JP2001044197A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JP2001044197A
JP2001044197A JP11220620A JP22062099A JP2001044197A JP 2001044197 A JP2001044197 A JP 2001044197A JP 11220620 A JP11220620 A JP 11220620A JP 22062099 A JP22062099 A JP 22062099A JP 2001044197 A JP2001044197 A JP 2001044197A
Authority
JP
Japan
Prior art keywords
electrode
hole
semiconductor device
semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11220620A
Other languages
Japanese (ja)
Inventor
Masahito Sumikawa
雅人 住川
Kazumi Tanaka
和美 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP11220620A priority Critical patent/JP2001044197A/en
Publication of JP2001044197A publication Critical patent/JP2001044197A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked

Abstract

PROBLEM TO BE SOLVED: To suppress destruction of a through electrode during bonding by providing the through electrode with a portion whose cross-sectional area is varied as it extends from the front to the back surface of a semiconductor substrate. SOLUTION: A through hole 14 is formed from both the front and the back surface of a semiconductor substrate 11 by anisotropic etching. Then, the cross- sectional area of the hole 14 is varied as the hole 14 extends from the front to the back surface of the substrate 11. Further, a through electrode 12 is formed in the hole 14. Similarly to the hole 14, the electrode 12 has its cross-sectional area varied as it extends from the front to the back surface of the substrate 11. According to this arrangement, the electrode 12 is reinforced against force applied in the direction of the thickness of the substrate 11. Further, in laminating layers on the substrate 11, any force that would be applied to the electrode 12 by slight parallel deviations during the lamination is distributed, whereby the destruction of the electrode 12 can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、貫通電極を有する
LSIチップ等の半導体装置に関し、特に貫通電極どう
しが位置合わせされて複数の半導体装置が積層された半
導体装置に関する。
The present invention relates to a semiconductor device such as an LSI chip having a through electrode, and more particularly, to a semiconductor device in which a plurality of semiconductor devices are stacked with the through electrodes aligned.

【0002】[0002]

【従来の技術】LSIチップ等の半導体装置の電極は、
従来、その半導体装置の主面に形成されていた。これ
は、半導体装置が写真製版技術を応用して製造されるた
め、主面上であれば、プロセスの増加を伴わず、同じ工
程で形成でき、製造上好都合であるからである。
2. Description of the Related Art Electrodes of a semiconductor device such as an LSI chip are
Conventionally, it has been formed on the main surface of the semiconductor device. This is because the semiconductor device is manufactured by applying the photomechanical technology, so that the semiconductor device can be formed in the same process on the main surface without increasing the number of processes, which is convenient in manufacturing.

【0003】ところで、近年LSI等の半導体装置の動
作速度、信号伝送の高速化に伴い、半導体装置間等の配
線による信号の遅れが顕著になってきている。そこで、
配線長さを短くして、信号の遅れを回避するためにする
ために、半導体装置の電極を直接実装基板に接続するい
わゆるフリップチップ実装とよばれる半導体装置の実装
形態が用いられるようになってきている。
In recent years, as the operating speed of semiconductor devices such as LSIs and the speed of signal transmission have increased, signal delays due to wiring between semiconductor devices have become remarkable. Therefore,
In order to shorten the wiring length and avoid signal delay, a semiconductor device mounting form called flip-chip mounting in which electrodes of the semiconductor device are directly connected to a mounting substrate has been used. ing.

【0004】しかしながら、フリップチップ実装により
実装したとしても、半導体装置間は一旦実装基板を介し
て電気的に接続されるため、配線長さがある程度は長く
なってしまう。
However, even if the semiconductor devices are mounted by flip-chip mounting, the semiconductor devices are electrically connected to each other via a mounting substrate, so that the wiring length is increased to some extent.

【0005】この問題、即ち、配線による信号の遅れを
回避するために、半導体チップを貫通する電極を形成し
て、半導体チップを上下方向に積層することが考えられ
ている(例えば、特開平5−63137号公報)。
In order to avoid this problem, that is, to avoid a signal delay due to wiring, it has been considered to form an electrode penetrating the semiconductor chip and stack the semiconductor chips in the vertical direction (for example, see Japanese Unexamined Patent Application Publication No. -63137 gazette).

【0006】図8は、その貫通電極を利用した従来の半
導体チップを説明する図である。半導体チップ51には
スルーホール54が設けられており、そのスルーホール
54には導電性材料(貫通電極)52が埋め込まれてい
る。半導体装置51は絶縁膜55に覆われており、さら
に保護膜56で被覆されている。スルーホール54の導
電性材料(貫通電極)52上には突起電極53が形成さ
れている。
FIG. 8 is a view for explaining a conventional semiconductor chip using the through electrodes. A through hole 54 is provided in the semiconductor chip 51, and a conductive material (through electrode) 52 is embedded in the through hole 54. The semiconductor device 51 is covered with an insulating film 55, and further covered with a protective film 56. A projecting electrode 53 is formed on the conductive material (through electrode) 52 of the through hole 54.

【0007】図9は、図8で示した半導体装置が積層さ
れた実装構造体を示す図である。この図に示す通り、半
導体チップ51と半導体チップ61とは、各スルーホー
ル54,64とが位置あわせされて積層される。これに
より、半導体チップ51,61間の配線が極めて短くな
り、信号の遅れを抑制できる。
FIG. 9 is a view showing a mounting structure in which the semiconductor devices shown in FIG. 8 are stacked. As shown in this figure, the semiconductor chip 51 and the semiconductor chip 61 are stacked with the respective through holes 54 and 64 aligned. Thereby, the wiring between the semiconductor chips 51 and 61 becomes extremely short, and a signal delay can be suppressed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、図8に
示した半導体チップを図9のように、縦方向に積層する
場合、半導体チップ51,61の平行度に僅かなずれが
生じることがある。
However, when the semiconductor chips shown in FIG. 8 are stacked in the vertical direction as shown in FIG. 9, a slight shift may occur in the parallelism of the semiconductor chips 51 and 61.

【0009】図10はその一例を示す図である。図10
の場合、半導体チップ51が半導体チップ61に対して
左上がりとなっている。このような場合、半導体チップ
51,61をボンディングにより接続する際に、半導体
チップ51の複数の突起電極53が半導体チップ61の
貫通電極62に接触するのに時間差が生じる。具体的に
は、半導体チップ51の左側の突起電極53aが先に半
導体チップ61(貫通電極62a)に接触する。したが
って、この後、ボンディング力を与えていくと右側の突
起電極53bが半導体チップ61に接触するまでは、左
側の突起電極53a及び貫通電極62aにのみボンディ
ング力が作用することになる。
FIG. 10 is a diagram showing an example. FIG.
In the case of (1), the semiconductor chip 51 rises to the left with respect to the semiconductor chip 61. In such a case, when connecting the semiconductor chips 51 and 61 by bonding, a time difference occurs between the plurality of protruding electrodes 53 of the semiconductor chip 51 and the through electrodes 62 of the semiconductor chip 61. Specifically, the protruding electrode 53a on the left side of the semiconductor chip 51 contacts the semiconductor chip 61 (the through electrode 62a) first. Therefore, when the bonding force is applied thereafter, the bonding force acts only on the left projection electrode 53a and the through electrode 62a until the right projection electrode 53b contacts the semiconductor chip 61.

【0010】このとき、図11に示す通り、積層される
半導体チップの貫通電極52、62は、ほとんど貫通電
極52、62側面の剪断力のみでボンディング力を受け
止める。しかしながら、一般に、接合部分は、面に対す
る圧力に比べ剪断力に対して弱く、小さい力でその接合
部分が破壊される。
At this time, as shown in FIG. 11, the penetrating electrodes 52, 62 of the stacked semiconductor chips receive the bonding force almost exclusively by the shearing force on the side surfaces of the penetrating electrodes 52, 62. However, in general, the joint is weaker against shear forces than the pressure on the surface, and the joint is broken with less force.

【0011】このため、図10の構成においては、積層
する半導体チップ51,61間の僅かな平行ずれによ
り、ボンディング力を集中的に受けて、貫通電極62
(図10では52a)が破壊される惧れがあるという問
題がある。
Therefore, in the configuration shown in FIG. 10, the bonding force is intensively received due to slight parallel displacement between the semiconductor chips 51 and 61 to be stacked, and the through electrode 62 is formed.
(52a in FIG. 10) may be destroyed.

【0012】本発明は、上記課題を解決するためになさ
れたものであって、ボンディング時における貫通電極の
破壊を抑制できる半導体装置及びその製造方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a semiconductor device capable of suppressing breakage of a through electrode during bonding and a method of manufacturing the same.

【0013】[0013]

【課題を解決するための手段】上述の目的を達成する第
1の発明の半導体装置は、半導体基板を貫通する貫通電
極を有してなる半導体装置において、前記貫通電極は、
前記半導体基板の表面から裏面に到る途中に、断面積が
変化している部位を有することを特徴とする。
According to a first aspect of the present invention, there is provided a semiconductor device having a through electrode penetrating a semiconductor substrate.
The semiconductor substrate is characterized in that the semiconductor substrate has a portion where the cross-sectional area is changed on the way from the front surface to the back surface.

【0014】第2の発明は、半導体基板を貫通する貫通
電極を有してなる半導体装置において、前記貫通電極
は、前記半導体基板の表面から裏面に到る途中に、断面
積の小さい部位を有することを特徴とする。
According to a second aspect of the present invention, in a semiconductor device having a through electrode penetrating a semiconductor substrate, the through electrode has a portion having a small cross-sectional area on the way from the front surface to the back surface of the semiconductor substrate. It is characterized by the following.

【0015】第3の発明は、第1の発明または第2の発
明の半導体装置が、少なくとも2つ、前記貫通電極どう
しが位置合わせされ積層されてなることを特徴とする。
A third invention is characterized in that at least two of the semiconductor devices according to the first invention or the second invention are stacked with the through electrodes aligned with each other.

【0016】第4の発明は、第2の発明の半導体装置の
製造方法であって、前記半導体基板の表面または裏面の
一方の面から、異方性エッチングすることで第1の穴を
形成し、その第1の穴に金属メッキを行う工程と、前記
半導体基板の他方の面から、異方性エッチングすること
で、第1の穴に対応する位置に第2の穴を形成し、その
第2の穴に金属メッキを行う工程と、を含むことを特徴
とする。
A fourth invention is a method of manufacturing a semiconductor device according to the second invention, wherein the first hole is formed by performing anisotropic etching from one of the front surface and the back surface of the semiconductor substrate. Forming a second hole at a position corresponding to the first hole by performing metal plating on the first hole and performing anisotropic etching from the other surface of the semiconductor substrate. Performing metal plating on the second hole.

【0017】[0017]

【発明の実施の形態】以下、図面に基づいて本発明の実
施の形態を説明する。なお、ここでは、半導体装置とし
てLSIチップを例にとって説明するが、本発明はこれ
に限るものではない。
Embodiments of the present invention will be described below with reference to the drawings. Here, an LSI chip will be described as an example of a semiconductor device, but the present invention is not limited to this.

【0018】図1は、本発明の半導体装置(LSIチッ
プ)の一実施の形態を示す主要断面図である。また、図
2は、図1のLSIチップを積層して構成した半導体装
置を示す図である。
FIG. 1 is a main sectional view showing one embodiment of a semiconductor device (LSI chip) of the present invention. FIG. 2 is a diagram showing a semiconductor device configured by stacking the LSI chips of FIG.

【0019】図1において、11はLSIチップであ
る。なお、LSIチップ11に形成されているトランジ
スタや内層の配線は図示していない。15は表層の配線
との絶縁膜である。16は保護膜である。
In FIG. 1, reference numeral 11 denotes an LSI chip. Note that the transistors formed in the LSI chip 11 and the wiring of the inner layer are not shown. Reference numeral 15 denotes an insulating film with the surface wiring. Reference numeral 16 denotes a protective film.

【0020】14はスルーホールであり、12はそこに
形成された貫通電極である。スルーホール14は、後述
するように、LSIチップ11の表面と裏面から異方性
エッチングで形成しており、LSIチップ11の表面及
び裏面からチップ厚み方向中央部に向けて直径(断面
積)が小さくなるように、それぞれテーパ状をなして形
成されている。貫通電極12は、上記スルーホール14
に、後述するように、金属を穴埋めメッキすることで形
成されている。このため、貫通電極12もスルーホール
14と同様に、LSIチップ11の表面及び裏面では直
径(断面積)が大きく、中央部では直径(断面積)が小
さくなっている。
Reference numeral 14 denotes a through hole, and reference numeral 12 denotes a through electrode formed therein. As will be described later, the through hole 14 is formed by anisotropic etching from the front and back surfaces of the LSI chip 11, and has a diameter (cross-sectional area) from the front and back surfaces of the LSI chip 11 toward the center in the chip thickness direction. Each is formed in a tapered shape so as to be small. The through electrode 12 is provided in the through hole 14.
In addition, as described later, it is formed by filling and filling a metal with holes. Therefore, the through-electrode 12 has a large diameter (cross-sectional area) on the front surface and the back surface of the LSI chip 11 and a small diameter (cross-sectional area) at the center, similarly to the through hole 14.

【0021】13はLSIチップ11を縦方向に積層す
るための突起電極である。
Reference numeral 13 denotes a protruding electrode for stacking the LSI chips 11 in the vertical direction.

【0022】図2に示した半導体装置は、図1に示した
構成のLSIチップ11とLSIチップ21が積層され
たものであり、それらのスルーホール14,24(また
は各貫通電極12,22)が位置合わせされている。こ
の半導体装置では、配線が貫通電極12,22によりな
されるため、配線長さに起因する信号の遅れを抑制でき
る。なお、図2は、上述の半導体装置がフィルム基板4
0上に実装されている様子を示している。
The semiconductor device shown in FIG. 2 is obtained by stacking the LSI chip 11 and the LSI chip 21 having the structure shown in FIG. 1, and the through holes 14 and 24 (or the respective through electrodes 12 and 22) are provided. Is aligned. In this semiconductor device, since the wiring is formed by the through electrodes 12 and 22, it is possible to suppress a signal delay due to the wiring length. FIG. 2 shows that the above-described semiconductor device is a film substrate 4
FIG.

【0023】図3は図1,2におけるスルーホール1
4,24、貫通電極12,22の効果を説明する説明図
である。この図に示すように、スルーホール14,24
はLSIチップ11,21の表面及び裏面よりもチップ
厚み方向の中央部において断面積が小さくなるようにテ
ーパ状に形成されている。このような構成では、図2の
ようにLSIチップ11,21を積層するときのボンデ
ィング力は、スルーホール側面の剪断力(矢印A,B)
とLSIチップ11,22本体に対する圧力の反力(矢
印C,D)により保持される。
FIG. 3 shows the through hole 1 in FIGS.
FIGS. 4 and 24 are explanatory diagrams illustrating the effects of through electrodes 12 and 22. FIGS. As shown in this figure, through holes 14, 24
Are formed in a tapered shape so that the cross-sectional area is smaller at the center in the chip thickness direction than the front and back surfaces of the LSI chips 11 and 21. In such a configuration, the bonding force when stacking the LSI chips 11 and 21 as shown in FIG. 2 is the shearing force on the side surface of the through hole (arrows A and B).
And the LSI chips 11 and 22 are held by the reaction force of the pressure (arrows C and D).

【0024】このため、従来のような断面積が一定のス
ルーホールに比して、大きなボンディング力に対してま
で安定に貫通電極12,22を支持することが可能とな
る。このため、LSIチップ11,21の積層する際の
僅かな平行ずれによって生じる貫通電極12,22への
力を分解し、貫通電極12,22の破壊を防止できる。
For this reason, it becomes possible to stably support the through electrodes 12 and 22 even with respect to a large bonding force, as compared with a conventional through hole having a constant cross-sectional area. For this reason, the force applied to the through electrodes 12 and 22 caused by slight parallel displacement when the LSI chips 11 and 21 are stacked can be decomposed, and the breakage of the through electrodes 12 and 22 can be prevented.

【0025】次に、上述した図1のLSIチップ11の
製造方法の一例を説明する。図4は、その製造方法を説
明するプロセスフロー図である。また、図5、図6は主
要な工程を説明する工程図である。以下、工程順に説明
する。
Next, an example of a method of manufacturing the above-described LSI chip 11 of FIG. 1 will be described. FIG. 4 is a process flow chart for explaining the manufacturing method. FIGS. 5 and 6 are process diagrams for explaining main processes. Hereinafter, description will be made in the order of steps.

【0026】まず、回路等の形成された基板(Si基
板)17の表面に、スルーホール形成位置に開口部を有
するホトレジスト18を塗布・露光・現像し(工程1、
図5(a))、Si基板17の異方性エッチングを行っ
て穴(第1の穴)30を形成し(工程2)、ホトレジス
トを除去する(工程3、図5(b))。
First, a photoresist 18 having an opening at a position where a through hole is formed is applied, exposed and developed on the surface of a substrate (Si substrate) 17 on which circuits and the like are formed (Step 1,
5A, the hole (first hole) 30 is formed by performing anisotropic etching of the Si substrate 17 (Step 2), and the photoresist is removed (Step 3, FIG. 5B).

【0027】図7は、異方性エッチングを行なった際
の、穴30の形状を示す説明図である。エッチングの際
のエッチャントの選択でいろいろな角度が選択できる
が、例えば、エッチャントとしてKOH溶液を用いた場
合は、Si基板17の(111)面が選択的にエッチン
グされるため、角度θ(図7参照)が約54°の穴30
が形成できる。
FIG. 7 is an explanatory view showing the shape of the hole 30 when anisotropic etching is performed. Various angles can be selected by selecting an etchant at the time of etching. For example, when a KOH solution is used as an etchant, the (111) plane of the Si substrate 17 is selectively etched. About 30 ° hole 30)
Can be formed.

【0028】次に、絶縁膜(NSG膜、SiO2)19
を形成して(工程4)、そのNSG膜上にホトレジスト
を塗布・露光・現像し(工程5)、上記した回路等との
接続のためのコンタクト穴を形成し(工程6)、ホトレ
ジストを除去する(工程7、図5(c))。
Next, an insulating film (NSG film, SiO 2 ) 19
Is formed (Step 4), a photoresist is coated, exposed, and developed on the NSG film (Step 5), and a contact hole for connection with the above-described circuit or the like is formed (Step 6), and the photoresist is removed. (Step 7, FIG. 5C).

【0029】続いて、バリアメタル膜、メッキ下地膜を
スパッタにより形成し(工程8,9)、電解メッキによ
り少なくとも導電性材料(メッキ膜)31を穴30を覆
う分以上形成する(工程10、図5(d))。そして、
メッキ膜31を平坦化する(工程11、図5(e))。
Subsequently, a barrier metal film and a plating base film are formed by sputtering (steps 8 and 9), and at least a conductive material (plating film) 31 is formed by electroplating so as to cover the hole 30 (steps 10 and 9). FIG. 5D). And
The plating film 31 is flattened (Step 11, FIG. 5E).

【0030】次に、ホトレジストを塗布・露光・現像し
(工程12)、配線をパターニングして(工程13)、
ホトレジストを除去する(工程14、図5(f))。
Next, a photoresist is applied, exposed and developed (step 12), and the wiring is patterned (step 13).
The photoresist is removed (step 14, FIG. 5 (f)).

【0031】以上により、Si基板17の表面に対する
異方性エッチングプロセスが終了する。続いて、工程1
〜14と同様の工程をSi基板17の裏面に対しても行
う(工程15〜28、図6)。
Thus, the anisotropic etching process for the surface of the Si substrate 17 is completed. Then, step 1
Steps 14 to 14 are also performed on the back surface of the Si substrate 17 (steps 15 to 28, FIG. 6).

【0032】なお、当然であるが、工程15(図6
(a))においてホトレジストは、表面の穴(第1の
穴)30に対応する位置に開口を有するように、位置合
わせして形成する必要がある。また、工程16(図6
(b))では、工程4にて表面の穴30の底に形成され
たNSG膜をも除去する。さらに、工程20(図6
(d))では、工程18にて裏面の穴(第2の穴)32
の底に形成されたNSG膜33を除去する。
As a matter of course, step 15 (FIG. 6)
In (a)), it is necessary to form the photoresist so as to have an opening at a position corresponding to the hole (first hole) 30 on the surface. Step 16 (FIG. 6)
In (b)), the NSG film formed at the bottom of the hole 30 on the surface in step 4 is also removed. Further, Step 20 (FIG. 6)
In (d)), the hole (second hole) 32 on the back surface is
The NSG film 33 formed on the bottom is removed.

【0033】この後、表裏に保護膜をスパッタ法で形成
し電極部分をエッチングで露出させてウエハープロセス
を終了する。
Thereafter, protective films are formed on the front and back surfaces by sputtering, and the electrode portions are exposed by etching, thereby completing the wafer process.

【0034】以上の工程により、図1に示す半導体装置
(LSIチップ)が製造できる。なお、図1における突
起電極13は一般的な手法により形成すればよい。
By the above steps, the semiconductor device (LSI chip) shown in FIG. 1 can be manufactured. Note that the bump electrodes 13 in FIG. 1 may be formed by a general method.

【0035】また、図2のような積層構造は、上述した
半導体装置を2つ以上準備しておき、それらを公知のボ
ンディングの手法により接合することで製造できる。
The laminated structure as shown in FIG. 2 can be manufactured by preparing two or more semiconductor devices described above and joining them by a known bonding technique.

【0036】なお、上述の半導体装置では、半導体装置
の表面、裏面よりテーパ状に断面積が変化する貫通電極
を有する半導体装置について示したが、本発明はこれに
限るものではなく、半導体装置の表面から裏面に到る少
なくとも一部において貫通電極の断面積が変化していれ
ば、貫通電極がボンディング力に対して強くなるという
本発明の効果を得ることができる。
In the above-described semiconductor device, a semiconductor device having a through electrode whose cross-sectional area changes in a tapered shape from the front surface and the back surface of the semiconductor device has been described. However, the present invention is not limited to this. If the cross-sectional area of the through electrode changes at least in part from the front surface to the back surface, the effect of the present invention that the through electrode becomes strong against the bonding force can be obtained.

【0037】したがって、貫通電極は、表面と裏面との
間でその断面積が減少するように構成する必要はなく、
例えば、逆に断面積が増大するようにしてもよい。この
場合、オーバエッチングを使用することによりこの貫通
電極の製造が可能であるが、製造精度を考慮すると、上
述した異方性エッチングにより形成した図1の構成が優
れている。
Therefore, the through electrode does not need to be configured so that its cross-sectional area is reduced between the front surface and the back surface.
For example, conversely, the cross-sectional area may be increased. In this case, the through electrode can be manufactured by using over-etching. However, in consideration of the manufacturing accuracy, the configuration of FIG. 1 formed by the above-described anisotropic etching is excellent.

【0038】[0038]

【発明の効果】本発明の半導体装置によれば、貫通電極
が半導体基板の厚み方向の力に対して強くなる。また、
半導体素子を積層する場合、その際の僅かな平行ずれに
よって生じる貫通電極への力が分散し、貫通電極の破壊
を防止できる。
According to the semiconductor device of the present invention, the through electrode is strong against the force in the thickness direction of the semiconductor substrate. Also,
In the case of stacking semiconductor elements, a force applied to the through electrode caused by a slight parallel shift at that time is dispersed, and breakage of the through electrode can be prevented.

【0039】また、本発明の半導体装置の製造方法によ
れば、半導体基板の厚み方向に断面積が変化する半導体
装置を製造できる。
Further, according to the method for manufacturing a semiconductor device of the present invention, a semiconductor device whose cross-sectional area changes in the thickness direction of the semiconductor substrate can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の半導体装置の構成を示
す主要断面図である。
FIG. 1 is a main cross-sectional view illustrating a configuration of a semiconductor device according to an embodiment of the present invention.

【図2】図1の半導体装置が積層された半導体装置を示
す断面図である。
FIG. 2 is a sectional view showing a semiconductor device in which the semiconductor device of FIG. 1 is stacked;

【図3】図1の半導体装置の効果を説明する図である。FIG. 3 is a diagram illustrating an effect of the semiconductor device of FIG. 1;

【図4】図1の半導体装置の製造方法を説明するフロー
図である。
FIG. 4 is a flowchart illustrating a method for manufacturing the semiconductor device of FIG. 1;

【図5】図1の半導体装置の製造方法を説明する工程図
である。
FIG. 5 is a process chart illustrating a method for manufacturing the semiconductor device of FIG. 1;

【図6】図1の半導体装置の製造方法を説明する、図5
に続く工程図である。
FIG. 6 illustrates a method for manufacturing the semiconductor device of FIG. 1;
FIG.

【図7】異方性エッチングにより形成する穴の構成を説
明する図である。
FIG. 7 is a diagram illustrating a configuration of a hole formed by anisotropic etching.

【図8】従来の半導体装置の構成を示す主要断面図であ
る。
FIG. 8 is a main cross-sectional view showing a configuration of a conventional semiconductor device.

【図9】図9の半導体装置が積層された半導体装置を示
す断面図である。
9 is a cross-sectional view showing a semiconductor device in which the semiconductor device of FIG. 9 is stacked.

【図10】従来の半導体装置の問題点を説明する図であ
る。
FIG. 10 is a diagram illustrating a problem of a conventional semiconductor device.

【図11】従来の半導体装置の問題点を説明する拡大図
である。
FIG. 11 is an enlarged view illustrating a problem of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

11,21 LSIチップ 12,22 貫通電極 13,23 突起電極 14,24 スルーホール 15,25 絶縁膜 16,26 保護膜 30,32 穴 11, 21 LSI chip 12, 22, penetrating electrode 13, 23 projecting electrode 14, 24 through hole 15, 25 insulating film 16, 26 protective film 30, 32 hole

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板を貫通する貫通電極を有して
なる半導体装置において、 前記貫通電極は、前記半導体基板の表面から裏面に到る
途中に、断面積が変化している部位を有することを特徴
とする半導体装置。
1. A semiconductor device having a through electrode penetrating a semiconductor substrate, wherein the through electrode has a portion whose cross-sectional area changes in the middle from the front surface to the back surface of the semiconductor substrate. A semiconductor device characterized by the above-mentioned.
【請求項2】 半導体基板を貫通する貫通電極を有して
なる半導体装置において、 前記貫通電極は、前記半導体基板の表面から裏面に到る
途中に、断面積の小さい部位を有することを特徴とする
半導体装置。
2. A semiconductor device having a penetrating electrode penetrating a semiconductor substrate, wherein the penetrating electrode has a portion having a small cross-sectional area on the way from the front surface to the back surface of the semiconductor substrate. Semiconductor device.
【請求項3】 請求項1または請求項2に記載の半導体
装置が、少なくとも2つ、前記貫通電極どうしが位置合
わせされ積層されてなることを特徴とする半導体装置。
3. The semiconductor device according to claim 1, wherein at least two of the through electrodes are aligned with each other and stacked.
【請求項4】 請求項2に記載の半導体装置の製造方法
であって、 前記半導体基板の表面または裏面の一方の面から、異方
性エッチングすることで第1の穴を形成し、その第1の
穴に金属メッキを行う工程と、 前記半導体基板の他方の面から、異方性エッチングする
ことで、第1の穴に対応する位置に第2の穴を形成し、
その第2の穴に金属メッキを行う工程と、を含むことを
特徴とする半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 2, wherein a first hole is formed by performing anisotropic etching from one of a front surface and a back surface of the semiconductor substrate. Forming a second hole at a position corresponding to the first hole by performing metal plating on the first hole, and performing anisotropic etching from the other surface of the semiconductor substrate;
Performing a metal plating on the second hole.
JP11220620A 1999-08-04 1999-08-04 Semiconductor device and manufacture thereof Pending JP2001044197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11220620A JP2001044197A (en) 1999-08-04 1999-08-04 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11220620A JP2001044197A (en) 1999-08-04 1999-08-04 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2001044197A true JP2001044197A (en) 2001-02-16

Family

ID=16753835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11220620A Pending JP2001044197A (en) 1999-08-04 1999-08-04 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2001044197A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100945A (en) * 2001-09-27 2003-04-04 Fujitsu Ltd Semiconductor device, and semiconductor device unit and manufacturing method thereof
JP2005235858A (en) * 2004-02-17 2005-09-02 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof
JP2006011377A (en) * 2004-05-28 2006-01-12 Hoya Corp Light-emitting structure of spectacle frame, and method for manufacturing spectacle frame and spectacle component
US7129112B2 (en) 2003-03-25 2006-10-31 Seiko Epson Corporation Manufacturing method for semiconductor device, semiconductor device, and electronic apparatus
JP2007005401A (en) * 2005-06-21 2007-01-11 Matsushita Electric Works Ltd Semiconductor device and its manufacturing method
JP2007005403A (en) * 2005-06-21 2007-01-11 Matsushita Electric Works Ltd Method of forming through wiring in semiconductor substrate
US7193297B2 (en) 2003-05-19 2007-03-20 Seiko Epson Corporation Semiconductor device, method for manufacturing the same, circuit substrate and electronic device
WO2010109746A1 (en) * 2009-03-27 2010-09-30 パナソニック株式会社 Semiconductor device and method for manufacturing same
DE102010038910A1 (en) 2009-08-21 2011-02-24 Mitsubishi Electric Corp. Through-electrode semiconductor device and manufacturing method
KR101306665B1 (en) * 2007-01-18 2013-09-10 (주) 미코에스앤피 Method of manufacturing a needle of a probe card
CN104091792A (en) * 2014-06-20 2014-10-08 华进半导体封装先导技术研发中心有限公司 Structure for improving TSV adapter plate electromigration reliability and preparation method
JP2015082598A (en) * 2013-10-23 2015-04-27 富士電機株式会社 Semiconductor substrate and semiconductor substrate manufacturing method
US9198290B2 (en) 2011-09-15 2015-11-24 Shinko Electric Industries Co., Ltd. Wiring substrate, method of manufacturing the same, and semiconductor device
JP2017022220A (en) * 2015-07-09 2017-01-26 大日本印刷株式会社 Through electrode substrate and method of manufacturing the same
US9925770B2 (en) 2016-02-02 2018-03-27 Seiko Epson Corporation Wiring substrate, MEMS device, liquid ejecting head, and liquid ejecting apparatus
US11152294B2 (en) * 2018-04-09 2021-10-19 Corning Incorporated Hermetic metallized via with improved reliability
US11760682B2 (en) 2019-02-21 2023-09-19 Corning Incorporated Glass or glass ceramic articles with copper-metallized through holes and processes for making the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222656A (en) * 1986-03-25 1987-09-30 Nec Corp Semiconductor device
JPS62247546A (en) * 1986-04-18 1987-10-28 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH0563137A (en) * 1991-08-30 1993-03-12 Fujitsu Ltd Semiconductor device
JPH08162459A (en) * 1994-12-08 1996-06-21 Nec Corp Semiconductor substrate and manufacturing method thereof
JP2000246475A (en) * 1999-02-25 2000-09-12 Seiko Epson Corp Machining method by means of laser beams
JP2000260934A (en) * 1999-03-05 2000-09-22 Seiko Epson Corp Manufacture for semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222656A (en) * 1986-03-25 1987-09-30 Nec Corp Semiconductor device
JPS62247546A (en) * 1986-04-18 1987-10-28 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH0563137A (en) * 1991-08-30 1993-03-12 Fujitsu Ltd Semiconductor device
JPH08162459A (en) * 1994-12-08 1996-06-21 Nec Corp Semiconductor substrate and manufacturing method thereof
JP2000246475A (en) * 1999-02-25 2000-09-12 Seiko Epson Corp Machining method by means of laser beams
JP2000260934A (en) * 1999-03-05 2000-09-22 Seiko Epson Corp Manufacture for semiconductor device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100945A (en) * 2001-09-27 2003-04-04 Fujitsu Ltd Semiconductor device, and semiconductor device unit and manufacturing method thereof
JP4695796B2 (en) * 2001-09-27 2011-06-08 富士通セミコンダクター株式会社 Semiconductor device, semiconductor device unit and manufacturing method thereof
US7498661B2 (en) 2003-03-25 2009-03-03 Seiko Epson Corporation Manufacturing method for semiconductor device, semiconductor device, and electronic apparatus
US7129112B2 (en) 2003-03-25 2006-10-31 Seiko Epson Corporation Manufacturing method for semiconductor device, semiconductor device, and electronic apparatus
US7193297B2 (en) 2003-05-19 2007-03-20 Seiko Epson Corporation Semiconductor device, method for manufacturing the same, circuit substrate and electronic device
JP2005235858A (en) * 2004-02-17 2005-09-02 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof
JP2006011377A (en) * 2004-05-28 2006-01-12 Hoya Corp Light-emitting structure of spectacle frame, and method for manufacturing spectacle frame and spectacle component
JP2007005403A (en) * 2005-06-21 2007-01-11 Matsushita Electric Works Ltd Method of forming through wiring in semiconductor substrate
JP2007005401A (en) * 2005-06-21 2007-01-11 Matsushita Electric Works Ltd Semiconductor device and its manufacturing method
JP4581864B2 (en) * 2005-06-21 2010-11-17 パナソニック電工株式会社 Method for forming through wiring on semiconductor substrate
JP4650117B2 (en) * 2005-06-21 2011-03-16 パナソニック電工株式会社 Manufacturing method of semiconductor device
KR101306665B1 (en) * 2007-01-18 2013-09-10 (주) 미코에스앤피 Method of manufacturing a needle of a probe card
WO2010109746A1 (en) * 2009-03-27 2010-09-30 パナソニック株式会社 Semiconductor device and method for manufacturing same
JP5412506B2 (en) * 2009-03-27 2014-02-12 パナソニック株式会社 Semiconductor device
US8421238B2 (en) 2009-03-27 2013-04-16 Panasonic Corporation Stacked semiconductor device with through via
US8618666B2 (en) 2009-08-21 2013-12-31 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing the same
DE102010038910A1 (en) 2009-08-21 2011-02-24 Mitsubishi Electric Corp. Through-electrode semiconductor device and manufacturing method
US9198290B2 (en) 2011-09-15 2015-11-24 Shinko Electric Industries Co., Ltd. Wiring substrate, method of manufacturing the same, and semiconductor device
JP2015082598A (en) * 2013-10-23 2015-04-27 富士電機株式会社 Semiconductor substrate and semiconductor substrate manufacturing method
CN104091792A (en) * 2014-06-20 2014-10-08 华进半导体封装先导技术研发中心有限公司 Structure for improving TSV adapter plate electromigration reliability and preparation method
JP2017022220A (en) * 2015-07-09 2017-01-26 大日本印刷株式会社 Through electrode substrate and method of manufacturing the same
US9925770B2 (en) 2016-02-02 2018-03-27 Seiko Epson Corporation Wiring substrate, MEMS device, liquid ejecting head, and liquid ejecting apparatus
US11152294B2 (en) * 2018-04-09 2021-10-19 Corning Incorporated Hermetic metallized via with improved reliability
US11201109B2 (en) 2018-04-09 2021-12-14 Corning Incorporated Hermetic metallized via with improved reliability
US11760682B2 (en) 2019-02-21 2023-09-19 Corning Incorporated Glass or glass ceramic articles with copper-metallized through holes and processes for making the same

Similar Documents

Publication Publication Date Title
JP2001044197A (en) Semiconductor device and manufacture thereof
JP2001127240A (en) Method of manufacturing semiconductor device
US7786573B2 (en) Packaging chip having interconnection electrodes directly connected to plural wafers
JP3690407B2 (en) Manufacturing method of semiconductor device
JPS60160645A (en) Laminated semiconductor integrated circuit device
TWI484605B (en) Package substrate and manufacturing method thereof
JP7267767B2 (en) Semiconductor device and method for manufacturing semiconductor device
US8035234B2 (en) Wiring substrate, manufacturing method thereof, and semiconductor device
JP2005012180A (en) Semiconductor device and its manufacturing method
JP2007005401A (en) Semiconductor device and its manufacturing method
JP2001189414A (en) Semiconductor chip, manufacturing method therefor, semiconductor module, and electronic apparatus
JP2014503992A (en) Conductive pads defined by embedded traces
JP4171492B2 (en) Semiconductor device and manufacturing method thereof
US10403510B2 (en) Method of fabricating a carrier-less silicon interposer using photo patterned polymer as substrate
US7183190B2 (en) Semiconductor device and fabrication method therefor
JP3039355B2 (en) Manufacturing method of film circuit
JPH08306724A (en) Semiconductor device, manufacturing method and its mounting method
JP3882521B2 (en) Mounting method of semiconductor device
JP3523815B2 (en) Semiconductor device
JPH11204519A (en) Semiconductor device and its manufacture
JP2004342990A (en) Semiconductor device and its manufacturing process, circuit board, and electronic apparatus
JP2001024056A (en) Multi-layered wiring device for semiconductor device, and manufacture thereof
JP2001223289A (en) Lead frame, its manufacturing method, semiconductor integrated circuit device and its manufacturing method
TW202008519A (en) Package substrate structure and method of bonding using the same
JP2005101186A (en) Laminated semiconductor integrated circuit

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040302