WO2024062720A1 - Electrolytic capacitor and method for manufacturing same - Google Patents

Electrolytic capacitor and method for manufacturing same Download PDF

Info

Publication number
WO2024062720A1
WO2024062720A1 PCT/JP2023/024766 JP2023024766W WO2024062720A1 WO 2024062720 A1 WO2024062720 A1 WO 2024062720A1 JP 2023024766 W JP2023024766 W JP 2023024766W WO 2024062720 A1 WO2024062720 A1 WO 2024062720A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic capacitor
separator
fibers
glass
capacitor according
Prior art date
Application number
PCT/JP2023/024766
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤慎一郎
Original Assignee
エルナー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルナー株式会社 filed Critical エルナー株式会社
Publication of WO2024062720A1 publication Critical patent/WO2024062720A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to an electrolytic capacitor using a conductive polymer and a method for manufacturing the same.
  • An electrolytic capacitor has a structure in which an anode foil and a cathode foil, for example, aluminum foil, are wound around a capacitor element with an electrolyte impregnated with an electrolyte, and the capacitor element is assembled together with a sealing member into an exterior case.
  • Examples of aluminum electrolytic capacitors using conductive polymers include solid electrolytic capacitors that hold a conductive polymer within the capacitor element, and hybrid electrolytic capacitors that hold a conductive polymer and electrolyte within the capacitor element (patented). (See references 1 and 2).
  • separators such as cellulose fibers conventionally used in aluminum electrolytic capacitors using conductive polymers have low acid resistance and are decomposed by strongly acidic polymers.
  • separators for example, in the process of chemically polymerizing monomers with an oxidizing agent to generate a conductive polymer layer, there is a risk that the fibers of the separator will rapidly deteriorate due to the effects of chemical polymerization. There is.
  • the separator may be damaged due to elution of the conductive polymer after manufacturing. deteriorates rapidly.
  • the conductive polymer is likely to be eluted into the electrolytic solution contained in the separator.
  • the acidity of the electrolytic solution increases due to the conductive polymer eluted into the electrolytic solution from the conductive polymer layer, so the deterioration of the separator becomes faster and decomposition is promoted.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a highly reliable electrolytic capacitor that suppresses acidification of a separator, and a method for manufacturing the same.
  • the electrolytic capacitor of the present invention has a capacitor element in which an anode foil and a cathode foil are wound around a separator that holds a conductive polymer layer, and the separator has a porosity of 75 to 90 (%). It is characterized by being mainly made of glass fiber.
  • the glass fiber may have a porosity of 85 to 90 (%).
  • the separator may hold an electrolytic solution, and the average fiber diameter of the glass fibers may be 0.5 to 1 ( ⁇ m).
  • the glass fiber may include at least one of borosilicate glass, alkali-free borosilicate glass, and high silica glass.
  • the separator may include at least one of polyester fibers, polyethylene fibers, polypropylene fibers, aramid fibers, acrylic fibers, and cellulose fibers.
  • the separator may contain as a binder at least one of polyvinyl alcohol, polyvinyl butyral, polyvinylpyrrolidone, polyurethane, polyvinylidene fluoride, styrene-butadiene rubber, and acrylic resin.
  • the capacitor element may be impregnated with the electrolytic solution containing at least one of ethylene glycol, ⁇ -butyrolactone, and sulfolane.
  • the method for manufacturing an electrolytic capacitor of the present invention includes the steps of winding an anode foil and a cathode foil through a separator to produce a capacitor element, immersing the capacitor element in a dispersion or solution of a conductive polymer, and drying the capacitor element, and the separator is characterized by being mainly made of glass fiber with a porosity of 75 to 90 (%).
  • the glass fiber may have a porosity of 85 to 90 (%).
  • the above manufacturing method may further include a step of immersing the capacitor element in an electrolyte, and the average fiber diameter of the glass fibers may be 0.5 to 1 ( ⁇ m).
  • the glass fiber may include at least one of borosilicate glass, alkali-free borosilicate glass, and high silica glass.
  • the separator may include at least one of polyester fibers, polyethylene fibers, polypropylene fibers, aramid fibers, acrylic fibers, and cellulose fibers.
  • the separator may contain as a binder at least one of polyvinyl alcohol, polyvinyl butyral, polyvinylpyrrolidone, polyurethane, polyvinylidene fluoride, styrene-butadiene rubber, and acrylic resin.
  • the capacitor element may be impregnated with the electrolytic solution containing at least one of ethylene glycol, ⁇ -butyrolactone, and sulfolane.
  • FIG. 2 is a side view showing an example of an aluminum electrolytic capacitor.
  • FIG. 2 is a perspective view showing an example of a capacitor element. It is a figure showing an example of a manufacturing process of an aluminum electrolytic capacitor.
  • FIG. 1 is a side view showing an example of an aluminum electrolytic capacitor 1. As shown in FIG. In the paper of FIG. 1, a cross section of the inside of the aluminum electrolytic capacitor 1 is shown in the right half of the aluminum electrolytic capacitor 1 across the center line L.
  • Aluminum electrolytic capacitor 1 is a conductive polymer solid electrolytic aluminum capacitor (hereafter referred to as a solid electrolytic capacitor) or a conductive polymer hybrid aluminum electrolytic capacitor (hereafter referred to as a hybrid electrolytic capacitor).
  • Aluminum electrolytic capacitor 1 is mounted on an electronic circuit board and is used, for example, for coupling, decoupling, smoothing, etc.
  • the aluminum electrolytic capacitor 1 includes a capacitor element 10, a case 11, a sealing body 12, a seat plate 13, a pair of round bar parts 111, and a pair of lead parts 110.
  • the round bar part 111 and the lead part 110 are lead electrodes of the capacitor element 10, and the lead part 110 extends from the tip of the round bar part 111.
  • the other round bar part 111 is provided at a symmetrical position across the center line L.
  • the case 11 is made of aluminum and has a cylindrical shape with a closed upper opening. Case 11 covers capacitor element 10 and sealing body 12 and functions as an exterior of aluminum electrolytic capacitor 1 . Note that the shape of the case 11 is not limited to a cylindrical shape, but may be a rectangular tube shape.
  • the sealing body 12 is a substantially circular member made of an elastic member such as butyl rubber, for example.
  • the sealing body 12 is adjacent to the capacitor element 10 and seals the opening at the bottom of the case 11 .
  • the capacitor element 10 has a structure in which an anode foil, a cathode foil, and a separator (electrolytic paper) are layered and wound.
  • a pair of round bar portions 111 extend from the bottom of the capacitor element 10 .
  • the round bar portion 111 and the lead portion 110 are rod-shaped members made of aluminum or the like.
  • the pair of round bar parts 111 are respectively joined to the anode foil and the cathode foil by a joining means such as caulking, and function as an anode terminal and a cathode terminal of the aluminum electrolytic capacitor 1.
  • Each round bar portion 111 is inserted into a pair of through holes 120 formed in the sealing body 12, respectively. Although only one through hole 120 is shown in FIG. 1, the other through hole 120 is provided at a symmetrical position with the center line L interposed therebetween.
  • the lead portion 110 has a flat plate shape and is bent into an L shape, with its tip portion extending along the surface of the base plate 13.
  • the portion of the lead portion 110 on the round bar portion 111 side is inserted into the through hole 130 of the base plate 13.
  • the lead portion 110 is soldered to a pad on the electronic circuit board during the reflow process of the electronic circuit board.
  • the seat plate 13 is a plate-like member made of resin or the like, and is provided below the case 11 and the sealing body 12.
  • the seat plate 13 supports the case 11 and the sealing body 12 with respect to the electronic circuit board to be mounted.
  • the seat plate 13 is provided with a through hole 130 of the lead portion 110 and a groove portion 131 for accommodating the bent tip portion of the lead portion 110.
  • the groove portion 131 extends along the bottom surface of the seat plate 13 from near the center to the outside. Since the bottom surface of the seat plate 13 becomes the mounting surface of the aluminum electrolytic capacitor 1 on the electronic circuit board, it becomes possible to solder the plate-shaped lead portion 110 to the pad on the electronic circuit board.
  • a surface mount type aluminum electrolytic capacitor 1 is used, but the embodiments described later can also be applied to a lead type capacitor without a seat plate 13.
  • FIG. 2 is a perspective view showing an example of the capacitor element 10.
  • the capacitor element 10 includes a wound body 100 in which an anode foil 101, a cathode foil 102, and a separator (electrolytic paper) 103 are wound, and a pair of extraction electrodes 19 connected to the anode foil 101 and the cathode foil 102.
  • a pair of extraction electrodes 19 extend below the wound body 100.
  • the round bar portion 111 of each extraction electrode 19 is connected to the anode foil 101 and the cathode foil 102, respectively. Note that FIG. 2 shows the state before the lead portion 110 is bent and pressed into a flat plate shape.
  • the anode foil 101 and the cathode foil 102 are formed of valve metals such as aluminum, tantalum, titanium, and niobium, alloy foils thereof, vapor-deposited foils, and the like.
  • the surface of the anode foil 101 is etched to increase the electrode area.
  • the capacitor element 10 secures a predetermined capacitance.
  • an extremely thin oxide film is formed on the surface of the anode foil 101. Therefore, the anode foil 101 is insulated from other members.
  • the capacitor element 10 functions as a capacitor because the oxide film functions as a dielectric.
  • the surface of the cathode foil 102 has been subjected to etching treatment, no oxide film is formed thereon. Note that an oxide film, an inorganic layer, or a carbon layer may be formed on the surface of the cathode foil 102.
  • the separator 103 is wound while being sandwiched between the anode foil 101 and the cathode foil 102.
  • the separator 103 holds a conductive polymer in the case of a solid electrolytic capacitor, and holds a conductive polymer and an electrolyte in the case of a hybrid electrolytic capacitor.
  • the separator 103 is mainly formed of glass fibers with a porosity of 75 to 90 (%), and may contain other organic fibers, binders, etc. in addition to glass fibers. As described above, since the separator 103 is mainly made of glass fibers, it is less likely to become acidic than, for example, when cellulose fibers are used mainly.
  • the porosity of glass fiber is 75 to 90 (%).
  • the porosity is the ratio of the volume of voids to the volume of the entire fiber.
  • the ESR increases because the glass fibers cannot hold a sufficient amount of the conductive polymer and electrolyte.
  • the porosity exceeds 90 (%), the glass fibers can hold a sufficient amount of the conductive polymer and electrolyte, so the ESR is sufficiently reduced, but on the other hand, the separator 103 This is not suitable as it will not be able to maintain the necessary strength during winding.
  • the porosity of the glass fiber is 75 to 90 (%), the amount of the conductive polymer and electrolyte retained increases, and the ESR is appropriately reduced.
  • the porosity of the glass fiber is set to 85 to 90 (%), more conductive polymer can be retained, thereby further reducing ESR. This increases the reliability of the aluminum electrolytic capacitor 1.
  • the average fiber diameter of the glass fibers is 0.5 to 1 ( ⁇ m). If the fiber diameter exceeds 1 ( ⁇ m), the evaporation rate of the electrolyte becomes excessively high, and the density of the conductive polymer eluted from the conductive polymer layer into the electrolyte increases, resulting in acidification of the separator. proceed. On the other hand, when the fiber diameter is less than 0.5 ( ⁇ m), the retention of the conductive polymer deteriorates, which is not appropriate. Therefore, by setting the average fiber diameter of the glass fibers to 0.5 to 1 ( ⁇ m), evaporation of the electrolytic solution is appropriately suppressed and acidification is suppressed.
  • the thickness of the separator 103 is 40 ( ⁇ m). If the thickness of the separator 103 is less than 40 ( ⁇ m), it is excessively thin and has a low withstand voltage.
  • the glass fiber includes at least one of borosilicate glass, alkali-free borosilicate glass, and high silica glass.
  • the separator 103 may include at least one of polyester fibers, polyethylene fibers, polypropylene fibers, aramid fibers, acrylic fibers, and cellulose fibers. By including these materials in the separator 103, the advantages of excellent solvent resistance and improved mechanical strength such as tensile strength can be obtained.
  • the separator 103 may contain as a binder at least one of polyvinyl alcohol, polyvinyl butyral, polyvinylpyrrolidone, polyurethane, polyvinylidene fluoride, styrene-butadiene rubber, and acrylic resin.
  • binders By including these binders in the separator 103, advantages such as excellent solvent resistance and improved mechanical strength such as tensile strength can be obtained.
  • the separator 103 is impregnated with an electrolytic solution.
  • the solvent of the electrolyte may include at least one of ethylene glycol, ⁇ -butyrolactone, and sulfolane.
  • FIG. 3 is a diagram showing an example of the manufacturing process of the aluminum electrolytic capacitor 1.
  • the manufacturing process of the aluminum electrolytic capacitor 1 is an example of a method of manufacturing an electrolytic capacitor.
  • the manufacturing process of a hybrid electrolytic capacitor will be described, but the following step St6 is omitted in the method of manufacturing a solid electrolytic capacitor.
  • an anode foil 101, a cathode foil 102, and a separator 103 are prepared (step St1).
  • the surface of the anode foil 101 is etched, and an oxide film is further formed as a dielectric layer.
  • the separator 103 has a porosity of 75 to 90 (%) and is mainly made of glass fiber.
  • the porosity is preferably 85 to 90 (%).
  • the average fiber diameter of the glass fibers is 0.5 to 1 ( ⁇ m) from the viewpoint of good evaporation rate of the electrolytic solution and impregnation of the conductive polymer.
  • the thickness of the separator 103 is 40 ( ⁇ m).
  • the separator 103, the anode foil 101, the cathode foil 102, and the separator 103 are laminated in this order and wound, and the outer surface is fixed with a tape to produce the wound body 100 (Step St2).
  • the lead electrodes 19 are connected to appropriate positions of the anode foil 101 and the cathode foil 102, respectively. Examples of the connection means include, but are not limited to, caulking.
  • the wound body 100 is immersed in a conductive polymer dispersion containing water and an organic solvent for 20 minutes in a reduced pressure atmosphere, and then the wound body 100 is pulled up from the conductive polymer dispersion (Step St3). By doing so, the wound body 100 can be impregnated with the conductive polymer.
  • a conductive polymer solution may be used instead of the conductive polymer dispersion.
  • Step St4 the rolled body 100 is placed in a drying oven at, for example, 150 degrees and dried for 60 minutes.
  • a conductive path is formed by fixing the conductive polymers in the separator 103 to each other to generate a conductive polymer layer.
  • the wound body 100 is impregnated with a predetermined amount of electrolytic solution in a reduced pressure atmosphere (Step St5).
  • the electrolytic solution may be a mixture of a solute and a conductive polymer dispersion. That is, a conductive polymer dispersion can be used as an electrolyte. In that case, the impregnation with the electrolytic solution will be performed simultaneously with the impregnation with the conductive polymer.
  • the wound body 100 is housed in the case 11 and sealed with the sealing body 12 (step St6).
  • the extraction electrode 19 extending from the wound body 100 is inserted into the through hole 120 of the sealing body 12.
  • an aging process may be performed while applying the rated voltage to the capacitor element 10. In this manner, the manufacturing process of the aluminum electrolytic capacitor 1 is performed.
  • Sample No. 1 of aluminum electrolytic capacitor 1 was produced according to the above manufacturing method. 1 to 8 were produced. For comparison, sample No. 1 of an aluminum electrolytic capacitor in which the main body of the separator 103 is made of special rayon fiber (finely divided cellulose fiber) and cellulose fiber instead of glass fiber is shown. 9 and 10 were prepared, respectively. Sample No. The rated voltage and capacitance of 1 to 10 are 63 (V) and 56 ( ⁇ F), respectively. Further, the diameter of the case 11 was 10 (mm), and the height of the case 11 was 10 (mm). A specific method for manufacturing the aluminum electrolytic capacitor 1 will be described below.
  • the anode lead electrode was connected to the anode foil that had been etched and had an oxide film formed on it.
  • a cathode lead electrode was connected to a cathode foil that had a conductor layer on its end face and was pretreated to improve wettability.
  • a separator, a cathode foil, a separator, and an anode foil were laminated in this order, and each lead-out electrode was wound while being wound, and the outer surface was fixed with a tape to produce a wound body.
  • the thickness of the separator, the fiber diameter and porosity of the main fibers of the separator were varied for each sample.
  • the prepared wound body is immersed in an aqueous ammonium phosphate solution, and a predetermined voltage is applied to the anode foil while chemical conversion treatment is performed again at 85°C, thereby forming a dielectric layer mainly on the end face of the anode foil. was formed.
  • the wound body was immersed in a dispersion of a conductive polymer contained in a predetermined container in a reduced pressure atmosphere (-93 kPa), and then pulled up from the dispersion.
  • the rolled body impregnated with the conductive polymer was dried for 60 minutes in a drying oven at 150° C. to adhere the conductive polymers of each layer to each other to form conductive paths. In this way, a capacitor element functioning as a solid electrolytic capacitor was manufactured.
  • the capacitor element impregnated with the electrolytic solution was sealed to complete the electrolytic capacitor. Thereafter, an aging treatment was performed for a predetermined time at a predetermined temperature while applying a rated voltage.
  • Sample No. 1 to 10 were evaluated as solid electrolytic capacitors and hybrid electrolytic capacitors.
  • the ESR (m ⁇ ) of the solid electrolytic capacitor and the hybrid electrolytic capacitor were measured when the frequency of the electrolytic capacitor was 100 kHz in an environment of 20° C.
  • the amount of retained polymer (conductive polymer) (g) was measured as an evaluation of the solid electrolytic capacitor, and the rate of evaporation of the electrolyte at 150° C. (g/h) was measured as an evaluation of the hybrid electrolytic capacitor.
  • Table 1 shows the measurement results for the solid electrolytic capacitor
  • Table 2 shows the measurement results for the hybrid electrolytic capacitor.
  • Table 1 shows sample no. The evaluation results as solid electrolytic capacitors of 1 to 10 are shown below.
  • Sample No. The main body of separators 1 to 8 was glass fiber, and sample No. Separators No. 9 and No. 10 were mainly made of special rayon fiber and cellulose fiber, respectively. Further, the ratio of the weight of the main fiber to the weight of the entire separator (see weight ratio in Table 1) is as follows for sample No. 9 and 10 are 100 (%), and sample No. 4 was 65 (%), and the others were 75 (%).
  • the fiber diameter is the average diameter of the main fibers of the separator, and was measured by planar measurement of the separator at 5000 times magnification using a scanning electron microscope (SEM).
  • Sample No. The fiber diameter of samples 1 to 4, 6, and 8 was 0.5 ( ⁇ m), and sample No. The fiber diameter of sample No. 5 was 1.2 ( ⁇ m).
  • the fiber diameter of No. 7 was 1.0 ( ⁇ m).
  • Sample No. The fiber diameter of Sample No. 9 was 2.0 ( ⁇ m).
  • the fiber diameter of No. 10 was 5.0 ( ⁇ m).
  • sample No. The thickness of the separator of Sample No. 6 was 30 ( ⁇ m), and the thickness of the separator of the other samples was 40 ( ⁇ m).
  • the porosity of the separator was varied for each sample. Sample No. For Nos. 1 to 4 and 8, the higher the porosity of the separator, the higher the amount of polymer retained and the lower the ESR. However, sample no. 5 and 7 are sample nos. Although the porosity was lower than that of No. 4, the fiber diameter was larger and the impregnating property of the polymer was improved, so the amount of polymer retained was increased and the ESR was lowered. Also, sample No. 6 is sample No. Although the porosity was lower than that of No. 4, the ESR was lower because the thickness was thinner and the conductive path was shorter.
  • Sample No. which is a comparative example. Based on the ESR of 9 and 10, sample No. 9 and 10 of Example. The ESR of 1 to 8 was judged to be pass/fail (OK/NG) (see the judgment results in the table). Sample No. ESR of 1 to 7 is sample no. Since it was lower than the ESR of 9 and 10, it was determined to be OK. Also, sample No. 8 is sample No. The thickness is the same as that of sample No. 9. Although the porosity was higher than that of Sample 9, the ESR was high, so it was judged as NG. Furthermore, sample No. with a porosity of 90(%). 1 and sample No. 1 with a porosity of 85 (%). Since Sample No. 2 had a large amount of polymer retained, the ESR was further suitably reduced.
  • the ESR of 1 to 7 was suitably reduced.
  • the ESR of 1 and 2 was suitably reduced.
  • the thickness of sample No. 6 is thinner than the other samples No. 1 to 5, 7, and 8. Therefore, the withstand voltage of sample No. 6 is lower than the withstand voltage of sample No. 9 of the comparative example.
  • the withstand voltages of samples No. 1 to 5, 7, and 8 are greater than or equal to the withstand voltage of sample No. 9 of the comparative example. Therefore, it is preferable that the thickness of the separator is 40 ( ⁇ m).
  • Table 2 shows the evaluation results of samples No. 1 to 10 as hybrid electrolytic capacitors. The contents of Table 2 are the same except for the amount of electrolyte retained, ESR, electrolyte evaporation rate, and evaluation results.
  • sample No. for Nos. 1 to 4 and No. 8 the higher the porosity of the separator, the larger the amount of electrolyte retained and the lower the ESR.
  • sample no. 5 and 7 are sample nos. Although the porosity was lower than that of No. 4, the fiber diameter was larger and the polymer impregnability was improved, so the amount of electrolyte retained was increased and the ESR was lower.
  • sample No. 6 is sample No. Although the porosity was lower than that of No. 4, the ESR was lower because the thickness was thinner and the conductive path was shorter.
  • Sample No. which is a comparative example. Based on ESR of 9 and 10, sample No. 9 and 10 of Example. The ESR of 1 to 8 was judged to be pass/fail (OK/NG) (see the judgment results in the table). Sample No. ESR of 1 to 7 is sample no. Since it was lower than the ESR of 9 and 10, it was determined to be OK. Also, sample No. 8 is sample No. The thickness is the same as that of sample No. 9. Although the porosity was higher than that of Sample 9, the ESR was high, so it was determined to be NG.
  • samples No. 1 to 7 which have a porosity of 75 to 90%, was suitably reduced. Furthermore, samples No. 1 and 2, which have a porosity of 85 to 90%, had a greater reduction in ESR due to the larger amount of polymer retained.
  • the evaporation rate of the electrolyte becomes faster as the fiber diameter becomes larger. This is because as the fiber diameter increases, the contact area with the electrolyte decreases, resulting in a decrease in electrolyte retention. As the electrolytic solution evaporates, the acidity increases due to the density of the conductive polymer eluted from the conductive polymer layer into the electrolytic solution, so that the acidification of the separator progresses.
  • Sample No. which is a comparative example. Based on the transpiration rates of electrolytes No. 9 and No. 10, Sample No. Sample No. 1 to 8 has the largest fiber diameter.
  • the transpiration rate of the electrolyte in Sample No. 5 is as follows. The transpiration rate was higher than that of the electrolyte in No. 9. This is sample No. The fiber diameter of sample no. This is because it is larger than 1-4 or 6-8. On the other hand, other sample No.
  • the transpiration rates of electrolytes Nos. 1 to 4 and 6 to 8 are those of sample No. The transpiration rate was lower than that of electrolytes Nos. 9 and 10.
  • the average fiber diameter of the glass fibers 0.5 to 1 ( ⁇ m)
  • evaporation of the electrolytic solution was appropriately suppressed and acidification was suppressed.
  • a case where the average value of the fiber diameter is less than 0.5 ( ⁇ m) is not suitable because the impregnating property of the polymer decreases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

An electrolytic capacitor characterised by comprising a capacitor element in which an anode foil and a cathode foil are wound with a separator interposed therebetween, the separator being configured to hold a conductive polymer layer, the separator being mainly formed from glass fibers having a porosity of 75% to 90%.

Description

電解コンデンサ及びその製造方法Electrolytic capacitor and its manufacturing method
 本発明は、導電性高分子を用いた電解コンデンサ及びその製造方法に関する。 The present invention relates to an electrolytic capacitor using a conductive polymer and a method for manufacturing the same.
 電解コンデンサは、例えばアルミニウム箔の陽極箔及び陰極箔を、セパレータを介して巻回したコンデンサ素子に電解液を含浸し、封口体とともに外装ケース内に組み込んだ構造を有する。導電性高分子を用いるアルミ電解コンデンサとしては、コンデンサ素子内に導電性高分子を保持する固体電解コンデンサ、及びコンデンサ素子内に導電性高分子及び電解液を保持するハイブリッド電解コンデンサが挙げられる(特許文献1及び2参照)。 An electrolytic capacitor has a structure in which an anode foil and a cathode foil, for example, aluminum foil, are wound around a capacitor element with an electrolyte impregnated with an electrolyte, and the capacitor element is assembled together with a sealing member into an exterior case. Examples of aluminum electrolytic capacitors using conductive polymers include solid electrolytic capacitors that hold a conductive polymer within the capacitor element, and hybrid electrolytic capacitors that hold a conductive polymer and electrolyte within the capacitor element (patented). (See references 1 and 2).
特開2022-59471号公報Japanese Patent Application Publication No. 2022-59471 国際公開第2017/090241号International Publication No. 2017/090241
 例えば、導電性高分子を用いるアルミ電解コンデンサに従来から用いられるセルロース繊維などのセパレータは耐酸性が低いため、強酸性のポリマーにより分解される。この種のセパレータを用いて固体電解コンデンサを製造する場合、例えばモノマーを酸化剤により化学重合して導電性高分子層を生成する工程において、セパレータの繊維が化学重合の影響で急速に劣化するおそれがある。 For example, separators such as cellulose fibers conventionally used in aluminum electrolytic capacitors using conductive polymers have low acid resistance and are decomposed by strongly acidic polymers. When manufacturing solid electrolytic capacitors using this type of separator, for example, in the process of chemically polymerizing monomers with an oxidizing agent to generate a conductive polymer layer, there is a risk that the fibers of the separator will rapidly deteriorate due to the effects of chemical polymerization. There is.
 また、これとは異なり、導電性高分子の分散液にコンデンサ素子を浸漬して乾燥させることで導電性高分子層を生成した場合であっても、製造後の導電性高分子の溶出によりセパレータが急速に劣化する。例えば上記の分散液を用いて導電性高分子層を形成したハイブリッド電解コンデンサの場合、セパレータに含まれる電解液等に導電性高分子が溶出しやすい。電解液が蒸散するほど、導電性高分子層から電解液内に溶出する導電性高分子により電解液の酸性度が高くなるため、セパレータの劣化が速くなり分解が促進される。 In addition, unlike this, even if a conductive polymer layer is generated by immersing a capacitor element in a conductive polymer dispersion and drying it, the separator may be damaged due to elution of the conductive polymer after manufacturing. deteriorates rapidly. For example, in the case of a hybrid electrolytic capacitor in which a conductive polymer layer is formed using the above dispersion liquid, the conductive polymer is likely to be eluted into the electrolytic solution contained in the separator. As the electrolytic solution evaporates, the acidity of the electrolytic solution increases due to the conductive polymer eluted into the electrolytic solution from the conductive polymer layer, so the deterioration of the separator becomes faster and decomposition is promoted.
 このようにセパレータが酸性化することにより分解が進むにつれ、例えば導電性高分子の保持量の低下が進んでESRが増加するおそれがある。さらには、電解液の保持量も低下して漏れ電流も増加するおそれがある。 As decomposition progresses due to acidification of the separator in this way, for example, there is a possibility that the amount of retained conductive polymer progresses and the ESR increases. Furthermore, there is a possibility that the amount of electrolyte retained will decrease and leakage current will also increase.
 そこで本発明は、上記課題に鑑みなされたものであり、セパレータの酸性化を抑制した高信頼性の電解コンデンサ及びその製造方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and an object thereof is to provide a highly reliable electrolytic capacitor that suppresses acidification of a separator, and a method for manufacturing the same.
 本発明の電解コンデンサは、導電性高分子層を保持するセパレータを介し、陽極箔及び陰極箔が巻き回されたコンデンサ素子を有し、前記セパレータは、空隙率が75~90(%)であるガラス繊維を主体とすることを特徴とする。 The electrolytic capacitor of the present invention has a capacitor element in which an anode foil and a cathode foil are wound around a separator that holds a conductive polymer layer, and the separator has a porosity of 75 to 90 (%). It is characterized by being mainly made of glass fiber.
 上記の電解コンデンサにおいて前記ガラス繊維の空隙率は、85~90(%)であってもよい。 In the above electrolytic capacitor, the glass fiber may have a porosity of 85 to 90 (%).
 上記の電解コンデンサにおいて、前記セパレータは、電解液を保持し、前記ガラス繊維の繊維径の平均値は、0.5~1(μm)であってもよい。 In the above electrolytic capacitor, the separator may hold an electrolytic solution, and the average fiber diameter of the glass fibers may be 0.5 to 1 (μm).
 上記の電解コンデンサにおいて、前記ガラス繊維は、硼珪酸ガラス、無アルカリ硼珪酸ガラス、及び高シリカガラスの少なくとも1つを含んでもよい。 In the above electrolytic capacitor, the glass fiber may include at least one of borosilicate glass, alkali-free borosilicate glass, and high silica glass.
 上記の電解コンデンサにおいて、前記セパレータは、ポリエステル繊維、ポリエチレン繊維、ポリプロピレン繊維、アラミド繊維、アクリル繊維、及びセルロース繊維の少なくとも1つを含んでもよい。 In the above electrolytic capacitor, the separator may include at least one of polyester fibers, polyethylene fibers, polypropylene fibers, aramid fibers, acrylic fibers, and cellulose fibers.
 上記の電解コンデンサにおいて、前記セパレータは、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ポリウレタン、ポリフッ化ビニリデン、スチレンブタジエンゴム、及びアクリル樹脂の少なくとも1つをバインダとして含んでもよい。 In the above electrolytic capacitor, the separator may contain as a binder at least one of polyvinyl alcohol, polyvinyl butyral, polyvinylpyrrolidone, polyurethane, polyvinylidene fluoride, styrene-butadiene rubber, and acrylic resin.
 上記の電解コンデンサにおいて、前記コンデンサ素子に、エチレングリコール、γ‐ブチロラクトン、及びスルホランの少なくとも1つを含む前記電解液を含浸してもよい。 In the above electrolytic capacitor, the capacitor element may be impregnated with the electrolytic solution containing at least one of ethylene glycol, γ-butyrolactone, and sulfolane.
 本発明の電解コンデンサの製造方法は、セパレータを介して陽極箔及び陰極箔を巻き回してコンデンサ素子を生成する工程と、前記コンデンサ素子を導電性高分子の分散液または溶液に浸漬する工程と、前記コンデンサ素子を乾燥させる工程とを有し、前記セパレータは、空隙率が75~90(%)であるガラス繊維を主体とすることを特徴とする。 The method for manufacturing an electrolytic capacitor of the present invention includes the steps of winding an anode foil and a cathode foil through a separator to produce a capacitor element, immersing the capacitor element in a dispersion or solution of a conductive polymer, and drying the capacitor element, and the separator is characterized by being mainly made of glass fiber with a porosity of 75 to 90 (%).
 上記の製造方法において、前記ガラス繊維の空隙率は、85~90(%)であってもよい。 In the above manufacturing method, the glass fiber may have a porosity of 85 to 90 (%).
 上記の製造方法において、前記コンデンサ素子を電解液に浸漬する工程を、さらに有し、前記ガラス繊維の繊維径の平均値は、0.5~1(μm)であってもよい。 The above manufacturing method may further include a step of immersing the capacitor element in an electrolyte, and the average fiber diameter of the glass fibers may be 0.5 to 1 (μm).
 上記の製造方法において、前記ガラス繊維は、硼珪酸ガラス、無アルカリ硼珪酸ガラス、及び高シリカガラスの少なくとも1つを含んでもよい。 In the above manufacturing method, the glass fiber may include at least one of borosilicate glass, alkali-free borosilicate glass, and high silica glass.
 上記の製造方法において、前記セパレータは、ポリエステル繊維、ポリエチレン繊維、ポリプロピレン繊維、アラミド繊維、アクリル繊維、及びセルロース繊維の少なくとも1つを含んでもよい。 In the above manufacturing method, the separator may include at least one of polyester fibers, polyethylene fibers, polypropylene fibers, aramid fibers, acrylic fibers, and cellulose fibers.
 上記の製造方法において、前記セパレータは、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ポリウレタン、ポリフッ化ビニリデン、スチレンブタジエンゴム、及びアクリル樹脂の少なくとも1つをバインダとして含んでもよい。 In the above manufacturing method, the separator may contain as a binder at least one of polyvinyl alcohol, polyvinyl butyral, polyvinylpyrrolidone, polyurethane, polyvinylidene fluoride, styrene-butadiene rubber, and acrylic resin.
 上記の製造方法において前記コンデンサ素子に、エチレングリコール、γ‐ブチロラクトン、及びスルホランの少なくとも1つを含む前記電解液を含浸してもよい。 In the above manufacturing method, the capacitor element may be impregnated with the electrolytic solution containing at least one of ethylene glycol, γ-butyrolactone, and sulfolane.
 本発明によると、セパレータの酸性化を抑制し、信頼性を高めることができる。 According to the present invention, acidification of the separator can be suppressed and reliability can be improved.
アルミ電解コンデンサの一例を示す側面図であるFIG. 2 is a side view showing an example of an aluminum electrolytic capacitor. コンデンサ素子の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of a capacitor element. アルミ電解コンデンサの製造工程の一例を示す図である。It is a figure showing an example of a manufacturing process of an aluminum electrolytic capacitor.
[実施形態]
(アルミ電解コンデンサの構成)
 図1は、アルミ電解コンデンサ1の一例を示す側面図である。図1の紙面において、アルミ電解コンデンサ1の中心線Lを挟んだ右半分には、その内部の断面が示されている。
[Embodiment]
(Configuration of aluminum electrolytic capacitor)
FIG. 1 is a side view showing an example of an aluminum electrolytic capacitor 1. As shown in FIG. In the paper of FIG. 1, a cross section of the inside of the aluminum electrolytic capacitor 1 is shown in the right half of the aluminum electrolytic capacitor 1 across the center line L.
 アルミ電解コンデンサ1は、導電性高分子固体電解アルミコンデンサ(以下、固体電解コンデンサと表記)、または導電性高分子ハイブリッドアルミ電解コンデンサ(以下、ハイブリッド電解コンデンサと表記)である。アルミ電解コンデンサ1は、電子回路基板に実装され、例えばカップリング、デカップリング、及び平滑化などに用いられる。 Aluminum electrolytic capacitor 1 is a conductive polymer solid electrolytic aluminum capacitor (hereafter referred to as a solid electrolytic capacitor) or a conductive polymer hybrid aluminum electrolytic capacitor (hereafter referred to as a hybrid electrolytic capacitor). Aluminum electrolytic capacitor 1 is mounted on an electronic circuit board and is used, for example, for coupling, decoupling, smoothing, etc.
 アルミ電解コンデンサ1は、コンデンサ素子10、ケース11、封口体12、座板13、一対の丸棒部111、及び一対のリード部110を有する。丸棒部111及びリード部110はコンデンサ素子10の引き出し電極であり、リード部110は丸棒部111の先端から延びている。なお、図1には一方の丸棒部111のみが示されているが、中心線Lを挟んだ対称な位置に他方の丸棒部111が設けられている。 The aluminum electrolytic capacitor 1 includes a capacitor element 10, a case 11, a sealing body 12, a seat plate 13, a pair of round bar parts 111, and a pair of lead parts 110. The round bar part 111 and the lead part 110 are lead electrodes of the capacitor element 10, and the lead part 110 extends from the tip of the round bar part 111. In addition, although only one round bar part 111 is shown in FIG. 1, the other round bar part 111 is provided at a symmetrical position across the center line L.
 ケース11は、アルミニウムにより形成され、上部の開口が塞がった円筒形状を有する。ケース11は、コンデンサ素子10及び封口体12を覆い、アルミ電解コンデンサ1の外装として機能する。なお、ケース11の形状は円筒形状に限定されず、角筒形状であってもよい。 The case 11 is made of aluminum and has a cylindrical shape with a closed upper opening. Case 11 covers capacitor element 10 and sealing body 12 and functions as an exterior of aluminum electrolytic capacitor 1 . Note that the shape of the case 11 is not limited to a cylindrical shape, but may be a rectangular tube shape.
 封口体12は、例えばブチルゴムなどの弾性部材により形成された略円形状の部材である。封口体12は、コンデンサ素子10に隣接し、ケース11下部の開口を封口する。 The sealing body 12 is a substantially circular member made of an elastic member such as butyl rubber, for example. The sealing body 12 is adjacent to the capacitor element 10 and seals the opening at the bottom of the case 11 .
 コンデンサ素子10は、後述するように、陽極箔、陰極箔、及びセパレータ(電解紙)を重ねて巻き回した構成を有する。コンデンサ素子10の底部からは一対の丸棒部111が延びている。 As described later, the capacitor element 10 has a structure in which an anode foil, a cathode foil, and a separator (electrolytic paper) are layered and wound. A pair of round bar portions 111 extend from the bottom of the capacitor element 10 .
 丸棒部111及びリード部110はアルミニウムなどから形成された棒状部材である。一対の丸棒部111は、陽極箔及び陰極箔に対し、かしめなどの接合手段によりそれぞれ接合されており、アルミ電解コンデンサ1の陽極端子及び陰極端子として機能する。各丸棒部111は、封口体12に形成された一対の貫通孔120にそれぞれ挿通されている。なお、図1には一方の貫通孔120のみが示されているが、中心線Lを挟んだ対称な位置に他方の貫通孔120が設けられている。 The round bar portion 111 and the lead portion 110 are rod-shaped members made of aluminum or the like. The pair of round bar parts 111 are respectively joined to the anode foil and the cathode foil by a joining means such as caulking, and function as an anode terminal and a cathode terminal of the aluminum electrolytic capacitor 1. Each round bar portion 111 is inserted into a pair of through holes 120 formed in the sealing body 12, respectively. Although only one through hole 120 is shown in FIG. 1, the other through hole 120 is provided at a symmetrical position with the center line L interposed therebetween.
 リード部110は平板形状を有し、L字形状に屈曲し、その先端側の部分は座板13の板面に沿って延びている。リード部110の丸棒部111側の部分は座板13の貫通孔130に挿通されている。リード部110は、電子回路基板のリフロー工程において、電子回路基板上のパッドにはんだ付けされる。 The lead portion 110 has a flat plate shape and is bent into an L shape, with its tip portion extending along the surface of the base plate 13. The portion of the lead portion 110 on the round bar portion 111 side is inserted into the through hole 130 of the base plate 13. The lead portion 110 is soldered to a pad on the electronic circuit board during the reflow process of the electronic circuit board.
 座板13は、樹脂などにより形成された板状部材であり、ケース11及び封口体12の下部に設けられている。座板13は、実装対象の電子回路基板に対してケース11及び封口体12を支持する。座板13には、リード部110の貫通孔130、及びリード部110の屈曲した先端部分を収容する溝部131が設けられている。溝部131は座板13の底面に沿って中央近傍から外側へ延びている。座板13の底面は、電子回路基板に対するアルミ電解コンデンサ1の実装面となるため、板状のリード部110を電子回路基板上のパッドにはんだ付けすることが可能となる。なお、本実施形態では表面実装タイプのアルミ電解コンデンサ1を挙げるが、後述する実施例は、座板13がないリードタイプにも適用することができる。 The seat plate 13 is a plate-like member made of resin or the like, and is provided below the case 11 and the sealing body 12. The seat plate 13 supports the case 11 and the sealing body 12 with respect to the electronic circuit board to be mounted. The seat plate 13 is provided with a through hole 130 of the lead portion 110 and a groove portion 131 for accommodating the bent tip portion of the lead portion 110. The groove portion 131 extends along the bottom surface of the seat plate 13 from near the center to the outside. Since the bottom surface of the seat plate 13 becomes the mounting surface of the aluminum electrolytic capacitor 1 on the electronic circuit board, it becomes possible to solder the plate-shaped lead portion 110 to the pad on the electronic circuit board. In this embodiment, a surface mount type aluminum electrolytic capacitor 1 is used, but the embodiments described later can also be applied to a lead type capacitor without a seat plate 13.
(コンデンサ素子の構成)
 図2は、コンデンサ素子10の一例を示す斜視図である。図2において、図1と共通する構成には同一の符号を付し、その説明は省略する。コンデンサ素子10は、陽極箔101、陰極箔102、及びセパレータ(電解紙)103を巻回した巻回体100と、陽極箔101及び陰極箔102に接続された一対の引き出し電極19とを有する。
(Configuration of capacitor element)
FIG. 2 is a perspective view showing an example of the capacitor element 10. In FIG. 2, components common to those in FIG. 1 are denoted by the same reference numerals, and their explanations will be omitted. The capacitor element 10 includes a wound body 100 in which an anode foil 101, a cathode foil 102, and a separator (electrolytic paper) 103 are wound, and a pair of extraction electrodes 19 connected to the anode foil 101 and the cathode foil 102.
 一対の引き出し電極19は巻回体100の下方に延びる。各引き出し電極19の丸棒部111は陽極箔101及び陰極箔102にそれぞれ接続されている。なお、図2では、リード部110を屈曲させて平板状にプレス加工する前の状態が示されている。 A pair of extraction electrodes 19 extend below the wound body 100. The round bar portion 111 of each extraction electrode 19 is connected to the anode foil 101 and the cathode foil 102, respectively. Note that FIG. 2 shows the state before the lead portion 110 is bent and pressed into a flat plate shape.
 陽極箔101及び陰極箔102は、例えばアルミニウム、タンタル、チタン、及びニオブ等の弁金属およびその合金箔並びに蒸着箔等により形成されている。陽極箔101の表面には、電極面積が増加するようにエッチング処理が施されている。これにより、コンデンサ素子10は所定の静電容量を確保する。さらに陽極箔101の表面には極薄の酸化被膜が形成されている。このため、陽極箔101は、他の部材から絶縁されている。酸化被膜が誘電体として機能することで、コンデンサ素子10がコンデンサとして機能する。 The anode foil 101 and the cathode foil 102 are formed of valve metals such as aluminum, tantalum, titanium, and niobium, alloy foils thereof, vapor-deposited foils, and the like. The surface of the anode foil 101 is etched to increase the electrode area. Thereby, the capacitor element 10 secures a predetermined capacitance. Furthermore, an extremely thin oxide film is formed on the surface of the anode foil 101. Therefore, the anode foil 101 is insulated from other members. The capacitor element 10 functions as a capacitor because the oxide film functions as a dielectric.
 一方、陰極箔102の表面には、エッチング処理が施されているが、酸化被膜は形成されていない。なお、陰極箔102の表面には、酸化被膜が形成されてもよいし、無機層またはカーボン層が形成されていてもよい。 On the other hand, although the surface of the cathode foil 102 has been subjected to etching treatment, no oxide film is formed thereon. Note that an oxide film, an inorganic layer, or a carbon layer may be formed on the surface of the cathode foil 102.
 セパレータ103は陽極箔101及び陰極箔102の間に挟まれた状態で巻回される。セパレータ103は、固体電解コンデンサの場合、導電性高分子を保持し、ハイブリッド電解コンデンサの場合、導電性高分子及び電解液を保持する。セパレータ103は、空隙率が75~90(%)であるガラス繊維を主体として形成され、ガラス繊維以外にも他の有機繊維及びバインダなどを含んでもよい。このようにセパレータ103はガラス繊維を主体とするため、例えばセルロース繊維を主体として用いる場合より酸性化しにくい。 The separator 103 is wound while being sandwiched between the anode foil 101 and the cathode foil 102. The separator 103 holds a conductive polymer in the case of a solid electrolytic capacitor, and holds a conductive polymer and an electrolyte in the case of a hybrid electrolytic capacitor. The separator 103 is mainly formed of glass fibers with a porosity of 75 to 90 (%), and may contain other organic fibers, binders, etc. in addition to glass fibers. As described above, since the separator 103 is mainly made of glass fibers, it is less likely to become acidic than, for example, when cellulose fibers are used mainly.
 ガラス繊維の空隙率は75~90(%)である。ここで空隙率とは、繊維全体の体積に対する空隙の体積の比である。空隙率が75(%)未満である場合、ガラス繊維は十分な量の導電性高分子及び電解液を保持することができないため、ESRが上昇する。また、空隙率が90(%)を上回る場合、ガラス繊維は十分な量の導電性高分子及び電解液を保持することができるため、ESRは十分に低減されるが、その一方でセパレータ103の巻回時に必要な強度を保てなくなるため、適切ではない。 The porosity of glass fiber is 75 to 90 (%). Here, the porosity is the ratio of the volume of voids to the volume of the entire fiber. When the porosity is less than 75 (%), the ESR increases because the glass fibers cannot hold a sufficient amount of the conductive polymer and electrolyte. Further, when the porosity exceeds 90 (%), the glass fibers can hold a sufficient amount of the conductive polymer and electrolyte, so the ESR is sufficiently reduced, but on the other hand, the separator 103 This is not suitable as it will not be able to maintain the necessary strength during winding.
 したがって、ガラス繊維の空隙率が75~90(%)であるとき、導電性高分子及び電解液の保持量が増加してESRが適切に低減される。好ましくは、ガラス繊維の空隙率を85~90(%)とすると、より多くの導電性高分子を保持できるため、さらにESRが低減される。これによりアルミ電解コンデンサ1の信頼性が高められる。 Therefore, when the porosity of the glass fiber is 75 to 90 (%), the amount of the conductive polymer and electrolyte retained increases, and the ESR is appropriately reduced. Preferably, when the porosity of the glass fiber is set to 85 to 90 (%), more conductive polymer can be retained, thereby further reducing ESR. This increases the reliability of the aluminum electrolytic capacitor 1.
 また、ガラス繊維の繊維径の平均値は0.5~1(μm)である。繊維径が1(μm)を超える場合、電解液の蒸散速度が過剰に高くなり、導電性高分子層から電解液内に溶出する導電性高分子の密度が高くなるため、セパレータの酸性化が進行する。一方、繊維径が0.5(μm)未満である場合、導電性高分子の保持性が悪化するため、適切ではない。したがって、ガラス繊維の繊維径の平均値を0.5~1(μm)とすることにより、電解液の蒸散が適切に抑制されて酸性化が抑制される。 Furthermore, the average fiber diameter of the glass fibers is 0.5 to 1 (μm). If the fiber diameter exceeds 1 (μm), the evaporation rate of the electrolyte becomes excessively high, and the density of the conductive polymer eluted from the conductive polymer layer into the electrolyte increases, resulting in acidification of the separator. proceed. On the other hand, when the fiber diameter is less than 0.5 (μm), the retention of the conductive polymer deteriorates, which is not appropriate. Therefore, by setting the average fiber diameter of the glass fibers to 0.5 to 1 (μm), evaporation of the electrolytic solution is appropriately suppressed and acidification is suppressed.
 また、セパレータ103の厚さは40(μm)である。セパレータ103の厚さが40(μm)未満である場合、過剰に薄いため、耐電圧が低くなる。 Furthermore, the thickness of the separator 103 is 40 (μm). If the thickness of the separator 103 is less than 40 (μm), it is excessively thin and has a low withstand voltage.
 ガラス繊維は、硼珪酸ガラス、無アルカリ硼珪酸ガラス、及び高シリカガラスの少なくとも1つを含む。これらの材料をセパレータ103の主体として用いることにより、耐酸性が向上するという利点が得られる。 The glass fiber includes at least one of borosilicate glass, alkali-free borosilicate glass, and high silica glass. By using these materials as the main body of the separator 103, there is an advantage that acid resistance is improved.
 また、セパレータ103は、ポリエステル繊維、ポリエチレン繊維、ポリプロピレン繊維、アラミド繊維、アクリル繊維、及びセルロース繊維の少なくとも1つを含んでもよい。これらの材料をセパレータ103に含有させることにより、耐溶剤性に優れ、引張強度等の機械的強度が向上するという利点が得られる。 Furthermore, the separator 103 may include at least one of polyester fibers, polyethylene fibers, polypropylene fibers, aramid fibers, acrylic fibers, and cellulose fibers. By including these materials in the separator 103, the advantages of excellent solvent resistance and improved mechanical strength such as tensile strength can be obtained.
 また、セパレータ103は、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ポリウレタン、ポリフッ化ビニリデン、スチレンブタジエンゴム、及びアクリル樹脂の少なくとも1つをバインダとして含んでもよい。これらのバインダをセパレータ103に含有させることにより、耐溶剤性に優れ、引張強度等の機械的強度が向上するという利点が得られる。 Furthermore, the separator 103 may contain as a binder at least one of polyvinyl alcohol, polyvinyl butyral, polyvinylpyrrolidone, polyurethane, polyvinylidene fluoride, styrene-butadiene rubber, and acrylic resin. By including these binders in the separator 103, advantages such as excellent solvent resistance and improved mechanical strength such as tensile strength can be obtained.
 また、アルミ電解コンデンサ1が固体電解コンデンサである場合、セパレータ103には電解液が含浸されている。電解液の溶媒は、エチレングリコール、γ‐ブチロラクトン、及びスルホランの少なくとも1つを含んでもよい。これらの溶媒とする電解液をセパレータ103に含浸させることにより、従来よりも低蒸散性になるという利点が得られる。 Further, when the aluminum electrolytic capacitor 1 is a solid electrolytic capacitor, the separator 103 is impregnated with an electrolytic solution. The solvent of the electrolyte may include at least one of ethylene glycol, γ-butyrolactone, and sulfolane. By impregnating the separator 103 with the electrolytic solution used as these solvents, an advantage of lower evaporation than before can be obtained.
(電解コンデンサの製造工程)
 図3は、アルミ電解コンデンサ1の製造工程の一例を示す図である。アルミ電解コンデンサ1の製造工程は電解コンデンサの製造方法の一例である。なお、本例ではハイブリッド電解コンデンサの製造工程を挙げるが、固体電解コンデンサの製造方法では以下のステップSt6が省かれる。
(Manufacturing process of electrolytic capacitor)
FIG. 3 is a diagram showing an example of the manufacturing process of the aluminum electrolytic capacitor 1. The manufacturing process of the aluminum electrolytic capacitor 1 is an example of a method of manufacturing an electrolytic capacitor. In this example, the manufacturing process of a hybrid electrolytic capacitor will be described, but the following step St6 is omitted in the method of manufacturing a solid electrolytic capacitor.
 まず、陽極箔101、陰極箔102、及びセパレータ103を準備する(ステップSt1)。陽極箔101の表面はエッチング処理されており、さらに酸化被膜が誘電体層として形成されている。また、セパレータ103は、空隙率が75~90(%)であり、ガラス繊維を主体とする。ここで空隙率は85~90(%)であると好ましい。また、ガラス繊維の繊維径の平均値は0.5~1(μm)であると、電解液の蒸散速度が良好であり、導電性高分子の含侵性との観点から好ましい。また、セパレータ103の厚さは40(μm)である。 First, an anode foil 101, a cathode foil 102, and a separator 103 are prepared (step St1). The surface of the anode foil 101 is etched, and an oxide film is further formed as a dielectric layer. Further, the separator 103 has a porosity of 75 to 90 (%) and is mainly made of glass fiber. Here, the porosity is preferably 85 to 90 (%). Further, it is preferable that the average fiber diameter of the glass fibers is 0.5 to 1 (μm) from the viewpoint of good evaporation rate of the electrolytic solution and impregnation of the conductive polymer. Further, the thickness of the separator 103 is 40 (μm).
 次に、セパレータ103、陽極箔101、陰極箔102、及びセパレータ103をこの順に積層して巻回し、外側表面を巻止めテープで固定することで巻回体100を作製する(ステップSt2)。巻回中、陽極箔101及び陰極箔102の適切な位置にそれぞれ引き出し電極19を接続する。接続手段としては、かしめが挙げられるが、これに限定されない。 Next, the separator 103, the anode foil 101, the cathode foil 102, and the separator 103 are laminated in this order and wound, and the outer surface is fixed with a tape to produce the wound body 100 (Step St2). During winding, the lead electrodes 19 are connected to appropriate positions of the anode foil 101 and the cathode foil 102, respectively. Examples of the connection means include, but are not limited to, caulking.
 次に減圧雰囲気中で、水と有機溶媒を含む導電性高分子の分散液に巻回体100を20分間浸漬し、その後、導電性高分子分散液から巻回体100を引き上げる(ステップSt3)。このようにすることで、巻回体100に導電性高分子を含浸させることができる。なお、本工程では導電性高分子の分散液に代えて導電性高分子の溶液を用いてもよい。 Next, the wound body 100 is immersed in a conductive polymer dispersion containing water and an organic solvent for 20 minutes in a reduced pressure atmosphere, and then the wound body 100 is pulled up from the conductive polymer dispersion (Step St3). . By doing so, the wound body 100 can be impregnated with the conductive polymer. Note that in this step, a conductive polymer solution may be used instead of the conductive polymer dispersion.
 次に巻回体100を、例えば150度の乾燥炉に入れて60分間乾燥させる(ステップSt4)。これにより、セパレータ103内の導電性高分子同士を固着させて導電性高分子層を生成することで導電性パスが形成される。 Next, the rolled body 100 is placed in a drying oven at, for example, 150 degrees and dried for 60 minutes (Step St4). As a result, a conductive path is formed by fixing the conductive polymers in the separator 103 to each other to generate a conductive polymer layer.
 次に減圧雰囲気中で、所定量の電解液を巻回体100に含浸させる(ステップSt5)。なお、電解液は、導電性高分子分散液内に、溶質を混合させたものであってもよい。すなわち、導電性高分子分散液を電解液として使用することができる。その場合、電解液の含浸は、導電性高分子の含浸と同時に行うこととなる。 Next, the wound body 100 is impregnated with a predetermined amount of electrolytic solution in a reduced pressure atmosphere (Step St5). Note that the electrolytic solution may be a mixture of a solute and a conductive polymer dispersion. That is, a conductive polymer dispersion can be used as an electrolyte. In that case, the impregnation with the electrolytic solution will be performed simultaneously with the impregnation with the conductive polymer.
 次に巻回体100をケース11に収容して封口体12によって封口する(ステップSt6)。このとき、巻回体100から延びる引き出し電極19は封口体12の貫通孔120に挿通される。その後、コンデンサ素子10に定格電圧を印加しながらエージング処理を行なってもよい。このようにしてアルミ電解コンデンサ1の製造工程は行われる。 Then, the wound body 100 is housed in the case 11 and sealed with the sealing body 12 (step St6). At this time, the extraction electrode 19 extending from the wound body 100 is inserted into the through hole 120 of the sealing body 12. After that, an aging process may be performed while applying the rated voltage to the capacitor element 10. In this manner, the manufacturing process of the aluminum electrolytic capacitor 1 is performed.
 次にアルミ電解コンデンサ1の実施例を説明する。上記の製造方法に従ってアルミ電解コンデンサ1のサンプルNo.1~8を作製した。また、比較のため、セパレータ103の主体をガラス繊維に代えて特殊レーヨン繊維(セルロース繊維を細分化したもの)及びセルロース繊維とするアルミ電解コンデンサのサンプルNo.9及び10をそれぞれ作製した。サンプルNo.1~10の定格電圧及び定格静電容量がそれぞれ、63(V)及び56(μF)である。また、ケース11の直径は10(mm)であり、ケース11の高さは10(mm)とした。以下にアルミ電解コンデンサ1の具体的な製造方法について説明する。 Next, an example of the aluminum electrolytic capacitor 1 will be described. Sample No. 1 of aluminum electrolytic capacitor 1 was produced according to the above manufacturing method. 1 to 8 were produced. For comparison, sample No. 1 of an aluminum electrolytic capacitor in which the main body of the separator 103 is made of special rayon fiber (finely divided cellulose fiber) and cellulose fiber instead of glass fiber is shown. 9 and 10 were prepared, respectively. Sample No. The rated voltage and capacitance of 1 to 10 are 63 (V) and 56 (μF), respectively. Further, the diameter of the case 11 was 10 (mm), and the height of the case 11 was 10 (mm). A specific method for manufacturing the aluminum electrolytic capacitor 1 will be described below.
(巻回体の作製)
 エッチング処理が施され、酸化被膜が形成済みの陽極箔に陽極の引き出し電極を接続した。端面に導体層を有し塗れ性改善の下処理を行った陰極箔に陰極の引き出し電極を接続した。その後、セパレータ、陰極箔、セパレータ、および陽極箔をこの順に積層し、各引き出し電極を巻き込みながら巻回し、外側表面を巻止めテープで固定することで巻回体を作製した。セパレータの厚み、セパレータの主体となる繊維の繊維径及び空隙率はサンプルごとに異ならせた。
(Preparation of rolled body)
The anode lead electrode was connected to the anode foil that had been etched and had an oxide film formed on it. A cathode lead electrode was connected to a cathode foil that had a conductor layer on its end face and was pretreated to improve wettability. Thereafter, a separator, a cathode foil, a separator, and an anode foil were laminated in this order, and each lead-out electrode was wound while being wound, and the outer surface was fixed with a tape to produce a wound body. The thickness of the separator, the fiber diameter and porosity of the main fibers of the separator were varied for each sample.
 作製した巻回体を、リン酸アンモニウム水溶液に浸漬させ、陽極箔に対して、所定の電圧を印加しながら、85℃で再度化成処理を行うことにより、主に陽極箔の端面に誘電体層を形成した。 The prepared wound body is immersed in an aqueous ammonium phosphate solution, and a predetermined voltage is applied to the anode foil while chemical conversion treatment is performed again at 85°C, thereby forming a dielectric layer mainly on the end face of the anode foil. was formed.
(導電性高分子の含浸)
 減圧雰囲気(-93kPa)中で、所定容器に収容された導電性高分子の分散液に巻回体を浸漬し、その後、分散液から巻回体を引き上げた。次に、導電性高分子を含浸した巻回体を、150℃の乾燥炉内で60分間乾燥させ各層の導電性高分子同士を固着して導電性パスを形成した。これにより、固体電解コンデンサとして機能するコンデンサ素子を作製した。
(Impregnation of conductive polymer)
The wound body was immersed in a dispersion of a conductive polymer contained in a predetermined container in a reduced pressure atmosphere (-93 kPa), and then pulled up from the dispersion. Next, the rolled body impregnated with the conductive polymer was dried for 60 minutes in a drying oven at 150° C. to adhere the conductive polymers of each layer to each other to form conductive paths. In this way, a capacitor element functioning as a solid electrolytic capacitor was manufactured.
(電解液の含浸)
 さらに上記のコンデンサ素子に減圧雰囲気中で所定量の電解液(テイカ株式会社製ESE2)を含浸させた。これにより、ハイブリッドアルミ電解コンデンサとして機能するコンデンサ素子を作製した。
(Impregnation of electrolyte)
Furthermore, the above capacitor element was impregnated with a predetermined amount of electrolytic solution (ESE2 manufactured by Teika Co., Ltd.) in a reduced pressure atmosphere. As a result, a capacitor element that functions as a hybrid aluminum electrolytic capacitor was fabricated.
(コンデンサ素子の封口)
 電解液を含浸させたコンデンサ素子を封口して、電解コンデンサを完成させた。その後、定格電圧)を印加しながら所定温度で所定時間のエージング処理を行った。
(Sealing of capacitor element)
The capacitor element impregnated with the electrolytic solution was sealed to complete the electrolytic capacitor. Thereafter, an aging treatment was performed for a predetermined time at a predetermined temperature while applying a rated voltage.
(評価)
 サンプルNo.1~10を固体電解コンデンサ及びハイブリッド電解コンデンサとして評価した。4端子測定用のLCRメータを用いて、20℃の環境下で電解コンデンサの周波数が100kHzであるときのESR(mΩ)を固体電解コンデンサ及びハイブリッド電解コンデンサの各々について測定した。また、固体電解コンデンサの評価としてポリマー(導電性高分子)の保持量(g)と測定し、ハイブリッド電解コンデンサの評価として150℃における電解液の蒸散の速度(g/h)を測定した。表1に固体電解コンデンサ、表2にハイブリッド電解コンデンサの測定結果を示す。
(evaluation)
Sample No. 1 to 10 were evaluated as solid electrolytic capacitors and hybrid electrolytic capacitors. Using an LCR meter for four-terminal measurements, the ESR (mΩ) of the solid electrolytic capacitor and the hybrid electrolytic capacitor were measured when the frequency of the electrolytic capacitor was 100 kHz in an environment of 20° C. Furthermore, the amount of retained polymer (conductive polymer) (g) was measured as an evaluation of the solid electrolytic capacitor, and the rate of evaporation of the electrolyte at 150° C. (g/h) was measured as an evaluation of the hybrid electrolytic capacitor. Table 1 shows the measurement results for the solid electrolytic capacitor, and Table 2 shows the measurement results for the hybrid electrolytic capacitor.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1は、サンプルNo.1~10の固体電解コンデンサとしての評価結果を示す。サンプルNo.1~8のセパレータの主体はガラス繊維とし、サンプルNo.9及び10のセパレータの主体は、それぞれ、特殊レーヨン繊維及びセルロース繊維とした。また、セパレータ全体の重量に対する主体の繊維の重量の比(表1中の重量比参照)は、サンプルNo.9及び10が100(%)であり、サンプルNo.4が65(%)であり、その他は75(%)とした。 Table 1 shows sample no. The evaluation results as solid electrolytic capacitors of 1 to 10 are shown below. Sample No. The main body of separators 1 to 8 was glass fiber, and sample No. Separators No. 9 and No. 10 were mainly made of special rayon fiber and cellulose fiber, respectively. Further, the ratio of the weight of the main fiber to the weight of the entire separator (see weight ratio in Table 1) is as follows for sample No. 9 and 10 are 100 (%), and sample No. 4 was 65 (%), and the others were 75 (%).
 繊維径は、セパレータの主体の繊維の径の平均値であり、走査型電子顕微鏡(SEM: Scanning Electron Microscope)を用いて5000倍でセパレータを平面計測することにより計測した。サンプルNo.1~4,6,8の繊維径は0.5(μm)とし、サンプルNo.5の繊維径は1.2(μm)とし、サンプルNo.7の繊維径は1.0(μm)とした。サンプルNo.9の繊維径は2.0(μm)とし、サンプルNo.10の繊維径は5.0(μm)とした。また、サンプルNo.6のセパレータの厚みは30(μm)とし、他のサンプルのセパレータの厚みは40(μm)とした。 The fiber diameter is the average diameter of the main fibers of the separator, and was measured by planar measurement of the separator at 5000 times magnification using a scanning electron microscope (SEM). Sample No. The fiber diameter of samples 1 to 4, 6, and 8 was 0.5 (μm), and sample No. The fiber diameter of sample No. 5 was 1.2 (μm). The fiber diameter of No. 7 was 1.0 (μm). Sample No. The fiber diameter of Sample No. 9 was 2.0 (μm). The fiber diameter of No. 10 was 5.0 (μm). Also, sample No. The thickness of the separator of Sample No. 6 was 30 (μm), and the thickness of the separator of the other samples was 40 (μm).
 セパレータの空隙率はサンプルごとに異ならせた。サンプルNo.1~4,8について、セパレータの空隙率が高いほど、ポリマー保持量は高くなり、ESRは低くなる傾向を示した。ただし、サンプルNo.5及び7は、サンプルNo.4より空隙率が低いが、繊維径が大きく、ポリマーの含浸性が向上するため、ポリマー保持量が多くなり、ESRが低くなった。また、サンプルNo.6は、サンプルNo.4より空隙率が低いが、厚みが薄く、導電経路が短くなるため、ESRが低くなった。 The porosity of the separator was varied for each sample. Sample No. For Nos. 1 to 4 and 8, the higher the porosity of the separator, the higher the amount of polymer retained and the lower the ESR. However, sample no. 5 and 7 are sample nos. Although the porosity was lower than that of No. 4, the fiber diameter was larger and the impregnating property of the polymer was improved, so the amount of polymer retained was increased and the ESR was lowered. Also, sample No. 6 is sample No. Although the porosity was lower than that of No. 4, the ESR was lower because the thickness was thinner and the conductive path was shorter.
 比較例であるサンプルNo.9及び10のESRを基準として、実施例のサンプルNo.1~8のESRの良否(OK/NG)を判定した(表中の判定結果参照)。サンプルNo.1~7のESRは、サンプルNo.9及び10のESRより低いため、OKと判定した。また、サンプルNo.8は、サンプルNo.9と厚みが同一であり、サンプルNo.9より空隙率が高いにも関わらず、ESRが高いため、NGと判定した。さらに、空隙率が90(%)のサンプルNo.1及び、空隙率が85(%)のサンプルNo.2はポリマーの保持量が多いため、さらにESRが好適に低減された。 Sample No. which is a comparative example. Based on the ESR of 9 and 10, sample No. 9 and 10 of Example. The ESR of 1 to 8 was judged to be pass/fail (OK/NG) (see the judgment results in the table). Sample No. ESR of 1 to 7 is sample no. Since it was lower than the ESR of 9 and 10, it was determined to be OK. Also, sample No. 8 is sample No. The thickness is the same as that of sample No. 9. Although the porosity was higher than that of Sample 9, the ESR was high, so it was judged as NG. Furthermore, sample No. with a porosity of 90(%). 1 and sample No. 1 with a porosity of 85 (%). Since Sample No. 2 had a large amount of polymer retained, the ESR was further suitably reduced.
 したがって、空隙率が75~90(%)のサンプルNo.1~7のESRが好適に低減された。さらに、空隙率が85~90(%)のサンプルNo.1及び2のESRが好適に低減された。 Therefore, sample No. with a porosity of 75 to 90 (%). The ESR of 1 to 7 was suitably reduced. Furthermore, sample No. with a porosity of 85 to 90 (%). The ESR of 1 and 2 was suitably reduced.
 また、サンプルNo.6の厚みは他のサンプルNo.1~5,7,8より薄い。このため、サンプルNo.6の耐電圧は、比較例のサンプルNo.9の耐電圧より低くなった。一方、サンプルNo.1~5,7,8の耐電圧は、比較例のサンプルNo.9の耐電圧以上となった。したがって、セパレータの厚みは40(μm)であると好ましい。 Also, the thickness of sample No. 6 is thinner than the other samples No. 1 to 5, 7, and 8. Therefore, the withstand voltage of sample No. 6 is lower than the withstand voltage of sample No. 9 of the comparative example. On the other hand, the withstand voltages of samples No. 1 to 5, 7, and 8 are greater than or equal to the withstand voltage of sample No. 9 of the comparative example. Therefore, it is preferable that the thickness of the separator is 40 (μm).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2は、サンプルNo.1~10のハイブリッド電解コンデンサとしての評価結果を示す。表2の記載内容は、電解液の保持量、ESR、電解液の蒸散速度、及び判定結果を除いて同一である。 Table 2 shows the evaluation results of samples No. 1 to 10 as hybrid electrolytic capacitors. The contents of Table 2 are the same except for the amount of electrolyte retained, ESR, electrolyte evaporation rate, and evaluation results.
 固体電解コンデンサの場合と同様に、サンプルNo.1~4,8について、セパレータの空隙率が高いほど、電解液の保持量は多くなり、ESRは低くなる傾向を示した。ただし、サンプルNo.5及び7は、サンプルNo.4より空隙率が低いが、繊維径が大きく、ポリマーの含浸性が向上するため、電解液保持量が多くなり、ESRが低くなった。また、サンプルNo.6は、サンプルNo.4より空隙率が低いが、厚みが薄く、導電経路が短くなるため、ESRが低くなった。 As in the case of solid electrolytic capacitors, sample No. For Nos. 1 to 4 and No. 8, the higher the porosity of the separator, the larger the amount of electrolyte retained and the lower the ESR. However, sample no. 5 and 7 are sample nos. Although the porosity was lower than that of No. 4, the fiber diameter was larger and the polymer impregnability was improved, so the amount of electrolyte retained was increased and the ESR was lower. Also, sample No. 6 is sample No. Although the porosity was lower than that of No. 4, the ESR was lower because the thickness was thinner and the conductive path was shorter.
 比較例であるサンプルNo.9及び10のESRを基準として、実施例のサンプルNo.1~8のESRの良否(OK/NG)を判定した(表中の判定結果参照)。サンプルNo.1~7のESRは、サンプルNo.9及び10のESRより低いため、OKと判定した。また、サンプルNo.8は、サンプルNo.9と厚みが同一であり、サンプルNo.9より空隙率が高いにも関わらず、ESRが高いため、NGと判定した。 Sample No. which is a comparative example. Based on ESR of 9 and 10, sample No. 9 and 10 of Example. The ESR of 1 to 8 was judged to be pass/fail (OK/NG) (see the judgment results in the table). Sample No. ESR of 1 to 7 is sample no. Since it was lower than the ESR of 9 and 10, it was determined to be OK. Also, sample No. 8 is sample No. The thickness is the same as that of sample No. 9. Although the porosity was higher than that of Sample 9, the ESR was high, so it was determined to be NG.
 したがって、空隙率が75~90(%)のサンプルNo.1~7のESRが好適に低減された。さらに、85~90(%)のサンプルNo.1及び2はポリマーの保持量が多いため、さらにESRが好適に低減された。 Therefore, the ESR of samples No. 1 to 7, which have a porosity of 75 to 90%, was suitably reduced. Furthermore, samples No. 1 and 2, which have a porosity of 85 to 90%, had a greater reduction in ESR due to the larger amount of polymer retained.
 また、電解液の蒸散速度は、繊維径が大きいほど速くなる。これは、繊維径が大きくなると電解液との接触面積が小さくなることにより電解液の保持性が低下するためである。電解液の蒸散が進むほど、導電性高分子層から電解液内に溶出する導電性高分子の密度により酸性度が高くなるため、セパレータの酸性化が進行する。 Furthermore, the evaporation rate of the electrolyte becomes faster as the fiber diameter becomes larger. This is because as the fiber diameter increases, the contact area with the electrolyte decreases, resulting in a decrease in electrolyte retention. As the electrolytic solution evaporates, the acidity increases due to the density of the conductive polymer eluted from the conductive polymer layer into the electrolytic solution, so that the acidification of the separator progresses.
 比較例であるサンプルNo.9及び10の電解液の蒸散速度を基準とすると、サンプルNo.1~8のうち、最大の繊維径のサンプルNo.5の電解液の蒸散速度はサンプルNo.9の電解液の蒸散速度より高くなった。これは、サンプルNo.5の繊維径が他のサンプルNo.1~4,6~8より大きいためである。一方、他のサンプルNo.1~4,6~8の電解液の蒸散速度はサンプルNo.9及び10の電解液の蒸散速度より低くなった。したがって、ガラス繊維の繊維径の平均値を0.5~1(μm)とすることにより、電解液の蒸散が適切に抑制されて酸性化が抑制された。ここで、繊維径の平均値が0.5(μm)未満である場合については、ポリマーの含浸性が低下するため、適切ではない。 Sample No. which is a comparative example. Based on the transpiration rates of electrolytes No. 9 and No. 10, Sample No. Sample No. 1 to 8 has the largest fiber diameter. The transpiration rate of the electrolyte in Sample No. 5 is as follows. The transpiration rate was higher than that of the electrolyte in No. 9. This is sample No. The fiber diameter of sample no. This is because it is larger than 1-4 or 6-8. On the other hand, other sample No. The transpiration rates of electrolytes Nos. 1 to 4 and 6 to 8 are those of sample No. The transpiration rate was lower than that of electrolytes Nos. 9 and 10. Therefore, by setting the average fiber diameter of the glass fibers to 0.5 to 1 (μm), evaporation of the electrolytic solution was appropriately suppressed and acidification was suppressed. Here, a case where the average value of the fiber diameter is less than 0.5 (μm) is not suitable because the impregnating property of the polymer decreases.
 以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to these specific embodiments, and various modifications and variations can be made within the scope of the gist of the present invention as described in the claims. Changes are possible.

Claims (14)

  1.  導電性高分子層を保持するセパレータを介し、陽極箔及び陰極箔が巻回されたコンデンサ素子を有し、
     前記セパレータは、空隙率が75~90%であるガラス繊維を主体とすることを特徴とする電解コンデンサ。
    It has a capacitor element in which an anode foil and a cathode foil are wound through a separator that holds a conductive polymer layer,
    An electrolytic capacitor characterized in that the separator is mainly made of glass fiber with a porosity of 75 to 90%.
  2.  前記ガラス繊維の空隙率は、85~90%であることを特徴とする請求項1に記載の電解コンデンサ。 The electrolytic capacitor according to claim 1, wherein the glass fiber has a porosity of 85 to 90%.
  3.  前記セパレータは、電解液を保持し、
     前記ガラス繊維の繊維径の平均値は、0.5~1μmであることを特徴とする請求項1または2に記載の電解コンデンサ。
    The separator holds an electrolyte,
    The electrolytic capacitor according to claim 1 or 2, wherein the average fiber diameter of the glass fibers is 0.5 to 1 μm.
  4.  前記ガラス繊維は、硼珪酸ガラス、無アルカリ硼珪酸ガラス、及び高シリカガラスの少なくとも1つを含むことを特徴とする請求項1または2に記載の電解コンデンサ。 The electrolytic capacitor according to claim 1 or 2, wherein the glass fiber includes at least one of borosilicate glass, alkali-free borosilicate glass, and high silica glass.
  5.  前記セパレータは、ポリエステル繊維、ポリエチレン繊維、ポリプロピレン繊維、アラミド繊維、アクリル繊維、及びセルロース繊維の少なくとも1つを含むことを特徴とする請求項1または2に記載の電解コンデンサ。 The electrolytic capacitor according to claim 1 or 2, wherein the separator includes at least one of polyester fibers, polyethylene fibers, polypropylene fibers, aramid fibers, acrylic fibers, and cellulose fibers.
  6.  前記セパレータは、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ポリウレタン、ポリフッ化ビニリデン、スチレンブタジエンゴム、及びアクリル樹脂の少なくとも1つをバインダとして含むことを特徴とする請求項1または2に記載の電解コンデンサ。 The electrolytic capacitor according to claim 1 or 2, wherein the separator contains at least one of polyvinyl alcohol, polyvinyl butyral, polyvinylpyrrolidone, polyurethane, polyvinylidene fluoride, styrene-butadiene rubber, and acrylic resin as a binder.
  7.  前記コンデンサ素子に、エチレングリコール、γ‐ブチロラクトン、及びスルホランの少なくとも1つを含む前記電解液を含浸したことを特徴とする請求項3に記載の電解コンデンサ。 The electrolytic capacitor according to claim 3, wherein the capacitor element is impregnated with the electrolytic solution containing at least one of ethylene glycol, γ-butyrolactone, and sulfolane.
  8.  セパレータを介して陽極箔及び陰極箔を巻回してコンデンサ素子を生成する工程と、
     前記コンデンサ素子を導電性高分子の分散液または溶液に浸漬する工程と、
     前記コンデンサ素子を乾燥させる工程とを有し、
     前記セパレータは、空隙率が75~90%であるガラス繊維を主体とすることを特徴とする電解コンデンサの製造方法。
    a step of winding an anode foil and a cathode foil through a separator to produce a capacitor element;
    immersing the capacitor element in a conductive polymer dispersion or solution;
    and drying the capacitor element,
    A method for producing an electrolytic capacitor, wherein the separator is mainly made of glass fiber with a porosity of 75 to 90%.
  9.  前記ガラス繊維の空隙率は、85~90%であることを特徴とする請求項8に記載の電解コンデンサの製造方法。 The method for manufacturing an electrolytic capacitor according to claim 8, wherein the glass fiber has a porosity of 85 to 90%.
  10.  前記コンデンサ素子を電解液に浸漬する工程を、さらに有し、
     前記ガラス繊維の繊維径の平均値は、0.5~1μmであることを特徴とする請求項8または9に記載の電解コンデンサの製造方法。
    further comprising the step of immersing the capacitor element in an electrolytic solution,
    10. The method for manufacturing an electrolytic capacitor according to claim 8, wherein the average fiber diameter of the glass fibers is 0.5 to 1 μm.
  11.  前記ガラス繊維は、硼珪酸ガラス、無アルカリ硼珪酸ガラス、及び高シリカガラスの少なくとも1つを含むことを特徴とする請求項8または9に記載の電解コンデンサの製造方法。 The method for manufacturing an electrolytic capacitor according to claim 8 or 9, wherein the glass fiber includes at least one of borosilicate glass, alkali-free borosilicate glass, and high silica glass.
  12.  前記セパレータは、ポリエステル繊維、ポリエチレン繊維、ポリプロピレン繊維、アラミド繊維、アクリル繊維、及びセルロース繊維の少なくとも1つを含むことを特徴とする請求項8または9に記載の電解コンデンサの製造方法。 The method for manufacturing an electrolytic capacitor according to claim 8 or 9, wherein the separator contains at least one of polyester fibers, polyethylene fibers, polypropylene fibers, aramid fibers, acrylic fibers, and cellulose fibers.
  13.  前記セパレータは、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ポリウレタン、ポリフッ化ビニリデン、スチレンブタジエンゴム、及びアクリル樹脂の少なくとも1つをバインダとして含むことを特徴とする請求項8または9に記載の電解コンデンサの製造方法。 10. The electrolytic capacitor according to claim 8, wherein the separator contains at least one of polyvinyl alcohol, polyvinyl butyral, polyvinylpyrrolidone, polyurethane, polyvinylidene fluoride, styrene-butadiene rubber, and acrylic resin as a binder. Production method.
  14.  前記コンデンサ素子に、エチレングリコール、γ‐ブチロラクトン、及びスルホランの少なくとも1つを含む前記電解液を含浸したことを特徴とする請求項10に記載の電解コンデンサの製造方法。
     
    11. The method for producing an electrolytic capacitor according to claim 10, wherein the capacitor element is impregnated with the electrolyte solution containing at least one of ethylene glycol, γ-butyrolactone, and sulfolane.
PCT/JP2023/024766 2022-09-22 2023-07-04 Electrolytic capacitor and method for manufacturing same WO2024062720A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-151814 2022-09-22
JP2022151814A JP2024046426A (en) 2022-09-22 2022-09-22 Electrolytic capacitor and manufacturing method for the same

Publications (1)

Publication Number Publication Date
WO2024062720A1 true WO2024062720A1 (en) 2024-03-28

Family

ID=90454384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024766 WO2024062720A1 (en) 2022-09-22 2023-07-04 Electrolytic capacitor and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2024046426A (en)
WO (1) WO2024062720A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02155217A (en) * 1988-12-07 1990-06-14 Elna Co Ltd Electrolytic capacitor
JP2002198263A (en) * 2000-12-27 2002-07-12 Nippon Kodoshi Corp Electrolytic capacitor
JP2004193402A (en) * 2002-12-12 2004-07-08 Du Pont Teijin Advanced Paper Kk Solid electrolytic capacitor
JP2016100181A (en) * 2014-11-21 2016-05-30 日立化成株式会社 Separator for electrochemical element and lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02155217A (en) * 1988-12-07 1990-06-14 Elna Co Ltd Electrolytic capacitor
JP2002198263A (en) * 2000-12-27 2002-07-12 Nippon Kodoshi Corp Electrolytic capacitor
JP2004193402A (en) * 2002-12-12 2004-07-08 Du Pont Teijin Advanced Paper Kk Solid electrolytic capacitor
JP2016100181A (en) * 2014-11-21 2016-05-30 日立化成株式会社 Separator for electrochemical element and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2024046426A (en) 2024-04-03

Similar Documents

Publication Publication Date Title
US7497879B2 (en) Method of manufacturing electrolytic capacitor and electrolytic capacitor
KR100417456B1 (en) Solid electrolytic capacitor and production method thereof, and conductive polymer polymerizing oxidizing agent solution
KR100442073B1 (en) Solid Electrolyte Capacitor and its Manufacture
US7903392B2 (en) Solid electrolytic capacitor and method of manufacturing the same
US20060084237A1 (en) Solid electrolytic capacitor and method of manufacturing the same
WO2016174807A1 (en) Electrolytic capacitor
US20100202102A1 (en) Solid electrolytic capacitor and method for manufacturing the same
WO2010032462A1 (en) Capacitor and method for manufacturing same
WO2017163725A1 (en) Electrolytic capacitor and manufacturing method therefor
JP2007189038A (en) Wound capacitor, and method of manufacturing same
JPH05121274A (en) Solid electrolytic capacitor and its manufacture
JP5293743B2 (en) Capacitor electrode foil and electrolytic capacitor using the same
WO2016189779A1 (en) Electrolytic capacitor
WO2024062720A1 (en) Electrolytic capacitor and method for manufacturing same
JP2017175082A (en) Electrolytic capacitor and manufacturing method thereof
WO2014132632A1 (en) Electrolytic capacitor and manufacturing method therefor
JP2001284174A (en) Solid electrolytic capacitor and its manufacturing method
JP4360277B2 (en) Electrolytic capacitor and manufacturing method thereof
JP2007180404A (en) Solid electrolytic capacitor and manufacturing method thereof
JP4773031B2 (en) Manufacturing method of solid electrolytic capacitor
JP6735510B2 (en) Electrolytic capacitor
JP2001284181A (en) Solid electrolytic capacitor
WO2024070177A1 (en) Electrolytic capacitor and method for manufacturing same
US20230368983A1 (en) Carbon paste for solid electrolytic capacitors, solid electrolytic capacitor element, and solid electrolytic capacitor
JP7458258B2 (en) Manufacturing method of electrolytic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867847

Country of ref document: EP

Kind code of ref document: A1