JP2018025428A - Foreign matter identification method and foreign matter identification device - Google Patents

Foreign matter identification method and foreign matter identification device Download PDF

Info

Publication number
JP2018025428A
JP2018025428A JP2016156322A JP2016156322A JP2018025428A JP 2018025428 A JP2018025428 A JP 2018025428A JP 2016156322 A JP2016156322 A JP 2016156322A JP 2016156322 A JP2016156322 A JP 2016156322A JP 2018025428 A JP2018025428 A JP 2018025428A
Authority
JP
Japan
Prior art keywords
foreign matter
load
rod
displacement
deformation coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016156322A
Other languages
Japanese (ja)
Other versions
JP6825262B2 (en
Inventor
拓雄 森
Takuo Mori
拓雄 森
黒岩 正夫
Masao Kuroiwa
正夫 黒岩
政宏 嶽本
Masahiro Takemoto
政宏 嶽本
岡本 英靖
Hideyasu Okamoto
英靖 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2016156322A priority Critical patent/JP6825262B2/en
Publication of JP2018025428A publication Critical patent/JP2018025428A/en
Application granted granted Critical
Publication of JP6825262B2 publication Critical patent/JP6825262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a foreign matter identification method and a foreign matter identification device which enable the kind of foreign matter present in the ground to be identified with high accuracy by a simple method.SOLUTION: The foreign matter identification method for identifying the kind of foreign matter present in the ground is provided that comprises: a first step of presetting, for each of known underground buried objects, a criterion deformation coefficient that serves as an evaluation criterion for identifying the kind of foreign matter; a second step of inserting a rod into a drilled hole reaching the foreign matter and bringing the tip of the rod into contact with the foreign matter, and then generating an impact load at the tip of the rod, measuring the load acting on the foreign matter and the displacement of the foreign matter resulting from the generated impact load, and calculating the measured deformation coefficient of the foreign matter on the basis of the displacement and the load; and a third step of comparing the measured deformation coefficient with the criterion deformation coefficient and identifying the kind of the foreign matter.SELECTED DRAWING: Figure 4

Description

本発明は、地盤中に存在する異物の種類を識別するための異物識別方法および異物識別方法に用いる異物識別装置に関する。   The present invention relates to a foreign matter identification method for identifying the type of foreign matter present in the ground and a foreign matter identification device used in the foreign matter identification method.

例えば、有害物質を使用している工場や施設の建替え等を実施する際には、あらかじめ敷地内の土壌が有害物質により汚染されている度合いを把握するべく、土壌汚染調査の実施が義務付けられている。土壌汚染調査としては、一般にボーリング調査が広く知られているが、敷地内には水道管やガス管等供用中のライフライン設備が埋設されているため、ボーリングマシンによる地盤の掘削作業中にこれらを誤って損傷させる虞がある。   For example, when rebuilding a factory or facility that uses hazardous substances, it is obliged to conduct a soil contamination survey in advance in order to ascertain the degree to which the soil on the site is contaminated with the hazardous substances. ing. Boring surveys are widely known as soil contamination surveys, but lifeline equipment in service such as water pipes and gas pipes are buried in the site, and these are being excavated during drilling of the ground using a boring machine. There is a risk of accidental damage.

このような中、掘削作業中に掘削ビットが異物に当接したことを検知し、その作動を自動停止できるようなドリルやボーリングマシン等の地中削孔機が開発されている。しかし、当接した異物の種類を識別するまでには至っておらず、異物を検知した際には、掘削位置を変更する、もしくは異物がライフライン設備であるのか、または礫であるのか等の識別作業を別途実施する、等の対策を講じている。   Under such circumstances, underground drilling machines such as drills and boring machines have been developed that can detect that the excavation bit contacts a foreign object during excavation work and can automatically stop the operation. However, it has not yet been able to identify the type of foreign object that has come into contact. When a foreign object is detected, the excavation position is changed, or whether the foreign object is a lifeline facility or gravel is identified. Measures such as carrying out work separately are taken.

異物の種類を識別する方法としては、例えば特許文献1に、弾性波の発振手段と受振手段の両者を地盤中の異物に接触させた状態で弾性波を発振し、弾性波の振動特性から異物の種類を識別する方法が開示されている。   As a method for identifying the type of foreign matter, for example, in Patent Document 1, an elastic wave is oscillated in a state where both the elastic wave oscillation means and the vibration receiving means are in contact with foreign matter in the ground. A method of identifying the type is disclosed.

特開平8−105977号公報Japanese Patent Application Laid-Open No. 8-105977

しかし、上記の方法では、異物の形状や材質によっては明瞭な振動特性が得られないだけでなく、異物と地盤との接触状態によっても振動特性が変化しやすいため、異物の種類を精度よく識別できないおそれが生じる。   However, the above method does not provide a clear vibration characteristic depending on the shape and material of the foreign substance, but also easily changes the vibration characteristic depending on the contact state between the foreign substance and the ground. There is a risk that it will not be possible.

本発明は、かかる課題に鑑みなされたものであって、その主な目的は、簡略な方法で精度よく地盤中に存在する異物の種類を識別することの可能な、異物識別方法および異物識別方法に用いる異物識別装置を提供することである。   The present invention has been made in view of the above problems, and its main purpose is to identify a foreign matter and a foreign matter identification method capable of accurately identifying the type of foreign matter existing in the ground by a simple method. It is providing the foreign material identification device used for.

かかる目的を達成するため本発明の異物識別方法は、地盤中に存在する異物の種類を識別する異物識別方法であって、既知の地中埋設物各々について、異物の種類を識別するための評価基準となる基準変形係数をあらかじめ設定する第1の工程と、前記異物に到達する削孔にロッドを挿入して先端を前記異物に接触させた後、該ロッドの先端に衝撃荷重を発生させるとともに、これにより生じる前記異物に作用する荷重と前記異物の変位を測定し、該変位と前記荷重とに基づいて、前記異物の実測変形係数を算出する第2の工程と、該実測変形係数と前記基準変形係数とを比較し、前記異物の種類を識別する第3の工程と、を備えることを特徴とする。   In order to achieve such an object, the foreign matter identification method of the present invention is a foreign matter identification method for identifying the type of foreign matter existing in the ground, and is an evaluation for identifying the type of foreign matter for each known underground object. A first step of setting a reference deformation coefficient as a reference in advance; and, after inserting a rod into a drilling hole that reaches the foreign matter and bringing the tip into contact with the foreign matter, an impact load is generated at the tip of the rod A second step of measuring a load acting on the foreign matter generated thereby and a displacement of the foreign matter, and calculating an actual deformation coefficient of the foreign matter based on the displacement and the load; And a third step of comparing a reference deformation coefficient and identifying the type of the foreign matter.

上述する本発明の異物識別方法によれば、あらかじめ既知の地中埋設物各々について基準変形係数を算出しておくことにより、現場にて地中に存在する異物の実測変形係数を算出するのみの簡略な方法にて、基準変形係数と実測変形係数との比較から異物の種類を精度よく識別することが可能となる。   According to the foreign matter identification method of the present invention described above, by calculating a standard deformation coefficient for each known underground buried object in advance, it is only necessary to calculate an actual measurement deformation coefficient of the foreign substance existing underground. With a simple method, it is possible to accurately identify the type of foreign matter from a comparison between the reference deformation coefficient and the actually measured deformation coefficient.

したがって、上記の方法を、異物を検知したことにより掘削作業を中断した現場に採用することにより、識別した異物の種類に応じて作業の中止もしく続行等の判断を下すことができるため、異物を識別できないままに作業位置を変更する等の無駄な作業を省略し、効率よく掘削作業を実施することが可能となる。   Therefore, by adopting the above method at the site where excavation work was interrupted due to the detection of foreign matter, it is possible to make a decision to stop or continue the work according to the type of foreign matter identified. Therefore, it is possible to efficiently perform excavation work by omitting useless work such as changing the work position without being identified.

本発明の異物識別装置は、本発明の異物識別方法に用いる異物識別装置であって、先端が前記異物に接触される前記ロッドと、該ロッドの基端に固定された当接板と、該当接板に向けて自由落下し、前記ロッドの先端に衝撃荷重を発生させる錘体と、該衝撃荷重の発生により生じる前記荷重を測定する荷重計および前記変位を測定する変位計と、を備えることを特徴とする。   The foreign matter identification device of the present invention is a foreign matter identification device used in the foreign matter identification method of the present invention, the rod whose tip is in contact with the foreign matter, the contact plate fixed to the base end of the rod, and A weight body that freely falls toward the contact plate and generates an impact load at the tip of the rod; a load meter that measures the load generated by the generation of the impact load; and a displacement meter that measures the displacement It is characterized by.

上述する本発明の異物識別装置によれば、異物に接触させたロッドの先端に対して衝撃荷重を発生させることにより生じる異物に作用する荷重と異物の変位を、簡略な設備にて容易に測定することができることから、迅速に実測変形係数を算出して異物の識別作業を効率よく実施することが可能となる。   According to the foreign matter identification device of the present invention described above, the load acting on the foreign matter and the displacement of the foreign matter caused by generating an impact load on the tip of the rod brought into contact with the foreign matter can be easily measured with simple equipment. Therefore, it is possible to quickly calculate the actually measured deformation coefficient and efficiently perform the foreign object identification work.

また、本発明の異物識別装置は、前記荷重計と前記変位計が、前記ロッドの先端近傍に内装されることを特徴とする。   In the foreign matter identification device of the present invention, the load meter and the displacement meter are provided in the vicinity of the tip of the rod.

上述する本発明の異物識別装置によれば、荷重計と変位計がロッドにおける異物との接触面近傍に設置されるため、削孔内にロッドを配置した際にロッドが孔壁等に接触するような環境にあっても、精度よく荷重および変位を測定することが可能となる。   According to the foreign matter identification device of the present invention described above, since the load meter and the displacement meter are installed in the vicinity of the contact surface of the rod with the foreign matter, the rod contacts the hole wall or the like when the rod is disposed in the drilling hole. Even in such an environment, it is possible to accurately measure the load and displacement.

本発明によれば、衝撃荷重を発生させることにより生じる荷重と変位に基づいて算出した実測変形係数を利用して、地盤中の異物を精度よく識別することが可能となる。   According to the present invention, it is possible to accurately identify foreign matter in the ground using an actual measurement deformation coefficient calculated based on a load and a displacement generated by generating an impact load.

本発明における異物識別装置を示す図である。It is a figure which shows the foreign material identification device in this invention. 本発明における異物識別装置により測定される荷重および変位の波形データを示すグラフである。It is a graph which shows the waveform data of the load and displacement which are measured by the foreign material identification device in this invention. 本発明における地中埋設物の変形係数を示すグラフである。It is a graph which shows the deformation coefficient of the underground buried object in this invention. 本発明における異物識別方法を示す図である。It is a figure which shows the foreign material identification method in this invention. 本発明における異物識別装置の他の実施の形態を示す図である。It is a figure which shows other embodiment of the foreign material identification device in this invention.

本発明の異物識別方法および異物識別装置は、地盤中に異物の存在を検知した際の異物の種類を識別する方法および装置である。本実施の形態では、ボーリング調査時を事例とし、以下に図1〜図5を参照して詳細を説明するが、必ずしもこれに限定されるものではない。例えば、地盤掘削工事の途中で異物の存在を検知した場合や、既設の地中孔が存在し、その孔底を調査する場合等、いずれの状況に採用するものであってもよい。   The foreign matter identification method and foreign matter identification device of the present invention are a method and device for identifying the type of foreign matter when the presence of foreign matter is detected in the ground. In the present embodiment, the case of boring investigation is taken as an example, and the details will be described below with reference to FIGS. 1 to 5, but the present invention is not necessarily limited to this. For example, it may be used in any situation, such as when the presence of a foreign object is detected during ground excavation work, or when an existing underground hole exists and the bottom of the hole is investigated.

図1で示すように、異物識別装置1は、ロッド2、当接板3、衝撃荷重付与装置4、荷重計5および変位計6を備えており、ロッド2は中実の棒材により構成され、その先端には、地盤中の異物9に接触する載荷面21が形成されている。   As shown in FIG. 1, the foreign object identification device 1 includes a rod 2, a contact plate 3, an impact load applying device 4, a load meter 5, and a displacement meter 6, and the rod 2 is configured by a solid bar. At the tip, a loading surface 21 that contacts the foreign matter 9 in the ground is formed.

ロッド2は、図4(b)で示すように、地表面から地盤中の異物9に到達するのに十分な長さを確保する必要があることから、長尺の棒材を採用してもよいし、連結可能な複数の棒状材を採用し、地表面から測定しようとする異物9までの距離に応じて適宜長さを調整できる構成としてもよい。また、ロッド2の断面径は、ロッド2が挿入される削孔10の孔壁に接触しない大きさであればいずれの断面径を有するものであってもよい。そして、ロッド2の基端には、当接板3がロッド2の軸心に対して垂直に固定されている。   As shown in FIG. 4 (b), the rod 2 needs to secure a sufficient length to reach the foreign matter 9 in the ground from the ground surface. Alternatively, a plurality of connectable rod-shaped members may be employed, and the length may be appropriately adjusted according to the distance from the ground surface to the foreign material 9 to be measured. Moreover, the cross-sectional diameter of the rod 2 may have any cross-sectional diameter as long as it does not contact the hole wall of the drilling hole 10 into which the rod 2 is inserted. A contact plate 3 is fixed to the base end of the rod 2 perpendicular to the axis of the rod 2.

当接板3は、図1で示すように、表面が滑らかに成形された円盤状の平板よりなり、その上方には衝撃荷重付与装置4が配置されている。衝撃荷重付与装置4は、断面視リング状の錘体41と錘体41を貫通する棒状のガイド体42とを備えており、錘体41の断面外形は当接板3と同一の形状に形成され、ガイド体42はロッド2と同軸上に配置されている。   As shown in FIG. 1, the contact plate 3 is a disk-shaped flat plate having a smooth surface, and an impact load applying device 4 is disposed above the plate. The impact load applying device 4 includes a ring-shaped weight body 41 in cross-sectional view and a rod-shaped guide body 42 penetrating the weight body 41, and the cross-sectional outer shape of the weight body 41 is formed in the same shape as the contact plate 3. The guide body 42 is disposed coaxially with the rod 2.

衝撃荷重付与装置4のガイド体42は、必ずしも棒状に限定されるものではなく、錘体41を自由落下可能にガイドできる構成であれば、例えば、錘体41を内包する長尺の筒体等、いずれの形状を有するものであってもよい。そして、錘体41が当接板3に向けて自由落下することでロッド2の載荷面21に衝撃荷重が発生した際に生じる、異物9に作用する荷重と異物9の上下方向の変位は、荷重計5および変位計6にて測定される。   The guide body 42 of the impact load applying device 4 is not necessarily limited to a rod shape, and may be, for example, a long cylindrical body containing the weight body 41 as long as the weight body 41 can be guided so as to be freely dropped. Any shape may be used. Then, the load acting on the foreign material 9 and the vertical displacement of the foreign material 9 generated when an impact load is generated on the loading surface 21 of the rod 2 due to the free fall of the weight body 41 toward the contact plate 3 are as follows. It is measured with a load meter 5 and a displacement meter 6.

荷重計5は、底板と天板を備えたロッド2と同径の円筒体よりなる起歪体51と、起歪体51の内周面に設置されたひずみゲージ52とを備え、起歪体51に作用する圧縮力の荷重をひずみゲージ52により感知し、電気信号に変換する。なお、荷重計5は必ずしも上述するひずみゲージ式に限定するものではなく、荷重を測定できる圧縮型の荷重計であれば一般に用いられているいずれの構造を有するものを採用してもよい。   The load cell 5 includes a strain body 51 made of a cylindrical body having the same diameter as the rod 2 having a bottom plate and a top plate, and a strain gauge 52 installed on the inner peripheral surface of the strain body 51. The load of compressive force acting on 51 is sensed by the strain gauge 52 and converted into an electrical signal. Note that the load cell 5 is not necessarily limited to the strain gauge type described above, and may be any compression type load cell that can measure a load and that has any structure that is generally used.

また、変位計6は、起歪体51内に配置された圧電型の加速度センサを採用しており、圧電素子の伸び縮み等の変化に応じて電荷を出力する。変位計6も、必ずしも圧電型の加速度センサに限定されるものではなく、静電容量型の加速度センサや、加速度センサでなくても変位を測定できるものであれば、いずれを採用してもよい。なお、加速度センサを用いる場合には、測定値を2回積分することにより変位を算出している。   The displacement meter 6 employs a piezoelectric acceleration sensor disposed in the strain generating body 51, and outputs electric charges in accordance with changes such as expansion and contraction of the piezoelectric element. The displacement meter 6 is not necessarily limited to a piezoelectric acceleration sensor, and any capacitance-type acceleration sensor or any other acceleration sensor can be used as long as it can measure displacement. . When an acceleration sensor is used, the displacement is calculated by integrating the measured value twice.

本実施の形態ではこれら荷重計5および変位計6を、当接板3と衝撃荷重付与装置4の間に配置して、当接板3の上面と起歪体51の底板とを面接触させるとともに、衝撃荷重付与装置4の錘体41を、起歪体51の天板上面に自由落下させる構成としている。なお、衝撃荷重付与装置4と荷重計5および変位計6に替えて、地盤の剛性を自動測定する装置として一般に広く知られている小型FWDシステムのFWD本体を採用し、このFWD本体を当接板3の上面に設置してもよい。これら荷重計5および変位計6の出力は、A/D変換器(図示せず)によりデジタル変換され、端末装置7に転送される。   In this embodiment, the load meter 5 and the displacement meter 6 are arranged between the contact plate 3 and the impact load applying device 4 so that the upper surface of the contact plate 3 and the bottom plate of the strain generating body 51 are in surface contact. In addition, the weight body 41 of the impact load applying device 4 is configured to freely drop onto the top surface of the strain body 51. Instead of the impact load applying device 4 and the load meter 5 and displacement meter 6, an FWD main body of a small FWD system that is generally well-known as an apparatus for automatically measuring the rigidity of the ground is adopted, and this FWD main body is contacted. You may install in the upper surface of the board 3. FIG. The outputs of the load meter 5 and the displacement meter 6 are digitally converted by an A / D converter (not shown) and transferred to the terminal device 7.

端末装置7は、情報処理装置、入力装置および出力装置を少なくとも備えるいわゆるコンピュータであり、情報処理装置は演算処理装置及び記憶装置等のハードウェアと、該ハードウェア上で動作するソフトウェアとで構成されている。したがって、デジタル変換された荷重計5および変位計6の出力は、端末装置7の情報処理装置にて処理されることにより、図2で示すような荷重および変位の波形データとして出力装置に出力することも可能であるし、記憶装置に格納することも可能である。   The terminal device 7 is a so-called computer including at least an information processing device, an input device, and an output device, and the information processing device includes hardware such as an arithmetic processing device and a storage device, and software that operates on the hardware. ing. Therefore, the digitally converted outputs of the load meter 5 and the displacement meter 6 are processed by the information processing device of the terminal device 7 to be output to the output device as load and displacement waveform data as shown in FIG. It can also be stored in a storage device.

また、端末装置7の情報処理装置には、測定した荷重および変位に基づいて応力とひずみの比を表す変形係数Eを把握するための解析を行う計測・処理ソフトウェアが搭載されており、本実施の形態では、(1)式で示すBurmister理論式にて変形係数Eを算出可能な計測・処理ソフトウェアを搭載している。   In addition, the information processing device of the terminal device 7 is equipped with measurement / processing software for performing analysis for grasping the deformation coefficient E representing the ratio of stress to strain based on the measured load and displacement. In this embodiment, measurement / processing software capable of calculating the deformation coefficient E by the Burmister theoretical formula shown by the formula (1) is installed.

E=2(1−V2)P/πrD・・・(1)
E:変形係数
P:荷重の最大値(N)
D:変位の最大値(mm)
r:載荷面21の半径(mm)
V:ポアソン比
E = 2 (1-V 2 ) P / πrD (1)
E: Deformation coefficient
P: Maximum load value (N)
D: Maximum displacement (mm)
r: radius of the loading surface 21 (mm)
V: Poisson's ratio

つまり、図4(b)で示すように、ロッド2の載荷面21を異物9に接触させるとともに、錘体41を荷重計5から所望の距離だけ離間させて固定させた状態でロッド2を鉛直状に立設する。この後、錐体41の固定を解除すると、錘体41がガイド体42に沿って自由落下することで荷重計5を介して当接板3に当接し、ロッド2の載荷面21に衝撃荷重が発生する。1回の衝撃荷重の発生により生じた、異物9に作用する荷重と異物9の変位はそれぞれ、荷重計5と変位計6により測定され、デジタル変換されることにより、図2で示すような横軸を時間軸とする波形データとして出力される。これら波形データのうち荷重および変位それぞれの最大値をとり、(1)式に代入することによって変形係数Eが算出される。   That is, as shown in FIG. 4B, the rod 2 is vertically fixed with the loading surface 21 of the rod 2 in contact with the foreign material 9 and the weight body 41 being fixed at a desired distance from the load cell 5. Standing up. Thereafter, when the fixing of the cone 41 is released, the weight body 41 freely falls along the guide body 42 so as to come into contact with the contact plate 3 through the load meter 5, and impact load is applied to the loading surface 21 of the rod 2. Will occur. The load acting on the foreign material 9 and the displacement of the foreign material 9 caused by the occurrence of one impact load are respectively measured by the load meter 5 and the displacement meter 6 and converted into a digital form, so that the lateral direction as shown in FIG. Output as waveform data with the axis as the time axis. The deformation coefficient E is calculated by taking the maximum values of the load and displacement of these waveform data and substituting them into the equation (1).

ところで、上述する異物識別装置1を用いて、既知の地中埋設物の中からガス管、電線、塩ビ管を選択し、これらの変形係数Eを算出した。すると、図3で示すように、ガス管で1200MN/m程度、電線で1450MN/m程度、塩ビ管で450MN/m程度と、荷重を異ならせた場合にも、変形係数Eは地中埋設物の種類ごとでその数値に明らかな差異を生じる様子がわかる。   By the way, using the foreign substance identification device 1 described above, gas pipes, electric wires, and PVC pipes were selected from known underground objects, and their deformation coefficients E were calculated. Then, as shown in FIG. 3, even when the load is varied such as about 1200 MN / m for the gas pipe, about 1450 MN / m for the electric wire, and about 450 MN / m for the PVC pipe, the deformation coefficient E is the underground buried object. It can be seen that there is a clear difference in the numerical value for each type.

このように、変形係数Eは、測定条件が変わった場合にも異物9の材質や形状等の特徴を的確に捉え、地中埋設物の種類ごとにある一定範囲の数値を示すことのできる固有のものであるとの知見を得たことから、発明者らは変形係数Eを、異物9の種類を識別するための評価値として採用することとした。   In this way, the deformation coefficient E is a unique characteristic that can accurately capture the characteristics of the material, shape, etc. of the foreign matter 9 even when the measurement conditions change, and indicate a certain range of numerical values for each type of buried object. Therefore, the inventors decided to adopt the deformation coefficient E as an evaluation value for identifying the type of the foreign material 9.

これにより、地盤中に存在している可能性のあるライフライン設備等、既知の地中埋設物各々の変形係数Eをあらかじめ把握しておくことで、水道管や下水管等の管路情報図が入手できない場合にも、地盤を大きく掘り起こすことなく、地盤中に存在する異物9の種類を識別できる。そこで、本実施の形態では、あらかじめ算定した既知の地中埋設物の変形係数Eを、基準変形係数E2として端末装置7の記憶装置に格納している。   As a result, by knowing in advance the deformation coefficient E of each known underground object such as lifeline equipment that may exist in the ground, it is possible to obtain information on pipes such as water pipes and sewer pipes. Can not be obtained, it is possible to identify the type of foreign matter 9 present in the ground without digging up the ground greatly. Therefore, in the present embodiment, the known deformation coefficient E of the underground buried object is stored in the storage device of the terminal device 7 as the reference deformation coefficient E2.

こうすると、現場において掘削作業中に異物9を検知した場合に、異物識別装置1を利用して荷重および変位を実測し、これに基づいて算出した実測変形係数E1とあらかじめ記憶装置に格納した基準変形係数E2とを端末装置7の演算処理装置にて比較することにより、異物9が既知の地中埋設物のいずれに該当するのか、その種類を自動識別することが可能となる。   In this way, when the foreign object 9 is detected during the excavation work at the site, the load and displacement are actually measured using the foreign object identification device 1, and the measured deformation coefficient E1 calculated based on this and the reference stored in the storage device in advance. By comparing the deformation coefficient E2 with the arithmetic processing unit of the terminal device 7, it is possible to automatically identify the type of the foreign object 9 corresponding to a known underground object.

上述する異物識別装置1を用いた異物識別方法は、例えば土壌汚染のおそれがある対象地盤に対して汚染の広がりや深さを把握するべくボーリングマシン8を用いて地盤中を掘削する際に適用可能である。   The foreign matter identification method using the foreign matter identification device 1 described above is applied, for example, when excavating the ground using the boring machine 8 in order to grasp the extent and depth of the contamination on the target ground where there is a possibility of soil contamination. Is possible.

<第1の工程>
具体的には、対象地盤中に存在している可能性のあるライフライン設備等既知の地中埋設物についてあらかじめ、異物識別装置1を用いて変形係数Eを算出し、これを異物9の種類を識別するための評価基準となる基準変形係数E2として設定し端末装置7の記憶装置に格納しておく。
<First step>
Specifically, the deformation coefficient E is calculated in advance using the foreign object identification device 1 for known underground objects such as lifeline equipment that may exist in the target ground, and this is calculated as the type of the foreign object 9. Is set as a reference deformation coefficient E2 serving as an evaluation criterion for identifying and stored in the storage device of the terminal device 7.

<第2の工程>
図4(a)で示すように、ボーリングマシン8による掘削中であって所望の深度に到達する前にトルク値が急変する等の異変が生じ、地中に異物9の存在を検知したところで、掘削作業を一時中断してボーリングマシン8を引き抜く。このとき、地表面から孔底に位置する異物9までの距離を把握しておく。次に、図4(b)で示すように、異物識別装置1のロッド2を、少なくとも地表面から削孔10の孔底に位置する異物9までの距離よりも長尺となる長さに設定し、ロッド2を削孔10に挿入して載荷面21を異物9に接触させる。
<Second step>
As shown in FIG. 4 (a), during excavation by the boring machine 8 and before the desired depth is reached, an abnormality such as a sudden change in the torque value occurs, and when the presence of the foreign material 9 is detected in the ground, The excavation operation is temporarily suspended and the boring machine 8 is pulled out. At this time, the distance from the ground surface to the foreign material 9 located at the bottom of the hole is grasped. Next, as shown in FIG. 4B, the rod 2 of the foreign object identification device 1 is set to a length that is longer than at least the distance from the ground surface to the foreign object 9 located at the bottom of the hole 10. Then, the rod 2 is inserted into the hole 10 to bring the loading surface 21 into contact with the foreign material 9.

この状態でロッド2が削孔10の孔壁に触れることなく、かつ鉛直状となるよう保持しつつ、衝撃荷重付与装置4の錘体41を自由落下させて、ロッド2の載荷面21に衝撃荷重を発生させる。そして、これにより生じた荷重および変位を荷重計5および変位計6にて測定し、端末装置7に転送する。   In this state, the rod 2 does not touch the hole wall of the drilling hole 10 and is held in a vertical shape, and the weight body 41 of the impact load applying device 4 is freely dropped to impact the loading surface 21 of the rod 2. Generate a load. Then, the load and displacement generated thereby are measured by the load meter 5 and the displacement meter 6 and transferred to the terminal device 7.

<第3の工程>
そして、端末装置7の出力装置に、荷重および変位の波形データ、荷重および変位に基づいて演算処理装置にて算出された実測変形係数E1、および実測変形係数E1と記憶装置に格納した既知の地中埋設物の基準変形係数E2とを演算処理装置にて比較することにより自動識別された、異物9の種類を表示する。
<Third step>
Then, on the output device of the terminal device 7, the waveform data of the load and displacement, the measured deformation coefficient E1 calculated by the arithmetic processing unit based on the load and displacement, and the known ground stored in the storage device and the measured deformation coefficient E1. The type of the foreign matter 9 automatically identified by comparing the reference deformation coefficient E2 of the buried object with the arithmetic processing unit is displayed.

これらの結果から、異物9がガス管や水道管等のライフライン設備と識別された場合には、ボーリングマシン8による掘削作業を取り止め、対象領域内の他の地点で再度掘削を行う。また、異物9がいずれのライフライン設備にも該当しない場合には、岩石や礫層であるものと判断し、掘削作業を再開すればよい。このように、識別した異物9の種類に応じて作業の中止もしく続行等の判断を下すことができるため、効率よく掘削作業を実施することが可能となる。   From these results, when the foreign matter 9 is identified as a lifeline facility such as a gas pipe or a water pipe, the excavation work by the boring machine 8 is canceled and excavation is performed again at another point in the target area. Moreover, when the foreign material 9 does not correspond to any lifeline equipment, it will judge that it is a rock and a gravel layer, and should just excavate. Thus, since it is possible to make a decision to stop or continue the work according to the type of the identified foreign matter 9, it is possible to efficiently perform the excavation work.

本発明の異物識別装置1および異物識別方法は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。   The foreign object identification device 1 and the foreign object identification method of the present invention are not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、本実施の形態では、荷重計5および変位計6を当接板3と衝撃荷重付与装置4の間に配置したが、必ずしもこれに限定されるものではない。図5で示すように、ロッド2の載荷面21近傍に配置すべくロッド2の一部をなすように設置するとともに、衝撃荷重付与装置4を当接板3に配置して、錘体41を当接板3の上面に直接自由落下させてもよい。こうすると、ロッド2が削孔10の孔壁等に接触するような場合にも、精度よく荷重および変位を測定することが可能となる。   For example, in the present embodiment, the load meter 5 and the displacement meter 6 are disposed between the abutment plate 3 and the impact load applying device 4, but the present invention is not necessarily limited thereto. As shown in FIG. 5, the rod 2 is installed so as to form a part of the rod 2 to be arranged in the vicinity of the loading surface 21, the impact load applying device 4 is arranged on the contact plate 3, and the weight body 41 is arranged. You may make it fall freely directly on the upper surface of the contact plate 3. This makes it possible to accurately measure the load and displacement even when the rod 2 comes into contact with the hole wall of the hole 10 or the like.

また、本実施の形態では、衝撃荷重付与装置4に錘体41を備える構造とし、これを自由落下させたが、必ずしもこれに限定されるものではなく、ロッド2の載荷面21に衝撃荷重を発生させることのできる構造であれば、電力等の外力を作用させる等いずれの手段を用いる構造であってもよい。   Moreover, in this Embodiment, it was set as the structure provided with the weight body 41 in the impact load provision apparatus 4, and this was made to fall freely, However, It is not necessarily limited to this, An impact load is applied to the loading surface 21 of the rod 2. As long as the structure can be generated, a structure using any means such as applying an external force such as electric power may be used.

さらに、あらかじめ基準変形係数E2を測定しておく既知の地中埋設物は、必ずしもライフライン設備に限定するものではなく、地中に埋設されている可能性のあるものであれば、岩石やコンクリート片等いずれであってもよい。   Furthermore, the known underground buried object for which the reference deformation coefficient E2 is measured in advance is not necessarily limited to the lifeline facility, but may be rock or concrete as long as it may be buried underground. Any one of them may be used.

1 異物識別装置
2 ロッド
21 載荷面
3 当接板
4 衝撃荷重付与装置
41 錘体
42 ガイド体
5 荷重計
51 起歪体
52 ひずみゲージ
6 変位計
7 端末装置
8 ボーリングマシン
9 異物
10 削孔
DESCRIPTION OF SYMBOLS 1 Foreign material identification device 2 Rod 21 Loading surface 3 Contact plate 4 Impact load application device 41 Weight body 42 Guide body 5 Load cell 51 Strain body 52 Strain gauge 6 Displacement meter 7 Terminal device 8 Boring machine 9 Foreign material 10 Drilling hole

Claims (3)

地盤中に存在する異物の種類を識別する異物識別方法であって、
既知の地中埋設物各々について、異物の種類を識別するための評価基準となる基準変形係数をあらかじめ設定する第1の工程と、
前記異物に到達する削孔にロッドを挿入して先端を前記異物に接触させた後、該ロッドの先端に衝撃荷重を発生させるとともに、これにより生じる前記異物に作用する荷重と前記異物の変位を測定し、該変位と前記荷重とに基づいて、前記異物の実測変形係数を算出する第2の工程と、
該実測変形係数と前記基準変形係数とを比較し、前記異物の種類を識別する第3の工程と、
を備えることを特徴とする異物識別方法。
A foreign matter identification method for identifying the type of foreign matter present in the ground,
A first step of presetting a reference deformation coefficient that is an evaluation criterion for identifying the type of foreign matter for each known underground object;
After inserting a rod into the drilling hole that reaches the foreign matter and bringing the tip into contact with the foreign matter, an impact load is generated at the tip of the rod, and the load acting on the foreign matter and the displacement of the foreign matter are thereby generated. A second step of measuring and calculating an actual deformation coefficient of the foreign matter based on the displacement and the load;
A third step of comparing the measured deformation coefficient and the reference deformation coefficient to identify the type of the foreign matter;
A foreign matter identification method comprising:
請求項1に記載の異物識別方法に用いる異物識別装置であって、
先端が前記異物に接触される前記ロッドと、
該ロッドの基端に固定された当接板と、
該当接板に向けて自由落下し、前記ロッドの先端に衝撃荷重を発生させる錘体と、
該衝撃荷重の発生により生じる前記荷重を測定する荷重計および前記変位を測定する変位計と、
を備えることを特徴とする異物識別装置。
A foreign matter identification device used in the foreign matter identification method according to claim 1,
The rod whose tip is in contact with the foreign matter;
A contact plate fixed to the proximal end of the rod;
A weight that freely falls toward the contact plate and generates an impact load at the tip of the rod;
A load meter for measuring the load generated by the generation of the impact load and a displacement meter for measuring the displacement;
A foreign matter identification device comprising:
請求項2に記載の異物識別装置において、
前記荷重計と前記変位計が、前記ロッドの先端近傍に内装されることを特徴とする異物識別装置。
The foreign matter identification device according to claim 2,
The foreign object identification device, wherein the load meter and the displacement meter are provided in the vicinity of a tip of the rod.
JP2016156322A 2016-08-09 2016-08-09 Foreign matter identification method and foreign matter identification device Active JP6825262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016156322A JP6825262B2 (en) 2016-08-09 2016-08-09 Foreign matter identification method and foreign matter identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016156322A JP6825262B2 (en) 2016-08-09 2016-08-09 Foreign matter identification method and foreign matter identification device

Publications (2)

Publication Number Publication Date
JP2018025428A true JP2018025428A (en) 2018-02-15
JP6825262B2 JP6825262B2 (en) 2021-02-03

Family

ID=61195324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016156322A Active JP6825262B2 (en) 2016-08-09 2016-08-09 Foreign matter identification method and foreign matter identification device

Country Status (1)

Country Link
JP (1) JP6825262B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157605A (en) * 2018-03-09 2019-09-19 日本地工株式会社 Buried object detection mechanism in drilling earth removal device and buried object detection method of the same
JP2019178490A (en) * 2018-03-30 2019-10-17 積水化学工業株式会社 Measuring device for ground investigation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229381A (en) * 1994-02-16 1995-08-29 Nippon Telegr & Teleph Corp <Ntt> Buried article detection method and buried article detection device
JPH0829247A (en) * 1994-07-19 1996-02-02 Nippon Telegr & Teleph Corp <Ntt> Buried object detection method and device
JPH08105977A (en) * 1994-10-05 1996-04-23 Kawasaki Heavy Ind Ltd Probing and identifying method and device for underground buried structure
JPH08270350A (en) * 1995-03-29 1996-10-15 Nippon Chikou Kk Method for detecting buried object, and drilling device with buried-object sensor
JPH09145848A (en) * 1995-11-27 1997-06-06 Tech Res & Dev Inst Of Japan Def Agency Probe penetrating device
JPH1114759A (en) * 1997-06-23 1999-01-22 Tech Res & Dev Inst Of Japan Def Agency Identification device for object embedded in underground
JP2000088725A (en) * 1998-09-04 2000-03-31 Mechanische Werkstaetten Gehaltzion Device for testing dynamic load
JP2011021415A (en) * 2009-07-17 2011-02-03 Ando Corp Borehole bottom ground plate load test device and method for installing the same
JP2014122464A (en) * 2012-12-20 2014-07-03 Oyo Corp Subsurface exploration method and subsurface exploration apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229381A (en) * 1994-02-16 1995-08-29 Nippon Telegr & Teleph Corp <Ntt> Buried article detection method and buried article detection device
JPH0829247A (en) * 1994-07-19 1996-02-02 Nippon Telegr & Teleph Corp <Ntt> Buried object detection method and device
JPH08105977A (en) * 1994-10-05 1996-04-23 Kawasaki Heavy Ind Ltd Probing and identifying method and device for underground buried structure
JPH08270350A (en) * 1995-03-29 1996-10-15 Nippon Chikou Kk Method for detecting buried object, and drilling device with buried-object sensor
JPH09145848A (en) * 1995-11-27 1997-06-06 Tech Res & Dev Inst Of Japan Def Agency Probe penetrating device
JPH1114759A (en) * 1997-06-23 1999-01-22 Tech Res & Dev Inst Of Japan Def Agency Identification device for object embedded in underground
JP2000088725A (en) * 1998-09-04 2000-03-31 Mechanische Werkstaetten Gehaltzion Device for testing dynamic load
JP2011021415A (en) * 2009-07-17 2011-02-03 Ando Corp Borehole bottom ground plate load test device and method for installing the same
JP2014122464A (en) * 2012-12-20 2014-07-03 Oyo Corp Subsurface exploration method and subsurface exploration apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157605A (en) * 2018-03-09 2019-09-19 日本地工株式会社 Buried object detection mechanism in drilling earth removal device and buried object detection method of the same
JP7017756B2 (en) 2018-03-09 2022-02-09 日本地工株式会社 Buried object detection structure in excavation soil removal device and its buried object detection method
JP2019178490A (en) * 2018-03-30 2019-10-17 積水化学工業株式会社 Measuring device for ground investigation
JP7150454B2 (en) 2018-03-30 2022-10-11 積水化学工業株式会社 Ground survey measuring device

Also Published As

Publication number Publication date
JP6825262B2 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
US10815769B2 (en) Downhole tension sensing apparatus
KR101294136B1 (en) Device for prediction underground dynamic behavior by using acoustic emission sensor and producing method thereof
JP5249874B2 (en) Ground evaluation apparatus and ground evaluation method
KR20180066525A (en) The cladding damage detection system of pipes buried underground
CN106223305A (en) A kind of automatic consideration energy correction and the dynamic driving instrument of dynamic response
JP2018025428A (en) Foreign matter identification method and foreign matter identification device
CN104931353B (en) Coal column plastic zone method of testing and test device
JP3223548U (en) Anchor bolt length measurement system
JP2008051502A (en) Multi-electrode electrical logging method for small diameter
JP6775970B2 (en) Buried object exploration equipment, excavation system and buried object exploration method
JP6770042B2 (en) Damage position estimation device and method for structures
US11609148B2 (en) Method and apparatus for analysis and detection of encroachment and impact upon underground structures
CN107894461B (en) Non-excavation device and method for defect detection of buried concrete member
KR20090117402A (en) Measuring apparatus with ae sensor for predicting failure, method for installing the same and measuring apparatus set with ae sensor for predicting failure
CN107869156B (en) Parallel seismic wave method determines the detection method of foundation pile length
JP5733740B2 (en) Landslide observation system
JP2005257602A (en) Instrument for measuring varying borehole diameter
KR20130118566A (en) A measuring method and device for the sinking and the water level
JP2005105651A (en) Method of evaluating natural ground in front of ground excavation part
KR100619188B1 (en) The measuring device to sink value of turren using fiber optic sensor and the method thereof
CN107964990B (en) Non-excavation thickness measuring device and thickness measuring method for buried concrete slab
CN209243791U (en) A kind of foundation pit construction parameter detection device
WO2017132287A1 (en) Downhole tension sensing apparatus
KR20170016566A (en) Apparatus and method of predicting tunnel state using resistivity
JP5584973B2 (en) Ground looseness detection method, ground looseness detection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201228

R150 Certificate of patent or registration of utility model

Ref document number: 6825262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250