JP3883766B2 - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP3883766B2
JP3883766B2 JP34486099A JP34486099A JP3883766B2 JP 3883766 B2 JP3883766 B2 JP 3883766B2 JP 34486099 A JP34486099 A JP 34486099A JP 34486099 A JP34486099 A JP 34486099A JP 3883766 B2 JP3883766 B2 JP 3883766B2
Authority
JP
Japan
Prior art keywords
solid electrolytic
capacitor
capacitor element
electrolytic capacitor
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34486099A
Other languages
Japanese (ja)
Other versions
JP2001167976A (en
Inventor
泰広 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP34486099A priority Critical patent/JP3883766B2/en
Publication of JP2001167976A publication Critical patent/JP2001167976A/en
Application granted granted Critical
Publication of JP3883766B2 publication Critical patent/JP3883766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、チップタイプの固体電解コンデンサにおいて、コンデンサ完成品に対するコンデンサ素子の体積比率を向上させたチップコンデンサに関するものである。
【0002】
【従来の技術】
従来の固体電解コンデンサは、図3に示すように、先ず一端に陽極リード(11)が導出されている弁作用金属からなる焼結体等(例えばタンタル焼結体)に誘電体酸化皮膜、固体電解質層、カーボン層、銀ペースト層を順次形成し、コンデンサ素子(2)を完成する。
【0003】
次に、予め所定の寸法に折り曲げた2つのリードフレーム(21)(22)の内、一方のリードフレーム(21)を陽極リード(11)に溶接接合し、他方のリードフレーム(22)を銀接着剤(4)によって銀ペースト層に接着接続する。
【0004】
次いで、トランスファーモールド等により、リードフレーム(21)(22)の先端側を露出させた状態にコンデンサ素子(2)を樹脂封止する。
【0005】
最後に、外装樹脂(6)の外側に導出されたリードフレーム(21)(22)を所定の寸法に折り曲げてプラス電極及びマイナス電極を形成してコンデンサを完成する。
【0006】
【発明が解決しようとする課題】
斯かる従来の固体電解コンデンサにおいては、プラス電極側に陽極リード(11)とリードフレーム(21)との接続のための溶接代(23)を、マイナス電極側にリードフレーム(22)の折り曲げ代(24)をとる必要がある。例えば、長さ7.3mm、幅4.3mmのサイズ(以下、「Dケース」という)のコンデンサの場合、プラス電極側及びマイナス電極側の外装樹脂(6)の肉厚L1、L2は、夫々約1.8mmであった。
【0007】
また、従来は、外装樹脂(6)の外側でリードフレーム(21)(22)を折り曲げる必要があり、モールド後の外装樹脂(6)の長さは、Dケースの規格値7.3mmに対してリードフレーム(21)(22)の厚み分だけ小さく成型する必要があった(図3参照)。上記の例では、モールド後の外装樹脂(6)の長さは、7.1mmに成型されている。
【0008】
このため、従来技術においては、コンデンサ完成品に対するコンデンサ素子の体積比率(以下、単に「体積比率」という)を十分に大きくとることができず、体積比率は下記の表1のとおり約20.4%程度に止まっていた。尚、表1はDケースで高さ1.8mmのコンデンサを完成させた場合の例である。
【0009】
【表1】

Figure 0003883766
【0010】
従って、本発明は、体積比率を向上させることによって、小型で大容量化が図れるチップコンデンサを提供するものである。
【0011】
【課題を解決するための手段】
本発明に係る固体電解コンデンサは、上記課題を解決するため、第1、第2導電シートが離間して配置され、該第1、第2導電シート間に絶縁シートが設けられ、一端から陽極リードが導出されると共に外周面に陰極が形成されたコンデンサ素子が前記絶縁シート上に載置され、前記コンデンサ素子の陽極リードが前記第1導電シートに接続され、前記コンデンサ素子の陰極が前記第2導電シートに接続され、前記コンデンサ素子が外装樹脂にて封止された固体電解コンデンサであって、
該固体電解コンデンサの、前記コンデンサ素子からの陽極リードの導出方向に対して垂直な一対の側面に、前記第1、第2導電シートの切断面が露出し、該固体電解コンデンサの外周には、前記第1、第2導電シート及び絶縁シートが露出した部分を除いて、前記外装樹脂が露出していることを特徴とする。
【0012】
また、前記絶縁シートは、前記第1、第2導電シートに跨って設けられたことを特徴とする。
【0013】
【発明の実施の形態】
固体電解コンデンサは、図6に示す如く、一端に陽極リード(11)を導出し、外周面に陰極を形成したコンデンサ素子(2)に対して樹脂封止を行っている。
【0014】
コンデンサ素子(2)は、タンタル(Ta)、アルミニウム(Al)、ニオブ(Nb)、チタン(Ti)等の弁作用金属の表面に、陽極酸化等の方法により、誘電体酸化皮膜を生じさせ、該皮膜上にポリピロール、ポリチオフェン、ポリアニリン等の高分子有機半導体を固体電解質として形成せしめた後、カーボン層、銀ペースト層を順次形成して完成する。斯かるコンデンサ素子(2)は、例えば特開平8−148392号公報等の公知技術によって作製することができるので、コンデンサ素子そのものの製造方法については説明を省略する。
【0015】
以下の実施例では、弁作用金属としてタンタル焼結体(1)を、固体電解質としてポリピロールを採用した。
(実施例1)
図1に本発明に係る固体電解コンデンサの第1の実施例を示す。
【0016】
図1において、(2)は一端から陽極リード(11)が導出されたコンデンサ素子、(31)(32)は42アロイ(鉄ニッケル合金)表面にNiメッキ及び半田メッキを順次施した導電シートで、コンデンサ素子(2)の陰極(外周面の銀ペースト層)は導電性接着剤(4)を介して一方の導電シート(32)に接続され、陽極リードは他方の導電シート(31)に溶接あるいは導電性接着剤を介して接続される。また、(5)はコンデンサ素子(2)と導電性シート(31)(32)との間に配され、且つ導電性シート(31)(32)間を電気的に絶縁する絶縁シート、(6)はエポキシ樹脂等からなり、コンデンサ素子(2)を封止する外装樹脂である。
【0017】
次に斯かる第1の実施例の製造方法を説明する。
【0018】
先ず、図4に示すように、開口部(33)(33)を有する導電シート(3)を準備し、この開口部(33)(33)上を粘着性テープからなる絶縁シート(5) (5)で塞ぐ。次いで、コンデンサ素子(2)(2)を絶縁シート(5)(5)上に配置し、その陰極(外周面の銀ペースト層)を導電シート(3)に導電性接着剤(4)にて接続し、陽極リード(11)(11)を適宜折り曲げた後、溶接あるいは導電性接着剤にて接続する(図1参照)。ここで、本実施例では、導電シート(3)の開口部(33)(33)の幅を3.0mm、絶縁シート(5)(5)の幅を3.5mm、コンデンサ素子(2)(2)の長さ(図4の紙面左右方向)を5.0mmとした。
【0019】
しかる後、コンデンサ素子(2)(2)を覆うようにエポキシ樹脂等からなる外装樹脂(6)を導電性シート(3)上に塗布し、150℃の硬化炉にて30分間熱処理することによって外装樹脂(6)を硬化させる。尚、本実施例では、外装樹脂(6)の高さを1.6mmとした。
【0020】
最後に、図面中の1点鎖線に沿って所定寸法にダイシングすることにより、本実施例の固体電解コンデンサが完成する。本実施例では、コンデンサの寸法をDケース(7.3mm×4.3mm)とした。
(実施例2)
図2に本発明に係る固体電解コンデンサの第2の実施例を示す。図2において、第1の実施例と同じものには同番号を付し説明を省略する。
【0021】
第2の実施例は、導電シート(31)の端部に切り起こし部(34)を設け、この切り起こし部(34)に設けた切り欠き(図示せず)に陽極リード(11)を圧入して接続したものである。
【0022】
斯かる第2の実施例の製造においては、先ず、図5に示すように、開口部(33)(33)及び切り起こし部(34)(34)を形成した導電シート(3)を準備し、開口部(33)(33)上を粘着性テープからなる絶縁シート(5)で塞ぐ。次いで、コンデンサ素子(2)(2)を絶縁シート(5)(5)上に配置し、その陰極(外周面の銀ペースト層)を導電シート(3)に導電性接着剤(4)にて接続し、陽極リード(11)(11)を切り起こし部(34)(34)に設けた切り欠き(図示せず)に圧入して接続する。ここで、本実施例では、導電シート(3)の開口部(33)(33)の幅を3.0mm、絶縁シート(5)(5)の幅を3.5mm、コンデンサ素子(2)(2)の長さ(図5の紙面左右方向)を5.8mmとした。
【0023】
しかる後、実施例1と同じように各コンデンサ素子(2)(2)を外装樹脂(6)にて封止し、所定寸法にダイシングして固体電解コンデンサを完成させた。尚、本実施例においても第1の実施例と同じく、外装樹脂(6)の高さを1.6mm、コンデンサの寸法をDケースとした。
【0024】
本発明に係る実施例1、2では、図3に示す従来例のように固体電解コンデンサの長さ方向において、外装樹脂(6)の外側でリードフレーム(21)(22)を折り曲げる必要がないため、外装樹脂(6)寸法を大きくすることができ、更にリードフレーム(21)と陽極リード(11)との溶接代(23)及びリードフレーム(22)の折り曲げ代(24)が必要ないため、外装樹脂(6)内に封止されるコンデンサ素子(2)の寸法を大きくすることができる。これらの実施例と従来例の長さ方向の具体的な寸法の関係は表2の通りである。
【0025】
【表2】
Figure 0003883766
【0026】
表2に示すように、実施例1、2では、外装樹脂(6)の外形寸法を7.3mmと従来例に比して0.2mm長く成型することができ、コンデンサ素子(2)の長さにおいては、実施例1で1.5mm、実施例2で2.3mm夫々従来例より大きくすることができた。
【0027】
次に、これら実施例及び従来例の高さ方向の具体的な寸法の関係を表3に示す。
【0028】
【表3】
Figure 0003883766
【0029】
表3に示すように、実施例1、2では、従来例においてコンデンサ素子(2)の上面に被さるリードフレーム(22)及び下面に接する様に折り曲げられるリードフレーム(21)(22)の厚みが不要となるため、コンデンサ素子(2)の高さは従来例に比べて0.3mm高くできた。尚、幅方向の各寸法は、これら実施例及び従来例に変わりはない。
【0030】
以上の如く、実施例1及び2で用いたコンデンサ素子(2)の体積及び体積比率は表4の通りである。
【0031】
【表4】
Figure 0003883766
【0032】
表4に示すように、実施例1では従来例に比してコンデンサ素子(2)の体積を1.86倍にすることができ、実施例2では2.15倍にすることができた。
【0033】
【発明の効果】
以上のように、本発明によって体積比率を大きくすることが可能となり、小型で大容量の固体電解コンデンサを実現できる。
【0034】
また、従来のようにリードフレーム(21)(22)の折り曲げがないため、直列インダクタ成分(ESL)の小さいコンデンサを実現できる。
【図面の簡単な説明】
【図1】本発明の実施例1による固体電解コンデンサの断面図である。
【図2】本発明の実施例2による固体電解コンデンサの断面図である。
【図3】従来技術による固体電解コンデンサの断面図である。
【図4】本発明の実施例1の製造方法を説明するための平面図である。
【図5】本発明の実施例2の製造方法を説明するための平面図である。
【図6】本発明に係るコンデンサ素子の斜視図である。
【符号の説明】
2 コンデンサ素子
3、31、32 導電シート
4 導電性接着剤
5 絶縁材料
6 外装樹脂[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chip capacitor in which a volume ratio of a capacitor element to a capacitor finished product is improved in a chip type solid electrolytic capacitor.
[0002]
[Prior art]
As shown in FIG. 3, a conventional solid electrolytic capacitor has a dielectric oxide film, a solid oxide on a sintered body or the like (for example, tantalum sintered body) made of a valve metal having an anode lead (11) led to one end. An electrolyte layer, a carbon layer, and a silver paste layer are sequentially formed to complete the capacitor element (2).
[0003]
Next, of the two lead frames (21) and (22) bent in advance to a predetermined dimension, one lead frame (21) is welded to the anode lead (11), and the other lead frame (22) is joined to silver. An adhesive (4) is adhesively connected to the silver paste layer.
[0004]
Next, the capacitor element (2) is resin-sealed by a transfer mold or the like so that the tip ends of the lead frames (21) and (22) are exposed.
[0005]
Finally, lead frames (21) and (22) led out of the exterior resin (6) are bent to predetermined dimensions to form a plus electrode and a minus electrode, thereby completing a capacitor.
[0006]
[Problems to be solved by the invention]
In such a conventional solid electrolytic capacitor, the welding allowance (23) for connecting the anode lead (11) and the lead frame (21) is provided on the positive electrode side, and the bending allowance for the lead frame (22) is provided on the negative electrode side. It is necessary to take (24). For example, in the case of a capacitor having a length of 7.3 mm and a width of 4.3 mm (hereinafter referred to as “D case”), the thicknesses L1 and L2 of the exterior electrode (6) on the plus electrode side and the minus electrode side are respectively It was about 1.8 mm.
[0007]
Also, conventionally, it is necessary to bend the lead frames (21) and (22) outside the exterior resin (6), and the length of the exterior resin (6) after molding is 7.3 mm from the standard value of 7.3 mm for the D case. Therefore, it was necessary to mold the lead frame (21) and (22) as small as possible (see FIG. 3). In the above example, the length of the exterior resin (6) after molding is molded to 7.1 mm.
[0008]
For this reason, in the prior art, the volume ratio of the capacitor element to the finished capacitor product (hereinafter simply referred to as “volume ratio”) cannot be sufficiently large, and the volume ratio is about 20.4 as shown in Table 1 below. It stopped at about%. Table 1 shows an example in which a capacitor having a height of 1.8 mm is completed in the D case.
[0009]
[Table 1]
Figure 0003883766
[0010]
Accordingly, the present invention provides a chip capacitor that can be reduced in size and increased in capacity by improving the volume ratio.
[0011]
[Means for Solving the Problems]
In the solid electrolytic capacitor according to the present invention, in order to solve the above-described problem, the first and second conductive sheets are arranged apart from each other, an insulating sheet is provided between the first and second conductive sheets, and an anode lead is provided from one end. And a capacitor element having a cathode formed on the outer peripheral surface is placed on the insulating sheet, an anode lead of the capacitor element is connected to the first conductive sheet, and a cathode of the capacitor element is the second electrode A solid electrolytic capacitor connected to a conductive sheet and having the capacitor element sealed with an exterior resin,
The cut surfaces of the first and second conductive sheets are exposed on a pair of side surfaces perpendicular to the lead-out direction of the anode lead from the capacitor element of the solid electrolytic capacitor, and on the outer periphery of the solid electrolytic capacitor, The exterior resin is exposed except for portions where the first and second conductive sheets and the insulating sheet are exposed.
[0012]
The insulating sheet is provided across the first and second conductive sheets .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the solid electrolytic capacitor, as shown in FIG. 6, the anode lead (11) is led out at one end, and the capacitor element (2) having the cathode formed on the outer peripheral surface is sealed with resin.
[0014]
Capacitor element (2) produces a dielectric oxide film on the surface of a valve metal such as tantalum (Ta), aluminum (Al), niobium (Nb), titanium (Ti), etc. by a method such as anodic oxidation. A polymer organic semiconductor such as polypyrrole, polythiophene or polyaniline is formed as a solid electrolyte on the film, and then a carbon layer and a silver paste layer are sequentially formed to complete. Since such a capacitor element (2) can be produced by a known technique such as Japanese Patent Laid-Open No. 8-148392, description of the method for producing the capacitor element itself is omitted.
[0015]
In the following examples, tantalum sintered body (1) was adopted as the valve action metal, and polypyrrole was adopted as the solid electrolyte.
Example 1
FIG. 1 shows a first embodiment of a solid electrolytic capacitor according to the present invention.
[0016]
In FIG. 1, (2) is a capacitor element in which an anode lead (11) is led out from one end, and (31) and (32) are conductive sheets in which Ni alloy and solder plating are sequentially applied to the surface of 42 alloy (iron nickel alloy). The cathode of the capacitor element (2) (silver paste layer on the outer peripheral surface) is connected to one conductive sheet (32) via a conductive adhesive (4), and the anode lead is welded to the other conductive sheet (31). Alternatively, they are connected via a conductive adhesive. (5) is an insulating sheet disposed between the capacitor element (2) and the conductive sheets (31) and (32) and electrically insulating the conductive sheets (31) and (32); ) Is an exterior resin made of epoxy resin or the like and sealing the capacitor element (2).
[0017]
Next, the manufacturing method of the first embodiment will be described.
[0018]
First, as shown in FIG. 4, a conductive sheet (3) having openings (33) and (33) is prepared, and an insulating sheet (5) made of adhesive tape is formed on the openings (33) and (33). Close with 5). Next, the capacitor elements (2) and (2) are arranged on the insulating sheets (5) and (5), and the cathode (silver paste layer on the outer peripheral surface) is applied to the conductive sheet (3) with the conductive adhesive (4). After connecting, the anode leads (11) and (11) are appropriately bent, and then connected by welding or a conductive adhesive (see FIG. 1). Here, in this example, the width of the openings (33) and (33) of the conductive sheet (3) is 3.0 mm, the width of the insulating sheets (5) and (5) is 3.5 mm, and the capacitor element (2) ( The length of 2) (left and right direction in FIG. 4) was 5.0 mm.
[0019]
Thereafter, an exterior resin (6) made of an epoxy resin or the like is applied on the conductive sheet (3) so as to cover the capacitor elements (2) and (2), and heat-treated in a curing furnace at 150 ° C. for 30 minutes. The exterior resin (6) is cured. In this example, the height of the exterior resin (6) was 1.6 mm.
[0020]
Finally, the solid electrolytic capacitor of this embodiment is completed by dicing to a predetermined dimension along the one-dot chain line in the drawing. In the present example, the dimensions of the capacitor were D case (7.3 mm × 4.3 mm).
(Example 2)
FIG. 2 shows a second embodiment of the solid electrolytic capacitor according to the present invention. In FIG. 2, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0021]
In the second embodiment, a cut-and-raised part (34) is provided at the end of the conductive sheet (31), and the anode lead (11) is press-fitted into a notch (not shown) provided in the cut-and-raised part (34). Connected.
[0022]
In the manufacture of the second embodiment, first, as shown in FIG. 5, a conductive sheet (3) having openings (33) and (33) and cut and raised portions (34) and (34) is prepared. The openings (33) and (33) are closed with an insulating sheet (5) made of an adhesive tape. Next, the capacitor elements (2) and (2) are arranged on the insulating sheets (5) and (5), and the cathode (silver paste layer on the outer peripheral surface) is applied to the conductive sheet (3) with the conductive adhesive (4). Then, the anode leads (11) and (11) are press-fitted and connected to notches (not shown) provided in the cut and raised portions (34) and (34). Here, in this example, the width of the openings (33) and (33) of the conductive sheet (3) is 3.0 mm, the width of the insulating sheets (5) and (5) is 3.5 mm, and the capacitor element (2) ( The length of 2) (left and right direction in FIG. 5) was 5.8 mm.
[0023]
Thereafter, in the same manner as in Example 1, each capacitor element (2) (2) was sealed with an exterior resin (6), and diced to a predetermined size to complete a solid electrolytic capacitor. In this example, as in the first example, the height of the exterior resin (6) was 1.6 mm, and the dimensions of the capacitor were D case.
[0024]
In the first and second embodiments according to the present invention, it is not necessary to bend the lead frames (21) and (22) outside the exterior resin (6) in the length direction of the solid electrolytic capacitor as in the conventional example shown in FIG. Therefore, the size of the exterior resin (6) can be increased, and the welding allowance (23) between the lead frame (21) and the anode lead (11) and the bending allowance (24) of the lead frame (22) are not required. The dimension of the capacitor element (2) sealed in the exterior resin (6) can be increased. Table 2 shows the relationship between specific dimensions in the length direction of these examples and the conventional example.
[0025]
[Table 2]
Figure 0003883766
[0026]
As shown in Table 2, in Examples 1 and 2, the outer dimension of the exterior resin (6) was 7.3 mm, which was 0.2 mm longer than the conventional example, and the length of the capacitor element (2) In this case, 1.5 mm in Example 1 and 2.3 mm in Example 2 could be made larger than the conventional example.
[0027]
Next, Table 3 shows the relationship between specific dimensions in the height direction of these examples and the conventional example.
[0028]
[Table 3]
Figure 0003883766
[0029]
As shown in Table 3, in Examples 1 and 2, the thicknesses of the lead frame (22) covering the upper surface of the capacitor element (2) and the lead frames (21) and (22) bent so as to contact the lower surface in the conventional example are as follows. Since it becomes unnecessary, the height of the capacitor element (2) can be increased by 0.3 mm compared to the conventional example. In addition, each dimension of the width direction does not change in these Examples and conventional examples.
[0030]
As described above, the volume and volume ratio of the capacitor element (2) used in Examples 1 and 2 are as shown in Table 4.
[0031]
[Table 4]
Figure 0003883766
[0032]
As shown in Table 4, in Example 1, the volume of the capacitor element (2) was 1.86 times that in the conventional example, and in Example 2, it was 2.15 times.
[0033]
【The invention's effect】
As described above, according to the present invention, the volume ratio can be increased, and a small-sized and large-capacity solid electrolytic capacitor can be realized.
[0034]
Further, since the lead frames (21) and (22) are not bent as in the prior art, a capacitor having a small series inductor component (ESL) can be realized.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a solid electrolytic capacitor according to Embodiment 1 of the present invention.
FIG. 2 is a cross-sectional view of a solid electrolytic capacitor according to Example 2 of the present invention.
FIG. 3 is a cross-sectional view of a conventional solid electrolytic capacitor.
FIG. 4 is a plan view for explaining the manufacturing method according to the first embodiment of the present invention.
FIG. 5 is a plan view for explaining the manufacturing method according to the second embodiment of the present invention.
FIG. 6 is a perspective view of a capacitor element according to the present invention.
[Explanation of symbols]
2 Capacitor elements 3, 31, 32 Conductive sheet 4 Conductive adhesive 5 Insulating material 6 Exterior resin

Claims (2)

第1、第2導電シートが離間して配置され、該第1、第2導電シート間に絶縁シートが設けられ、一端から陽極リードが導出されると共に外周面に陰極が形成されたコンデンサ素子が前記絶縁シート上に載置され、前記コンデンサ素子の陽極リードが前記第1導電シートに接続され、前記コンデンサ素子の陰極が前記第2導電シートに接続され、前記コンデンサ素子が外装樹脂にて封止された固体電解コンデンサであって、
該固体電解コンデンサの、前記コンデンサ素子からの陽極リードの導出方向に対して垂直な一対の側面に、前記第1、第2導電シートの切断面が露出し、該固体電解コンデンサの外周には、前記第1、第2導電シート及び絶縁シートが露出した部分を除いて、前記外装樹脂が露出していることを特徴とする固体電解コンデンサ。
A capacitor element in which first and second conductive sheets are spaced apart, an insulating sheet is provided between the first and second conductive sheets, an anode lead is led out from one end, and a cathode is formed on the outer peripheral surface. Placed on the insulating sheet, the anode lead of the capacitor element is connected to the first conductive sheet, the cathode of the capacitor element is connected to the second conductive sheet, and the capacitor element is sealed with an exterior resin A solid electrolytic capacitor,
Cut surfaces of the first and second conductive sheets are exposed on a pair of side surfaces perpendicular to the lead-out direction of the anode lead from the capacitor element of the solid electrolytic capacitor, and on the outer periphery of the solid electrolytic capacitor, The solid electrolytic capacitor, wherein the exterior resin is exposed except for a portion where the first and second conductive sheets and the insulating sheet are exposed.
前記絶縁シートは、前記第1、第2導電シートに跨って設けられたことを特徴とする請求項1記載の固体電解コンデンサ。The solid electrolytic capacitor according to claim 1, wherein the insulating sheet is provided across the first and second conductive sheets.
JP34486099A 1999-12-03 1999-12-03 Solid electrolytic capacitor Expired - Fee Related JP3883766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34486099A JP3883766B2 (en) 1999-12-03 1999-12-03 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34486099A JP3883766B2 (en) 1999-12-03 1999-12-03 Solid electrolytic capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005232716A Division JP2005328100A (en) 2005-08-11 2005-08-11 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2001167976A JP2001167976A (en) 2001-06-22
JP3883766B2 true JP3883766B2 (en) 2007-02-21

Family

ID=18372561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34486099A Expired - Fee Related JP3883766B2 (en) 1999-12-03 1999-12-03 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3883766B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040054356A (en) * 2002-12-18 2004-06-25 최영석 High capacity tantalum solid electrolytic capacitor and thereof manufacturing method
CN101345139B (en) * 2007-07-12 2011-10-05 电子科技大学 Solid tantalum electrolytic capacitor and manufacturing method thereof
JP5041982B2 (en) 2007-11-20 2012-10-03 三洋電機株式会社 Solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2001167976A (en) 2001-06-22

Similar Documents

Publication Publication Date Title
JPH05205984A (en) Laminated solid electrolytic capacitor
WO2008041397A1 (en) Solid electrolytic capacitor and its manufacturing method
JPS5934625A (en) Method of producing chip solid electrolyte condenser
JP4975946B2 (en) Chip-type solid electrolytic capacitor and manufacturing method thereof
JP3568432B2 (en) Method for manufacturing solid electrolytic capacitor
JP3883766B2 (en) Solid electrolytic capacitor
JP3557564B2 (en) Multilayer solid electrolytic capacitors
JP2005328100A (en) Method for manufacturing solid electrolytic capacitor
JP3945958B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4424658B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5796193B2 (en) Solid electrolytic capacitor
JP3932191B2 (en) Solid electrolytic capacitor
JP3546451B2 (en) Method for manufacturing solid electrolytic capacitor
JP3185405B2 (en) Solid electrolytic capacitors
JP3857857B2 (en) Solid electrolytic capacitor
JP5213685B2 (en) Solid electrolytic capacitor
JPS63299307A (en) Electrolytic capacitor
JP2004247665A (en) Solid-state electrolytic capacitor
JP3976055B2 (en) Solid electrolytic capacitor
JP3505763B2 (en) Chip-shaped solid electrolytic capacitor
JP2002175953A (en) Lead frame for capacitor
JP4590811B2 (en) Chip type solid electrolytic capacitor
JP5796195B2 (en) Solid electrolytic capacitor
JP2010080600A (en) Chip-shaped solid electrolytic capacitor
JP2008053416A (en) Chip-type solid electrolytic capacitor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050811

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees