JP3882521B2 - Mounting method of semiconductor device - Google Patents

Mounting method of semiconductor device Download PDF

Info

Publication number
JP3882521B2
JP3882521B2 JP2001096869A JP2001096869A JP3882521B2 JP 3882521 B2 JP3882521 B2 JP 3882521B2 JP 2001096869 A JP2001096869 A JP 2001096869A JP 2001096869 A JP2001096869 A JP 2001096869A JP 3882521 B2 JP3882521 B2 JP 3882521B2
Authority
JP
Japan
Prior art keywords
substrate
semiconductor chip
mounting
electrode
side electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001096869A
Other languages
Japanese (ja)
Other versions
JP2002299372A (en
Inventor
敏 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2001096869A priority Critical patent/JP3882521B2/en
Publication of JP2002299372A publication Critical patent/JP2002299372A/en
Application granted granted Critical
Publication of JP3882521B2 publication Critical patent/JP3882521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect not connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the semiconductor or solid-state body being mounted in a cavity or on a protrusion of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)
  • Dicing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の実装方法に係り、特に実装時のボンディング荷重を低下させつつ、電機的な接続を確実に行わせるための技術に関する。
【0002】
【従来の技術】
従来より基板上に半導体チップを実装するための技術が各種知られている。
例えば、実装技術として、ワイヤーボンディング方式やフリップチップボンディング方式などが挙げられる。
ワイヤーボンディング方式によれば、図13に示すように、基板100上に半導体チップ101を接着剤等で固定し、半導体チップ101の電極と基板100上の電極102とを導電ワイヤ103などを用いて空中配線接続をしている。
フリップチップボンディング方式によれば、図14に示すように、半導体チップ201上に形成された導電性の電極(あるいは突起電極)202と基板上の電極との位置あわせを行い、合金接合や導電性粒子、導電性接着剤203などを用いた機械的接触により接続している。
【0003】
【発明が解決しようとする課題】
ワイヤーボンディング方式においては、図13に示すように、半導体チップ101を基板100上に搭載し、ワイヤーボンディング後に、機械的強度を持たせるために導電ワイヤを含む半導体チップ101をモールド剤104を塗布して埋設するように構成していた。この結果、モジュール105全体としての厚みが増加してしまうという不具合があった。
また、半導体チップ101を高周波回路として用いる場合には、ワイヤ長さが長くなりすぎ、高周波回路特性的に好ましくないという問題点があった。
フリップチップボンディング方式によれば、半導体チップ201の電極202および基板上の電極は、双方とも平面上に配置されているため、図15に矢印で示すように、温度変化などに起因して生じる平面方向の材料伸縮を起こし、半導体チップ材料と基板材料との線膨張係数の違いにより電極接合部にせん断応力が働いて、電極接合部に亀裂が生じ、導通不良を起こす可能性があった。
【0004】
また、多機能化を図るべく半導体チップサイズが大きくなり、さらに電極数が増加すると、半導体チップを基板の電極に実装する際のボンディング加重が大きくなり、半導体チップの能動面に応力が係り、半導体チップの特性を変化させる原因ともなっていた。
また、半導体チップの実装時には、基板に応力がかかるため、先に実装された半導体チップの電極部に亀裂を与えることになっていた。
また、ワイヤーボンディングと同様に基板上に半導体チップを搭載するためモジュールとしての厚みを増加させてしまうという問題点があった。
一方、半導体チップを大容量化、多機能化し、多くの入出力端子を半導体チップから基板上に接続する半導体チップの実装方法おいて、多くの入出力端子を突起電極として半導体チップ上に配置するには、電極の面積を縮小し、配置ピッチを微細化する必要があるため、機械的強度が十分に得られるほど突起電極の接続部の面積を確保することはできず、平面電極を形成しなければならないという問題点があった。
【0005】
また、微少な電極を形成するために高度な技術レベルが要求されるという問題点があった。さらに微細化、多ピン化されるとともに、サイズが大型化した半導体チップの平面電極を基板上の電極に対し平面方向同士で実装するには、非常に大きなボンディング加重が必要となり、半導体チップあるいは基板に不要な応力を印加することとなってしまうという問題点があった。そこで、本発明の目的は、半導体チップの実装時のボンディング荷重を低減することができる実装方法を提供することにある。
【0012】
【課題を解決するための手段】
上記課題を解決するため、半導体装置の実装面にほぼ垂直な側面に溝状に形成された側面電極を有する半導体装置を基板上に実装する半導体装置の実装方法において、基板側に前記半導体装置を収容する収容凹部を設け、前記収容凹部内の内層配線パターンと基板表面の表層配線パターンとを前記側面電極に対応する位置に対応づけて導電性ワイヤで接続し、前記基板に垂直に前記半導体装置を前記収容凹部内に所定の圧力で押し込むことにより前記導電性ワイヤと前記側面電極を電気的に接続させる、ことを特徴としている。
【0013】
【発明の実施の形態】
次に本発明の好適な実施の形態について図面を参照して説明する。
[1]半導体チップの製造
まず、半導体チップの製造工程について説明する。
[1.1]LSI形成工程
まず、Si製のウェハに通常と同様の工程でLSIを形成する。
LSIの形成工程は、洗浄工程、拡散工程、薄膜形成工程、パターニング工程を含む。
まず、洗浄工程は、ウェハを清浄な状態とすべく、洗浄を行う。
拡散工程は、pn接合工程や不純物プロファイル制御のために行われる。
薄膜形成工程は、シリコン窒化膜、多結晶シリコン、表面電極を含むアルミニウム電極等を形成する。
パターニング工程は、露光工程およびエッチング工程を含んでいる。露光工程は、シリコン基板上に塗布されたレジストを露光、現像して所定のレジストパターンを形成する。エッチング工程は、露光工程におけるレジストパターンをマスクとして下地膜をエッチングし、パターンを形成することとなる。
以下、洗浄工程、拡散工程、薄膜形成工程、パターニング工程繰り返して複数のLSIをウェハ上に形成する。
【0014】
[1.2]穿孔工程
図1にLSIが形成されたウェハの外観斜視図を示す。
次に、複数のLSI1が形成されたウェハ2において、図2に示すように、LSI1の周辺部分に形成された電極(表面電極)3近傍の領域であって各電極に対応する位置であって、仮想的に設けたダイシングラインDLに沿って側面電極形成用孔4を穿孔して形成する。
側面電極形成用孔の穿孔後、図3(a)に示すように、LSIおよび側面電極形成用孔の絶縁コーティング5を行う。
【0015】
[1.3]メッキ工程
次に図3(b)に示すように、表面電極の全部または一部の絶縁コーティングをレーザ加工などにより除去する。
そして、図3(c)に示すように、一般的な電極用のメッキ材料6を用いて表面電極および側面電極形成用孔内にメッキ処理を施し、両者を導通状態とする。
次に表面電極および側面電極形成用孔にポリイミドコーティングなどの所定のコーティング処理を施す。
【0016】
[1.4]ダイシング工程
次にウェハ2を切り離して半導体チップにすべくダイシングを行う。
この場合において、側面電極形成用孔4の中心点を通る直線(図2にダイシングラインDLとして表示)に沿ってウェハ2のダイシングを行い、半導体チップ20(図4参照)を得る。
これにより、側面電極形成用孔4は、2等分され、側面電極10となる。
図4に側面電極の外観斜視図を示す。
図4に示すように、側面電極10は、竹を半分に割ったような形状となっている。
なお、得られる半導体チップ20の厚さを低減する必要があれば、ダイシング前にウェハ2のLSI形成面に対向する面(半導体チップの裏面;実装面)20Aに機械的研磨あるいは化学的研磨を施すことにより厚さを低減することが可能である。
なお、ハーフダイシング状態であれば、ダイシング後に面20Aに機械的研磨あるいは化学的研磨を施すことにより厚さを低減することも可能である。
【0017】
[2]半導体チップの基板への実装
次に半導体チップの基板への実装について各基板毎に説明する。
[2.1]フレキシブル基板の場合
まず、最初に実装対象の基板がフレキシブル基板の場合について説明する。
図5(a)、(b)に示すように、半導体チップ20の実装先がフレキシブル基板30である場合には、フレキシブル基板30の配線パターン31を半導体チップ20の側面電極10に対応する位置に配置したオーバーハングパターンとする。配線パターン31の材料としては、銅(Cu)、ニッケル(Ni)、金(Au)などが用いられる。
そして、半導体チップ20を吸着などの方法により支持したツールTLにより半導体チップ20の位置合わせを行いながら、フレキシブル基板30に垂直な方向(図5(a)中、矢印で示す。)から所定の圧力で加圧しながら実装する。
【0018】
この場合に、半導体チップ20の側面電極10と、フレキシブル基板30の配線パターン(オーバーハングパターン)31とは図6に示すように接触状態となり、導通することとなる。
また、図7(a)に示すように、穿孔時に半導体チップの実装面側の側面電極の形状がテーパー形状となるように側面電極形成用孔4を形成すれば、図7(b)に示すように、側面電極10の実装面側はテーパー形状となり、図8に示すように、より確実に半導体チップ20の側面電極10と、フレキシブル基板30の配線パターン31(オーバーハングパターン)と、が電気的に接続状態となる。
このようなテーパー形状の側面電極形成用孔4を形成するためには、LSI形成面側から所定の出力のレーザ光で穿孔を行えばよい。
さらに配線パターン(オーバーハングパターン)31を弾性の高い材料で形成し、半導体チップ20の実装による配線パターン(オーバーハングパターン)31の変形に伴う反発力により電気的接続の確実性を向上させることも可能である。
さらにまた、あらかじめ配線パターン(オーバハングパターン)31に半田メッキを施しておき、側面電極10と半田付けを行って電気的接続を確保するように構成することも可能である。
【0019】
[2.2]セラミック基板に貫通スルーホールを形成する場合
次に実装対象の基板がセラミック基板であり、このセラミック基板に貫通スルーホールを形成する場合について図9を参照して説明する。
図9に示すように、グリーン状態(焼成前)の多層セラミック基板40の最表層となる表層基板41の形成時に、次層につながる貫通スルーホール42を形成し、この貫通スルーホール42の半導体チップ20配置側の半分を抜き落とすことにより、基板側側面電極43を形成する。
その後、半導体チップ実装用凹部44に相当する部分を打ち抜いた表層基板41を含む他の層を構成する基板45と張り合わせ、焼成して多層セラミック基板40とする。
そして、図9に示すように、半導体チップ20の側面電極10と基板側側面電極43との間を導電粒子入りの異方性導電接着剤46を介して電気的に接続する。
この結果、半導体チップ20と表層基板41の次に積層されている基板45との間には、異方性導電接着剤46を入れる必要がないので、実装時のボンディング荷重を低減させることができ、半導体チップ20に不要な応力を受けることがないので、半導体チップ20の特性の変化を抑制し、実装時の破損を避けることができる。
すなわち、半導体実装時に導電粒子入りの異方性導電接着剤46を側面方向に押し出しながら、異方性導電接着剤46と基板側配線または異方性導電接着剤46と基板表面との間に形成された気泡を押し出す必要がないので、半兆体チップ20に大荷重が印加されることがないので、半導体チップ20の特性の変化を抑制し、実装時の破損を避けることができるのである。
【0020】
[2.3]リジット基板に貫通スルーホールを形成する場合
次に実装対象の基板がリジット基板であり、このリジット基板に貫通スルーホールを形成する場合について図10を参照して説明する。
まず、図10に示すように、多層リジット基板50の全層あるいは所定の層まで貫通する貫通スルーホール51を形成して、機械的切削加工により半導体チップ実装用凹部52を形成するに際し、貫通スルーホール51を深さ方向の半分程度まで、かつ、貫通スルーホール51の半導体チップ20配置側の半分を削り落とす。
これにより、貫通スルーホール51は、基板側側面電極53を形成することとなる。
そして、図10に示すように、半導体チップ20の側面電極10と基板側側面電極53との間を導電粒子入りの異方性導電接着剤54を介して接続する。
この結果、[2.2]項において説明したセラミック基板の場合と同様に半導体チップ20と半導体チップが対向する基板面50Aとの間には、異方性導電接着剤54を入れる必要がない。
従って、実装時のボンディング荷重を低減させることができ、半導体チップ20に不要な応力をかけることがないので、半導体チップ20の特性の変化を抑制し、破損を防止することができる。
【0021】
[2.4]基板に内層スルーホール(非貫通スルーホール)を形成する場合
続いて実装対象の基板がセラミック基板あるいはリジット基板であり、この基板に内層スルーホール形成する場合について図11を参照して説明する。
まず、多層セラミック基板あるいは多層リジット基板である多層基板60の表層基板から所定の内層基板まで内層スルーホール61を形成し、表層基板と内層基板との間を電気的に接続する。
そして、セラミック基板の場合は、半導体チップ実装用凹部62に相当する部分を打ち抜いた基板を含む各層を構成する基板を張り合わせ、焼成して多層セラミック基板とする。また、リジット基板の場合は、機械的切削加工により半導体チップ実装用凹部62を形成する。
この場合に、内層スルーホール61の半導体チップ20配置側の半分を削り落とすことにより基板側側面電極63を形成する。
そして、図11に示すように、半導体チップ20の側面電極20と内層スルーホールを利用して形成された基板側側面電極63との間を導電粒子入りの異方性導電接着剤64を介して接続する。
【0022】
この結果、[2.2]項および[2.3]項において説明したセラミック基板あるいはリジット基板の場合と同様に半導体チップ20と半導体チップ20が対向する基板面65との間には、異方性導電接着剤64を入れる必要がない。
従って、実装時のボンディング荷重を低減させることができ、半導体チップ20に不要な応力がかかることがないので、半導体チップ20の特性の変化を抑制し、破損を防止することができる。
【0023】
また、導電粒子入りの異方性導電接着剤54を介して接続する方法以外の方法としては、図12に示すように、表層配線パターン71と内層配線パターン72とをワイヤボンディング装置によりワイヤ73で接続し、半導体チップ20を実装する際にワイヤ73を半導体チップ側の側面電極10と内層配線パターン72(基板)との間に挟み込む。
これにより、半導体チップ20の側面電極10と、ワイヤ73とは図12に示すように接触状態となり、導通することとなる。
図12においては、ワイヤ73を表層配線パターン71側に最初に接続し、その後、内層配線パターン72側に接続する場合を図示しているが、ワイヤ73を内層配線パターン72側に最初に接続するように構成することも可能である。
さらに、上記各構成において、半導体チップ20と半導体チップ20が対向する基板72との間には、必要に応じて、エポキシ系接着剤などを入れるようにしてもかまわない。
【0024】
[3]実施形態の効果
以上の説明のように、本実施形態によれば、従来の実装方法と比較して実装時のボンディング荷重を低減することができ、平面方向のせん断応力を半導体チップに対して与えることがないので、半導体チップの特性の変化を抑制し、破損を防止することができる。
また、半導体チップ側の側面電極と基板側の側面電極とは、温度変化などに伴う半導体チップあるいは基板の変形(平面方向の変形)の影響を受けにくく、接続部に亀裂等が発生しにくく、接続信頼性を向上することができる。
すなわち、従来は、電極に対して直行する方向にせん断応力がかかることになっていたのに対し、本実施形態によれば、せん断応力に平行する形で半導体チップの電極と基板電極とが接続されており、弾性を有することとなって半導体チップあるいは基板の変形の影響を受けにくくなっているのである。
さらに半導体チップを含むモジュールの厚みを低減することが可能となる。
以上の説明においては、基板の一方の面に半導体チップを実装する場合について述べたが、基板実装時のボンディング荷重が低いため、基板の両面に実装することも可能となっている。
【0025】
【発明の効果】
本発明によれば、実装時のボンディング荷重を低減することができ、平面方向のせん断応力を半導体チップに対して与えることがないので、半導体チップの特性の変化を抑制し、破損を防止することができる。
また、半導体装置の電極と基板電極との間の接続を確実に行え、接続信頼性を向上することができる。
【図面の簡単な説明】
【図1】 LSIが形成されたウェハの外観斜視である。
【図2】 側面電極形成用孔の穿孔についての説明図である。
【図3】 側面電極の導通をとるための半導体装置の製造方法の説明図である。
【図4】 側面電極の外観斜視図である。
【図5】 配線パターンをオーバーハングパターンとした場合の実装説明図である。
【図6】 側面電極と配線パターン(オーバーハングパターン)との接続状態の説明図である。
【図7】 実装面側がテーパー形状となっている側面電極の説明図である。
【図8】 側面電極の実装面側はテーパー形状とした場合の実装説明図である。
【図9】セラミック基板に貫通スルーホールを形成する場合の実装説明図である。
【図10】 リジット基板に貫通スルーホールを形成する場合の実装説明図である。
【図11】 基板に内層スルーホール(非貫通スルーホール)を形成する場合の実装説明図である。
【図12】 導電性ワイヤを用いて実装を行う場合の実装説明図である。
【図13】 従来のワイヤボンディング方式を説明するための図である。
【図14】 従来のフリップチップボンディング方式を説明するための図である。
【図15】 従来のフリップチップボンディング方式における問題点を説明する図である。
【符号の説明】
1…LSI
2…ウェハ
3…表面電極
4…側面電極形成用孔
5…絶縁コーティング
6…メッキ
10…側面電極
20…半導体チップ(半導体装置)
30…フレキシブル基板
31…配線パターン(オーバーハングパターン)
40…多層セラミック基板
41…表層基板
42…貫通スルーホール
43…基板側側面電極
44…半導体チップ実装用凹部
45…基板
46…異方性導電接着剤
50…多層リジット基板
50A…基板面
51…貫通スルーホール
52…半導体チップ実装用凹部
53…基板側側面電極
54…異方性導電接着剤
60…多層基板
61…内層スルーホール
62…半導体チップ実装用凹部
63…基板側側面電極
64…異方性導電接着剤
71…表層配線パターン
72…内層配線パターン
73…ワイヤ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for mounting a semiconductor device, and more particularly to a technique for ensuring electrical connection while reducing a bonding load during mounting.
[0002]
[Prior art]
Conventionally, various techniques for mounting a semiconductor chip on a substrate are known.
For example, as a mounting technique, a wire bonding method, a flip chip bonding method, or the like can be given.
According to the wire bonding method, as shown in FIG. 13, the semiconductor chip 101 is fixed on the substrate 100 with an adhesive or the like, and the electrode of the semiconductor chip 101 and the electrode 102 on the substrate 100 are connected using a conductive wire 103 or the like. There is an aerial wiring connection.
According to the flip chip bonding method, as shown in FIG. 14, the conductive electrode (or protruding electrode) 202 formed on the semiconductor chip 201 is aligned with the electrode on the substrate, and alloy bonding or conductive property is achieved. Connection is made by mechanical contact using particles, conductive adhesive 203 or the like.
[0003]
[Problems to be solved by the invention]
In the wire bonding method, as shown in FIG. 13, a semiconductor chip 101 is mounted on a substrate 100, and after wire bonding, a semiconductor chip 101 including a conductive wire is applied with a molding agent 104 to give mechanical strength. It was configured to be buried. As a result, there is a problem that the thickness of the module 105 as a whole increases.
Further, when the semiconductor chip 101 is used as a high frequency circuit, there is a problem that the wire length becomes too long, which is not preferable in terms of high frequency circuit characteristics.
According to the flip chip bonding method, the electrode 202 of the semiconductor chip 201 and the electrode on the substrate are both arranged on a plane, so that a plane generated due to a temperature change or the like as indicated by an arrow in FIG. The material expands and contracts in the direction, and shear stress acts on the electrode joint due to the difference in coefficient of linear expansion between the semiconductor chip material and the substrate material, which may cause cracks in the electrode joint and cause poor conduction.
[0004]
In addition, when the semiconductor chip size is increased to increase the number of functions and the number of electrodes is further increased, the bonding load when the semiconductor chip is mounted on the electrode of the substrate is increased, the stress is applied to the active surface of the semiconductor chip, and the semiconductor It was also a cause of changing the characteristics of the chip.
Moreover, since stress is applied to the substrate when the semiconductor chip is mounted, the electrode portion of the previously mounted semiconductor chip is cracked.
Moreover, since the semiconductor chip is mounted on the substrate as in the case of wire bonding, there is a problem that the thickness of the module is increased.
On the other hand, in a semiconductor chip mounting method in which a semiconductor chip is increased in capacity and multifunction and many input / output terminals are connected to the substrate from the semiconductor chip, many input / output terminals are arranged as protruding electrodes on the semiconductor chip. Therefore, it is necessary to reduce the area of the electrode and reduce the arrangement pitch, so that the area of the connecting portion of the protruding electrode cannot be secured so that sufficient mechanical strength is obtained, and a planar electrode is formed. There was a problem of having to.
[0005]
In addition, there is a problem that a high technical level is required to form a minute electrode. Furthermore, in order to mount a planar electrode of a semiconductor chip, which has been further miniaturized and increased in number of pins, and whose size has been increased in a planar direction with respect to an electrode on a substrate, a very large bonding load is required. There is a problem in that unnecessary stress is applied to the substrate. Therefore, an object of the present invention is to provide a mounting method capable of reducing a bonding load when mounting a semiconductor chip.
[0012]
[Means for Solving the Problems]
In order to solve the above problems, in a semiconductor device mounting method in which a semiconductor device having a side electrode formed in a groove shape on a side surface substantially perpendicular to the mounting surface of the semiconductor device is mounted on a substrate, the semiconductor device is placed on the substrate side A housing recess is provided, the inner layer wiring pattern in the housing recess and the surface layer wiring pattern on the substrate surface are connected by a conductive wire in association with a position corresponding to the side electrode, and the semiconductor device is perpendicular to the substrate. The conductive wire and the side electrode are electrically connected by pushing the wire into the housing recess with a predetermined pressure.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, preferred embodiments of the present invention will be described with reference to the drawings.
[1] Manufacturing of Semiconductor Chip First, the manufacturing process of the semiconductor chip will be described.
[1.1] LSI Formation Step First, an LSI is formed on a Si wafer by the same steps as usual.
The LSI formation process includes a cleaning process, a diffusion process, a thin film formation process, and a patterning process.
First, in the cleaning step, cleaning is performed so that the wafer is in a clean state.
The diffusion process is performed for the pn junction process and impurity profile control.
In the thin film forming step, a silicon nitride film, polycrystalline silicon, an aluminum electrode including a surface electrode, and the like are formed.
The patterning process includes an exposure process and an etching process. In the exposure step, the resist applied on the silicon substrate is exposed and developed to form a predetermined resist pattern. In the etching process, the base film is etched using the resist pattern in the exposure process as a mask to form a pattern.
Thereafter, a plurality of LSIs are formed on the wafer by repeating the cleaning process, the diffusion process, the thin film forming process, and the patterning process.
[0014]
[1.2] Drilling Process FIG. 1 is an external perspective view of a wafer on which an LSI is formed.
Next, in the wafer 2 on which a plurality of LSIs 1 are formed, as shown in FIG. 2, the region in the vicinity of the electrode (surface electrode) 3 formed in the peripheral part of the LSI 1 is a position corresponding to each electrode. The side electrode forming holes 4 are formed by drilling along the virtually provided dicing lines DL.
After drilling the side electrode forming holes, as shown in FIG. 3A, an insulating coating 5 for the LSI and the side electrode forming holes is applied.
[0015]
[1.3] Plating step Next, as shown in FIG. 3B, the whole or part of the insulating coating on the surface electrode is removed by laser processing or the like.
And as shown in FIG.3 (c), the plating process is performed in the hole for surface electrode and side electrode formation using the plating material 6 for general electrodes, and both are made into a conduction state.
Next, a predetermined coating process such as polyimide coating is applied to the surface electrode and side electrode forming holes.
[0016]
[1.4] Dicing Step Next, dicing is performed to separate the wafer 2 into semiconductor chips.
In this case, the wafer 2 is diced along a straight line (shown as a dicing line DL in FIG. 2) passing through the center point of the side electrode forming hole 4 to obtain the semiconductor chip 20 (see FIG. 4).
Thereby, the side electrode forming hole 4 is divided into two equal parts to form the side electrode 10.
FIG. 4 shows an external perspective view of the side electrode.
As shown in FIG. 4, the side electrode 10 has a shape like bamboo divided in half.
If it is necessary to reduce the thickness of the obtained semiconductor chip 20, mechanical polishing or chemical polishing is performed on the surface (back surface of the semiconductor chip; mounting surface) 20A facing the LSI formation surface of the wafer 2 before dicing. By applying, the thickness can be reduced.
In the half dicing state, the thickness can be reduced by performing mechanical polishing or chemical polishing on the surface 20A after dicing.
[0017]
[2] Mounting of Semiconductor Chip on Substrate Next, mounting of the semiconductor chip on the substrate will be described for each substrate.
[2.1] In the case of a flexible substrate First, the case where the substrate to be mounted is a flexible substrate will be described first.
As shown in FIGS. 5A and 5B, when the mounting destination of the semiconductor chip 20 is the flexible substrate 30, the wiring pattern 31 of the flexible substrate 30 is placed at a position corresponding to the side electrode 10 of the semiconductor chip 20. The arranged overhang pattern is used. As a material of the wiring pattern 31, copper (Cu), nickel (Ni), gold (Au), or the like is used.
Then, while aligning the semiconductor chip 20 with the tool TL that supports the semiconductor chip 20 by suction or the like, a predetermined pressure is applied from a direction perpendicular to the flexible substrate 30 (indicated by an arrow in FIG. 5A). Mount while applying pressure.
[0018]
In this case, the side electrode 10 of the semiconductor chip 20 and the wiring pattern (overhang pattern) 31 of the flexible substrate 30 are in contact with each other as shown in FIG.
Further, as shown in FIG. 7A, if the side electrode forming hole 4 is formed so that the shape of the side electrode on the mounting surface side of the semiconductor chip becomes a tapered shape when drilling, the side electrode forming hole 4 is shown in FIG. Thus, the mounting surface side of the side electrode 10 has a tapered shape, and as shown in FIG. 8, the side electrode 10 of the semiconductor chip 20 and the wiring pattern 31 (overhang pattern) of the flexible substrate 30 are more reliably electrically connected. Connection state.
In order to form such a tapered side electrode forming hole 4, it is only necessary to perform perforation with a laser beam having a predetermined output from the LSI forming surface side.
Further, the wiring pattern (overhang pattern) 31 is formed of a highly elastic material, and the reliability of electrical connection can be improved by the repulsive force accompanying the deformation of the wiring pattern (overhang pattern) 31 due to the mounting of the semiconductor chip 20. Is possible.
Furthermore, the wiring pattern (overhang pattern) 31 may be pre-soldered and soldered to the side electrode 10 to ensure electrical connection.
[0019]
[2.2] Forming a Through-Through Hole in a Ceramic Substrate Next, a case where a substrate to be mounted is a ceramic substrate and a through-through hole is formed in the ceramic substrate will be described with reference to FIG.
As shown in FIG. 9, when forming the surface layer substrate 41 which is the outermost surface layer of the multilayer ceramic substrate 40 in the green state (before firing), a through-through hole 42 connected to the next layer is formed, and the semiconductor chip of the through-through hole 42 is formed. The substrate side surface electrode 43 is formed by removing half of the 20 arrangement side.
After that, the multilayer ceramic substrate 40 is formed by laminating and baking the substrate 45 constituting other layers including the surface layer substrate 41 in which a portion corresponding to the semiconductor chip mounting recess 44 is punched.
Then, as shown in FIG. 9, the side surface electrode 10 of the semiconductor chip 20 and the substrate side surface electrode 43 are electrically connected via an anisotropic conductive adhesive 46 containing conductive particles.
As a result, since it is not necessary to put the anisotropic conductive adhesive 46 between the semiconductor chip 20 and the substrate 45 stacked next to the surface layer substrate 41, the bonding load at the time of mounting can be reduced. Since the semiconductor chip 20 is not subjected to unnecessary stress, changes in the characteristics of the semiconductor chip 20 can be suppressed and damage during mounting can be avoided.
That is, it is formed between the anisotropic conductive adhesive 46 and the substrate-side wiring or the anisotropic conductive adhesive 46 and the substrate surface while extruding the anisotropic conductive adhesive 46 containing conductive particles in the lateral direction during semiconductor mounting. Since it is not necessary to push out the generated bubbles, a large load is not applied to the semi-trunk chip 20, so that a change in characteristics of the semiconductor chip 20 can be suppressed and damage during mounting can be avoided.
[0020]
[2.3] Forming a Through-Through Hole in a Rigid Substrate Next, a case where a substrate to be mounted is a rigid substrate and a through-through hole is formed in the rigid substrate will be described with reference to FIG.
First, as shown in FIG. 10, through through holes 51 that penetrate all layers or a predetermined layer of the multilayer rigid substrate 50 are formed, and when the semiconductor chip mounting recess 52 is formed by mechanical cutting, the through through holes are formed. The hole 51 is cut to about half in the depth direction, and the half of the through-through hole 51 on the side where the semiconductor chip 20 is disposed is scraped off.
As a result, the through-hole 51 forms the substrate side electrode 53.
Then, as shown in FIG. 10, the side electrode 10 of the semiconductor chip 20 and the substrate side electrode 53 are connected via an anisotropic conductive adhesive 54 containing conductive particles.
As a result, as in the case of the ceramic substrate described in the section [2.2], it is not necessary to put the anisotropic conductive adhesive 54 between the semiconductor chip 20 and the substrate surface 50A facing the semiconductor chip.
Therefore, the bonding load at the time of mounting can be reduced, and unnecessary stress is not applied to the semiconductor chip 20, so that the change in characteristics of the semiconductor chip 20 can be suppressed and the breakage can be prevented.
[0021]
[2.4] Forming an inner layer through hole (non-through hole) in a substrate Next, a substrate to be mounted is a ceramic substrate or a rigid substrate, and the case of forming an inner layer through hole in this substrate is described with reference to FIG. I will explain.
First, an inner layer through hole 61 is formed from the surface layer substrate of the multilayer substrate 60 which is a multilayer ceramic substrate or a multilayer rigid substrate to a predetermined inner layer substrate, and the surface layer substrate and the inner layer substrate are electrically connected.
In the case of a ceramic substrate, the substrates constituting the respective layers including the substrate obtained by punching out the portion corresponding to the semiconductor chip mounting recess 62 are bonded and fired to obtain a multilayer ceramic substrate. In the case of a rigid substrate, the semiconductor chip mounting recess 62 is formed by mechanical cutting.
In this case, the substrate side surface electrode 63 is formed by scraping off half of the inner layer through hole 61 on the side where the semiconductor chip 20 is disposed.
Then, as shown in FIG. 11, between the side surface electrode 20 of the semiconductor chip 20 and the substrate side surface electrode 63 formed using the inner layer through hole, an anisotropic conductive adhesive 64 containing conductive particles is interposed. Connecting.
[0022]
As a result, as in the case of the ceramic substrate or the rigid substrate described in the items [2.2] and [2.3], there is an anisotropic difference between the semiconductor chip 20 and the substrate surface 65 facing the semiconductor chip 20. There is no need to insert the conductive conductive adhesive 64.
Therefore, the bonding load at the time of mounting can be reduced, and unnecessary stress is not applied to the semiconductor chip 20, so that the change in the characteristics of the semiconductor chip 20 can be suppressed and the breakage can be prevented.
[0023]
Further, as a method other than the method of connecting via the anisotropic conductive adhesive 54 containing conductive particles, as shown in FIG. 12, a surface layer wiring pattern 71 and an inner layer wiring pattern 72 are connected with a wire 73 by a wire bonding apparatus. When connecting and mounting the semiconductor chip 20, the wire 73 is sandwiched between the side electrode 10 on the semiconductor chip side and the inner layer wiring pattern 72 (substrate).
As a result, the side surface electrode 10 of the semiconductor chip 20 and the wire 73 are brought into contact with each other as shown in FIG.
In FIG. 12, the wire 73 is first connected to the surface wiring pattern 71 side and then connected to the inner wiring pattern 72 side. However, the wire 73 is first connected to the inner wiring pattern 72 side. It is also possible to configure as described above.
Furthermore, in each of the above configurations, an epoxy adhesive or the like may be inserted between the semiconductor chip 20 and the substrate 72 facing the semiconductor chip 20 as necessary.
[0024]
[3] Effects of Embodiment As described above, according to the present embodiment, the bonding load during mounting can be reduced as compared with the conventional mounting method, and the shear stress in the planar direction is applied to the semiconductor chip. Therefore, the change in the characteristics of the semiconductor chip can be suppressed and the breakage can be prevented.
In addition, the side electrode on the semiconductor chip side and the side electrode on the substrate side are not easily affected by deformation (deformation in the plane direction) of the semiconductor chip or the substrate due to temperature change, etc. Connection reliability can be improved.
That is, conventionally, shear stress is applied in a direction perpendicular to the electrode, but according to the present embodiment, the electrode of the semiconductor chip and the substrate electrode are connected in parallel to the shear stress. Therefore, it has elasticity and is hardly affected by the deformation of the semiconductor chip or the substrate.
Furthermore, the thickness of the module including the semiconductor chip can be reduced.
In the above description, the case where the semiconductor chip is mounted on one surface of the substrate is described. However, since the bonding load at the time of mounting the substrate is low, it can be mounted on both surfaces of the substrate.
[0025]
【The invention's effect】
According to the present invention, the bonding load at the time of mounting can be reduced, and since no shear stress in the planar direction is applied to the semiconductor chip, the change in the characteristics of the semiconductor chip is suppressed and the breakage is prevented. Can do.
Further, the connection between the electrode of the semiconductor device and the substrate electrode can be reliably performed, and the connection reliability can be improved.
[Brief description of the drawings]
FIG. 1 is an external perspective view of a wafer on which an LSI is formed.
FIG. 2 is an explanatory view of perforation of a side electrode forming hole.
FIG. 3 is an explanatory diagram of a method for manufacturing a semiconductor device for conducting conduction of a side electrode.
FIG. 4 is an external perspective view of a side electrode.
FIG. 5 is an explanatory diagram of mounting when the wiring pattern is an overhang pattern.
FIG. 6 is an explanatory diagram of a connection state between a side electrode and a wiring pattern (overhang pattern).
FIG. 7 is an explanatory diagram of a side electrode whose mounting surface side is tapered.
FIG. 8 is a mounting explanatory diagram when the mounting surface side of the side electrode is tapered.
FIG. 9 is a mounting explanatory diagram in the case where through-holes are formed in a ceramic substrate.
FIG. 10 is an explanatory diagram of mounting when a through-hole is formed in a rigid substrate.
FIG. 11 is a mounting explanatory diagram in the case where an inner layer through hole (non-through hole) is formed in a substrate.
FIG. 12 is a mounting explanatory diagram when mounting is performed using a conductive wire.
FIG. 13 is a diagram for explaining a conventional wire bonding method.
FIG. 14 is a diagram for explaining a conventional flip chip bonding method.
FIG. 15 is a diagram illustrating a problem in a conventional flip chip bonding method.
[Explanation of symbols]
1 ... LSI
2 ... wafer 3 ... surface electrode 4 ... side electrode forming hole 5 ... insulating coating 6 ... plating 10 ... side electrode 20 ... semiconductor chip (semiconductor device)
30 ... Flexible substrate 31 ... Wiring pattern (overhang pattern)
40 ... multilayer ceramic substrate 41 ... surface layer substrate 42 ... through-hole 43 ... substrate side electrode 44 ... semiconductor chip mounting recess 45 ... substrate 46 ... anisotropic conductive adhesive 50 ... multilayer rigid substrate 50A ... substrate surface 51 ... through Through hole 52 ... Semiconductor chip mounting recess 53 ... Substrate side electrode 54 ... Anisotropic conductive adhesive 60 ... Multilayer substrate 61 ... Inner layer through hole 62 ... Semiconductor chip mounting recess 63 ... Substrate side electrode 64 ... Anisotropic Conductive adhesive 71 ... surface layer wiring pattern 72 ... inner layer wiring pattern 73 ... wire

Claims (1)

半導体装置の実装面にほぼ垂直な側面に溝状に形成された側面電極を有する半導体装置を基板上に実装する半導体装置の実装方法において、
基板側に前記半導体装置を収容する収容凹部を設け、
前記収容凹部内の内層配線パターンと基板表面の表層配線パターンとを前記側面電極に対応する位置に対応づけて導電性ワイヤで接続し、
前記基板に垂直に前記半導体装置を前記収容凹部内に所定の圧力で押し込むことにより前記導電性ワイヤと前記側面電極を電気的に接続させる、
ことを特徴とする半導体装置の実装方法。
In a semiconductor device mounting method for mounting a semiconductor device having a side electrode formed in a groove shape on a side surface substantially perpendicular to a mounting surface of the semiconductor device on a substrate,
An accommodation recess for accommodating the semiconductor device is provided on the substrate side,
The inner layer wiring pattern in the housing recess and the surface layer wiring pattern on the substrate surface are connected by a conductive wire in association with the position corresponding to the side electrode,
Electrically connecting the conductive wire and the side electrode by pushing the semiconductor device perpendicularly to the substrate into the housing recess with a predetermined pressure;
A method for mounting a semiconductor device.
JP2001096869A 2001-03-29 2001-03-29 Mounting method of semiconductor device Expired - Fee Related JP3882521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001096869A JP3882521B2 (en) 2001-03-29 2001-03-29 Mounting method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001096869A JP3882521B2 (en) 2001-03-29 2001-03-29 Mounting method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2002299372A JP2002299372A (en) 2002-10-11
JP3882521B2 true JP3882521B2 (en) 2007-02-21

Family

ID=18950737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001096869A Expired - Fee Related JP3882521B2 (en) 2001-03-29 2001-03-29 Mounting method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3882521B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783335B (en) * 2009-01-19 2012-04-11 三菱电机株式会社 Semiconductor device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10308855A1 (en) * 2003-02-27 2004-09-16 Infineon Technologies Ag Semiconductor wafer for electronic components, with integrated circuits in lines and columns for semiconductor chips on wafer top surface with strip-shaped dividing regions between chip integrated circuits
JP4908936B2 (en) * 2005-06-30 2012-04-04 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP5106822B2 (en) * 2006-10-27 2012-12-26 三菱重工業株式会社 Semiconductor device, inspection device, and manufacturing method of semiconductor device
JP5206826B2 (en) 2011-03-04 2013-06-12 株式会社デンソー Region-divided substrate, semiconductor device using the same, and manufacturing method thereof
JP5588409B2 (en) * 2011-09-05 2014-09-10 株式会社東芝 Semiconductor device and manufacturing method thereof
JP2014137525A (en) * 2013-01-18 2014-07-28 Seiko Epson Corp Method for manufacturing substrate for electro-optic device, substrate for electro-optic device, electro-optic device and electronic apparatus
KR101653996B1 (en) * 2016-01-20 2016-09-09 테라셈 주식회사 Glass semiconductor package for image sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783335B (en) * 2009-01-19 2012-04-11 三菱电机株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2002299372A (en) 2002-10-11

Similar Documents

Publication Publication Date Title
US6410859B1 (en) Electrical assembly for semiconductor dice
US8105856B2 (en) Method of manufacturing semiconductor device with wiring on side surface thereof
JP2004200547A (en) Semiconductor chip, semiconductor wafer, semiconductor device and method for manufacturing the same, and circuit board and electronic component
JPS5839048A (en) Flexible region adhesive tape
KR20060088518A (en) Semiconductor device and manufacturing method thereof
US5138439A (en) Semiconductor device
JP2010277829A (en) Substrate having connection terminal
JPH05205832A (en) Structure of flexible tape and formation process of flexible tape
JP2006352617A (en) Method of manufacturing electronic components
WO2006112337A1 (en) Semiconductor device and semiconductor device manufacturing method
JP3882521B2 (en) Mounting method of semiconductor device
EP1478021B1 (en) Semiconductor device and manufacturing method thereof
TW201034538A (en) Computer modules with small thicknesses and associated methods of manufacturing
US20050277225A1 (en) Method for production of semiconductor package
JP2001044197A (en) Semiconductor device and manufacture thereof
JP4034468B2 (en) Manufacturing method of semiconductor device
US20020025668A1 (en) Wiring pattern formation method and original substrate used for the method
US4520561A (en) Method of fabricating an electronic circuit including an aperture through the substrate thereof
US7193297B2 (en) Semiconductor device, method for manufacturing the same, circuit substrate and electronic device
US7537963B2 (en) Device and method for manufacturing the same
JP2009105873A (en) Shaped integrated passive devices
JP2002026069A (en) Mounting method for semiconductor element
JP5238985B2 (en) Manufacturing method of semiconductor device
JP6561602B2 (en) Manufacturing method of electronic device
JPH11204519A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees