JP6876448B2 - Tunnel face forward displacement measurement method - Google Patents

Tunnel face forward displacement measurement method Download PDF

Info

Publication number
JP6876448B2
JP6876448B2 JP2017013947A JP2017013947A JP6876448B2 JP 6876448 B2 JP6876448 B2 JP 6876448B2 JP 2017013947 A JP2017013947 A JP 2017013947A JP 2017013947 A JP2017013947 A JP 2017013947A JP 6876448 B2 JP6876448 B2 JP 6876448B2
Authority
JP
Japan
Prior art keywords
displacement
pipe
measurement
underground
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017013947A
Other languages
Japanese (ja)
Other versions
JP2018123471A (en
Inventor
秀雄 稲葉
秀雄 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Original Assignee
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Ando Corp filed Critical Hazama Ando Corp
Priority to JP2017013947A priority Critical patent/JP6876448B2/en
Publication of JP2018123471A publication Critical patent/JP2018123471A/en
Application granted granted Critical
Publication of JP6876448B2 publication Critical patent/JP6876448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、山岳トンネル工事などトンネル工事における切羽前方の地中変位を計測するのに用いるトンネル切羽前方変位計測方法に関し、特に、切羽前方の地中変位量をトンネル坑内から簡易に計測するトンネル切羽前方変位計測方法に関する。 The present invention relates to a tunnel face front displacement measuring method used for measuring the underground displacement in front of a face in tunnel construction such as mountain tunnel construction, and in particular, a tunnel face that simply measures the amount of underground displacement in front of the face from inside the tunnel. Regarding the forward displacement measurement method.

山岳トンネル工事などのトンネル工事では、トンネルの掘進に伴って、トンネル切羽前方の地中変位を計測しトンネルの安定性を評価することが重要になっている。
このような地中の変位量の計測は一般に地中変位計を用いて行われている。
図10に示すように、この計測では、まず、外径114mm又は75mm程度、肉厚5、6mm程度、長さ12、13mの長尺鋼管をさや管aとして、トンネル切羽天端から斜め前方に打設する。次いで、さや管aを地山(孔壁)と密着させるため、さや管aと地山(孔壁)との間にグラウトbを注入する。そして、さや管a内に、外径50mm程度の水平傾斜計又は外径42mm程度のパイプ式ひずみ計などの地中変位計cを挿入する。さや管a内に地中変位計cを挿入後、さや管a内で地中変位計cがぐらつかないように、さや管a内にグラウトbを注入してさや管aと地中変位計cとを一体化する。このようにして地中に打設した地中変位計cで地中の変位量を計測する。
In tunnel construction such as mountain tunnel construction, it is important to evaluate the stability of the tunnel by measuring the underground displacement in front of the tunnel face as the tunnel is dug.
Such measurement of the amount of displacement in the ground is generally performed using an underground displacement meter.
As shown in FIG. 10, in this measurement, first, a long steel pipe having an outer diameter of about 114 mm or 75 mm, a wall thickness of about 5, 6 mm, and a length of 12, 13 m is used as a sheath pipe a, and diagonally forward from the top of the tunnel face. Place. Next, in order to bring the sheath pipe a into close contact with the ground (hole wall), grout b is injected between the sheath pipe a and the ground (hole wall). Then, an underground displacement meter c such as a horizontal inclinometer having an outer diameter of about 50 mm or a pipe strain meter having an outer diameter of about 42 mm is inserted into the sheath pipe a. After inserting the underground displacement meter c into the sheath pipe a, inject grout b into the sheath pipe a so that the underground displacement meter c does not wobble in the sheath pipe a, and then inject the grout b into the sheath pipe a and the underground displacement meter c. To integrate with. The amount of displacement in the ground is measured by the underground displacement meter c placed in the ground in this way.

また、この種の切羽前方変位計測方法が特許文献1、2により提案されている。
(1)特許文献1は、トンネル切羽の安定性予測/判定方法に関するもので、この方法では、切羽から掘進方向前方側に向け、トンネルの天端部に先行ボーリング孔を穿設し、先行ボーリング孔内に、切羽前方の地中変位を計測する変位計測手段を設置し、変位計測手段で計測された計測値を、予め三次元解析結果を基に設定した管理限界と比較して切羽の安定性を予測/判定する。
この方法では特に、トンネル天端部上方に、例えば長さL=80m、ラップ2D=24m(Dはトンネル幅;本実施形態では約12m)、直径φ=116mmの先行ボーリング孔をボーリング機で穿設し、この先行ボーリング孔に5mの連結傾斜計を15個設置して、切羽前方の天端地中変位を測定する。連結傾斜計は、先行ボーリング孔内に挿入して配設された例えば直径75mm程度のガイド管内に、ガイドローラによって移動自在(揺動自在)に支持される水平傾斜計を備え、この水平傾斜計の変位信号を変換機、出力ケーブルで出力して、地中変位を計測できるように構成されている。なお、連結傾斜計に代えて、パイプ式歪計や光ファイバーひずみ計測、挿入式方位・傾斜計などが使用可能である。
このようにトンネル天端を先行して地中変位を測定することで、例えば、小土被りの都市トンネル等を施工する場合に、小土被り部の切羽の崩壊や地表陥没などの異常の兆候を切羽前方で早期に検知することができ、小土被り部の切羽の崩壊や地表陥没を未然に防止することができる。
(2)特許文献2は、先行地中変位計の設置方法に関するもので、この方法では、トンネル掘削予定箇所上の地山における変位計測開始点に向け、トンネル切羽から外管を打設する外管打設工程と、外管内に内管を挿入して当該内管外の外管内空に固化材を充填する内管挿入工程と、トンネル掘削に伴う外管及び内管の折り取りにより、変位計測開始点付近のトンネル掘削面に開口した内管に、屈曲可能な変位計を挿入する変位計設置工程と、内管と共に変位計測開始点付近のトンネル掘削面に開口した外管に、曲り管の一端を接続し、当該曲り管の他端を、変位計測開始点付近に設置された支保工よりトンネル掘進方向後方において、トンネル坑内に向けて配置する曲り管設置工程と有し、これらの工程により、トンネルに拡幅部を設けることなしに先行地中変位計を設置する。
この方法では特に、外管打設工程で、トンネル切羽の天端付近から所定長の鋼管を打設する。この鋼管5は、例えば12〜13m程度の長尺鋼管であり、その先端に掘削ビットを備える。トンネル切羽から地山に対する鋼管の打設に際しては、トンネル坑内に配置した油圧ジャンボ等の削孔用重機が、鋼管先端の掘削ビットを駆動させて地山に対する削孔動作を行い、鋼管を、トンネル切羽から地山の変位計測開始点、更には変位計測終了点に向けて徐々に掘進させる。また、内管挿入工程では、トンネル切羽に開口される鋼管の内空に、後に先行地中変位計をセットする塩ビ管を挿入し、この塩ビ管外方の鋼管内空と、鋼管とその周囲の地山との隙間空間とに、グラウトやモルタル、或いは樹脂等の適宜な固化材を充填する。このように固化材を鋼管内空および隙間空間に満たして固化させることで、地山と鋼管、および塩ビ管は一体化され、地山の各種挙動で生じる変位は、ほぼロスなく鋼管および塩ビ管に直接伝達されることになる。また、塩ビ管の内径は先行地中変位計の外径と近しく、塩ビ管に挿入された先行地中変位計は塩ビ管と一体に挙動出来るものとする。なお、外管としては上述の鋼管に限定されず、例えばGFRP(Glass fiber reinforced plastics)管を採用してもよい。また、内管としては上述の塩ビ管に限定されず、例えば鋼管を採用してもよい。そして、変位計設置工程では、トンネル掘削に伴う鋼管および塩ビ管の折り取りにより、変位計測開始点付近のトンネル掘削面には、鋼管および塩ビ管の端部が露出することになる。そこで、変位計測開始点付近のトンネル掘削面に端部が開口した塩ビ管に、屈曲可能な先行地中変位計を挿入する。この屈曲可能な先行地中変位計は、3D地中変位計と呼ばれる変位計であり、内部に加速度センサが内蔵された所定ピッチのセグメントが連結された構造を有し、各セグメント同士はフレキシブルな関節により一定範囲で屈曲可能になっている。
このようにしてトンネルに拡幅部を設けることなしに先行地中変位計を設置することができる。
Further, Patent Documents 1 and 2 have proposed this kind of face forward displacement measuring method.
(1) Patent Document 1 relates to a method for predicting / determining the stability of a tunnel face. In this method, a leading boring hole is formed at the top of the tunnel from the face toward the front side in the excavation direction, and leading boring is performed. A displacement measuring means for measuring the underground displacement in front of the face is installed in the hole, and the measured value measured by the displacement measuring means is compared with the control limit set in advance based on the three-dimensional analysis result to stabilize the face. Predict / judge sex.
In this method, in particular, a leading boring hole having a length L = 80 m, a lap 2D = 24 m (D is a tunnel width; about 12 m in this embodiment), and a diameter φ = 116 mm is drilled above the top of the tunnel with a boring machine. 15 5m connected inclinometers will be installed in this leading boring hole to measure the top-ground displacement in front of the face. The connected inclinometer is provided with a horizontal inclinometer that is movably (swingable) supported by a guide roller in a guide tube having a diameter of, for example, about 75 mm, which is inserted and arranged in the preceding boring hole. It is configured so that the displacement signal of can be output by a converter and an output cable to measure the displacement in the ground. Instead of the connected inclinometer, a pipe type strain meter, an optical fiber strain measurement, an insertion type azimuth / inclinometer, etc. can be used.
By measuring the underground displacement in advance of the top of the tunnel in this way, for example, when constructing a city tunnel with a small soil cover, there are signs of abnormalities such as the collapse of the face of the small soil cover and the depression of the ground surface. Can be detected early in front of the face, and it is possible to prevent the face from collapsing and the surface collapse of the small soil cover.
(2) Patent Document 2 relates to a method of installing a preceding underground displacement meter. In this method, an outer pipe is driven from the tunnel face toward the displacement measurement start point in the ground above the planned tunnel excavation site. Displacement due to the pipe placing process, the inner pipe insertion process of inserting the inner pipe inside the outer pipe and filling the inner space of the outer pipe outside the inner pipe with a solidifying material, and the tearing of the outer pipe and inner pipe accompanying tunnel excavation. A displacement meter installation process in which a bendable displacement meter is inserted into the inner pipe opened in the tunnel excavation surface near the measurement start point, and a curved pipe in the outer pipe opened in the tunnel excavation surface near the displacement measurement start point together with the inner pipe. The other end of the curved pipe is connected to the one end of the tunnel, and the other end of the curved pipe is arranged toward the inside of the tunnel behind the support work installed near the start point of the displacement measurement in the tunnel excavation direction. Therefore, the preceding underground displacement meter is installed without providing a widening part in the tunnel.
In this method, in particular, in the outer pipe driving step, a steel pipe having a predetermined length is driven from the vicinity of the top end of the tunnel face. The steel pipe 5 is, for example, a long steel pipe having a length of about 12 to 13 m, and is provided with a drilling bit at the tip thereof. When placing a steel pipe from the tunnel face to the ground, a heavy machine for drilling such as a hydraulic jumbo placed in the tunnel pit drives the excavation bit at the tip of the steel pipe to perform a drilling operation on the ground, and the steel pipe is tunneled. Gradually excavate from the face to the displacement measurement start point of the ground and further to the displacement measurement end point. In the inner pipe insertion step, a PVC pipe for which a preceding underground displacement meter is set is inserted into the inner space of the steel pipe opened in the tunnel face, and the inner space of the steel pipe outside the PVC pipe and the steel pipe and its surroundings are inserted. The gap space between the ground and the ground is filled with an appropriate solidifying material such as grout, mortar, or resin. By filling the space inside the steel pipe and the gap space and solidifying it in this way, the ground, the steel pipe, and the PVC pipe are integrated, and the displacement that occurs in various behaviors of the ground is almost lossless. Will be transmitted directly to. Further, the inner diameter of the PVC pipe is close to the outer diameter of the preceding underground displacement meter, and the preceding underground displacement meter inserted into the PVC pipe can behave integrally with the PVC pipe. The outer pipe is not limited to the above-mentioned steel pipe, and for example, a GFRP (Glass fiber reinforced plastics) pipe may be adopted. Further, the inner pipe is not limited to the above-mentioned PVC pipe, and for example, a steel pipe may be adopted. Then, in the displacement meter installation step, the ends of the steel pipe and the PVC pipe are exposed on the tunnel excavation surface near the displacement measurement start point due to the breakage of the steel pipe and the PVC pipe accompanying the tunnel excavation. Therefore, a bendable preceding underground displacement meter is inserted into a PVC pipe whose end is open on the tunnel excavation surface near the displacement measurement start point. This bendable preceding underground displacement meter is a displacement meter called a 3D underground displacement meter, and has a structure in which segments of a predetermined pitch with a built-in acceleration sensor are connected, and each segment is flexible. It can be flexed within a certain range by the joints.
In this way, the preceding underground displacement meter can be installed without providing a widening portion in the tunnel.

特開2016− 933号公報Japanese Unexamined Patent Publication No. 2016-933 特開2015−113572号公報Japanese Unexamined Patent Publication No. 2015-113572

しかしながら、従来のトンネル切羽前方変位計測方法では、次のような問題がある。
(1)さや管として外径114mm又は75mm程度の鋼管を用い、このさや管をトンネル切羽の天端付近に打設する場合、専用の削岩ビットなどが必要で、コストが増大する。また、さや管の設置に多くの時間を要する。
そこで、さや管の径を小さくし、さや管をトンネル切羽から切羽前方に向けて削孔した計測用孔に挿入することが望ましい。
(2)地中変位量の計測精度を確保するため、さや管(鋼管)と地山の孔壁とをグラウトで密着させる必要があり、このため、さや管(鋼管)と地山の孔壁との間にグラウトを注入する作業が必要となる。また、さや管内にグラウトを注入してさや管と地中変位計とを一体化した場合、地中変位計を回収できず、転用できない。このため、さや管を外管と内管の2重構造にすると、内管からさや管を引き抜き回収できる利点があるが、他面でさや管の設置に多くの時間を要する。
そこで、さや管と地山とを密着させるためのグラウトを不要にすることが望ましい。
(3)さや管に肉厚5、6mmの鋼管を用いると、剛性が高く、さや管内の地中変位計が地山の変位に追従しにくい場合がある。
そこで、さや管の剛性を低くして、さや管内の地中変位計を地山の変位に追従しやすくすることが望ましい。
However, the conventional tunnel face forward displacement measuring method has the following problems.
(1) When a steel pipe having an outer diameter of about 114 mm or 75 mm is used as the sheath pipe and the sheath pipe is placed near the top of the tunnel face, a dedicated rock drilling bit or the like is required, which increases the cost. In addition, it takes a lot of time to install the sheath pipe.
Therefore, it is desirable to reduce the diameter of the sheath tube and insert the sheath tube into the measurement hole drilled from the tunnel face toward the front of the face.
(2) In order to ensure the measurement accuracy of the amount of displacement in the ground, it is necessary to grout the sheath pipe (steel pipe) and the hole wall of the ground. Therefore, the sheath pipe (steel pipe) and the hole wall of the ground must be brought into close contact with each other. It is necessary to inject grout between and. Further, when grout is injected into the sheath pipe and the sheath pipe and the underground displacement meter are integrated, the underground displacement meter cannot be recovered and cannot be diverted. For this reason, if the sheath pipe has a double structure of an outer pipe and an inner pipe, there is an advantage that the sheath pipe can be pulled out from the inner pipe and collected, but on the other side, it takes a lot of time to install the sheath pipe.
Therefore, it is desirable to eliminate the need for grout for bringing the sheath pipe into close contact with the ground.
(3) When a steel pipe having a wall thickness of 5 or 6 mm is used for the sheath pipe, the rigidity is high, and it may be difficult for the underground displacement meter in the sheath pipe to follow the displacement of the ground.
Therefore, it is desirable to reduce the rigidity of the sheath pipe so that the underground displacement meter in the sheath pipe can easily follow the displacement of the ground.

本発明は、このような従来の問題を解決するものであり、この種のトンネル切羽前方変位計測方法において、さや管の設置を低コストにかつ短時間で行うこと、さや管と地山を密着させるためのグラウトを不要にすること、さや管の剛性を低くし、さや管内の地中変位計を地山の変位に追従しやすくすることなど、を目的とする。 The present invention solves such a conventional problem. In this type of tunnel face forward displacement measuring method, the sheath pipe can be installed at low cost and in a short time, and the sheath pipe and the ground are brought into close contact with each other. The purpose is to eliminate the need for a ground to make the tunnel, reduce the rigidity of the sheath pipe, and make it easier for the underground displacement meter in the sheath pipe to follow the displacement of the ground.

上記目的を達成するために、本発明は
トンネル切羽から当該切羽前方に向けて計測用孔を削孔し、前記計測用孔に地中の変位に追従可能な地中変位計設置用のさや管を介して地中変位計を設置して地中変位を計測するトンネル切羽前方変位計測方法において、
前記さや管に、元の形状が中空の管状で外周面を圧潰又は圧縮変形されて内部の中空断面を圧縮して形成され、前記内部に流体を圧入することにより当該流体圧で前記外周面を半径方向に膨張させて前記管状に復元可能な管材を用い、
前記外周面を圧潰又は圧縮変形され前記管状に復元前のさや管を前記計測用孔に挿入し、
前記管状に復元前のさや管を前記計測用孔に挿入後、前記管状に復元前のさや管の内部に前記流体を圧入することにより前記管状に復元前のさや管の前記外周面を半径方向に膨張させて前記管状に復元させて前記計測用孔の内周面に密着させ、
前記計測用孔内に密着させた前記復元後のさや管の内部に前記地中変位計を挿入し、前記復元後のさや管を前記地中の変位に追従させて前記地中変位計によりトンネル切羽前方の変位を計測する、
ことを要旨とする。
In order to achieve the above object, the present onset Ming,
A measurement hole is drilled from the tunnel face to the front of the face, and an underground displacement meter is installed in the measurement hole via a sheath pipe for installing an underground displacement meter that can follow the displacement in the ground. In the tunnel face forward displacement measurement method for measuring underground displacement,
The sheath tube is formed by crushing or compressing and deforming the outer peripheral surface in a tubular shape having a hollow original shape to compress the hollow cross section inside, and by press-fitting a fluid into the inner surface, the outer peripheral surface is pressed by the fluid pressure. Using a tube material that can be expanded in the radial direction and restored to the tubular shape,
The outer peripheral surface is crushed or compressed and deformed, and the sheath tube before restoration is inserted into the measurement hole into the tubular shape.
After inserting the sheath tube before restoration into the tubular shape into the measurement hole, the fluid is press-fitted into the sheath tube before restoration into the tubular shape so that the outer peripheral surface of the sheath tube before restoration into the tubular shape is radialally oriented. Inflated to the tubular shape and brought into close contact with the inner peripheral surface of the measuring hole.
The underground displacement meter is inserted into the restored sheath pipe that is in close contact with the measurement hole, and the restored sheath pipe is made to follow the displacement in the ground and tunneled by the underground displacement meter. Measure the displacement in front of the face,
The gist is that.

また、この計測方法は、次のように具体化される。
(1)さや管に、内部に加圧水を注入することにより外周面が半径方向に膨張可能でかつ計測用孔内で地中の変位に追従可能な鋼管を採用する。また、さや管に、内部に蒸気圧を通すことにより外周面が半径方向に膨張可能でかつ計測用孔内で地中の変位に追従可能な樹脂管を採用してもよい。
(2)地中変位計に、加速度センサを内蔵された複数のセグメントがフレキシブルな関節を介して屈曲可能に連結されてなる3D地中変位計を採用する。
Moreover, this measurement method is embodied as follows.
(1) A steel pipe is used in which the outer peripheral surface can be expanded in the radial direction by injecting pressurized water into the sheath pipe and the displacement in the ground can be followed in the measurement hole. Further, a resin tube may be adopted in the sheath tube so that the outer peripheral surface can be expanded in the radial direction by passing vapor pressure inside and the displacement in the ground can be followed in the measurement hole.
(2) A 3D underground displacement meter is adopted, in which a plurality of segments with a built-in acceleration sensor are flexibly connected via flexible joints.

本発明のトンネル切羽前方変位計測方法によれば、さや管に、元の形状が管状で外周面を圧潰又は圧縮変形されて内部の中空断面を圧縮して形成され、内部に流体を圧入することによりその流体圧で外周面を半径方向に膨張させて管状に復元可能な管材を用い、このさや管を計測用孔に挿入し、さや管の内部に流体を圧入することによりさや管の外周面を半径方向に膨張させて計測用孔の内周面に密着させ、計測用孔内に密着されたさや管の内部に地中変位計を挿入して、復元後のさや管を地中の変位に追従させて地中変位計によりトンネル切羽前方の変位を計測するようにしたので、さや管の設置を低コストにかつ短時間で行うことができ、また、さや管と地山を密着させるためのグラウトを不要にすることができ、さらに、さや管の剛性を低くして、地中変位計を地山の変位に追従しやすくすることができる、という本発明独自の格別な効果を奏する。 According to the tunnel face forward displacement measuring method of the present invention, the sheath tube is formed by crushing or compressing the outer peripheral surface in a tubular shape and compressing the hollow cross section inside, and press-fitting the fluid into the sheath tube. Using a tube material that can be restored to a tubular shape by expanding the outer peripheral surface in the radial direction with the fluid pressure, insert this sheath tube into the measurement hole and press-fit the fluid into the sheath tube to press the outer peripheral surface of the sheath tube. Is expanded in the radial direction and brought into close contact with the inner peripheral surface of the measuring hole, and an underground displacement meter is inserted inside the sheath tube that is brought into close contact with the measuring hole to displace the sheath tube after restoration in the ground. Since the displacement in front of the tunnel face is measured by the underground displacement meter, the sheath pipe can be installed at low cost and in a short time, and the sheath pipe and the ground can be brought into close contact with each other. The ground can be eliminated, and the rigidity of the sheath pipe can be lowered to make it easier for the underground displacement meter to follow the displacement of the ground, which is a special effect unique to the present invention.

本発明の一実施の形態によるトンネル切羽前方変位計測方法を示す図The figure which shows the tunnel face forward displacement measurement method by one Embodiment of this invention. 同計測方法に用いるさや管の構成を示す図((a)はさや管の一部破断斜視図(b)はさや管の部分断面斜視図)The figure which shows the structure of the sheath tube used in the measurement method ((a) partially broken perspective view (b) of the sheath tube partial cross-sectional perspective view) 同計測方法に用いる地中変位計の構成を示す図(側面図)Diagram showing the configuration of the underground displacement meter used in the measurement method (side view) 同計測方法において切羽前方の地中にさや管を設置する工程を示す図The figure which shows the process of installing a sheath pipe in the ground in front of a face in the same measurement method. 同計測方法において切羽前方の地中のさや管内に地中変位計を設置する工程を示す図The figure which shows the process of installing the underground displacement meter in the underground sheath pipe in front of the face in the same measurement method. 同計測方法の現場実験の概要を示す図Diagram showing the outline of the field experiment of the same measurement method 同計測方法の現場実験の結果を示す図Diagram showing the results of field experiments of the same measurement method 同計測方法の室内実験の概要を示す図The figure which shows the outline of the laboratory experiment of the same measurement method 同計測方法の室内実験の結果を示す図The figure which shows the result of the laboratory experiment of the same measurement method 従来のトンネル切羽前方変位計測方法を示す図The figure which shows the conventional tunnel face forward displacement measurement method

次に、この発明を実施するための形態について図を用いて説明する。
図1にトンネル切羽前方変位計測方法を示している。
図1に示すように、このトンネル切羽前方変位計測方法では、トンネル切羽T1から切羽T1前方に向けて計測用孔T10を削孔し、計測用孔T10にさや管1を挿入しこの計測用孔T10にさや管1を介して地中変位計2を設置して地中変位を計測する。その具体的な手順については後述する。
Next, a mode for carrying out the present invention will be described with reference to the drawings.
FIG. 1 shows a method for measuring the forward displacement of the tunnel face.
As shown in FIG. 1, in this tunnel face forward displacement measurement method, a measurement hole T10 is drilled from the tunnel face T1 toward the front of the face T1, and a sheath tube 1 is inserted into the measurement hole T10 to insert the measurement hole. An underground displacement meter 2 is installed at T10 via a sheath pipe 1 to measure the underground displacement. The specific procedure will be described later.

この計測方法では、さや管1に、元の形状が中空の管状で外周面を圧潰又は圧縮変形されて内部の中空断面を圧縮して形成され、内部に流体を圧入することによりその流体圧で外周面を半径方向に膨張させて管状に復元可能な管材を使用する。
ここでは、さや管1に、内部に加圧水を注入することにより外周面が半径方向に膨張可能な鋼管を採用する。
このような鋼管としては、一般に地山の補強に使用される鋼管膨張型ロックボルトが知られている。
図2に示すように、鋼管膨張型ロックボルト1は、本来中空の薄肉の鋼管で、これが外周面10から押圧され板状に形成され、長手方向を軸方向として筒状に曲げられて、軸方向に延びる凹部11を有する断面C字状に形成される。この場合、このロックボルト1は、外径36mm、長さ6m、鋼管内部に供給される水の圧力によって変形可能に肉厚2〜3mm程度で、また、鋼管内部に流体が流入できるように、鋼管は完全には押しつぶされていない程度の板状になっている。このようにして形成された(管状に復元前の)鋼管の先端部には、スリーブ12が取り付けられる。スリーブ12は円筒状に形成され、鋼管の先端部が挿入され、溶接などによって固定される。なお、鋼管の先端部の口は溶接などによって閉じられる。他方、鋼管の後端部にもまた、スリーブ13が取り付けられる。このスリーブ13は円筒状に形成され、鋼管の後端部が挿入され、溶接などによって固定される。このスリーブ13の軸方向中間部には、注水孔(図示省略)が形成されており、この注水孔は鋼管の後端部側に形成された貫通孔(図示省略)に連通して、鋼管の内部に連通される。なお、鋼管の後端部は溶接などによって閉じられる。このようにして(管状に復元前の)鋼管の内部は、先端部及び後端部が閉じられた閉空間になっており、後端部側のスリーブ13の注水孔を介して外部と連通される。
このようにしてこの(管状に復元前の)ロックボルト1は、後端部側のスリーブ13に注水用アダプタが取り付けられ、この注水用アダプタに注水ホースが接続されて、水源から水圧ポンプなどにより加圧水を注水ホースに送り、注水孔を通して鋼管の内部に供給することにより、鋼管の内部に加圧水が注入されて、鋼管の外周面10の凹部11を小さくしながら、鋼管の外周面10が径方向に、この場合、内径が45mm〜55mm程度に膨張するようになっている。
このロックボルト1をさや管1として利用する。
In this measurement method, the sheath tube 1 is formed by crushing or compressing and deforming the outer peripheral surface in a tubular shape having a hollow original shape and compressing the hollow cross section inside, and by press-fitting the fluid inside, the fluid pressure is used. Use a tube material that can be restored to a tubular shape by expanding the outer peripheral surface in the radial direction.
Here, a steel pipe whose outer peripheral surface can expand in the radial direction by injecting pressurized water into the sheath pipe 1 is adopted.
As such a steel pipe, a steel pipe expansion type lock bolt generally used for reinforcing the ground is known.
As shown in FIG. 2, the steel pipe expansion type lock bolt 1 is originally a hollow thin-walled steel pipe, which is pressed from the outer peripheral surface 10 to form a plate shape, bent in a tubular shape with the longitudinal direction as an axial direction, and a shaft. It is formed in a C-shaped cross section having a recess 11 extending in the direction. In this case, the lock bolt 1 has an outer diameter of 36 mm, a length of 6 m, a wall thickness of about 2 to 3 mm that can be deformed by the pressure of water supplied to the inside of the steel pipe, and a fluid can flow into the inside of the steel pipe. The steel pipe has a plate shape that is not completely crushed. A sleeve 12 is attached to the tip of the steel pipe thus formed (before the tubular restoration). The sleeve 12 is formed in a cylindrical shape, the tip of the steel pipe is inserted, and the sleeve 12 is fixed by welding or the like. The mouth of the tip of the steel pipe is closed by welding or the like. On the other hand, the sleeve 13 is also attached to the rear end of the steel pipe. The sleeve 13 is formed in a cylindrical shape, and the rear end portion of the steel pipe is inserted and fixed by welding or the like. A water injection hole (not shown) is formed in the axial middle portion of the sleeve 13, and the water injection hole communicates with a through hole (not shown) formed on the rear end side of the steel pipe to form a steel pipe. It communicates inside. The rear end of the steel pipe is closed by welding or the like. In this way, the inside of the steel pipe (before the tubular restoration) is a closed space in which the front end and the rear end are closed, and is communicated with the outside through the water injection hole of the sleeve 13 on the rear end side. To.
In this way, the lock bolt 1 (before being restored to the tubular shape) has a water injection adapter attached to the sleeve 13 on the rear end side, a water injection hose is connected to the water injection adapter, and a water pressure pump or the like is used from the water source. By sending the pressurized water to the water injection hose and supplying it to the inside of the steel pipe through the water injection hole, the pressurized water is injected into the inside of the steel pipe, and the outer peripheral surface 10 of the steel pipe is radially oriented while the recess 11 of the outer peripheral surface 10 of the steel pipe is made smaller. In this case, the inner diameter expands to about 45 mm to 55 mm.
This lock bolt 1 is used as a sheath pipe 1.

また、この計測方法では、地中変位計2に、さや管1、すなわち、鋼管膨張型ロックボルト1の内径よりも小径の既存の地中変位計を使用する。ここでは、特許文献2にも記載され、一般に知られている外径25mmの極細3D地中変位計2を採用する。図3に示すように、極細3D地中変位計2は、重力加速度センサ(MEMS)21を内臓された複数のセグメント20がフレキシブルな関節22を介して屈曲可能に連結されて構成される。 Further, in this measurement method, an existing underground displacement meter having a diameter smaller than the inner diameter of the sheath pipe 1, that is, the steel pipe expansion type lock bolt 1 is used for the underground displacement meter 2. Here, the ultrafine 3D underground displacement meter 2 having an outer diameter of 25 mm, which is also described in Patent Document 2, is adopted. As shown in FIG. 3, the ultrafine 3D underground displacement meter 2 is configured by flexibly connecting a plurality of segments 20 incorporating a gravitational acceleration sensor (MEMS) 21 via flexible joints 22.

この計測方法では、このようなさや管1や地中変位計2を用いて、次のような手順でトンネル切羽前方の地中変位を簡易に計測する。
ステップ1(図1参照)
まず、トンネルの切羽T1天端付近から斜め前方に向けて計測用孔T10を削孔する。
この場合、計測用孔T10の削孔にドリルジャンボを使用し、削岩ビットは外径45mmのものを使用する。これらの機器、装置は、通常のトンネル掘削作業に使用するもので、この削孔には特別な機械、装置を必要としない。
ステップ2(図4参照)
計測用孔T10の削孔後、続いて、図4(1)に示すように、計測用孔T10に管状に復元前のさや管1を挿入する。
この場合、計測用孔T10にさや管1として外径36mm、長さ5mの鋼管膨張型ロックボルト1を、人力で(押し込み)、挿入する。
このさや管1は、外周面10が圧潰又は圧縮変形されて管状に復元前の小径の管材のため、さや管1の計測用孔T10への挿入は容易である。また、これらステップ1、2は、山岳トンネル工事で通常行うロックボルトの打設作業と略同様の作業であり、これらの作業は短時間で実施可能である。
ステップ3(図4参照)
管状に復元前のさや管1を計測用孔T10に挿入後、次いで、図4(2)、(3)に示すように、計測用孔T10内の管状に復元前のさや管1の内部に流体を圧入することによりその流体圧で管状に復元前のさや管1の外周面10を半径方向に膨張させて元の管状に復元させて計測用孔T10の内周面に密着させる。
この場合、さや管1として用いる鋼管膨張型ロックボルト1の後端部側のスリーブ13に注水用アダプタを取り付けてこのスリーブ13の注水孔に連通させ、この注水用アダプタに注水ホースを介して水圧ポンプを接続する。そして、このロックボルト1の内部に水圧ポンプで加圧水を注入し、ロックボルト1(の外周面10)を水圧で膨張させて計測用孔T10の内周面(孔壁)に密着させる。このロックボルト1は内径45mm〜55mm程度まで拡径可能で、ロックボルト1(の外周面10)は計測用孔T10の内周面(孔壁)に十分に密着される。これにより、さや管1と計測用孔T10(地山の孔壁)との間にグラウトは不要であり、さや管1と計測用孔T10(地山の孔壁)との間にグラウトの注入を行う必要がない。
ステップ4(図5参照)
計測用孔T10内でさや管1を膨張させた後、図5に示すように、さや管1の後端部、この場合、トンネル切羽T1側から見て手前側の端部を開口し、計測用孔T10内に密着させた復元後のさや管1の内部に地中変位計2を挿入する。
この場合、さや管1、すなわち、ロックボルト1の後端部側にスリーブ13が取り付けられているので、このスリーブ13とともにロックボルト1の後端部側を切断し、ロックボルト1の後端部を開口する。このロックボルト1は膨張により、内径45mm〜55mm程度まで拡径されるので、後端部の開口から、地中変位計2が容易に挿入可能となる。そして、このさや管1内に後端部の開口から外径25mmの極細3D地中変位計2を挿入する。
ステップ5(図1参照)
このようにしてトンネル切羽T1前方の地中に設置した地中変位計2で切羽T1前方の地中の変位を計測する。
そして、トンネルの掘進に伴って、適宜、このステップ(1)−(5)を繰り返す。
In this measurement method, using such a sheath pipe 1 and an underground displacement meter 2, the underground displacement in front of the tunnel face is simply measured by the following procedure.
Step 1 (see Figure 1)
First, the measurement hole T10 is drilled diagonally forward from the vicinity of the top of the tunnel face T1.
In this case, a drill jumbo is used for drilling the measurement hole T10, and a rock drilling bit having an outer diameter of 45 mm is used. These devices and devices are used for ordinary tunnel excavation work, and no special machines or devices are required for this drilling.
Step 2 (see Figure 4)
After drilling the measurement hole T10, the sheath tube 1 before restoration is inserted into the measurement hole T10 in a tubular shape as shown in FIG. 4 (1).
In this case, a steel pipe expansion type lock bolt 1 having an outer diameter of 36 mm and a length of 5 m is manually (pushed) and inserted into the measurement hole T10 as a sheath pipe 1.
Since the outer peripheral surface 10 of the sheath tube 1 is crushed or compressed and deformed to form a tubular material having a small diameter before restoration, the sheath tube 1 can be easily inserted into the measurement hole T10. Further, these steps 1 and 2 are substantially the same operations as the rock bolt driving operation normally performed in the mountain tunnel construction, and these operations can be performed in a short time.
Step 3 (see Figure 4)
After inserting the sheath tube 1 before restoration into a tubular shape into the measuring hole T10, then, as shown in FIGS. 4 (2) and 4 (3), the sheath tube 1 before restoration into a tubular shape inside the measuring hole T10 is inside the sheath tube 1. By press-fitting the fluid, the outer peripheral surface 10 of the sheath tube 1 before restoration into a tubular shape is expanded in the radial direction by the fluid pressure and restored to the original tubular shape so as to be brought into close contact with the inner peripheral surface of the measurement hole T10.
In this case, a water injection adapter is attached to the sleeve 13 on the rear end side of the steel pipe expansion type lock bolt 1 used as the sheath pipe 1 to communicate with the water injection hole of the sleeve 13, and the water pressure is connected to the water injection adapter via the water injection hose. Connect the pump. Then, pressurized water is injected into the lock bolt 1 by a hydraulic pump, and the lock bolt 1 (outer peripheral surface 10) is expanded by water pressure to be brought into close contact with the inner peripheral surface (hole wall) of the measurement hole T10. The inner diameter of the lock bolt 1 can be expanded to about 45 mm to 55 mm, and the lock bolt 1 (outer peripheral surface 10) is sufficiently adhered to the inner peripheral surface (hole wall) of the measurement hole T10. As a result, no grout is required between the sheath pipe 1 and the measurement hole T10 (hole wall of the ground), and the grout is injected between the sheath pipe 1 and the measurement hole T10 (hole wall of the ground). No need to do.
Step 4 (see Figure 5)
After expanding the sheath tube 1 in the measurement hole T10, as shown in FIG. 5, the rear end portion of the sheath tube 1, in this case, the end portion on the front side when viewed from the tunnel face T1 side is opened for measurement. The underground displacement meter 2 is inserted into the restored sheath pipe 1 that is in close contact with the hole T10.
In this case, since the sleeve 13 is attached to the sheath tube 1, that is, the rear end side of the lock bolt 1, the rear end side of the lock bolt 1 is cut together with the sleeve 13 to cut the rear end side of the lock bolt 1. To open. Since the inner diameter of the lock bolt 1 is expanded to about 45 mm to 55 mm by expansion, the underground displacement meter 2 can be easily inserted through the opening at the rear end. Then, an extra-fine 3D underground displacement meter 2 having an outer diameter of 25 mm is inserted into the sheath tube 1 from the opening at the rear end.
Step 5 (see Figure 1)
In this way, the underground displacement meter 2 installed in the ground in front of the tunnel face T1 measures the displacement in the ground in front of the face T1.
Then, as the tunnel is dug, steps (1)-(5) are repeated as appropriate.

本願出願人は、このトンネル切羽前方変位計測方法による計測精度を確認するため、この計測方法の現場実験を行った。現場実験の概要を図6に示し、その結果を図7に示す。
図6に示すように、この現場実験では、トンネルを図中右側から左方向に掘り進めていき、1日目を計測開始時として、1日目の切羽の位置で、既述のとおり、この切羽の天端付近から斜め前方に向けて計測用孔T10を削孔し、計測用孔T10にさや管1を挿入しこの計測用孔T10にさや管1を介して地中変位計2を設置して、この地中変位計2(以下、坑内から設置した地中変位計2という。)で、1日目の切羽の位置から1日目の時点を初期値(0(ゼロ))としてトンネルの掘進に伴って発生する地中の変位を計測した。
また、このトンネル切羽前方変位計測方法による計測精度を確認するため、さらに、トンネル切羽からどの程度前方から地山の沈下が始まるのか、また、トンネル切羽の前方のみが下がっているのか、あるいはトンネル自体が下がっているのか、又はその両方が下がっているのか、を併せて確認するため、トンネルの掘削前に、トンネルの掘削予定位置の上方所定の位置にトンネル坑外から長さ20mの長い地中変位計3を略水平に設置して、この地中変位計3(以下、坑外から設置した地中変位計3という。)で、1日目の切羽の位置よりも後方所定の位置からトンネルの掘進に伴って発生する地中の変位を計測した。
図7の上方に、切羽の位置が4日目の位置に達した時点の地中の変位(1日目の時点を初期値(0)とした変位)を示す。ここで、坑内から設置した地中変位計2で計測した地中の変位が黒丸であり、坑外から設置した地中変位計3で計測した地中の変位が白丸である。図7の下方に、切羽の位置が5日目の位置に達した時点の地中の変位(1日目の時点を初期値(0)とした変位)を示す。ここで、坑内から設置した地中変位計2で計測した地中の変位が黒丸であり、坑外から設置した地中変位計3で計測した地中の変位が白丸である。
図7から明らかなように、坑内から設置した地中変位計2による計測結果と坑外から設置した地中変位計3による計測結果はよく一致しており、この簡易なトンネル切羽前方変位計測方法でも切羽前方の地中変位を精度よく計測できることを確認した。
The applicant of the present application conducted a field experiment of this measurement method in order to confirm the measurement accuracy by this tunnel face forward displacement measurement method. The outline of the field experiment is shown in FIG. 6, and the result is shown in FIG.
As shown in FIG. 6, in this field experiment, the tunnel was dug from the right side to the left side in the figure, and the first day was set as the start of measurement, and the position of the face on the first day was as described above. A measurement hole T10 is drilled diagonally forward from the vicinity of the top of the face, a sheath tube 1 is inserted into the measurement hole T10, and an underground displacement meter 2 is installed in the measurement hole T10 via the sheath tube 1. Then, with this underground displacement meter 2 (hereinafter referred to as the underground displacement meter 2 installed from the mine), the tunnel is set to the initial value (0 (zero)) from the position of the face on the first day to the time on the first day. The displacement in the ground caused by the excavation of the tunnel was measured.
In addition, in order to confirm the measurement accuracy by this tunnel face forward displacement measurement method, how far the ground starts to sink from the front of the tunnel face, whether only the front of the tunnel face is lowered, or the tunnel itself. In order to confirm whether the tunnel is lowered or both are lowered, before the tunnel is excavated, a long underground 20 m in length from the outside of the tunnel is placed at a predetermined position above the planned tunnel excavation position. The displacement meter 3 is installed substantially horizontally, and the underground displacement meter 3 (hereinafter referred to as the underground displacement meter 3 installed from outside the mine) is used to tunnel from a predetermined position behind the face position on the first day. The underground displacement that occurs with the excavation of the tunnel was measured.
The upper part of FIG. 7 shows the displacement in the ground when the position of the face reaches the position on the 4th day (displacement with the time on the 1st day as the initial value (0)). Here, the underground displacement measured by the underground displacement meter 2 installed from inside the mine is a black circle, and the underground displacement measured by the underground displacement meter 3 installed from outside the mine is a white circle. The lower part of FIG. 7 shows the displacement in the ground when the position of the face reaches the position on the fifth day (displacement with the time on the first day as the initial value (0)). Here, the underground displacement measured by the underground displacement meter 2 installed from inside the mine is a black circle, and the underground displacement measured by the underground displacement meter 3 installed from outside the mine is a white circle.
As is clear from FIG. 7, the measurement result by the underground displacement meter 2 installed from inside the mine and the measurement result by the underground displacement meter 3 installed from outside the mine are in good agreement, and this simple tunnel face forward displacement measurement method However, it was confirmed that the underground displacement in front of the face can be measured accurately.

本願出願人はまた、このトンネル切羽前方変位計測方法による計測精度をさらに確認するため、室内実験を実施した。室内実験の概要を図8に示し、その結果を図9に示す。
図8に示すように、この室内実験では、さや管1に鋼管膨張型ロックボルトを用い、地中変位計2に極細3D地中変位計を用い、鋼管膨張型ロックボルト1内に極細3D地中変位計2を挿入して、このロックボルト1の一端(この場合、右端)を台座Bに固定し、他端(この場合、左端)を機械Mを使って強制的に引張り上げることにより、ロックボルト1を曲げていき、その変位量を3D地中変位計2で計測し、併せて、このロックボルト1の実際の変位量を外部の変位計4で計測した。また、この場合、ロックボルト1を比較的小さく曲げたときと比較的大きく曲げたときの2段階に分けて計測を行った。
図9に3D地中変位計2による計測結果を曲線グラフで示し、外部の変位計4による計測結果(真の値)を棒グラフで示す。図9において、下方に小さく曲がる曲線で表す曲線グラフがロックボルト1を比較的小さく曲げたときの3D地中変位計2による計測結果で、変位量が80.1、51.9、29.0、11.9の棒で表す棒グラフがそのときの真の値である。また、図9において、上方に大きく曲がる曲線で表す曲線グラフがロックボルト1を比較的大きく曲げたときの3D地中変位計2による計測結果で、変位量が20.9、12.0、5.8、2.0の棒で表す棒グラフがそのときの真の値である。
図9から明らかなように、鋼管膨張型ロックボルト1内に挿入した3D地中変位計2による計測結果と外部の変位計4で計測した真の値はよく一致しており、この簡易なトンネル切羽前方変位計測方法が高い精度で変位を計測できることを確認した。
The applicant of the present application also conducted a laboratory experiment to further confirm the measurement accuracy by this tunnel face forward displacement measurement method. The outline of the laboratory experiment is shown in FIG. 8, and the result is shown in FIG.
As shown in FIG. 8, in this laboratory experiment, a steel pipe expansion type lock bolt was used for the sheath pipe 1, an ultrafine 3D underground displacement meter was used for the underground displacement meter 2, and an ultrafine 3D ground was used in the steel pipe expansion type lock bolt 1. By inserting the medium displacement meter 2, one end (in this case, the right end) of the lock bolt 1 is fixed to the pedestal B, and the other end (in this case, the left end) is forcibly pulled up by using the machine M. The rock bolt 1 was bent, the displacement amount was measured by the 3D underground displacement meter 2, and the actual displacement amount of the lock bolt 1 was measured by the external displacement meter 4. Further, in this case, the measurement was performed in two stages, that is, when the lock bolt 1 was bent relatively small and when it was bent relatively large.
FIG. 9 shows the measurement result by the 3D underground displacement meter 2 in a curve graph, and the measurement result (true value) by the external displacement meter 4 in a bar graph. In FIG. 9, the curve graph represented by a curve that bends slightly downward is the measurement result by the 3D underground displacement meter 2 when the rock bolt 1 is bent relatively small, and the displacement amounts are 80.1, 51.9, and 29.0. , The bar graph represented by the bar of 11.9 is the true value at that time. Further, in FIG. 9, the curve graph represented by the curve that bends greatly upward is the measurement result by the 3D underground displacement meter 2 when the rock bolt 1 is bent relatively greatly, and the displacement amount is 20.9, 12.0, 5 The bar graph represented by the bars of 8.8 and 2.0 is the true value at that time.
As is clear from FIG. 9, the measurement result by the 3D underground displacement meter 2 inserted in the steel pipe expansion type lock bolt 1 and the true value measured by the external displacement meter 4 are in good agreement, and this simple tunnel It was confirmed that the front face displacement measurement method can measure the displacement with high accuracy.

以上説明したように、このトンネル切羽前方変位計測方法では、さや管1に鋼管膨張型ロックボルトを用い、このロックボルト1を計測用孔T10に挿入し、このロックボルト1の内部に加圧水を注入することによりロックボルト1の外周面10を半径方向に膨張させて計測用孔T10の内周面に密着させ、計測用孔T10内に密着されたロックボルト1の内部に地中変位計2として極細3D地中変位計を挿入して、この地中変位計2によりトンネル切羽T1前方の変位を計測するようにしたことで、次のようなこの計測方法独自の顕著な効果を奏する。
(1)計測用孔T10へのさや管1の設置、さや管1内への地中変位計2の設置を簡単容易に行うことができ、これらの設置コストを従来の施工方法に比べて5分の1程度に削減することができる。
(2)計測用孔T10へのさや管1の設置、さや管1内への地中変位計2の設置を簡単容易としたことで、これらの設置に要する時間を従来の施工方法に比べて5分の1程度に短縮することができる。
(3)さや管1と地山を密着させるためのグラウトを不要とし、グラウトの注入作業を省くことができる。また、この場合、さや管1に地中変位計2を挿入するだけで、さや管1内にグラウトを注入しないので、地中変位の計測完了後、さや管1から地中変位計2を回収し転用することができる。これらの点でもコストの低減に資することかできる。
(4)さや管1が薄肉の鋼管で剛性が小さいので、地中変位計2が地山の変位に追従しやすくなり、地中変位の計測精度を向上させることができる。
As described above, in this tunnel face forward displacement measurement method, a steel pipe expansion type lock bolt is used for the sheath pipe 1, the lock bolt 1 is inserted into the measurement hole T10, and pressurized water is injected into the lock bolt 1. By doing so, the outer peripheral surface 10 of the lock bolt 1 is expanded in the radial direction to be brought into close contact with the inner peripheral surface of the measurement hole T10, and the underground displacement meter 2 is formed inside the lock bolt 1 which is brought into close contact with the measurement hole T10. By inserting an ultrafine 3D underground displacement meter and measuring the displacement in front of the tunnel face T1 with this underground displacement meter 2, the following remarkable effect unique to this measurement method is obtained.
(1) Installation of the sheath pipe 1 in the measurement hole T10 and installation of the underground displacement meter 2 in the sheath pipe 1 can be easily performed, and these installation costs are 5 compared to the conventional construction method. It can be reduced to about one-third.
(2) By making it easy to install the sheath pipe 1 in the measurement hole T10 and the underground displacement meter 2 in the sheath pipe 1, the time required for these installations is compared with the conventional construction method. It can be shortened to about one-fifth.
(3) The grout for bringing the sheath pipe 1 and the ground into close contact with each other is not required, and the grout injection work can be omitted. Further, in this case, since the grout is not injected into the sheath pipe 1 only by inserting the underground displacement meter 2 into the sheath pipe 1, the underground displacement meter 2 is collected from the sheath pipe 1 after the measurement of the underground displacement is completed. Can be diverted. These points can also contribute to cost reduction.
(4) Since the sheath pipe 1 is a thin steel pipe and has low rigidity, the underground displacement meter 2 can easily follow the displacement of the ground, and the measurement accuracy of the underground displacement can be improved.

なお、この実施の形態では、さや管1に、鋼管膨張型ロックボルトなど内部に加圧水を注入することにより外周面が半径方向に膨張可能な薄肉の鋼管を採用したが、これに代えて、内部に蒸気圧を通すことにより外周面が半径方向に膨張可能な樹脂管を採用してもよい。このようにしても上記実施の形態と同様の作用効果を得ることができる。 In this embodiment, a thin steel pipe whose outer peripheral surface can be expanded in the radial direction by injecting pressurized water into the sheath pipe 1 such as a steel pipe expansion type lock bolt is adopted, but instead of this, the inside A resin pipe whose outer peripheral surface can expand in the radial direction by passing vapor pressure through the pipe may be adopted. Even in this way, the same effect as that of the above embodiment can be obtained.

T1 トンネル切羽
T10 計測用孔
1 さや管(鋼管膨張型ロックボルト)
10 外周面
11 凹部
12、13 スリーブ
2 地中変位計(極細3D地中変位計)
20 セグメント
21 重力加速度センサ
22 関節
3 地中変位計
B 台座
M 機械
4 変位計
T1 tunnel face T10 measurement hole 1 sheath pipe (steel pipe expansion type lock bolt)
10 Outer surface 11 Recesses 12, 13 Sleeve 2 Underground displacement meter (ultra-fine 3D underground displacement meter)
20 Segment 21 Gravitational Acceleration Sensor 22 Joint 3 Underground Displacement Meter B Pedestal M Machine 4 Displacement Meter

Claims (4)

トンネル切羽から当該切羽前方に向けて計測用孔を削孔し、前記計測用孔に地中の変位に追従可能な地中変位計設置用のさや管を介して地中変位計を設置して地中変位を計測するトンネル切羽前方変位計測方法において、
前記さや管に、元の形状が中空の管状で外周面を圧潰又は圧縮変形されて内部の中空断面を圧縮して形成され、前記内部に流体を圧入することにより当該流体圧で前記外周面を半径方向に膨張させて前記管状に復元可能な管材を用い、
前記外周面を圧潰又は圧縮変形され前記管状に復元前のさや管を前記計測用孔に挿入し、
前記管状に復元前のさや管を前記計測用孔に挿入後、前記管状に復元前のさや管の内部に前記流体を圧入することにより前記管状に復元前のさや管の前記外周面を半径方向に膨張させて前記管状に復元させて前記計測用孔の内周面に密着させ、
前記計測用孔内に密着させた前記復元後のさや管の内部に前記地中変位計を挿入し、前記復元後のさや管を前記地中の変位に追従させて前記地中変位計によりトンネル切羽前方の変位を計測する、
ことを特徴とするトンネル切羽前方変位計測方法。
A measurement hole is drilled from the tunnel face to the front of the face, and an underground displacement meter is installed in the measurement hole via a sheath pipe for installing an underground displacement meter that can follow the displacement in the ground. In the tunnel face forward displacement measurement method for measuring underground displacement,
The sheath tube is formed by crushing or compressing and deforming the outer peripheral surface in a tubular shape having a hollow original shape to compress the hollow cross section inside, and by press-fitting a fluid into the inner surface, the outer peripheral surface is pressed by the fluid pressure. Using a tube material that can be expanded in the radial direction and restored to the tubular shape,
The outer peripheral surface is crushed or compressed and deformed, and the sheath tube before restoration is inserted into the measurement hole into the tubular shape.
After inserting the sheath tube before restoration into the tubular shape into the measurement hole, the fluid is press-fitted into the sheath tube before restoration into the tubular shape so that the outer peripheral surface of the sheath tube before restoration into the tubular shape is radialally oriented. Inflated to the tubular shape and brought into close contact with the inner peripheral surface of the measuring hole.
The underground displacement meter is inserted into the restored sheath pipe that is in close contact with the measurement hole, and the restored sheath pipe is made to follow the displacement in the ground and tunneled by the underground displacement meter. Measure the displacement in front of the face,
A method for measuring forward displacement of a tunnel face, which is characterized by this.
さや管に、内部に加圧水を注入することにより外周面が半径方向に膨張可能でかつ計測用孔内で地中の変位に追従可能な鋼管を採用する請求項1に記載のトンネル切羽前方変位計測方法。 The tunnel face forward displacement measurement according to claim 1, wherein a steel pipe is used in which the outer peripheral surface can be expanded in the radial direction by injecting pressurized water into the sheath pipe and the displacement in the ground can be followed in the measurement hole. Method. さや管に、内部に蒸気圧を通すことにより外周面が半径方向に膨張可能でかつ計測用孔内で地中の変位に追従可能な樹脂管を採用する請求項1に記載のトンネル切羽前方変位計測方法。 The tunnel face forward displacement according to claim 1, wherein a resin tube is used in which the outer peripheral surface can be expanded in the radial direction by passing vapor pressure inside the sheath tube and can follow the displacement in the ground in the measurement hole. Measurement method. 地中変位計に、加速度センサを内蔵された複数のセグメントがフレキシブルな関節を介して屈曲可能に連結されてなる極細の3D地中変位計を採用する請求項1乃至3のいずれかに記載のトンネル切羽前方変位計測方法。 The invention according to any one of claims 1 to 3, wherein a plurality of segments having an accelerometer built-in are flexibly connected to the underground displacement meter via a flexible joint to employ an ultrafine 3D underground displacement meter. Tunnel face forward displacement measurement method.
JP2017013947A 2017-01-30 2017-01-30 Tunnel face forward displacement measurement method Active JP6876448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017013947A JP6876448B2 (en) 2017-01-30 2017-01-30 Tunnel face forward displacement measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017013947A JP6876448B2 (en) 2017-01-30 2017-01-30 Tunnel face forward displacement measurement method

Publications (2)

Publication Number Publication Date
JP2018123471A JP2018123471A (en) 2018-08-09
JP6876448B2 true JP6876448B2 (en) 2021-05-26

Family

ID=63109406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017013947A Active JP6876448B2 (en) 2017-01-30 2017-01-30 Tunnel face forward displacement measurement method

Country Status (1)

Country Link
JP (1) JP6876448B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3691728B2 (en) * 2000-06-02 2005-09-07 東京瓦斯株式会社 Repair method for existing pipelines
JP2003127231A (en) * 2001-10-23 2003-05-08 Sekisui Chem Co Ltd Method for reinforcing existing pipe
JP2007224594A (en) * 2006-02-23 2007-09-06 Matsumoto Giken Kk Water cutoff rock bolt
US9062547B2 (en) * 2010-06-04 2015-06-23 Fci Holdings Delaware, Inc. Expandable bolt with shielded tip
JP2012077509A (en) * 2010-10-01 2012-04-19 Kajima Corp Expansion steel pipe lock bolt, manufacturing method thereof, and natural ground reinforcing method
JP6019011B2 (en) * 2013-12-09 2016-11-02 株式会社大林組 How to install the preceding underground displacement meter
JP6338097B2 (en) * 2014-06-12 2018-06-06 清水建設株式会社 Tunnel face stability prediction / judgment method

Also Published As

Publication number Publication date
JP2018123471A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
CN101701646B (en) Method for slurry-water balance type pipe-pulling construction of underground pipeline
KR20030045695A (en) Method for Digging a Tunnel
JP5965778B2 (en) Long mirror bolt method
JP6876448B2 (en) Tunnel face forward displacement measurement method
JP6785587B2 (en) Consolidation material filling status detection method and consolidation material filling status detection system
JP6019011B2 (en) How to install the preceding underground displacement meter
JP3834571B2 (en) Construction method for underground structures
JP4467477B2 (en) Entrance entrance for propulsion pipe, structure of entrance for arrival, and water stop method for entrance entrance
JP2016121441A (en) Reinforcing steel pipe and auxiliary method for excavation using the same
JP2017025618A (en) Advanced boring method
JP5384223B2 (en) How to install pipes on natural ground
JP5890566B1 (en) Marked boring rod and boring hole trajectory correction method using this
JP6302285B2 (en) Wellhead structure of the reach wall in the propulsion method
JP4318026B2 (en) Support structure and support method of underground cavity
JP7369041B2 (en) How to install linear body
JP2770112B2 (en) Ground improvement method in shield excavation
JP2770113B2 (en) Injection device with double packer for curved pipes
JP4246344B2 (en) Tunnel long steel pipe tip receiving method
KR102609304B1 (en) A grouting method using a direction-controlled borehole and a grouting system for the soft ground and void area
KR102514988B1 (en) Pile construction device and method using earth anchor
JP5161948B2 (en) Promotion method
JPH1163299A (en) Execution method of multi-conduit pipe and multi-conduit pipe
JP3515046B2 (en) Ground reinforcement method
KR20140025107A (en) Composite apparatus for measurement of ground and method for measuring ground using the same
JP5463049B2 (en) Synthetic pipe bending equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20201228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R150 Certificate of patent or registration of utility model

Ref document number: 6876448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE

Ref document number: 6876448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250