exploded perspective views showing a case for an electronic component according to the present invention.
FIG. 2 is a cross-sectional view showing an electrolytic capacitor of the present invention.
FIG. 3 is an enlarged view of gas permeation of the electronic component case of the present invention.
FIG. 4 is a cross-sectional view showing another embodiment of the electronic component case of the present invention.
FIG. 5 is a cross-sectional view showing a conventional electrolytic capacitor.
[Explanation of symbols]
1: Base 1a: Storage part 2: Cap 3: Gas permeation part 4a: Electrode terminal 4b: External electrode 5: Capacitor element 6: Sealing material

Claims (4)

各種素子の収納部を備えたベースと、粒径1〜40μmのフィラーと熱硬化性樹脂とを含んでなる樹脂複合体からなり、平均細孔径が0.01〜2μmのガス透過部を備えたキャップと、を有することを特徴とする電子部品用ケース。 A base provided with a housing portion for various elements , a resin composite comprising a filler having a particle size of 1 to 40 μm and a thermosetting resin, and a gas permeable portion having an average pore diameter of 0.01 to 2 μm A case for electronic parts , comprising: a cap ; 上記ベースは、緻密質樹脂複合体からなることを特徴とする請求項The base is made of a dense resin composite. 11 に記載の電子部品用ケース。The case for electronic components as described in 2. 請求項1または2記載の電子部品用ケースに各種素子を収納し、これと接続する外部端子を上記ケースの外部表面に備えたことを特徴とする電子部品。3. An electronic component comprising: a case for storing various elements in the case for an electronic component according to claim 1; and an external terminal connected to the element on an external surface of the case. 請求項1または2記載の電子部品用ケースにコンデンサー素子を収納し、これと接続する外部端子を上記ケースの外部表面に備えたことを特徴とする電解コンデンサー。3. An electrolytic capacitor characterized in that a capacitor element is housed in the electronic component case according to claim 1 and an external terminal connected to the capacitor element is provided on an external surface of the case.
JP09075499A 1999-03-31 1999-03-31 Case for electronic parts and electronic parts and electrolytic capacitors using the same Expired - Fee Related JP3886662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09075499A JP3886662B2 (en) 1999-03-31 1999-03-31 Case for electronic parts and electronic parts and electrolytic capacitors using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09075499A JP3886662B2 (en) 1999-03-31 1999-03-31 Case for electronic parts and electronic parts and electrolytic capacitors using the same

Publications (2)

Publication Number Publication Date
JP2000286170A JP2000286170A (en) 2000-10-13
JP3886662B2 true JP3886662B2 (en) 2007-02-28

Family

ID=14007408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09075499A Expired - Fee Related JP3886662B2 (en) 1999-03-31 1999-03-31 Case for electronic parts and electronic parts and electrolytic capacitors using the same

Country Status (1)

Country Link
JP (1) JP3886662B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4723927B2 (en) 2005-06-21 2011-07-13 富士通株式会社 Electrolytic capacitor
JP2013066877A (en) * 2011-09-26 2013-04-18 Toshiba Corp Oxygen decreasing element, oxygen decreasing device and refrigerator

Also Published As

Publication number Publication date
JP2000286170A (en) 2000-10-13

Similar Documents

Publication Publication Date Title
US3652902A (en) Electrochemical double layer capacitor
JPH11112157A (en) Case for electronic parts, and electronic parts using this, and electrolytic capacitor
EP2495744A1 (en) Capacitor
KR100859910B1 (en) Solid electrolytic capacitor
CN103490037B (en) Electrochemical appliance
KR100996915B1 (en) Solid electrolytic capacitor and method for preparing the same
JPH03225811A (en) Electric double layer capacitor
US6493209B1 (en) Stackable electrochemical capacitor cells
KR101730523B1 (en) Improved multi-layer composite getter
JP3886662B2 (en) Case for electronic parts and electronic parts and electrolytic capacitors using the same
CN201629232U (en) Novel structure of capacitor
JP2008085084A (en) Electric double layer capacitor
US3491269A (en) Construction for non-hermetic sealed solid electrolyte capacitor
JP2014195052A (en) Electrochemical cell and method of manufacturing the same
WO2023243626A1 (en) Electrolytic capacitor
JP2019075582A (en) Solid-state electrolytic capacitor
JPH0992584A (en) Solution leakage preventing structure of electrolytic capacitor
CN221200946U (en) Electrolytic capacitor
JPH03297120A (en) Electrolytic capacitor
WO2024062720A1 (en) Electrolytic capacitor and method for manufacturing same
JPS6258131B2 (en)
JP2001126959A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2024040910A (en) Film capacitor and method for manufacturing the same
KR101306598B1 (en) Package type EDLC
JPS60148107A (en) Electronic part

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees