JP3881085B2 - Method and apparatus for measuring frictional force around propulsion pipe, and method for reducing frictional force around propulsion pipe - Google Patents

Method and apparatus for measuring frictional force around propulsion pipe, and method for reducing frictional force around propulsion pipe Download PDF

Info

Publication number
JP3881085B2
JP3881085B2 JP13604397A JP13604397A JP3881085B2 JP 3881085 B2 JP3881085 B2 JP 3881085B2 JP 13604397 A JP13604397 A JP 13604397A JP 13604397 A JP13604397 A JP 13604397A JP 3881085 B2 JP3881085 B2 JP 3881085B2
Authority
JP
Japan
Prior art keywords
propulsion
thrust
expansion
pipe
frictional force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13604397A
Other languages
Japanese (ja)
Other versions
JPH10311762A (en
Inventor
正人 山田
次郎 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Exeo Corp
Original Assignee
Kyowa Exeo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Exeo Corp filed Critical Kyowa Exeo Corp
Priority to JP13604397A priority Critical patent/JP3881085B2/en
Publication of JPH10311762A publication Critical patent/JPH10311762A/en
Application granted granted Critical
Publication of JP3881085B2 publication Critical patent/JP3881085B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は下水道や電気通信設備といった地下構造物の築造時に適用される推進工法に用いられ、特に推進管の周辺摩擦力を把握することができる推進管周辺摩擦力の測定方法および測定装置、並びに把握した周辺摩擦力を低減させる推進管周辺摩擦力の低減方法に関する。
【0002】
【従来の技術】
下水道や電気通信設備といった地下構造物の築造には、地表面の掘削を不要とする推進工法が多く採用されている。図5は推進工法の手順を示す地中断面図である。同図に示すように推進工法では埋設区間の始端側に発進立杭1が掘削されており、当該発進立杭1の底部には推進管の押出しを行う推進ジャッキ2が備えられている。
【0003】
こうした発進立杭1から地中に推進管を埋設させるには、まず発進立杭1の底部から推進機械3を稼働させ埋設区間の終端側に向かって掘削を行わせる。そして推進機械3の地中進行によって発生する土砂を掘削穴4から排除するとともに、推進ジャッキ2によって掘削穴4に推進管5を継ぎ足し挿入していく。このように推進管5を掘削穴4に沿って継ぎ足し挿入していくことで、埋設区間に推進管5を埋設させている。
【0004】
ところで上述した推進工法では、推進管5の外径を推進機械3の外径に対し若干小径に設定し、掘削穴4の径と推進管5の外径との間に滑材となるテールボイド材を充填させテールボイド6を確保することが、長距離および曲線を正確に推進させるための欠かせない要素となっている。すなわち推進管5まわりのテールボイド6の充填率が低下すると掘削穴4に対する推進管5のの摩擦力が上昇し、推進管5の推進に不具合をきたす恐れがあった。
このため従来では、推進ジャッキ2の元押し推力の値があらかじめ設定した異常推力レベルを越えると、滑材を推進区間全域に注入して元押し推力の上昇を抑えるようにしている。
【0005】
【発明が解決しようとする課題】
しかし滑材を推進区間全域に注入すれば、確かに元押し推力の上昇を抑えられるものの、推進管5の全長は工事の終盤ともなると数百メートル以上にも及ぶので大量の滑材を注入する必要があり、工事コストが増大してしまうという問題点があった。
【0006】
またこの問題点を解決するためには、推進管における周辺摩擦力の増大範囲を特定できることが必須条件となるが、推進ジャッキ2の元押し推力の値はあらかじめ設定した異常推力レベルとの比較のみに用いられており、摩擦力の増大範囲を特定できるものでは無かった。
【0007】
本発明は上記従来の問題点に着目し、推進管における周辺摩擦力の増大範囲を特定することのできる推進管周辺摩擦力の測定方法および装置、並びに特定した周辺摩擦力を低減することのできる推進管周辺摩擦力の低減方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は地中に送り込まれた推進管の端部に徐々に元押し推力を加えていけば、推進ジャッキ側の推進管から順番に継手部分の間隔が狭まっていく。そして隣合う推進管の相対位置の変化をもとに推進長に対する元押し推力の変化をとらえていけば推進管途中の摩擦増大範囲を特定できるという知見に基づいて行われたものである。すなわち通常の摩擦抵抗を持つ推進管区域では、推進管長さにほぼ比例するように元押し推力が上昇するが、推進管途中に摩擦増大範囲が存在すると推進管長さに対して元押し推力は急激に上昇する。このため元押し推力の変化から推進管途中の摩擦増大範囲を特定することができるのである。
【0009】
このような原理により、推進工法により地中に押し込まれる推進管の元押し推力を検知し、この元押し推力があらかじめ設定した異常推力レベルをこえたときに押し込み作業を一旦停止させるとともに推力が加えられていない初期状態から前記元押し推力を上昇させ、継手に設けた伸縮検知センサからの変動値をトリガ信号として、前記伸縮検出センサ位置における前記元押し推力の値を計測手段にて計測し、この作業を推進ジャッキ側から掘進先端に向けて順次行うことにより摩擦増大範囲を特定する手順とした。
【0010】
また本発明に係る推進管周辺摩擦力の測定装置は、推進管を推進ジャッキによって地中へと押し込む推進工法に用いられ、前記推進管同士を接続する継手には伸縮検知センサを設けるとともに、この伸縮検出センサからの変動値をトリガ信号として、前記伸縮検出センサ位置における前記元押し推力の値を計測する計測手段を設けるように構成した。
【0011】
さらに本発明に係る推進管周辺摩擦力の低減方法は、推進工法により地中に押し込まれる推進管の元押し推力を検知し、この元押し推力があらかじめ設定した異常推力レベルをこえたときに押し込み作業を一旦停止させるとともに推力が加えられていない初期状態から前記元押し推力を上昇させ、継手に設けた伸縮検知センサからの変動値をトリガ信号として、前記伸縮検出センサ位置における前記元押し推力の値を計測手段にて計測し、この作業を推進ジャッキ側から掘進先端に向けて順次行うことにより摩擦増大範囲を特定し、当該摩擦増大範囲に滑材注入を行う手順とした。
【0012】
【作用】
上記構成によれば、推進管同士は継手により多段に連結されており、当該継手には伸縮検出センサが設けられている。ここで推進ジャッキを稼働させ推進管端部に元押し推力を徐々に加えていくと、推進ジャッキ側の推進管から順々に移動する。そして隣合う推進管の相対位置が変化したときの元押し推力の値を、その伸縮検出センサの推進ジャッキからの距離に対して順次比較していけば、摩擦増大範囲では伸縮検出センサの推進ジャッキからの距離に対し、元押し推力が増大することから推進管における摩擦増大範囲を特定することができる。
そして上記手順によって特定した摩擦増大範囲に滑材を注入すれば、摩擦低減が確実になされるとともに、滑材の注入量を最小限に抑えられることができる。
【0013】
【発明の実施の形態】
以下に本発明に係る推進管周辺摩擦力の測定方法および測定装置、並びに推進管周辺摩擦力の低減方法の具体的実施の形態を図面を参照して詳細に説明する。
【0014】
図1は、実施に形態に係る推進管周辺摩擦力の測定装置の構成を示した構成説明図である。同図に示すように推進管周辺摩擦力の測定装置10(以下、測定装置10)は地表面の掘削を不要とする推進工法に適用される。
推進工法は、推進機械によって設けられた掘削穴にヒューム管や鋼管といった推進管12を継ぎ足し挿入することで行われ、また推進管12の掘削穴への押し込みには推進ジャッキが用いられる。
【0015】
ここで推進管12の構造を図2に示す。同図(1)に示すように掘削穴へ次々と挿入される推進管12の側面にはテールボイド注入孔14が複数周回方向に設けられ(図中では3箇所)、推進管12の内側から管外側に向かってテールボイド材を送り出し可能にしている。また同図(2)に示すように継ぎ足される推進管12の間には継手16が設けられる。当該継手16には推進管12の曲線推進が可能なようにパッキン型の多曲線推力伝達装置(MST(P型))が用いられており、推進ジャッキからの元押し推力を曲線状に伝達可能にしている。また継手16における外側周囲には鋼製のカラー18が設けられており、推進時における土砂の管内への侵入を防止するようにしている。
【0016】
このように推進管12とともに地中へと押し込められる継手16には測定装置10を構成する伸縮検出センサ20が設けられ、隣合う推進官12の相対位置の変動を検知できるようになっている。ここで当該伸縮検出センサ20は連続する継手16毎に設ける必要は無く、推進対象となる土砂の性質等によって任意の間隔(例えば当該センサ20を継手16の中1個毎に設置)を設定すればよい。
【0017】
伸縮検出センサ20の具体的構造を示す。当該伸縮検出センサ20はリニアスケールエンコーダ22とパルス信号変換器26とカウンタ入力モジュール28にて構成されている。そしてこのような構成からなる複数の伸縮検出センサ20は、互いにケーブル30にて接続されるとともに管外に設けられた計測手段32へと接続される。そして隣合う推進管12の相対位置の変化はリニアスケールエンコーダ22によって検出され、カウンタ入力モジュールからカウンタ値が計測手段32に出力されるようになっている。
【0018】
計測手段32には伸縮検出センサ20が接続されるとともに、推進ジャッキの元押し操作を行う操作卓34もケーブルを介して接続される。そして計測手段32には個々の伸縮検出センサ20における推進ジャッキからの距離をあらかじめ記憶させておくとともに、伸縮検出センサ20からの変動値をトリガ信号として、操作卓34から推進ジャッキの元押し推力の値を取り込み、伸縮検出センサ20の推進ジャッキからの距離に対する元押し推力の値を計測できるようになっている。ここで複数の伸縮検出センサ20の判別は推進管12の内部に設置されたラインコントローラ24によって行われ、トリガ信号とともに伸縮検出センサ20の判別信号がラインコントローラ24から計測手段32に送られる。
【0019】
なお当該計測手段32は上記の条件を満たせば専用機器にこだわることもなく、本実施の形態ではパーソナルコンピュータ36を使用するようにしている。そして伸縮検出センサ20と操作卓34からの信号をパーソナルコンピュータ36に取り込ませるため、当該パーソナルコンピュータ36の直前にはアナログ入力モジュール38とリンカ40とが設けられている。そしてパーソナルコンピュータ36では画面上に、伸縮検出センサ20の推進ジャッキからの距離に対する元押し推力の値を表示できるようになっており直感的に状況を把握できるようになっている。
【0020】
また伸縮検出センサ20は特に上述した構成にこだわる必要も無く、リニアスケールエンコーダ22のかわりにダイヤルゲージ型の変位測定器を用いたり、あるいはアナログ信号のかわりにデジタル信号を計測手段32への情報伝達として用いてもよい。
【0021】
このように構成された測定装置10を地中掘削用の推進工法に適用する手順を説明する。
図3は滑材投入前の推力変動を示す推力状態図であり、同図(1)は推進長に対する元押し推力の変動を示す。推進管12の必要推力は推進機械における切羽前面抵抗と推進管周辺抵抗との合力によって決定される。そして地中における推進機械の切羽前面抵抗は一定値であり、また管周辺抵抗は地中に埋め込まれた推進管12の長さの和(全長)に比例することから、理想推力ラインは一次式で表すことができる。
【0022】
しかし実際の推進長に対する元押し推力の値は、切羽前面抵抗や推進管周辺抵抗が共に変動し、上記の理想推力ラインに示すような正比例のラインを描くことはない。ここで図中ポイントCに示す元押し推力の増大部分を測定装置10を用いて調査し元押し推力増大の原因を探る。なお図中ポイントAおよびポイントBでの元押し推力の増大は、推進機械の切羽前面抵抗が上昇したことが原因であったが、これは元押し推力の増大後に測定装置10を用い推進管途中に摩擦増大範囲が確認されなかったことから判断することができる。すなわち前述した通り、推進管12の必要推力は推進機械における切羽前面抵抗と推進管周辺抵抗との合力によって決定されることから、推進管周辺抵抗に摩擦増大範囲が確認されなければ、元押し推力の増大の原因は推進機械の切羽前面抵抗の上昇であると特定することができる。そして切羽前面抵抗の低減化は、推進機械の排泥バルブやカッター室の清掃を行うことなどで達成することができる。
【0023】
ポイントCの状態に示すように理想推力ラインに対し急激に元押し推力が増大した場合には、一旦推進ジャッキを停止させ推進管12の推進を取りやめる。このように推進作業を一旦停止させた後は、測定装置10を作動させるとともに推進ジャッキを推進管12の端部に押し当て徐々に力を加えていく。するとこの推進ジャッキの元押し推力の上昇に伴い、多段に連結された推進管12は推進ジャッキ側から次々と推進ジャッキの押出し方向へと移動し、継手16の部分が縮まり隣合う推進管12の相対位置が変動する。
【0024】
ここで推進管12における継手16部分には、伸縮検出センサ20が設けられているので、推進ジャッキ側の伸縮検出センサ20から順にトリガ信号が発せられる。そしてこのトリガ信号を合図として、推進ジャッキから伸縮検出センサ20までの距離に対する元押し推力の関係が計測手段32によって計測される。同図(2)は推進ジャッキから伸縮検出センサ20までの距離に対する元押し推力の関係を示したグラフである。同図(2)に示すように、図中Dの範囲で元押し推力の値が急上昇しているのを確認することができる。また先のポイントAとポイントBとで推進機械の切羽前面抵抗を低減させており切羽前面抵抗の要因を削除することができることから、元押し推力の上昇は図中Dの範囲による推進管12の締め付けが原因であると判断することができる。そしてこの元押し推力の上昇は、当該推進管12の外側周囲に盛られたテールボイドの充填率の低下によって発生していることから、図中Dに属する推進管12のテールボイド注入孔14から推進管12の外側に滑材を送り込み、対象推進管12の外側周囲の摩擦低減を行う。
【0025】
図4は滑材投入後の推力変動を示す推力状態図である。同図に示すようにポイントCの位置で滑材を投入した後には、元押し推力の値が低下するのが確認できる。このように個々の推進長に応じた元押し推力の値を求めることにより、推進管12の締め付け範囲を特定することができる。このため推進管12の全域に滑材を投入する必要が無く、もって滑材の消費量を最小限度に抑えることができる。
【0026】
【発明の効果】
以上説明したように本発明によれば推進管周辺摩擦力の測定方法を、推進工法により地中に押し込まれる推進管の元押し推力を検知し、この元押し推力があらかじめ設定した異常推力レベルをこえたときに押し込み作業を一旦停止させるとともに推力が加えられていない初期状態から前記元押し推力を上昇させ、継手に設けた伸縮検知センサからの変動値をトリガ信号として、前記伸縮検出センサ位置における前記元押し推力の値を計測手段にて計測し、この作業を推進ジャッキ側から掘進先端に向けて順次行うことにより摩擦増大範囲を特定することとしたので、推進管における周辺摩擦力の増大範囲を特定することができる。
そして前記推進管周辺の摩擦増大範囲を特定した後に、当該摩擦増大範囲に滑材の注入を行えば、摩擦低減が確実になされるとともに滑材の注入量を最小限に抑えられ、工事コストの低減を図ることができる。
【図面の簡単な説明】
【図1】実施に形態に係る推進管周辺摩擦力の測定装置の構成を示した構成説明図である。
【図2】推進管12の構造を示した説明図である。
【図3】滑材投入前の推力変動を示す推力状態図である。
【図4】滑材投入後の推力変動を示す推力状態図である。
【図5】推進工法の手順を示す地中断面図である。
【符号の説明】
1 発進立杭
2 推進ジャッキ
3 推進機械
4 掘削穴
5 推進管
6 テールボイド
10 推進管周辺摩擦力の測定装置
12 推進管
14 テールボイド注入孔
16 継手
18 カラー
20 伸縮検出センサ
22 リニアスケールエンコーダ
24 ラインコントローラ
26 パルス信号変換器
28 カウンタ入力モジュール
30 ケーブル
32 計測手段
34 操作卓
36 パーソナルコンピュータ
38 アナログ入力モジュール
40 リンカ
[0001]
BACKGROUND OF THE INVENTION
The present invention is used in a propulsion method applied at the time of construction of underground structures such as sewers and telecommunication facilities, and in particular, a measuring method and measuring device for the peripheral friction force of a propulsion pipe capable of grasping the peripheral frictional force of the propulsion pipe, and The present invention relates to a method for reducing the peripheral friction force of a propelling pipe that reduces the grasped peripheral friction force.
[0002]
[Prior art]
For the construction of underground structures such as sewers and telecommunications facilities, many propulsion methods that do not require excavation of the ground surface are employed. FIG. 5 is an underground sectional view showing the procedure of the propulsion method. As shown in the figure, in the propulsion method, a start-up pile 1 is excavated on the start end side of the buried section, and a propulsion jack 2 for pushing out a propelling pipe is provided at the bottom of the start-up pile 1.
[0003]
In order to embed a propulsion pipe from the starting standing pile 1 into the ground, first, the propulsion machine 3 is operated from the bottom of the starting standing pile 1 to perform excavation toward the terminal end side of the burying section. And the earth and sand which generate | occur | produce in the underground of the propulsion machine 3 are removed from the excavation hole 4, and the propulsion pipe 5 is added to the excavation hole 4 by the propulsion jack 2 and inserted. In this way, the propulsion pipe 5 is embedded along the excavation hole 4 so that the propulsion pipe 5 is embedded in the embedded section.
[0004]
By the way, in the above-mentioned propulsion method, the outer diameter of the propulsion pipe 5 is set slightly smaller than the outer diameter of the propulsion machine 3, and the tail void material that serves as a lubricant between the diameter of the excavation hole 4 and the outer diameter of the propulsion pipe 5 is used. It is an indispensable element for accurately propelling a long distance and a curve to fill the tail void 6 and to secure the tail void 6. That is, if the filling rate of the tail void 6 around the propulsion pipe 5 is lowered, the frictional force of the propulsion pipe 5 with respect to the excavation hole 4 is increased, and there is a possibility that the propulsion of the propulsion pipe 5 may be troubled.
For this reason, conventionally, when the value of the main thrust of the propulsion jack 2 exceeds a preset abnormal thrust level, the lubricant is injected into the entire propulsion section to suppress the increase of the main thrust.
[0005]
[Problems to be solved by the invention]
However, if the lubricant is injected all over the propulsion section, it is possible to suppress the increase of the thrust force. However, the total length of the propulsion pipe 5 reaches several hundred meters at the end of the construction, so a large amount of lubricant is injected. There was a problem that construction cost would increase.
[0006]
In order to solve this problem, it is essential to be able to specify the range of increase in the peripheral frictional force in the propulsion pipe, but the value of the original pushing thrust of the propulsion jack 2 can only be compared with a preset abnormal thrust level. It was not used to specify the range of increase in frictional force.
[0007]
The present invention pays attention to the above-mentioned conventional problems, and can measure the peripheral friction force measuring method and apparatus for the peripheral friction force of the propulsion pipe capable of specifying the increase range of the peripheral friction force in the propulsion pipe, and the specified peripheral friction force can be reduced. An object of the present invention is to provide a method for reducing the frictional force around the propulsion pipe.
[0008]
[Means for Solving the Problems]
According to the present invention, if a thrust force is gradually applied to the end portion of the propulsion pipe fed into the ground, the interval between the joint portions is gradually reduced from the propulsion pipe on the propulsion jack side. This is based on the knowledge that if the change in the thrust force against the propulsion length is detected based on the change in the relative position of the adjacent propulsion pipes, the friction increase range in the middle of the propulsion pipe can be specified. In other words, in the propulsion tube area with normal frictional resistance, the main thrust increases in proportion to the propulsion tube length. However, if there is a friction increase range in the middle of the propulsion tube, the main thrust is abrupt with respect to the propulsion tube length. To rise. For this reason, it is possible to specify the friction increase range in the middle of the propulsion pipe from the change in the thrust force.
[0009]
More this principle to detect the original pressing thrust of the propulsion tube to be pushed into the ground by jacking method, thrust together temporarily stop the work push when the original pressing thrust exceeds the abnormal thrust level set in advance The main pushing thrust is increased from the initial state where it is not applied, and the variation value from the expansion / contraction detection sensor provided at the joint is used as a trigger signal to measure the value of the main pushing thrust at the expansion / contraction detection sensor position by the measuring means. This procedure was performed in order from the propulsion jack side toward the excavation tip to identify the friction increase range.
[0010]
The measuring device of the propulsion tube surrounding frictional force according to the present invention is used for jacking method pushed into the ground to promote tube by promoting jacks, provided with a telescopic sensor to joint connecting the propulsion tube to each other, the A measuring means for measuring the value of the original pushing thrust at the position of the expansion / contraction detection sensor is provided by using a fluctuation value from the expansion / contraction detection sensor as a trigger signal .
[0011]
Furthermore, the method for reducing the frictional force around the propulsion pipe according to the present invention detects the main thrust of the propulsion pipe pushed into the ground by the propulsion method, and pushes in when the main thrust exceeds a preset abnormal thrust level. The work is temporarily stopped and the main pushing thrust is increased from an initial state where no thrust is applied, and the fluctuation value from the expansion / contraction detection sensor provided on the joint is used as a trigger signal to determine the main pushing thrust at the expansion / contraction detection sensor position. The value was measured by the measuring means, and this operation was sequentially performed from the propulsion jack side toward the excavation tip to identify the friction increase range, and the procedure was to inject the lubricant into the friction increase range.
[0012]
[Action]
According to the above configuration, the propulsion pipes are connected in multiple stages by the joint, and the joint is provided with the expansion / contraction detection sensor. Here, when the propulsion jack is operated and the thrust force is gradually applied to the end portion of the propulsion pipe, the propulsion pipe is moved in order from the propulsion pipe on the propulsion jack side. Then, if the value of the main thrust when the relative position of the adjacent propulsion pipe changes is sequentially compared with the distance from the propulsion jack of the expansion / contraction detection sensor, the propulsion jack of the expansion / contraction detection sensor is increased in the friction increase range. Since the original pushing thrust increases with respect to the distance from, the friction increasing range in the propulsion pipe can be specified.
If the lubricant is injected into the friction increase range specified by the above procedure, the friction can be reliably reduced and the amount of lubricant injected can be minimized.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Specific embodiments of a method and an apparatus for measuring the frictional force around the propulsion pipe and a method for reducing the frictional force around the propulsion pipe according to the present invention will be described below in detail with reference to the drawings.
[0014]
FIG. 1 is a configuration explanatory view showing a configuration of a propulsion pipe peripheral frictional force measuring device according to an embodiment. As shown in the drawing, a measuring device 10 (hereinafter, measuring device 10) for frictional force around a propelling pipe is applied to a propulsion method that does not require excavation of the ground surface.
The propulsion method is performed by adding and inserting a propulsion pipe 12 such as a fume pipe or a steel pipe into an excavation hole provided by the propulsion machine, and a propulsion jack is used to push the propulsion pipe 12 into the excavation hole.
[0015]
Here, the structure of the propulsion pipe 12 is shown in FIG. As shown in FIG. 1 (1), a plurality of tail void injection holes 14 are provided in the circumferential direction on the side surface of the propulsion tube 12 inserted into the excavation holes one after another (three locations in the figure). The tail void material can be fed outward. Further, as shown in FIG. 2B, a joint 16 is provided between the propelling pipes 12 to be added. The joint 16 uses a packing type multi-curve thrust transmission device (MST (P-type)) so that the propulsion pipe 12 can be curvedly propelled, and can transmit the main thrust from the propulsion jack in a curved line. I have to. A steel collar 18 is provided around the outside of the joint 16 so as to prevent earth and sand from entering the pipe during propulsion.
[0016]
In this way, the joint 16 that is pushed into the ground together with the propelling pipe 12 is provided with an expansion / contraction detection sensor 20 that constitutes the measuring device 10, so that a change in the relative position of the adjacent propulsion officer 12 can be detected. Here, the expansion / contraction detection sensor 20 does not need to be provided for each continuous joint 16, and an arbitrary interval (for example, the sensor 20 is installed for each one of the joints 16) may be set according to the nature of the soil to be propelled. That's fine.
[0017]
A specific structure of the expansion / contraction detection sensor 20 is shown. The expansion / contraction detection sensor 20 includes a linear scale encoder 22, a pulse signal converter 26, and a counter input module 28. The plurality of expansion / contraction detection sensors 20 having such a configuration are connected to each other by a cable 30 and to a measuring means 32 provided outside the pipe. The change in the relative position of the adjacent propulsion pipes 12 is detected by the linear scale encoder 22, and the counter value is output from the counter input module to the measuring means 32.
[0018]
The expansion / contraction detection sensor 20 is connected to the measuring means 32, and an operation console 34 for performing the original pushing operation of the propulsion jack is also connected via a cable. The measuring means 32 stores in advance the distance from the propulsion jack in each of the expansion / contraction detection sensors 20, and uses the fluctuation value from the expansion / contraction detection sensor 20 as a trigger signal to measure the original pushing thrust of the propulsion jack from the console 34. A value is taken in, and the value of the original pushing thrust with respect to the distance from the propulsion jack of the expansion / contraction detection sensor 20 can be measured. Here, the determination of the plurality of expansion / contraction detection sensors 20 is performed by the line controller 24 installed inside the propulsion pipe 12, and the determination signal of the expansion / contraction detection sensor 20 is sent from the line controller 24 to the measuring means 32 together with the trigger signal.
[0019]
The measuring means 32 does not stick to dedicated equipment if the above conditions are satisfied, and in this embodiment, the personal computer 36 is used. An analog input module 38 and a linker 40 are provided immediately in front of the personal computer 36 so that signals from the expansion / contraction detection sensor 20 and the console 34 are taken into the personal computer 36. In the personal computer 36, the value of the original pushing force with respect to the distance from the propulsion jack of the expansion / contraction detection sensor 20 can be displayed on the screen, so that the situation can be grasped intuitively.
[0020]
Further, the expansion / contraction detection sensor 20 does not have to be particularly concerned with the above-described configuration, and a dial gauge type displacement measuring device is used instead of the linear scale encoder 22, or a digital signal is transmitted to the measuring means 32 instead of an analog signal. It may be used as
[0021]
A procedure for applying the measuring apparatus 10 configured as described above to a propulsion method for underground excavation will be described.
FIG. 3 is a thrust state diagram showing the thrust fluctuation before the lubricant is introduced, and FIG. 3 (1) shows the fluctuation of the main thrust with respect to the propulsion length. The required thrust of the propulsion pipe 12 is determined by the resultant force of the face front resistance and the propulsion pipe peripheral resistance in the propulsion machine. Since the front resistance of the face of the propulsion machine in the ground is a constant value, and the resistance around the pipe is proportional to the sum (total length) of the length of the propulsion pipe 12 embedded in the ground, the ideal thrust line is a linear expression. Can be expressed as
[0022]
However, the value of the original pushing thrust with respect to the actual propulsion length does not draw a directly proportional line as shown in the above ideal thrust line because both the face front resistance and the propulsion pipe peripheral resistance fluctuate. Here, the increase portion of the main pushing thrust indicated by point C in the figure is investigated using the measuring device 10 to find the cause of the main pushing thrust increase. The increase in the main thrust at point A and point B in the figure was due to an increase in the front resistance of the face of the propulsion machine. It can be judged from the fact that the increased friction range was not confirmed. That is, as described above, since the necessary thrust of the propulsion pipe 12 is determined by the resultant force of the face front resistance and the propulsion pipe peripheral resistance in the propulsion machine, if the friction increase range is not confirmed in the propulsion pipe peripheral resistance, It can be specified that the cause of the increase is an increase in the front resistance of the face of the propulsion machine. The reduction of the front face resistance can be achieved by cleaning the sludge valve and the cutter chamber of the propulsion machine.
[0023]
As shown in the state of point C, when the main thrust increases suddenly with respect to the ideal thrust line, the propulsion jack 12 is stopped once and the propulsion of the propulsion pipe 12 is stopped. After the propulsion work is temporarily stopped in this way, the measuring device 10 is operated and the propulsion jack is pressed against the end of the propulsion pipe 12 to gradually apply a force. Then, with the increase of the thrust force of the propulsion jack, the propulsion pipes 12 connected in multiple stages move one after another from the propulsion jack side in the propulsion direction of the propulsion jack, and the joint 16 portion is contracted and the adjacent propulsion pipe 12 The relative position varies.
[0024]
Here, since the expansion / contraction detection sensor 20 is provided at the joint 16 portion of the propulsion pipe 12, trigger signals are sequentially generated from the expansion / contraction detection sensor 20 on the propulsion jack side. Then, using this trigger signal as a signal, the measurement means 32 measures the relationship of the original pushing thrust with respect to the distance from the propulsion jack to the expansion / contraction detection sensor 20. FIG. 2B is a graph showing the relationship of the original pushing thrust with respect to the distance from the propulsion jack to the expansion / contraction detection sensor 20. As shown in FIG. 2 (2), it can be confirmed that the value of the main pushing thrust increases rapidly in the range D in the figure. Further, since the front face resistance of the propulsion machine is reduced at the previous point A and point B, and the cause of the front face resistance of the face can be eliminated, the increase of the thrust force is caused by the range of D in the propulsion pipe 12 in the figure. It can be determined that the tightening is the cause. Since the increase in the thrust force is caused by a decrease in the filling rate of the tail voids accumulated around the outer periphery of the propulsion tube 12, the propulsion tube passes from the tail void injection hole 14 of the propulsion tube 12 belonging to D in the figure. The lubricant is fed to the outside of the outer wall 12 to reduce the friction around the outer side of the target propelling pipe 12.
[0025]
FIG. 4 is a thrust state diagram showing thrust fluctuation after the lubricant is introduced. As shown in the figure, it can be confirmed that the value of the original pushing thrust decreases after the lubricant is introduced at the point C. Thus, the range of tightening of the propulsion pipe 12 can be specified by obtaining the value of the main pushing thrust corresponding to each propulsion length. For this reason, it is not necessary to put a lubricant into the whole area of the propulsion pipe 12, and the consumption of the lubricant can be minimized.
[0026]
【The invention's effect】
As described above, according to the present invention, the method for measuring the frictional force around the propulsion pipe detects the main thrust of the propulsion pipe pushed into the ground by the propulsion method, and the main thrust determines the abnormal thrust level set in advance. When pushing, the pushing operation is temporarily stopped and the original pushing thrust is raised from the initial state where no thrust is applied, and the fluctuation value from the expansion / contraction detection sensor provided in the joint is used as a trigger signal at the expansion / contraction detection sensor position. Since the value of the main pushing thrust is measured by the measuring means, and the work is sequentially performed from the propulsion jack side toward the excavation tip, the friction increasing range is specified, so the peripheral friction force increasing range in the propelling pipe is determined. Can be specified.
Then, after specifying the friction increase range around the propulsion pipe, if the lubricant is injected into the friction increase range, the friction can be reliably reduced and the injection amount of the lubricant can be minimized, and the construction cost can be reduced. Reduction can be achieved.
[Brief description of the drawings]
FIG. 1 is a configuration explanatory view showing a configuration of a propulsion pipe peripheral frictional force measuring apparatus according to an embodiment.
FIG. 2 is an explanatory view showing the structure of a propulsion pipe 12;
FIG. 3 is a thrust state diagram showing thrust fluctuation before the lubricant is introduced.
FIG. 4 is a thrust state diagram showing thrust fluctuation after the sliding material is charged.
FIG. 5 is an underground sectional view showing the procedure of the propulsion method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Start standing pile 2 Propulsion jack 3 Propulsion machine 4 Excavation hole 5 Propulsion pipe 6 Tail void 10 Propulsion pipe periphery frictional force measuring device 12 Propulsion pipe 14 Tail void injection hole 16 Joint 18 Collar 20 Expansion / contraction detection sensor 22 Linear scale encoder 24 Line controller 26 Pulse signal converter 28 Counter input module 30 Cable 32 Measuring means 34 Console 36 Personal computer 38 Analog input module 40 Linker

Claims (3)

推進工法により地中に押し込まれる推進管の元押し推力を検知し、この元押し推力があらかじめ設定した異常推力レベルをこえたときに押し込み作業を一旦停止させるとともに推力が加えられていない初期状態から前記元押し推力を上昇させ、継手に設けた伸縮検知センサからの変動値をトリガ信号として、前記伸縮検出センサ位置における前記元押し推力の値を計測手段にて計測し、この作業を推進ジャッキ側から掘進先端に向けて順次行うことにより摩擦増大範囲を特定することを特徴とする推進管周辺摩擦力の測定方法。The initial pushing thrust of the propelling pipe pushed into the ground by the propulsion method is detected, and when the pushing thrust exceeds the preset abnormal thrust level, the pushing operation is temporarily stopped and the thrust is not applied from the initial state. The main pushing thrust is raised, and the fluctuation value from the expansion / contraction detection sensor provided in the joint is used as a trigger signal, and the value of the main pushing thrust at the expansion / contraction detection sensor position is measured by the measuring means. A method for measuring the frictional force around the propulsion pipe, wherein the friction increasing range is specified by sequentially performing from the step toward the tip of the excavation . 推進管を推進ジャッキによって地中へと押し込む推進工法に用いられ、前記推進管同士を接続する継手には伸縮検知センサを設けるとともに、この伸縮検出センサからの変動値をトリガ信号として、前記伸縮検出センサ位置における前記元押し推力の値を計測する計測手段を設けたことを特徴とする推進管周辺摩擦力の測定装置。Used jacking method pushed into the ground to promote tube by promoting jacks, together with the coupling for connecting the propulsion tube each other providing a telescopic sensor, as a trigger signal variation value from the expansion and contraction sensor, the extendable detection An apparatus for measuring a frictional force around a propulsion pipe, characterized in that measuring means for measuring the value of the original pushing thrust at the sensor position is provided. 推進工法により地中に押し込まれる推進管の元押し推力を検知し、この元押し推力があらかじめ設定した異常推力レベルをこえたときに押し込み作業を一旦停止させるとともに推力が加えられていない初期状態から前記元押し推力を上昇させ、継手に設けた伸縮検知センサからの変動値をトリガ信号として、前記伸縮検出センサ位置における前記元押し推力の値を計測手段にて計測し、この作業を推進ジャッキ側から掘進先端に向けて順次行うことにより摩擦増大範囲を特定し、当該摩擦増大範囲に滑材注入を行うことを特徴とする推進管周辺摩擦力の低減方法。The initial pushing thrust of the propelling pipe pushed into the ground by the propulsion method is detected, and when the pushing thrust exceeds the preset abnormal thrust level, the pushing operation is temporarily stopped and the thrust is not applied from the initial state. The main pushing thrust is raised, and the fluctuation value from the expansion / contraction detection sensor provided in the joint is used as a trigger signal, and the value of the main pushing thrust at the expansion / contraction detection sensor position is measured by the measuring means. A method of reducing the frictional force around the propelling pipe, characterized by specifying a friction increasing range by sequentially performing from the tip toward the excavation tip and injecting a lubricant into the friction increasing range.
JP13604397A 1997-05-09 1997-05-09 Method and apparatus for measuring frictional force around propulsion pipe, and method for reducing frictional force around propulsion pipe Expired - Fee Related JP3881085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13604397A JP3881085B2 (en) 1997-05-09 1997-05-09 Method and apparatus for measuring frictional force around propulsion pipe, and method for reducing frictional force around propulsion pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13604397A JP3881085B2 (en) 1997-05-09 1997-05-09 Method and apparatus for measuring frictional force around propulsion pipe, and method for reducing frictional force around propulsion pipe

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2003434592A Division JP2004100456A (en) 2003-12-26 2003-12-26 Jacking pipe
JP2003434593A Division JP3883070B2 (en) 2003-12-26 2003-12-26 Promotion pipe digging method

Publications (2)

Publication Number Publication Date
JPH10311762A JPH10311762A (en) 1998-11-24
JP3881085B2 true JP3881085B2 (en) 2007-02-14

Family

ID=15165851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13604397A Expired - Fee Related JP3881085B2 (en) 1997-05-09 1997-05-09 Method and apparatus for measuring frictional force around propulsion pipe, and method for reducing frictional force around propulsion pipe

Country Status (1)

Country Link
JP (1) JP3881085B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4994195B2 (en) * 2007-11-15 2012-08-08 本田技研工業株式会社 Method and apparatus for measuring sliding resistance of sliding member
JP2012162954A (en) * 2011-02-09 2012-08-30 Kidoh Construction Co Ltd Method for detecting propulsion force rise position
CN113029939B (en) * 2021-03-16 2023-02-03 北京市政建设集团有限责任公司 Pipe jacking tunnel scale-down test device and method

Also Published As

Publication number Publication date
JPH10311762A (en) 1998-11-24

Similar Documents

Publication Publication Date Title
JP3881085B2 (en) Method and apparatus for measuring frictional force around propulsion pipe, and method for reducing frictional force around propulsion pipe
JP3883070B2 (en) Promotion pipe digging method
JPH03152420A (en) Method and apparatus for measuring movement of ground
US4999900A (en) Method for installing product monitoring device in underground storage tanks
US2656683A (en) Method of installing underground pipes or ducts
JP2004100456A (en) Jacking pipe
CN207649594U (en) A kind of coal mine roadway development end surrouding rock deformation monitoring device
CN104596475A (en) System and method for monitoring stratum sedimentation
JPS6117103Y2 (en)
JPH01119721A (en) Automatic observation system machinery for landslide
JPH10142083A (en) Measuring device of friction force of buried pipe
CN110219297A (en) Soil thickness real-time measurement apparatus
KR20060101734A (en) Method for constructing non-excavation directivity pipe
JP3252118B2 (en) Tail void measurement device
JP2000160985A (en) Thrust monitor
JP3653549B2 (en) Optical fiber sensor for investigation of landslide behavior
JPH0621996Y2 (en) Buried pipe propulsion device
JP3133853B2 (en) How to correct the displacement of a buried pipe by uncutting
CN218034982U (en) Drilling bored concrete pile concrete pipe position detecting device
JPH0738472Y2 (en) Thrust detection device for small diameter pipe propulsion machine
JP3526406B2 (en) Protective cover and storage method for cable / hose for advanced equipment of small-diameter pipeline propulsion machine
JPH0649667Y2 (en) Buried pipe length correction device in pipe burial equipment
JPS621074B2 (en)
JP2601401B2 (en) Side hole drilling method
JPH06323851A (en) Method and equipment for measuring depth of tunnel and bubble removing method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061109

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees