JP3885552B2 - Ranging device - Google Patents

Ranging device Download PDF

Info

Publication number
JP3885552B2
JP3885552B2 JP2001328568A JP2001328568A JP3885552B2 JP 3885552 B2 JP3885552 B2 JP 3885552B2 JP 2001328568 A JP2001328568 A JP 2001328568A JP 2001328568 A JP2001328568 A JP 2001328568A JP 3885552 B2 JP3885552 B2 JP 3885552B2
Authority
JP
Japan
Prior art keywords
distance measuring
transparent filler
light
light guide
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001328568A
Other languages
Japanese (ja)
Other versions
JP2002202121A (en
Inventor
治 杉山
敏男 山本
晶雄 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2001328568A priority Critical patent/JP3885552B2/en
Publication of JP2002202121A publication Critical patent/JP2002202121A/en
Application granted granted Critical
Publication of JP3885552B2 publication Critical patent/JP3885552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)
  • Lens Barrels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動焦点カメラなどに搭載する測距装置に関し、詳しくはそのモジュールの筐体構造に係わる。
【0002】
【従来の技術】
まず、自動焦点カメラなどに搭載して使用する外光三角方式の測距装置の原理を図5で説明する。すなわち、測距装置は図示のように、カメラ前面に配置された左右一対の測距レンズ1Lと1Rからなる結像光学系と、その被写体像を電気信号に変換する左右一対のフォトセンサアレイ5L,5R、フォトセンサアレイ5L,5Rの出力信号をディジタル信号に変換する量子化回路51L,51R、量子化回路51L,51Rからのディジタル信号に基づいて距離信号を算出する論理部52を1チップに集積した半導体光センサチップ5との組合せからなる。そして、被写体Tは基線長Bだけ隔てて左右に並ぶ測距レンズ1L,1Rに入射して半導体光センサチップ5のフォトセンサアレイ5L,5Rに結像される。ここで、レンズから被写体Tまでの距離dは三角測量の原理に基づいて次式で与えられる。
【0003】
【数式1】
d=B・fe /(x1 +x2 )=B・fe /x
但し、fe は測距レンズ1L,1Rとフォトセンサアレイ5L,5Rまでの距離(測距レンズ1L,1Rの焦点距離に等しい)、x1 ,x2 はフォトセンサアレイ5L,5R上の像点位置と被写体Tが無限遠にあるときの像点位置との距離、x(=x1 +x2 )はフォトセンサアレイ5L,5R上の被写体像の相対的なずれ量(位相量)である。
【0004】
次に、カメラなどの搭載用としてモジュール化された前記測距装置の組立構造を図6〜図8に示す。各図において、1は左右一対の測距レンズ1L,1Rを備えた光学レンズ部、2は測距レンズ1L,1Rに入射した光線を半導体光センサチップ5のフォトセンサアレイ5L,5Rに導光する絞り部(鏡胴)、3は半導体光センサチップ5を組み込んだセンサステージであり、これら三つのパーツはプラスチック製になり、図示のように上下に重ね合わせてその接合面を接着して一体に組立てられている。
【0005】
ここで、光学レンズ部1には測距レンズ1L,1Rが左右に並んで一体成形されている。また、絞り部2は、その胴内に測距レンズ1L,1Rと個々に対応して入射光線を半導体光センサチップ5のフォトセンサアレイ5L,5Rに導光する左右一対の導光空隙2a、および各導光空隙2aには半導体光センサチップ5への光量を決める絞り穴2L,2Rが形成されている。一方、センサステージ3にはリードフレーム4がインサート成形されており、該ステージ内の定位置に搭載,固着した半導体光センサチップ5とリードとの間をボンディングワイヤで接続している。
【0006】
さらに前記した測距モジュールの筐体内部空間には、半導体光センサチップ5のパッド部及びボンデイングワイヤが温湿度,熱的応力,および異物混入などにより劣化するのを防ぐために、例えば透明シリコーンゲルの透明充填剤6を充填して半導体光センサチップ5およびその周辺を封止するようにしている。
次に、前記した透明充填剤6の充填方法を図9で説明する。すなわち、図示のように前記した組立体を上下逆さまにし、この姿勢でセンサステージ3の裏面側の開放面(センサステージの裏面には透明充填剤の注入口を兼ねて透明充填剤の熱膨張,熱収縮を吸収するように開放されている)に流動性を有する透明充填剤を入れたシリンジをセットし、半導体光センサチップ5との間の空間を通じて透明充填剤6を注入する。これにより透明充填剤6はレンズ部1,絞り部2,センサステージ3で取り囲まれた空隙内に流れ込んでこの領域を埋め尽くし、さらに半導体光センサチップ5を覆う。その後に熱処理を施して透明充填剤6を硬化させる。なお、透明充填剤6の充填量は注入が終了した時点でセンサステージ3の開放面を完全に満たすように管理して作業を行うようにしている。
【0007】
【発明が解決しようとする課題】
ところで、前記した従来構造の装置組立体では、その筐体内部に透明充填剤を充填する際に次に記すような問題点が発生する。
すなわち、透明充填剤はその充填工程での注入速度,注入量にばらつきがあると、絞り部2の胴内に形成されている左右の導光空隙2aの隅々まで完全に充填できないことがあり、このままの熱処理を行うと未充填部分が気泡(ボイド)となってレンズ/フォトセンサ間の視野内に残ってしまい、その結果として左右のフォトセンサには正常な被写体像が結像されない不具合が生じる。
【0008】
そこで、発明者等は未充填の発生原因を究明したところ、その原因は次の点にあることが判明した。すなわち、図9に示した透明充填剤6の注入工程で、透明充填剤の注入口は一箇所であるのに対し、筐体内の充填領域は絞り部2において左右二つの導光空隙に分岐している。ここで、絞り部2の前端にはレンズ部1が当接し、かつ各導光空隙2aの間が隔壁2b(図8参照)で隔離されているために左右の導光空隙はそれぞれポケット状の空隙となり、しかも空隙の中間部分が絞り穴2R,2Lで狭まっている。
【0009】
したがって、図9に示す透明充填剤の充填過程で、絞り穴2L,2Rを通して少量ずつレンズ部1との間の領域に透明充填剤が流入する限りは、透明充填剤で置換された空隙内の空気は絞り穴を通じて上方に抜け出ることかできるが、この空隙領域内に未充填部分が残っているにもかかわらず絞り穴の上面側に流入する透明充填剤が狭い絞り穴2R,2Lを塞ぐような状態になると、未充填部分の空気は逃げ場を失って絞り穴の下方領域に閉じ込められ、それ以上に透明充填剤が充填できなくなって透明充填剤の層内に気泡が発生する。
【0010】
しかも、前記のようにセンサステージ3の注入口から流入し、二手に分かれて絞り部2の左右導光空隙2aに流れ込む透明充填剤の量はばらついて左右でバランスせず、このために一方の導光空隙に流入した透明充填剤の液面が他方の導光空隙よりも早く絞り穴の高さレベルまで到達するようになると、それ以降はオーバーフローした分を含めて透明充填剤が他方側の導光空隙へ集中して流れ、このために狭い絞り穴が塞がれて未充填が発生する。
【0011】
さらに、筐体内部に未充填領域が発生すると、その容積に相当した量の透明充填剤がセンサステージ3の注入口から溢れ出し、プラスチック筐体の外壁面やリードフレーム4の端子部分に付着して外観を損ねるといった問題も派生する。
本発明は上記の点に鑑みなされたものであり、その目的は前記課題を解決し、測距装置としての性能を低下させることなく、絞り部の左右導光空隙内に透明充填剤の未充填部を残さずに隅々まで均−に充填できるように筐体構造を改良した測距装置を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明によれば、左右に並ぶ一対の測距レンズを備えた光学レンズ部と、胴内に前記レンズと個々に対応する左右一対の導光空隙および入射光の絞り穴を形成した絞り部と、測距レンズを通じて結像された被写体像から被写体までの距離を測定する半導体光センサチップを収めたセンサステージとを上下に重ね合わせて一体に結合し、その筐体内部の空隙に透明充填剤を充填して構成した半導体光センサチップを封止した測距装置において、
前記絞り部に、左右の導光空隙の間を連通して隔壁に透明充填剤の導通流路を形成する(請求項1)ものとし、その具体的な態様として、レンズと対峙する絞り部の開口端側で導光空隙の間を仕切る隔壁に凹溝を形成する(請求項2)。
【0013】
上記構成により、測距装置の組立体を上下逆さまにしてセンサステージの注入口から筐体内部の空隙に透明充填剤を注入すると、次のような経過を辿って未充填領域を発生することなく筐体内部空隙の隅々まで完全に充填されるようになる。すなわち、透明充填剤の注入過程で、注入口から二手に分かれて絞り部の左右導光空隙に流入する透明充填剤の量のばらつきにより、双方の空隙の間で透明充填剤の液面に高低差が生じた状態になると、その液面レベル差に相応した重力の働きにより、左右の導光空隙相互間を連通する導通流路を通じて高レベル側から低レベル側に透明充填剤が移動して左右の液面高さが平衡するようになる。
【0014】
したがって、絞り部の導光空隙に流入した透明充填剤は左右で同じ液面高さを保ちながら上昇して行くようになる。これにより、絞り穴が上方から流入して来る透明充填剤で閉ざされることなしに充填が円滑に進行し、導光空隙内には透明充填剤が未充填を残すことなく隅々まで充填される。また、透明充填剤は半導体光センサチップ近辺においても液面が均一に上昇するので、センサステージの注入口から溢れ出ることなく規定量の透明充填剤を全て注入することができる。さらに、このように透明充填剤の流入がスムーズに進行することで、その注入工程時間の短縮が可能となる。
【0015】
また、本発明では、前記した透明充填剤の導通流路にレンズを通じて導光空隙に入射した光が透明充填剤の導通流路を通過して他方の導光空隙に入光するのを阻止する遮光壁を設ける(請求項3)ものとし、その具体的な態様として、遮光壁を透明充填剤の導通流路内に向けて側方から互い違いに突き出した少なくとも二つの壁で構成し(請求項4)、さらに前記の遮光壁と光学レンズ部との間には空隙を形成する(請求項5)。
【0016】
この構成により、レンズを通して入射した光線のうち、特に入射角度の大きな光線の一部はレンズ部を屈折通過した後に、絞り部内の導光空隙内をそのまま直進するか、あるいは壁に反射して先記した導通流路に向かうが、導通流路に設けた遮光壁に阻まれて光線は隣の導光空隙空隙領域に進入することができず、遮光壁に反射もしくは吸収されて消滅する。かかる点、導通流路に遮光壁がないと、レンズを通じて導光空隙内に入射した光線の一部が導通流路を透過して隣の導光空隙に進入するために、この光線が迷光となって被写体が半導体光センサチップのフォトセンサアレイに正しく結像することを阻害するために測距精度が低下するおそれがあるが、遮光壁を設けることでこのような迷光現象を引き起こすことがなくなる。
【0017】
また、この場合に遮光壁を導通流路内で互い違いに設けたことにより、この遮光壁の間を縫って左右の導光空隙の間には迷路状の導光流通路が確保されるので、筐体内への透明充填剤の円滑な充填を確保できる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図示実施例に基づいて説明する。なお、各実施例図中で図6〜図8に対応する同一部材には同じ符号を付してその詳細な説明は省略する。
〔実施例1〕
まず、本発明の請求項1,2に対応する実施例の構成を図1,図2に示す。すなわち、この実施例においては、その基本的な組立構造は図6〜図8で述べた従来構造と同じであるが、絞り部2においてその胴内に形成した左右の導光空隙2aの間を連通するように導通流路2cが形成されている。この導通流路2cは、光学レンズ部1と対峙する端面側で左右の導光空隙2aの間を隔離している隔壁に形成した凹溝とし、その溝深さは絞り部2の端面から導光空隙内に形成した絞り穴2L.2Rの開口位置と同じレベルに達するように定めている。
【0019】
かかる構成で、光学レンズ部1,絞り部2,センサステージ3を上下に重ね合わせて接合して組立てた状態で、その筐体内部の空隙に透明充填剤6を充填する際には、図9で述べたと同様に装置の組立体を上下逆さまにし、この倒置姿勢でセンサステージ3の裏面側に開口している注入口にゲル状の透明充填剤6を収容したシリンジをセットし、規定量の透明充填剤を指定の速度で注入する。
【0020】
この充填工程で絞り部2に流入し、ここから二手に分かれて左右の絞り穴2L,2Rに2aに流れ込んだ透明充填剤は、導光空隙2aを流下してレンズ部1の表面に達する。ここで、レンズ部1と対峙する絞り部の端面部には先記した導通流路2cが形成されており、この導通流路2cを介して左右の導光空隙2aの間が連通している。したがって、左右の絞り穴2L,2Rを通じて別々に流れこんでレンズ部1の上に溜まった透明充填剤は導通流路2cを通じて互いに導通し合うことになり、これにより透明充填剤の注入の進行経過に伴って左右の導光空隙に充填された透明充填剤の液面は左右で平衡状態を保ちながら上昇して行き、殆ど同時に絞り穴2L,2Rの開口レベルまで到達するようになる。
【0021】
これにより、絞り部2の導光空隙内に透明充填剤の未充填領域の残ることがなく、従来問題となっていた透明充填剤の未充填に起因する層内の空隙発生を防いで、筐体内部の隅々まで透明充填剤を確実に充填することができる。なお、絞り部2の胴内空隙が埋め尽くされた後は、透明充填剤がセンサステージ部3の内部を満たしてボンディングワイヤ、半導体光センサチップ5を覆い、所定量の透明充填剤が注入し終わった状態ではセンサステージ3の裏面に開口している注入口を一杯に満たした状態となる。
【0022】
〔実施例2〕
次に、先記実施例1をさらに改良した本発明の請求項3,4に対応する実施例を図3,図4で説明する。この実施例においては、絞り部2に形成した先記の導通流路2cに対して、その流路内には図3で示すように遮光壁2dが追加して設けてある。この遮光壁2dは、導通流路2cの凹溝側壁から流路内に向けて互い違いに間隔を隔てて突き出し形成された二つの壁からなり、この遮光壁2dの間を縫って左右の導光空隙2aの間に迷路状の導通流路2cが形成される。なお、遮光壁2dの高さは、導通流路2cの深さよりは多少低めに抑え、絞り部2とレンズ部1を結合した組立状態で、遮光壁2dがレンズ面に接触しないように設定している。これにより、レンズ部1と放り部2との溶着に影響を与えることが無くなる。
【0023】
かかる構成により、実施例1で述べたと同様に、透明充填剤6の充填工程では、前記の導通流路2cを通じて絞り部2の胴内に形成した左右の導光間隙2aに未充填部を残すことなく隅々まで充填することができるとともに、遮光壁2dが次記のような役目を果たす。
すなわち、図4(a),(b) において、(a) 図は実施例1で述べた導通流路2cをそのまま採用し、(b) 図は導通流路2cに図3の遮光壁2dを設けた構成を想定して、レンズ部1から大きな入射角度で入射した光線の進行光路を表したものであり、入射角度の大きな光線の一部はレンズ部1を屈折通過して絞り部2の導光空隙2aに進入し、そのまま直進するか、あるいは空隙内の底部壁に反射して導通流路2cに到達する。
【0024】
この場合に、(a) 図のように導通流路2cに遮光壁2dを設けて無いと、光線は流路2cを透過して隣の導光空隙に進入し、この光線が迷光となって先述のように測距精度を低下させる原因となる。これに対して、(b) 図のように流路2cに遮光壁2dを設けておけば、流路2cに到達した光線は遮光璧10に阻まれて隣の導光空隙に進入できず、遮光壁2dに反射もしくは吸収されて消滅してしまうため、迷光現象を引き起こすことはない。
【0025】
なお、図3(c),(d) は前記した遮光壁2dに関する別な実施例を示すものであり、(c) 図では導通流路2cに沿って3枚の遮光壁2dが、また(d) 図は4枚の遮光壁2dが互い違いに設けてある。
【0026】
【発明の効果】
以上述べたように、本発明によれば、左右に並ぶ一対の測距レンズを備えた光学レンズ部と、胴内に前記レンズと個々に対応する左右一対の導光空隙および入射光の絞り穴を形成した絞り部と、測距レンズを通じて結像された被写体像から被写体までの距離を測定する半導体光センサチップを収めたセンサステージとを上下に重ね合わせて一体に結合し、その筐体内部の空隙に透明充填剤を充填して半導体光センサチップを封止した測距装置において、前記絞り部に、左右の導光空隙の間を連通して隔壁に透明充填剤の導通流路を形成し、またその導通流路に遮光壁を設けたことにより、次記のような効果を奏する。
【0027】
(1) 測距装置の筐体内に透明充填剤を充填するに際して、絞り部の胴内に形成した左右の導光空隙に未充填部を残すことなく、空隙内の隅々まで透明充填剤を完全に充填することができ、これにより透明充填剤の未充填に起因する気泡の発生を抑止して製品の歩留りが向上する。
(2) また、透明充填剤の未充填部をなくすことにより、充填工程で規定した所定量の透明充填剤を過不足なく筐体内部に充填することができ、透明充填剤が注入口から溢れ出てセンサステージの外壁やリード端子に付着するといった外観不良の発生を防止できる。
【0028】
(3) さらに、透明充填剤がスムーズに充填されることで、その注入速度を早めて充填することができ、これにより透明充填剤充填工程の作業時間の短縮が可能となって生産性が向上する。
(4) また、この導通流路に遮光壁を設けたことにより、透明充填剤の充填工程では導通流路による効果を確保しつつ、測距装置の実使用時にレンズを透過して絞り部に入射した光線が導通流路を通過して隣の導光空隙に進入するのを阻止して迷光現象,並びにこの迷光現象に起因する測距精度の低下を回避できる。
【図面の簡単な説明】
【図1】本発明の実施例1に係る測距装置の組立構造を表す分解斜視図
【図2】図1に示した装置の組立状態の縦断面図
【図3】本発明の実施例2に係る測距装置の構成図であり、(a) は縦断面図、(b) は(a) 図における絞り部の外形斜視図、(c),(d) はそれぞれ(b) 図と別な応用実施例の遮光壁の配列を示す部分平面図
【図4】図3における遮光壁の機能を説明する図であり、(a),(b) はそれぞれ遮光壁無し、遮光壁有りの場合を対比して表した入射光線の進行光路図
【図5】外光三角方式の測距装置の原理図
【図6】従来における測距装置の組立構成図であり、(a) は平面図、(b) は正面図、(c) は側面図
【図7】図6におけるレンズ部,絞り部,センサステージの分解斜視図
【図8】図6に示した測距装置の縦断面図
【図9】図8の測距装置の内部に透明充填剤を充填する方法の説明図
【符号の説明】
1 光学レンズ部
1L,1R 測距レンズ
2 絞り部
2L,2R 絞り穴
2a 導光空隙
2b 隔壁
2c 導通流路
2d 遮光壁
3 センサステージ
5 半導体光センサチップ
5L,5R フォトセンサアレイ
6 透明充填剤
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a distance measuring device mounted on an autofocus camera or the like, and particularly relates to a housing structure of the module.
[0002]
[Prior art]
First, the principle of an external light triangular distance measuring device mounted and used in an autofocus camera or the like will be described with reference to FIG. That is, as shown in the figure, the distance measuring device includes an imaging optical system including a pair of left and right distance measuring lenses 1L and 1R disposed on the front surface of the camera, and a pair of left and right photosensor arrays 5L that convert the subject image into an electrical signal. , 5R, the quantizing circuits 51L, 51R for converting the output signals of the photosensor arrays 5L, 5R into digital signals, and the logic unit 52 for calculating the distance signal based on the digital signals from the quantizing circuits 51L, 51R on one chip. It consists of a combination with an integrated semiconductor optical sensor chip 5. The subject T is incident on the distance measuring lenses 1L and 1R that are arranged on the left and right sides with a base line length B therebetween, and is imaged on the photosensor arrays 5L and 5R of the semiconductor optical sensor chip 5. Here, the distance d from the lens to the subject T is given by the following equation based on the principle of triangulation.
[0003]
[Formula 1]
d = B · fe / (x1 + x2) = B · fe / x
Here, fe is the distance between the distance measuring lenses 1L and 1R and the photosensor arrays 5L and 5R (equal to the focal length of the distance measuring lenses 1L and 1R), and x1 and x2 are the image point positions on the photosensor arrays 5L and 5R. The distance from the image point position when the subject T is at infinity, x (= x1 + x2) is the relative shift amount (phase amount) of the subject images on the photosensor arrays 5L and 5R.
[0004]
Next, an assembly structure of the distance measuring device modularized for mounting a camera or the like is shown in FIGS. In each figure, 1 is an optical lens unit provided with a pair of left and right distance measuring lenses 1L and 1R, and 2 is a light beam incident on the distance measuring lenses 1L and 1R to the photosensor arrays 5L and 5R of the semiconductor optical sensor chip 5. The diaphragm part (lens barrel) 3 is a sensor stage in which the semiconductor optical sensor chip 5 is incorporated, and these three parts are made of plastic, and are superposed vertically and bonded together to bond together. It is assembled to.
[0005]
Here, distance measuring lenses 1 </ b> L and 1 </ b> R are integrally formed on the optical lens unit 1 side by side. The diaphragm 2 has a pair of left and right light guide gaps 2a for guiding incident light to the photosensor arrays 5L and 5R of the semiconductor optical sensor chip 5 corresponding to the distance measuring lenses 1L and 1R, respectively. In addition, aperture holes 2L and 2R for determining the amount of light to the semiconductor optical sensor chip 5 are formed in each light guide gap 2a. On the other hand, a lead frame 4 is insert-molded on the sensor stage 3, and the semiconductor optical sensor chip 5 mounted and fixed at a fixed position in the stage and the lead are connected by a bonding wire.
[0006]
Further, in the housing internal space of the distance measuring module described above, in order to prevent the pad portion and the bonding wire of the semiconductor optical sensor chip 5 from deteriorating due to temperature / humidity, thermal stress, foreign matter, etc., for example, a transparent silicone gel is used. A transparent filler 6 is filled to seal the semiconductor optical sensor chip 5 and its periphery.
Next, the filling method of the transparent filler 6 will be described with reference to FIG. That is, the above-described assembly is turned upside down as shown in the figure, and in this posture, the open side of the back side of the sensor stage 3 (the thermal expansion of the transparent filler on the back side of the sensor stage also serves as the transparent filler inlet, A syringe filled with a fluid-filled transparent filler is set in the open space so as to absorb heat shrinkage, and the transparent filler 6 is injected through the space between the semiconductor optical sensor chip 5. As a result, the transparent filler 6 flows into the space surrounded by the lens unit 1, the diaphragm unit 2, and the sensor stage 3 to fill this region, and further covers the semiconductor optical sensor chip 5. Thereafter, a heat treatment is performed to cure the transparent filler 6. The filling amount of the transparent filler 6 is managed so as to completely fill the open surface of the sensor stage 3 when the injection is completed.
[0007]
[Problems to be solved by the invention]
By the way, in the device assembly having the conventional structure described above, the following problems occur when the inside of the casing is filled with the transparent filler.
That is, if there is a variation in the injection speed and the injection amount in the filling process, the transparent filler may not be able to be completely filled into the left and right light guide gaps 2a formed in the body of the throttle unit 2. If the heat treatment is performed as it is, the unfilled portion becomes a bubble and remains in the field of view between the lens / photosensor, and as a result, a normal subject image is not formed on the left and right photosensors. Arise.
[0008]
Therefore, the inventors investigated the cause of the unfilled occurrence, and found that the cause is as follows. That is, in the injection process of the transparent filler 6 shown in FIG. 9, there is only one injection hole for the transparent filler, but the filling area in the housing branches into two light guide gaps on the left and right sides in the throttle portion 2. ing. Here, since the lens unit 1 is in contact with the front end of the diaphragm 2, and the light guide gaps 2a are separated by the partition walls 2b (see FIG. 8), the left and right light guide gaps are pocket-shaped. A gap is formed, and an intermediate portion of the gap is narrowed by the throttle holes 2R and 2L.
[0009]
Accordingly, in the filling process of the transparent filler shown in FIG. 9, as long as the transparent filler flows into the area between the lens portion 1 little by little through the aperture holes 2L and 2R, the inside of the gap replaced with the transparent filler The air can escape upward through the throttle hole, but the transparent filler that flows into the upper surface side of the throttle hole closes the narrow throttle holes 2R and 2L even though an unfilled portion remains in this gap region. In such a state, the air in the unfilled portion loses the escape field and is trapped in the region below the throttle hole, and the transparent filler cannot be filled any more, and bubbles are generated in the layer of the transparent filler.
[0010]
In addition, as described above, the amount of the transparent filler that flows in from the injection port of the sensor stage 3 and splits into the left and right light guide gaps 2a of the narrowed portion 2 varies and does not balance right and left. When the liquid level of the transparent filler that has flowed into the light guide gap reaches the height level of the throttle hole earlier than the other light guide gap, the transparent filler is filled on the other side, including the overflow. The concentrated flow into the light guide gap causes the narrow throttle hole to be closed and unfilled to occur.
[0011]
Further, when an unfilled region is generated inside the housing, an amount of transparent filler corresponding to the volume overflows from the injection port of the sensor stage 3 and adheres to the outer wall surface of the plastic housing and the terminal portion of the lead frame 4. The problem of deteriorating the appearance is also derived.
The present invention has been made in view of the above points, and its object is to solve the above-mentioned problems, and without filling the left and right light guide gaps of the diaphragm portion with a transparent filler without degrading the performance as a distance measuring device. An object of the present invention is to provide a distance measuring device having an improved casing structure so that it can be filled evenly into every corner without leaving any part.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, an optical lens unit having a pair of distance measuring lenses arranged on the left and right sides, a pair of left and right light guide gaps corresponding to the lenses individually in the body, and incident light A diaphragm portion in which a diaphragm hole is formed and a sensor stage containing a semiconductor optical sensor chip for measuring the distance from a subject image formed through a distance measuring lens to a subject are overlapped and joined together to form a housing. In the distance measuring device sealing the semiconductor optical sensor chip configured by filling the void inside the body with a transparent filler,
The diaphragm portion communicates between the left and right light guide gaps to form a conductive flow path of the transparent filler in the partition wall (Claim 1). As a specific aspect of the diaphragm portion, Concave grooves are formed in the partition walls that partition the light guide gaps on the opening end side.
[0013]
With the above configuration, when the transparent measuring agent assembly is turned upside down and transparent filler is injected into the gap inside the housing from the injection port of the sensor stage, the following process is followed without generating an unfilled region: The entire interior space of the housing is completely filled. That is, in the process of injecting the transparent filler, the liquid level of the transparent filler is increased between the two gaps due to variations in the amount of the transparent filler that is split into two from the injection port and flows into the right and left light guide gaps of the throttle portion. When a difference occurs, the transparent filler moves from the high level side to the low level side through the conduction channel that communicates between the left and right light guide gaps due to the action of gravity corresponding to the liquid level difference. The liquid level on the left and right is balanced.
[0014]
Accordingly, the transparent filler that has flowed into the light guide gap of the aperture portion rises while maintaining the same liquid level on the left and right. As a result, the filling proceeds smoothly without being closed by the transparent filler flowing in from above, and the light guide gap is filled to every corner without leaving any unfilled transparent filler. . Further, since the liquid level of the transparent filler rises even in the vicinity of the semiconductor optical sensor chip, it is possible to inject all of the specified amount of the transparent filler without overflowing from the injection port of the sensor stage. Furthermore, since the inflow of the transparent filler proceeds smoothly in this way, the injection process time can be shortened.
[0015]
Further, in the present invention, the light incident on the light guide gap through the lens in the conductive channel of the transparent filler described above is prevented from passing through the conductive channel of the transparent filler and entering the other light guide gap. A light-shielding wall is provided (Claim 3), and as a specific aspect thereof, the light-shielding wall is composed of at least two walls protruding alternately from the side toward the conductive flow path of the transparent filler (Claim). 4) Further, an air gap is formed between the light shielding wall and the optical lens portion.
[0016]
With this configuration, some of the light rays that have entered through the lens, particularly those having a large incident angle, refracted through the lens portion and then travel straight through the light guide gap in the aperture portion or are reflected off the wall and reflected first. Although it goes to the conduction | electrical_connection channel mentioned, it is blocked | interrupted by the light-shielding wall provided in the conduction | electrical_connection flow path, and a light beam cannot enter into an adjacent light guide space | gap space | gap area | region, but is reflected or absorbed by the light-shielding wall and disappears. In this respect, if there is no light shielding wall in the conduction channel, a part of the light beam that has entered the light guide gap through the lens passes through the conduction channel and enters the adjacent light guide gap. The distance measurement accuracy may decrease because the subject is prevented from correctly forming an image on the photosensor array of the semiconductor optical sensor chip, but such a stray light phenomenon is not caused by providing a light shielding wall. .
[0017]
Further, in this case, by providing staggered light shielding walls in the conduction flow path, a labyrinth-shaped light guide flow passage is secured between the left and right light guide gaps by sewing between the light shielding walls, Smooth filling of the transparent filler into the housing can be ensured.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the illustrated examples. In addition, the same code | symbol is attached | subjected to the same member corresponding to FIGS. 6-8 in each Example figure, and the detailed description is abbreviate | omitted.
[Example 1]
First, the structure of the Example corresponding to Claim 1, 2 of this invention is shown in FIG. 1, FIG. That is, in this embodiment, the basic assembly structure is the same as the conventional structure described with reference to FIGS. 6 to 8, but between the left and right light guide gaps 2 a formed in the body of the diaphragm 2. A conduction channel 2c is formed so as to communicate. The conduction channel 2 c is a concave groove formed in a partition wall separating the left and right light guide gaps 2 a on the end surface side facing the optical lens unit 1, and the groove depth is guided from the end surface of the diaphragm unit 2. A diaphragm hole 2L. It is determined to reach the same level as the opening position of 2R.
[0019]
With such a configuration, when the optical lens unit 1, the diaphragm unit 2, and the sensor stage 3 are stacked and assembled in an up-and-down manner and assembled, The assembly of the apparatus is turned upside down in the same manner as described above, and a syringe containing the gel-like transparent filler 6 is set in the injection port opened on the back side of the sensor stage 3 in this inverted position, Inject clear filler at the specified rate.
[0020]
In this filling step, the transparent filler that has flowed into the diaphragm 2 and divided into two from here and flowed into the left and right diaphragm holes 2L, 2R flows down the light guide gap 2a and reaches the surface of the lens section 1. Here, the above-described conduction channel 2c is formed in the end surface portion of the diaphragm unit facing the lens unit 1, and the left and right light guide gaps 2a communicate with each other through the conduction channel 2c. . Accordingly, the transparent fillers separately flowing through the left and right restricting holes 2L and 2R and accumulated on the lens unit 1 are electrically connected to each other through the conduction flow path 2c, whereby the progress of injection of the transparent filler is progressed. Accordingly, the liquid level of the transparent filler filled in the left and right light guide gaps rises while maintaining an equilibrium state on the left and right sides, and almost reaches the opening levels of the throttle holes 2L and 2R almost simultaneously.
[0021]
As a result, the unfilled area of the transparent filler does not remain in the light guide gap of the aperture portion 2, and the generation of gaps in the layer due to the unfilled transparent filler, which has been a problem in the past, is prevented. Transparent filler can be reliably filled to every corner of the body. In addition, after the space | gap in the trunk | drum of the aperture | diaphragm | squeezing part 2 is filled up, a transparent filler fills the inside of the sensor stage part 3, covers a bonding wire and the semiconductor optical sensor chip 5, and a predetermined amount of transparent fillers inject | pour. In the finished state, the injection port opened on the back surface of the sensor stage 3 is fully filled.
[0022]
[Example 2]
Next, an embodiment corresponding to claims 3 and 4 of the present invention, which is a further improvement of the first embodiment, will be described with reference to FIGS. In this embodiment, a light shielding wall 2d is additionally provided in the flow path as shown in FIG. The light shielding wall 2d is composed of two walls that are formed so as to protrude alternately from the concave groove side wall of the conduction flow path 2c into the flow path, and is sewn between the light shielding walls 2d to guide the left and right light guides. A labyrinth-like conduction channel 2c is formed between the gaps 2a. The height of the light shielding wall 2d is set to be slightly lower than the depth of the conduction channel 2c, and is set so that the light shielding wall 2d does not contact the lens surface in the assembled state in which the diaphragm portion 2 and the lens portion 1 are combined. ing. Thereby, it does not affect the welding of the lens part 1 and the free part 2.
[0023]
With this configuration, as described in the first embodiment, in the filling process of the transparent filler 6, the unfilled portion is left in the left and right light guide gaps 2 a formed in the body of the throttle portion 2 through the conduction channel 2 c. The light shielding wall 2d plays the role as described below.
That is, in FIGS. 4 (a) and 4 (b), FIG. 4 (a) adopts the conduction channel 2c described in the first embodiment as it is, and FIG. 4 (b) shows the light shielding wall 2d of FIG. Assuming the provided configuration, this represents a traveling optical path of a light beam incident at a large incident angle from the lens unit 1, and a part of the light beam having a large incident angle is refracted through the lens unit 1 and the diaphragm unit 2. The light enters the light guide gap 2a and proceeds straight as it is, or is reflected by the bottom wall in the gap and reaches the conduction flow path 2c.
[0024]
In this case, if the light-shielding wall 2d is not provided in the conduction channel 2c as shown in (a), the light beam passes through the channel 2c and enters the adjacent light guide gap, and this light beam becomes stray light. As described above, the distance measurement accuracy is reduced. On the other hand, if the light shielding wall 2d is provided in the flow path 2c as shown in (b), the light beam that has reached the flow path 2c is blocked by the light shielding wall 10 and cannot enter the adjacent light guide gap. Since the light is reflected or absorbed by the light shielding wall 2d and disappears, no stray light phenomenon is caused.
[0025]
3 (c) and 3 (d) show another embodiment relating to the light shielding wall 2d described above. In FIG. 3 (c), three light shielding walls 2d are provided along the conduction channel 2c. d) In the figure, four light shielding walls 2d are provided alternately.
[0026]
【The invention's effect】
As described above, according to the present invention, an optical lens unit including a pair of distance measuring lenses arranged on the left and right sides, a pair of left and right light guide gaps corresponding to the lenses individually in the body, and an aperture hole for incident light And a sensor stage containing a semiconductor optical sensor chip that measures the distance from the subject image formed through the distance measuring lens to the subject, are joined together in an integrated manner. In a distance measuring device in which a semiconductor optical sensor chip is sealed by filling a transparent filler in the gap, a conductive channel for transparent filler is formed in the partition by communicating between the left and right light guide gaps. In addition, since the light shielding wall is provided in the conduction channel, the following effects can be obtained.
[0027]
(1) When filling the housing of the distance measuring device with the transparent filler, the transparent filler is applied to every corner of the gap without leaving unfilled portions in the left and right light guide gaps formed in the cylinder of the diaphragm. It is possible to completely fill, thereby suppressing the generation of bubbles due to the unfilling of the transparent filler and improving the product yield.
(2) Also, by eliminating the unfilled part of the transparent filler, the specified amount of transparent filler specified in the filling process can be filled into the housing without excess or deficiency, and the transparent filler overflows from the injection port. It is possible to prevent appearance defects such as coming out and adhering to the outer wall of the sensor stage or the lead terminal.
[0028]
(3) Furthermore, since the transparent filler is smoothly filled, the filling speed can be increased and the working time of the transparent filler filling process can be shortened, thereby improving productivity. To do.
(4) In addition, by providing a light shielding wall in the conduction channel, the effect of the conduction channel is ensured in the filling process of the transparent filler, and the lens is transmitted to the diaphragm portion during actual use of the distance measuring device. It is possible to prevent the incident light beam from passing through the conduction channel and entering the adjacent light guide gap, thereby avoiding the stray light phenomenon and the decrease in ranging accuracy due to the stray light phenomenon.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing an assembly structure of a distance measuring apparatus according to Embodiment 1 of the present invention. FIG. 2 is a longitudinal sectional view of an assembled state of the apparatus shown in FIG. (A) is a longitudinal cross-sectional view, (b) is an external perspective view of the diaphragm in FIG. (A), and (c) and (d) are different from FIG. (B), respectively. FIG. 4 is a diagram for explaining the function of the light shielding wall in FIG. 3, wherein (a) and (b) are the cases without the light shielding wall and with the light shielding wall, respectively. FIG. 5 is a diagram showing the principle of an external light triangle type distance measuring device. FIG. 6 is an assembly configuration diagram of a conventional distance measuring device. FIG. (b) is a front view, (c) is a side view [FIG. 7] FIG. 8 is an exploded perspective view of a lens unit, a diaphragm portion, and a sensor stage in FIG. 6. [FIG. 8] A longitudinal sectional view of the distance measuring device shown in FIG. 9 Inside the distance measuring device of FIG. Illustration of a method of filling the bright filler EXPLANATION OF REFERENCE NUMERALS
DESCRIPTION OF SYMBOLS 1 Optical lens part 1L, 1R Distance measuring lens 2 Aperture part 2L, 2R Aperture hole 2a Light guide space | gap 2b Partition 2c Conduction flow path 2d Light-shielding wall 3 Sensor stage 5 Semiconductor optical sensor chip 5L, 5R Photosensor array 6 Transparent filler

Claims (5)

一対の測距レンズを備えた光学レンズ部と、胴内に前記レンズと個々に対応する一対の導光空隙および入射光の絞り穴を形成した絞り部と、測距レンズを通じて結像された被写体像から被写体までの距離を測定する半導体光センサチップを収めたセンサステージとを重ね合わせて一体に結合し、その筐体内部の空隙に透明充填剤を充填して半導体光センサチップを封止した測距装置において、前記絞り部に、一対の導光空隙の間を連通して隔壁に透明充填剤の導通流路を形成したことを特徴とする測距装置。An optical lens unit provided with a pair of distance measuring lenses, a pair of light guide gaps corresponding to the lenses individually in the body, a diaphragm unit formed with a diaphragm hole for incident light, and a subject imaged through the distance measuring lens The sensor stage containing the semiconductor optical sensor chip that measures the distance from the image to the subject is overlapped and bonded together, and the semiconductor optical sensor chip is sealed by filling the gap inside the housing with a transparent filler. In the distance measuring device, a distance between the pair of light guide gaps is formed in the diaphragm portion so that a conductive channel for transparent filler is formed in the partition wall. 請求項1記載の測距装置において、透明充填剤の導通流路として、レンズと対峙する絞り部の開口端側で、導光空隙の間を仕切る隔壁に、凹溝を形成したことを特徴とする測距装置。2. The distance measuring device according to claim 1, wherein a concave groove is formed in a partition wall separating the light guide gaps on the opening end side of the diaphragm portion facing the lens as the conductive flow path of the transparent filler. Ranging device. 請求項1または2のいずれかに記載の測距装置において、透明充填剤の導通流路に、レンズを通じて導光空隙に入射した光が導通流路を通過して他方の導光空隙に入光するのを阻止する遮光壁を設けたことを特徴とする測距装置。3. The distance measuring device according to claim 1, wherein light that has entered the light guide gap through the lens enters the conduction channel of the transparent filler and enters the other light guide gap after passing through the conduction channel. A distance measuring device provided with a light-shielding wall that prevents the light from moving. 請求項3記載の測距装置において、遮光壁が、透明充填剤の導通流路内に向けて側方から互い違いに突き出した少なくとも二つの壁からなることを特徴とする測距装置。4. The distance measuring device according to claim 3, wherein the light shielding wall includes at least two walls that protrude alternately from the side toward the conductive flow path of the transparent filler. 請求項3または4のいずれかに記載の測距装置において、遮光壁と光学レンズ部との間に空隙を有することを特徴とする測距装置。5. The distance measuring device according to claim 3, wherein a gap is provided between the light shielding wall and the optical lens unit.
JP2001328568A 2000-10-27 2001-10-26 Ranging device Expired - Fee Related JP3885552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001328568A JP3885552B2 (en) 2000-10-27 2001-10-26 Ranging device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-327922 2000-10-27
JP2000327922 2000-10-27
JP2001328568A JP3885552B2 (en) 2000-10-27 2001-10-26 Ranging device

Publications (2)

Publication Number Publication Date
JP2002202121A JP2002202121A (en) 2002-07-19
JP3885552B2 true JP3885552B2 (en) 2007-02-21

Family

ID=26602878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001328568A Expired - Fee Related JP3885552B2 (en) 2000-10-27 2001-10-26 Ranging device

Country Status (1)

Country Link
JP (1) JP3885552B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5148810B2 (en) * 2004-06-14 2013-02-20 ローム株式会社 Light receiving module and electric device equipped with the same
JP2009168447A (en) * 2006-04-24 2009-07-30 Panasonic Corp Imaging apparatus
JP2020071431A (en) * 2018-10-29 2020-05-07 Agc株式会社 Optical element
CN116212252A (en) * 2023-02-20 2023-06-06 光朗(海南)生物科技有限责任公司 Nursing light instrument with retina facula imaging monitoring function

Also Published As

Publication number Publication date
JP2002202121A (en) 2002-07-19

Similar Documents

Publication Publication Date Title
KR100520694B1 (en) Range finder
US6627872B1 (en) Semiconductor optical sensing apparatus with reliable focusing means and casing structure
KR100720613B1 (en) Thermal-type flow rate sensor and manufacturing method thereof
JP4830391B2 (en) Manufacturing method of sensor device and sensor device
US5079190A (en) Method of eliminating uneven refractive index in resin of a resin encapsulated photoelectric converting device
KR20180114116A (en) Array imaging modules and molded photosensitive assemblies, circuit board assemblies and methods of making them for electronic devices
CN206865596U (en) Camera module and its photosensory assembly
JP3885552B2 (en) Ranging device
US6140635A (en) Inclination detecting optical sensor and a process for producing the same
KR20200109388A (en) Photosensitive component, and camera module and manufacturing method therefor
WO2019062609A1 (en) Camera module, photosensitive component, photosensitive-component joined panel, and forming die thereof and manufacturing method thereof
CN111133742B (en) Camera module, photosensitive assembly splicing plate, forming mold and manufacturing method thereof
JP2010021283A (en) Solid state imaging device and manufacturing method thereof
TW495934B (en) Solid image pickup device
CN217182185U (en) Photoelectric module and optical sensor
JPH0325307A (en) External light triangular system distance measuring instrument
JP3600147B2 (en) Mounting method of solid-state image sensor
CN108810333A (en) Camera module and its assemble method, sunk type photosensory assembly
CN110584576A (en) Endoscope head end portion and endoscope
JP3513168B2 (en) Semiconductor device
CN211213052U (en) Endoscope head end portion and endoscope
JPS60136254A (en) Solid-state image pickup device and manufacture thereof
JPH02229453A (en) Semiconductor device and manufacture thereof
JPH0813107B2 (en) Solid-state imaging device
US7473889B2 (en) Optical integrated circuit package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Effective date: 20061026

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees