JP3883070B2 - Promotion pipe digging method - Google Patents

Promotion pipe digging method Download PDF

Info

Publication number
JP3883070B2
JP3883070B2 JP2003434593A JP2003434593A JP3883070B2 JP 3883070 B2 JP3883070 B2 JP 3883070B2 JP 2003434593 A JP2003434593 A JP 2003434593A JP 2003434593 A JP2003434593 A JP 2003434593A JP 3883070 B2 JP3883070 B2 JP 3883070B2
Authority
JP
Japan
Prior art keywords
propulsion
pipe
thrust
propelling
propulsion pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003434593A
Other languages
Japanese (ja)
Other versions
JP2004137894A (en
Inventor
正人 山田
次郎 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Exeo Corp
Original Assignee
Kyowa Exeo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Exeo Corp filed Critical Kyowa Exeo Corp
Priority to JP2003434593A priority Critical patent/JP3883070B2/en
Publication of JP2004137894A publication Critical patent/JP2004137894A/en
Application granted granted Critical
Publication of JP3883070B2 publication Critical patent/JP3883070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は下水道や電気通信設備といった地下構造物の築造時に適用される推進管の掘進工法に係り、特に推進管の推進抵抗を効果的に低減させることができる推進管掘進工法に関する。   The present invention relates to a method for digging a propulsion pipe applied at the time of constructing an underground structure such as a sewer or telecommunications equipment, and more particularly to a propulsion pipe digging method capable of effectively reducing the propulsion resistance of the propulsion pipe.

下水道や電気通信設備といった地下構造物の築造には、地表面の掘削を不要とする管推進工法が多く採用されている。図5は推進工法の手順を示す地中断面図である。同図に示すように推進工法では埋設区間の始端側に発進立杭1が掘削されており、当該発進立杭1の底部には推進管の押出しを行う推進ジャッキ2が備えられている。   For the construction of underground structures such as sewers and telecommunications equipment, many pipe propulsion methods that do not require excavation of the ground surface are employed. FIG. 5 is an underground sectional view showing the procedure of the propulsion method. As shown in the figure, in the propulsion method, a start-up pile 1 is excavated on the start end side of the buried section, and a propulsion jack 2 for pushing out a propelling pipe is provided at the bottom of the start-up pile 1.

こうした発進立杭1から地中に推進管を埋設させるには、まず発進立杭1の底部から推進機械3を稼働させ埋設区間の終端側に向かって掘削を行わせる。そして推進機械3の地中進行によって発生する土砂を掘削穴4から排除するとともに、推進ジャッキ2によって掘削穴4に推進管5を継ぎ足し挿入していく。このように推進管5を掘削穴4に沿って継ぎ足し挿入していくことで、埋設区間に推進管5を埋設させている。   In order to embed a propulsion pipe from the starting standing pile 1 into the ground, first, the propulsion machine 3 is operated from the bottom of the starting standing pile 1 to perform excavation toward the terminal end side of the burying section. And the earth and sand which generate | occur | produce in the underground of the propulsion machine 3 are removed from the excavation hole 4, and the propulsion pipe 5 is added to the excavation hole 4 by the propulsion jack 2 and inserted. In this way, the propulsion pipe 5 is embedded along the excavation hole 4 so that the propulsion pipe 5 is embedded in the embedded section.

ところで上述した推進工法では、推進管5の外径を推進機械3の外径に対し若干小径に設定し、掘削穴4の径と推進管5の外径との間に滑材となるテールボイド材を充填させテールボイド6を確保することが、長距離および曲線を正確に推進させるための欠かせない要素となっている。すなわち推進管5まわりのテールボイド6の充填率が低下すると掘削穴4に対する推進管5の摩擦力が上昇し、推進管5の推進に不具合をきたす恐れがあった。   By the way, in the above-mentioned propulsion method, the outer diameter of the propulsion pipe 5 is set slightly smaller than the outer diameter of the propulsion machine 3, and the tail void material that serves as a lubricant between the diameter of the excavation hole 4 and the outer diameter of the propulsion pipe 5 is used. It is an indispensable element for accurately propelling a long distance and a curve to fill the tail void 6 and to secure the tail void 6. That is, when the filling rate of the tail void 6 around the propulsion pipe 5 is lowered, the frictional force of the propulsion pipe 5 with respect to the excavation hole 4 is increased, which may cause a problem in the propulsion of the propulsion pipe 5.

このため従来では、推進ジャッキ2の元押し推力の値があらかじめ設定した異常推力レベルを越えると、滑材を推進区間全域に注入して元押し推力の上昇を抑えるようにしている。この例としては特許文献1に記載されているものがある。
特開平07−189591号
For this reason, conventionally, when the value of the main thrust of the propulsion jack 2 exceeds a preset abnormal thrust level, the lubricant is injected into the entire propulsion section to suppress the increase of the main thrust. An example of this is described in Patent Document 1.
JP 07-189591 A

しかし滑材を推進区間全域に注入すれば、確かに元押し推力の上昇を抑えられるものの、推進管5の全長は工事の終盤ともなると数百メートル以上にも及ぶので大量の滑材を注入する必要があり、工事コストが増大してしまうという問題点があった。
本発明は上記従来の問題点に着目し、低コストで推進管周辺摩擦力を低減することのできる推進管掘進工法を提供することを目的とする。
However, if the lubricant is injected all over the propulsion section, it is possible to suppress the increase of the thrust force. However, the total length of the propulsion pipe 5 reaches several hundred meters at the end of the construction, so a large amount of lubricant is injected. There was a problem that construction cost would increase.
An object of the present invention is to provide a propulsion pipe excavation method capable of reducing the frictional force around the propulsion pipe at low cost by paying attention to the above-mentioned conventional problems.

本発明は地中に送り込まれた推進管の端部に徐々に元押し推力を加えていけば、推進ジャッキ側の推進管から順番に継手部分の間隔が狭まっていく。そして隣り合う推進管の相対位置の変化をもとに推進長に対する元押し推力の変化をとらえていけば推進管途中の摩擦増大範囲を特定できるという知見に基づいて行われたものである。   According to the present invention, if a thrust force is gradually applied to the end portion of the propulsion pipe fed into the ground, the interval between the joint portions is gradually reduced from the propulsion pipe on the propulsion jack side. This is based on the knowledge that the friction increasing range in the middle of the propulsion pipe can be specified by grasping the change in the thrust force with respect to the propulsion length based on the change in the relative position of the adjacent propulsion pipes.

推進ジャッキ2の元押し推力の値はあらかじめ設定した異常推力レベルとの比較のみに用いられており、摩擦力の増大範囲を特定できるものでは無かった。しかし、通常の摩擦抵抗を持つ推進管区域では、推進管長さにほぼ比例するように元押し推力が上昇するが、推進管途中に摩擦増大範囲が存在すると推進管長さに対して元押し推力は急激に上昇する。このため元押し推力の変化から推進管途中の摩擦増大範囲を特定することができるのである。   The value of the original pushing thrust of the propulsion jack 2 is used only for comparison with a preset abnormal thrust level, and the range of increase of the frictional force cannot be specified. However, in the propulsion tube area with normal frictional resistance, the thrust force increases so as to be approximately proportional to the propulsion tube length. It rises rapidly. For this reason, it is possible to specify the friction increase range in the middle of the propulsion pipe from the change in the thrust force.

このような原理を得たことにより、本発明は、推進管を推進させる際の推進管途中の摩擦増大範囲を特定し、この摩擦増大範囲に位置する推進管の外周囲に滑材を供給して全体の推進摩擦抵抗の低減化を図りつつ推進掘削させるように構成したものである。この場合、前記摩擦増大範囲の特定は、元押し推力を加えることにより、隣り合う推進管の相対位置の変化をもとに推進長に対する元押し推力の変化をとらえて行うものとすればよい。 By obtaining such a principle, the present invention specifies a friction increasing range in the middle of the propelling pipe when propelling the propelling pipe, and supplies a lubricant to the outer periphery of the propelling pipe located in the friction increasing range. The propulsion excavation is performed while reducing the overall propulsion frictional resistance. In this case, the friction increase range may be specified by capturing the change in the thrust force with respect to the propulsion length based on the change in the relative position of the adjacent propulsion pipes by applying the thrust force.

これは、推進工法により地中に押し込まれる推進管の元押し推力を検知し、この元押し推力があらかじめ設定した異常推力レベルをこえたときに押し込み作業を一旦停止させるとともに前記元押し推力を初期状態から上昇させ、継手に設けた伸縮検知センサからの信号をトリガとして、前記推進ジャッキから前記伸縮検出センサまでの距離に対する前記元押し推力の値を順次計測手段にて計測し摩擦増大範囲を特定することができるので、実現できる。   This detects the main thrust of the propulsion pipe pushed into the ground by the propulsion method, and when the main thrust exceeds a preset abnormal thrust level, the pushing operation is temporarily stopped and the main thrust is initially set. Using the signal from the expansion / contraction detection sensor provided on the joint as a trigger, the value of the original pushing thrust with respect to the distance from the propulsion jack to the expansion / contraction detection sensor is sequentially measured by the measuring means to identify the friction increase range. Can be realized.

上記構成によれば、推進ジャッキを稼働させ推進管端部に元押し推力を徐々に加えていくと、推力が推進ジャッキ側の推進管から順々に伝達される。隣り合う推進管の相対位置が変化したときの元押し推力の値を、その伸縮検出センサの推進ジャッキからの距離に対して順次比較していけば、推進ジャッキからの距離に対し、元押し推力が増大することを検出することにより、推進管における摩擦増大範囲を特定することができる。
そして上記手順によって特定した摩擦増大範囲に滑材を注入すれば、摩擦低減が確実になされるとともに、滑材の注入量を最小限に抑えられることができる。
According to the above configuration, when the propulsion jack is operated and the thrust force is gradually applied to the end of the propulsion pipe, the thrust is sequentially transmitted from the propulsion pipe on the propulsion jack side. If the value of the main thrust when the relative position of the adjacent propulsion pipe changes is sequentially compared with the distance from the propulsion jack of the expansion / contraction detection sensor, the main thrust against the distance from the propulsion jack By detecting that increases, the range of friction increase in the propulsion pipe can be specified.
If the lubricant is injected into the friction increase range specified by the above procedure, the friction can be reliably reduced and the amount of lubricant injected can be minimized.

このように、推進管を推進させる際の推進管途中の摩擦増大範囲を、元押し推力を加えることにより、隣り合う推進管の相対位置の変化をもとに推進長に対する元押し推力の変化をとらえて特定し、この摩擦増大範囲に位置する推進管の外周囲に滑材を供給して全体の推進摩擦抵抗の低減化を図りつつ推進掘削させるように本発明を構成することにより、推進管の推進摩擦低減が確実になされるとともに滑材の注入量を最小限に抑えられ、工事コストの低減を図ることができる。 In this way, the friction increase range in the middle of the propulsion pipe when propelling the propulsion pipe is added by the main thrust. The propulsion pipe is configured by identifying and identifying the present invention so as to cause the excavation to be performed while supplying the lubricant to the outer periphery of the propulsion pipe located in this friction increasing range and reducing the overall propulsion friction resistance. The propulsion friction can be reliably reduced and the amount of lubricant injected can be minimized, thereby reducing the construction cost.

以下に本発明に係る推進管掘進工法の具体的実施の形態を、図面を参照して、詳細に説明する。
図1は、実施の形態に係る推進管掘進工法を実現するために用いられる推進管周辺摩擦力の測定装置の構成を示した構成説明図である。同図に示すように推進管周辺摩擦力の測定装置10(以下、測定装置10)は地表面の掘削を不要とする推進工法に適用される。
Specific embodiments of the propulsion pipe excavation method according to the present invention will be described below in detail with reference to the drawings.
FIG. 1 is a configuration explanatory view showing the configuration of a propulsion pipe peripheral frictional force measuring device used for realizing the propulsion pipe excavation method according to the embodiment. As shown in the drawing, a measuring device 10 (hereinafter, measuring device 10) for frictional force around a propelling pipe is applied to a propulsion method that does not require excavation of the ground surface.

推進工法は、推進機械によって設けられた掘削穴にヒューム管や鋼管といった推進管12を継ぎ足し挿入することで行われ、また推進管12の掘削穴への押し込みには推進ジャッキが用いられる。   The propulsion method is performed by adding and inserting a propulsion pipe 12 such as a fume pipe or a steel pipe into an excavation hole provided by the propulsion machine, and a propulsion jack is used to push the propulsion pipe 12 into the excavation hole.

ここで推進管12の構造を図2に示す。同図(1)に示すように掘削穴へ次々と挿入される推進管12の側面にはテールボイド注入孔14が複数周回方向に設けられ(図中では3箇所)、推進管12の内側から管外側に向かってテールボイド材を送り出し可能にしている。また同図(2)に示すように継ぎ足される推進管12の間には継手16が設けられる。当該継手16には推進管12の曲線推進が可能なようにパッキン型の多曲線推力伝達装置(MST(P型))が用いられており、推進ジャッキからの元押し推力を曲線状に伝達可能にしている。また継手16における外側周囲には鋼製のカラー18が設けられており、推進時における土砂の管内への侵入を防止するようにしている。   Here, the structure of the propulsion pipe 12 is shown in FIG. As shown in FIG. 1 (1), a plurality of tail void injection holes 14 are provided in the circumferential direction on the side surface of the propulsion tube 12 inserted into the excavation holes one after another (three locations in the figure). The tail void material can be fed outward. Further, as shown in FIG. 2B, a joint 16 is provided between the propelling pipes 12 to be added. The joint 16 uses a packing type multi-curve thrust transmission device (MST (P-type)) so that the propulsion pipe 12 can be curvedly propelled, and can transmit the main thrust from the propulsion jack in a curved line. I have to. A steel collar 18 is provided around the outside of the joint 16 so as to prevent earth and sand from entering the pipe during propulsion.

このように推進管12とともに地中へと押し込められる継手16には測定装置10を構成する伸縮検出センサ20が設けられ、隣り合う推進管12の相対位置の変動を検知できるようになっている。ここで当該伸縮検出センサ20は連続する継手16毎に設ける必要は無く、推進対象となる土砂の性質等によって任意の間隔(例えば当該センサ20を継手16の中1個毎に設置)を設定すればよい。   In this way, the joint 16 that is pushed into the ground together with the propulsion pipe 12 is provided with an expansion / contraction detection sensor 20 that constitutes the measuring device 10 so that a change in the relative position of the adjacent propulsion pipes 12 can be detected. Here, the expansion / contraction detection sensor 20 does not need to be provided for each continuous joint 16, and an arbitrary interval (for example, the sensor 20 is installed for each one of the joints 16) may be set according to the nature of the soil to be propelled. That's fine.

伸縮検出センサ20の具体的構造を示す。当該伸縮検出センサ20はリニアスケールエンコーダ22とパルス信号変換器26とカウンタ入力モジュール28にて構成されている。そしてこのような構成からなる複数の伸縮検出センサ20は、互いにケーブル30にて接続されるとともに管外に設けられた計測手段32へと接続される。そして隣り合う推進管12の相対位置の変化はリニアスケールエンコーダ22によって検出され、カウンタ入力モジュールからカウンタ値が計測手段32に出力されるようになっている。   A specific structure of the expansion / contraction detection sensor 20 is shown. The expansion / contraction detection sensor 20 includes a linear scale encoder 22, a pulse signal converter 26, and a counter input module 28. The plurality of expansion / contraction detection sensors 20 having such a configuration are connected to each other by a cable 30 and to a measuring means 32 provided outside the pipe. The change in the relative position of the adjacent propulsion pipes 12 is detected by the linear scale encoder 22, and the counter value is output from the counter input module to the measuring means 32.

計測手段32には伸縮検出センサ20が接続されるとともに、推進ジャッキの元押し操作を行う操作卓34もケーブルを介して接続される。そして計測手段32には個々の伸縮検出センサ20における推進ジャッキからの距離をあらかじめ記憶させておくとともに、伸縮検出センサ20からの変動値をトリガ信号として、操作卓34から推進ジャッキの元押し推力の値を取り込み、伸縮検出センサ20の推進ジャッキからの距離に対する元押し推力の値を計測できるようになっている。ここで複数の伸縮検出センサ20の判別は推進管12の内部に設置されたラインコントローラ24によって行われ、トリガ信号とともに伸縮検出センサ20の判別信号がラインコントローラ24から計測手段32に送られる。   The expansion / contraction detection sensor 20 is connected to the measuring means 32, and an operation console 34 for performing the original pushing operation of the propulsion jack is also connected via a cable. The measuring means 32 stores in advance the distance from the propulsion jack in each of the expansion / contraction detection sensors 20, and uses the fluctuation value from the expansion / contraction detection sensor 20 as a trigger signal to measure the original pushing thrust of the propulsion jack from the console 34. A value is taken in, and the value of the original pushing thrust with respect to the distance from the propulsion jack of the expansion / contraction detection sensor 20 can be measured. Here, the determination of the plurality of expansion / contraction detection sensors 20 is performed by the line controller 24 installed inside the propulsion pipe 12, and the determination signal of the expansion / contraction detection sensor 20 is sent from the line controller 24 to the measuring means 32 together with the trigger signal.

なお当該計測手段32は上記の条件を満たせば専用機器にこだわることもなく、本実施の形態ではパーソナルコンピュータ36を使用するようにしている。そして伸縮検出センサ20と操作卓34からの信号をパーソナルコンピュータ36に取り込ませるため、当該パーソナルコンピュータ36の直前にはアナログ入力モジュール38とリンカ40とが設けられている。そしてパーソナルコンピュータ36では画面上に、伸縮検出センサ20の推進ジャッキからの距離に対する元押し推力の値を表示できるようになっており直感的に状況を把握できるようになっている。   The measuring means 32 does not stick to dedicated equipment if the above conditions are satisfied, and in this embodiment, the personal computer 36 is used. An analog input module 38 and a linker 40 are provided immediately in front of the personal computer 36 so that signals from the expansion / contraction detection sensor 20 and the console 34 are taken into the personal computer 36. In the personal computer 36, the value of the original pushing force with respect to the distance from the propulsion jack of the expansion / contraction detection sensor 20 can be displayed on the screen, so that the situation can be grasped intuitively.

また伸縮検出センサ20は特に上述した構成にこだわる必要も無く、リニアスケールエンコーダ22のかわりにダイヤルゲージ型の変位測定器を用いたり、あるいはアナログ信号のかわりにデジタル信号を計測手段32への情報伝達として用いてもよい。   Further, the expansion / contraction detection sensor 20 does not have to be particularly concerned with the above-described configuration, and a dial gauge type displacement measuring device is used instead of the linear scale encoder 22, or a digital signal is transmitted to the measuring means 32 instead of an analog signal. It may be used as

このように構成された測定装置10を地中掘削用の推進工法に適用する手順を説明する。
図3は滑材投入前の推力変動を示す推力状態図であり、同図(1)は推進長に対する元押し推力の変動を示す。推進管12の必要推力は推進機械における切羽前面抵抗と推進管周辺抵抗との合力によって決定される。そして地中における推進機械の切羽前面抵抗は一定値であり、また管周辺抵抗は地中に埋め込まれた推進管12の長さの和(全長)に比例することから、理想推力ラインは一次式で表すことができる。
A procedure for applying the measuring apparatus 10 configured as described above to a propulsion method for underground excavation will be described.
FIG. 3 is a thrust state diagram showing the thrust fluctuation before the lubricant is introduced, and FIG. 3 (1) shows the fluctuation of the main thrust with respect to the propulsion length. The required thrust of the propulsion pipe 12 is determined by the resultant force of the face front resistance and the propulsion pipe peripheral resistance in the propulsion machine. Since the front resistance of the face of the propulsion machine in the ground is a constant value, and the resistance around the pipe is proportional to the sum (total length) of the length of the propulsion pipe 12 embedded in the ground, the ideal thrust line is a linear expression. Can be expressed as

しかし実際の推進長に対する元押し推力の値は、切羽前面抵抗や推進管周辺抵抗が共に変動し、上記の理想推力ラインに示すような正比例のラインを描くことはない。ここで図中ポイントCに示す元押し推力の増大部分を測定装置10を用いて調査し元押し推力増大の原因を探る。なお図中ポイントAおよびポイントBでの元押し推力の増大は、推進機械の切羽前面抵抗が上昇したことが原因であったが、これは元押し推力の増大後に測定装置10を用い推進管途中に摩擦増大範囲が確認されなかったことから判断することができる。すなわち前述した通り、推進管12の必要推力は推進機械における切羽前面抵抗と推進管周辺抵抗との合力によって決定されることから、推進管周辺抵抗に摩擦増大範囲が確認されなければ、元押し推力の増大の原因は推進機械の切羽前面抵抗の上昇であると特定することができる。そして切羽前面抵抗の低減化は、推進機械の排泥バルブやカッター室の清掃を行うことなどで達成することができる。   However, the value of the original pushing thrust with respect to the actual propulsion length does not draw a directly proportional line as shown in the above ideal thrust line because both the face front resistance and the propulsion pipe peripheral resistance fluctuate. Here, the increase portion of the main pushing thrust indicated by point C in the figure is investigated using the measuring device 10 to find the cause of the main pushing thrust increase. Note that the increase in the thrust force at point A and point B in the figure was due to the increase in the front resistance of the face of the propulsion machine. It can be judged from the fact that the increased friction range was not confirmed. That is, as described above, since the necessary thrust of the propulsion pipe 12 is determined by the resultant force of the face front resistance and the propulsion pipe peripheral resistance in the propulsion machine, if the friction increase range is not confirmed in the propulsion pipe peripheral resistance, It can be specified that the cause of the increase is an increase in the front resistance of the face of the propulsion machine. The reduction of the front face resistance can be achieved by cleaning the sludge valve and the cutter chamber of the propulsion machine.

ポイントCの状態に示すように理想推力ラインに対し急激に元押し推力が増大した場合には、一旦推進ジャッキを停止させ推進管12の推進を取りやめる。このように推進作業を一旦停止させた後は、測定装置10を作動させるとともに推進ジャッキを推進管12の端部に押し当て徐々に力を加えていく。するとこの推進ジャッキの元押し推力の上昇に伴い、多段に連結された推進管12は推進ジャッキ側から次々と推進ジャッキの押出し方向へと移動し、継手16の部分が縮まり隣り合う推進管12の相対位置が変動する。   As shown in the state of point C, when the main thrust increases suddenly with respect to the ideal thrust line, the propulsion jack 12 is stopped once and the propulsion of the propulsion pipe 12 is stopped. After the propulsion work is temporarily stopped in this way, the measuring device 10 is operated and the propulsion jack is pressed against the end of the propulsion pipe 12 to gradually apply a force. Then, with the increase of the thrust force of the propulsion jack, the propulsion pipes 12 connected in multiple stages move one after another from the propulsion jack side in the propulsion direction of the propulsion jack, and the joint 16 portion contracts and the adjacent propulsion pipe 12 The relative position varies.

ここで推進管12における継手16部分には、伸縮検出センサ20が設けられているので、推進ジャッキ側の伸縮検出センサ20から順にトリガ信号が発せられる。そしてこのトリガ信号を合図として、推進ジャッキから伸縮検出センサ20までの距離に対する元押し推力の関係が計測手段32によって計測される。同図(2)は推進ジャッキから伸縮検出センサ20までの距離に対する元押し推力の関係を示したグラフである。同図(2)に示すように、図中Dの範囲で元押し推力の値が急上昇しているのを確認することができる。また先のポイントAとポイントBとで推進機械の切羽前面抵抗を低減させており切羽前面抵抗の要因を削除することができることから、元押し推力の上昇は図中Dの範囲による推進管12の締め付けが原因であると判断することができる。そしてこの元押し推力の上昇は、当該推進管12の外側周囲に盛られたテールボイドの充填率の低下によって発生していることから、図中Dに属する推進管12のテールボイド注入孔14から推進管12の外側に滑材を送り込み、対象推進管12の外側周囲の摩擦低減を行う。   Here, since the expansion / contraction detection sensor 20 is provided at the joint 16 portion of the propulsion pipe 12, trigger signals are sequentially generated from the expansion / contraction detection sensor 20 on the propulsion jack side. Then, using this trigger signal as a signal, the measurement means 32 measures the relationship of the original pushing thrust with respect to the distance from the propulsion jack to the expansion / contraction detection sensor 20. FIG. 2B is a graph showing the relationship of the original pushing thrust with respect to the distance from the propulsion jack to the expansion / contraction detection sensor 20. As shown in FIG. 2 (2), it can be confirmed that the value of the main pushing thrust increases rapidly in the range D in the figure. Further, since the front face resistance of the propulsion machine is reduced at the previous point A and point B, and the cause of the front face resistance of the face can be eliminated, the increase of the thrust force is caused by the range of D in the propulsion pipe 12 in the figure. It can be determined that the tightening is the cause. Since the increase in the thrust force is caused by a decrease in the filling rate of the tail voids accumulated around the outer periphery of the propulsion tube 12, the propulsion tube passes from the tail void injection hole 14 of the propulsion tube 12 belonging to D in the figure. The lubricant is fed to the outside of the outer wall 12 to reduce the friction around the outer side of the target propelling pipe 12.

図4は滑材投入後の推力変動を示す推力状態図である。同図に示すようにポイントCの位置で滑材を投入した後には、元押し推力の値が低下するのが確認できる。このように個々の推進長に応じた元押し推力の値を求めることにより、推進管12の締め付け範囲を特定することができる。このため推進管12の全域に滑材を投入する必要が無く、もって滑材の消費量を最小限度に抑えることができる。   FIG. 4 is a thrust state diagram showing thrust fluctuation after the lubricant is introduced. As shown in the figure, it can be confirmed that the value of the original pushing thrust decreases after the lubricant is introduced at the point C. Thus, the range of tightening of the propulsion pipe 12 can be specified by obtaining the value of the main pushing thrust corresponding to each propulsion length. For this reason, it is not necessary to put a lubricant into the whole area of the propulsion pipe 12, and the consumption of the lubricant can be minimized.

本発明は下水道や電気通信設備の地下埋設物の管路の築造時に適用される。   The present invention is applied at the time of constructing a pipe line of an underground buried object of a sewer or telecommunications equipment.

実施の形態に係る推進管掘進工法の推進管周辺摩擦力の測定装置の構成を示した構成説明図である。It is composition explanatory drawing which showed the structure of the measuring apparatus of the propulsion pipe periphery frictional force of the propulsion pipe excavation method which concerns on embodiment. 推進管12の構造を示した説明図である。FIG. 4 is an explanatory view showing the structure of a propulsion pipe 12. 滑材投入前の推力変動を示す推力状態図である。It is a thrust state figure which shows the thrust fluctuation | variation before lubricating material injection | throwing-in. 滑材投入後の推力変動を示す推力状態図である。It is a thrust state figure which shows the thrust fluctuation | variation after injection of a lubricating material. 推進工法の手順を示す地中断面図である。It is an underground sectional view showing the procedure of the propulsion method.

符号の説明Explanation of symbols

1………発進立杭、2………推進ジャッキ、3………推進機械、4………掘削穴、5………推進管、6………テールボイド、10………推進管周辺摩擦力の測定装置、12………推進管、14………テールボイド注入孔、16………継手、18………カラー、20………伸縮検出センサ、22………リニアスケールエンコーダ、24………ラインコントローラ、26………パルス信号変換器、28………カウンタ入力モジュール、30………ケーブル、32………計測手段、34………操作卓、36………パーソナルコンピュータ、38………アナログ入力モジュール、40………リンカ。   1 ……… Starting pile, 2 ……… Propulsion jack, 3 ……… Propulsion machine, 4 ……… Drilling hole, 5 ……… Propulsion pipe, 6 ……… Tail void, 10 ……… Propulsion pipe friction Force measuring device, 12 ......... Propulsion tube, 14 ......... Tail void injection hole, 16 ......... Fitting, 18 ......... Collar, 20 ...... Extension detection sensor, 22 ...... Linear scale encoder, 24 ... ...... Line controller, 26 ......... Pulse signal converter, 28 ......... Counter input module, 30 ......... Cable, 32 ......... Measuring means, 34 ......... Console, 36 ...... Personal computer, 38 ……… Analog input module, 40 ……… Linker.

Claims (1)

推進管を推進させる際の推進管途中の摩擦増大範囲を、元押し推力を加えることにより、隣り合う推進管の相対位置の変化をもとに推進長に対する元押し推力の変化をとらえて特定し、この摩擦増大範囲に位置する推進管の外周囲に滑材を供給して全体の推進摩擦抵抗の低減化を図りつつ推進掘削させることを特徴とする推進管掘進工法。 The range of friction increase in the middle of a propelling pipe when propelling the propelling pipe is identified by capturing the change in the pushing thrust relative to the propulsion length based on the change in the relative position of the adjacent propelling pipes , propulsion tube excavation method, wherein the propelling drilling while achieving a reduction in overall propulsion frictional resistance by supplying lubricant to the outer periphery of the propulsion tube located in this friction-increasing range.
JP2003434593A 2003-12-26 2003-12-26 Promotion pipe digging method Expired - Fee Related JP3883070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003434593A JP3883070B2 (en) 2003-12-26 2003-12-26 Promotion pipe digging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003434593A JP3883070B2 (en) 2003-12-26 2003-12-26 Promotion pipe digging method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13604397A Division JP3881085B2 (en) 1997-05-09 1997-05-09 Method and apparatus for measuring frictional force around propulsion pipe, and method for reducing frictional force around propulsion pipe

Publications (2)

Publication Number Publication Date
JP2004137894A JP2004137894A (en) 2004-05-13
JP3883070B2 true JP3883070B2 (en) 2007-02-21

Family

ID=32464131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003434593A Expired - Fee Related JP3883070B2 (en) 2003-12-26 2003-12-26 Promotion pipe digging method

Country Status (1)

Country Link
JP (1) JP3883070B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110985063A (en) * 2019-12-20 2020-04-10 交通运输部公路科学研究所 Tunnel advanced large pipe shed detection and karst cave treatment construction method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6474313B2 (en) * 2015-05-19 2019-02-27 東日本旅客鉄道株式会社 Penetration element penetration management method and management device for lining element
KR102024183B1 (en) * 2018-08-22 2019-11-04 한국콘크리트산업 주식회사 Connecting structure for propulsion method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110985063A (en) * 2019-12-20 2020-04-10 交通运输部公路科学研究所 Tunnel advanced large pipe shed detection and karst cave treatment construction method

Also Published As

Publication number Publication date
JP2004137894A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
US20060102347A1 (en) Method and apparatus for logging a well using fiber optics
CN103215975B (en) Inbuilt method for distributed type sensing cable in foundation pile
JP3883070B2 (en) Promotion pipe digging method
JP4523453B2 (en) Excavator
JPH0769195B2 (en) Ground fluctuation measuring device
JP3881085B2 (en) Method and apparatus for measuring frictional force around propulsion pipe, and method for reducing frictional force around propulsion pipe
US2656683A (en) Method of installing underground pipes or ducts
US4999900A (en) Method for installing product monitoring device in underground storage tanks
JP2004100456A (en) Jacking pipe
JP4105123B2 (en) Structure displacement / deformation detection system using optical fiber sensor
JP2018025428A (en) Foreign matter identification method and foreign matter identification device
CN103234680B (en) Method for measuring stress of steel bar in well wall of inclined shaft
JP7095266B2 (en) Underground displacement measurement method
EP0289147A2 (en) Piling
JPH10142083A (en) Measuring device of friction force of buried pipe
JP3526406B2 (en) Protective cover and storage method for cable / hose for advanced equipment of small-diameter pipeline propulsion machine
JP6754196B2 (en) Ground resistivity measuring method and ground resistivity measuring device
JP2006316893A (en) Stress-relieving method of pipe-line
JP6876448B2 (en) Tunnel face forward displacement measurement method
JP7231453B2 (en) Detection device and detection method
JPH0621996Y2 (en) Buried pipe propulsion device
JP4840742B2 (en) Propulsion pipe
JPH0738472Y2 (en) Thrust detection device for small diameter pipe propulsion machine
JP3653549B2 (en) Optical fiber sensor for investigation of landslide behavior
JP3252118B2 (en) Tail void measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees