JP3881629B2 - 入射光の二次元位置検出装置 - Google Patents

入射光の二次元位置検出装置 Download PDF

Info

Publication number
JP3881629B2
JP3881629B2 JP2003083454A JP2003083454A JP3881629B2 JP 3881629 B2 JP3881629 B2 JP 3881629B2 JP 2003083454 A JP2003083454 A JP 2003083454A JP 2003083454 A JP2003083454 A JP 2003083454A JP 3881629 B2 JP3881629 B2 JP 3881629B2
Authority
JP
Japan
Prior art keywords
light
detector
incident
mirror
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003083454A
Other languages
English (en)
Other versions
JP2004294106A (ja
Inventor
孝佳 弓井
卓史 吉田
恭二 土井
憲明 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2003083454A priority Critical patent/JP3881629B2/ja
Publication of JP2004294106A publication Critical patent/JP2004294106A/ja
Application granted granted Critical
Publication of JP3881629B2 publication Critical patent/JP3881629B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、入射した光の二次元位置を求める入射光の二次元位置検出装置に係り、特に宇宙から飛来する宇宙線が地球大気に突入する際に生ずる発光現象の光のような、微弱な入射光の二次元位置を検出するのに好適な入射光の二次元位置検出装置に関する。
【0002】
【従来の技術】
宇宙線望遠鏡は、宇宙から飛来する宇宙線が地球大気に突入する際に発光する発光現象を撮像できる装置として知られている。この宇宙線望遠鏡は、宇宙線による発光現象を光学的に超高速撮像する装置であって、その撮像した情報から宇宙線の到来方向、エネルギー、粒子の種類など物理的特性を決定することができる。この宇宙線望遠鏡は、宇宙線事象を長期間同時に全天監視する装置である。
【0003】
ここで、宇宙線とは、光速に近い速さで宇宙空間を飛来する陽子やガンマ線などの高エネルギー放射線のことをいう。また、前記発光現象には、大気蛍光と、大気チェレンコフ光との二種類ある。大気蛍光は、宇宙線から発達した二次生成粒子(空気シャワー)の荷電粒子が大気分子を励起することにより放出される光である。この大気蛍光は、発光点から等方的に放射され、発光持続時間が約1μ秒程度である。一方、チェレンコフ光は、荷電粒子が大気中を光速度(この場合、真空中の光速度/大気の屈折率)より早く進んだときに発生する光である。これは進行方向に鋭い指向性をもち、発光時間が10〜数10n秒である。
【0004】
このような発光現象を撮像できる宇宙線望遠鏡は、蛍光面を備えた大口径の入射部を持ち、この入射部の後方側に設けたピクセルディテクタと、CCDカメラとを有し、入射部からの光をビームスプリッタによって前記ピクセルディテクタとCCDカメラとの方向に分割し、ピクセルディテクタで得たトリガによるゲート信号でCCDカメラのシャッタを駆動するようにしている(例えば、非特許文献1参照)。
【0005】
図7は、上記従来の宇宙線望遠鏡の構成例を示す概略説明図である。この図7において、宇宙線望遠鏡100は、大別すると、球面鏡102と、光伝送路104と、光電変換部106と、電子増幅部108と、蛍光面110と、二次元位置検出装置112と、シャッタ手段114と、CCDカメラからなる撮像装置116と、ビームスプリッタ118とを備え、前記宇宙線などによる発光現象を撮影できる装置である。
【0006】
ここで、前記球面鏡102は、宇宙から飛来する宇宙線が地球大気に突入する際に発光する発光現象による光を集めて、光伝送路104に供給する。前記光伝送路104は、前記光を光電変換部106に導くものである。前記光電変換部106は、前記光伝送路104によって導かれて入射した光の位置において電子を放出する部材である。前記電子増幅部108は、前記光電変換部106に対面配置され、前記光電変換部106から放出された電子を増幅するマイクロチャンネルプレートによって構成したものである。前記蛍光面110は、前記電子増幅部108のマイクロチャンネルプレートから入射した電子の位置に応じて、当該位置で発光する面をもったものである。
【0007】
前記ビームスプリッタ118は、前記蛍光面110の光の一部を二次元位置検出装置112に、残りの光を前記撮像装置116側に導くものである。前記二次元位置検出装置112は、前記蛍光面110を監視して前記蛍光面110の発光位置に応じて、位置情報の信号とトリガ信号とを形成する装置であって、後述する二次元検出器112aと、波高弁別回路112bとから構成されている。前記シャッタ手段114は、二次元位置検出装置112からのトリガ信号により開放駆動されるものである。また、前記撮像装置116は、撮像部が複数に分割してある。そして、シャッタ手段114は、撮像装置116の分割された撮像部に対応して開閉部(シャッタ)が設けられ、二次元位置検出装置112の出力する位置情報に対応した開閉部が開放される。撮像装置116は、シャッタ手段114が開放した位置に対応した蛍光面110を撮像する。
【0008】
前記二次元位置検出装置112の二次元検出器112aとしては、複数のアノードを持つ光電子増倍管(Photo Multiplier Tube:PMT)が用いられていた。また、波高弁別回路112bは、二次元検出器112aである光電子増倍管(PMT)で検出した検出信号を基に、シャッタ手段114の駆動制御部に開放する開閉部の位置情報と駆動トリガ信号とを与える。
宇宙線望遠鏡100は、このように構成してあるので、宇宙から飛来する宇宙線が地球大気に突入する際の発光に同期して、発光現象を撮像することができ、宇宙線の通過軌跡などを得ることができる。
【0009】
【非特許文献1】
東京大学宇宙線研究所、佐々木真人著、“1分角精度・広視野宇宙線望遠鏡”、特に第5頁および第9頁、2002年3月8日、「高エネルギー宇宙の総合的理解」研究会、[平成15年2月20日検索]、インターネット<http://taws300.icrr.u-tokyo.ac.jp/workshop2002/pdf/M Sasaki2.pdf>。
【0010】
【発明が解決しようとする課題】
しかしながら、上記従来の宇宙線望遠鏡100に用いられる二次元検出器112aは、4×4の16個のアノードを有するのみであって、入射光に対する二次元位置の検出精度が悪く、球面鏡102に入射した光の位置精度が充分でなく、宇宙線の通過軌跡や大気蛍光の発光位置の検出精度が低下する。すなわち、撮像装置116は、撮像面が128×128個に分割してあり、これらに対応してシャッタ手段114に開閉部が設けてある。しかし、従来の二次元検出器112aは、4×4個のアノードを有するのみであり、いずれかのアノードに光が入射したときに、これに対応したシャッタ手段114の開閉部を駆動するようになっている。したがって、撮像装置116の分解能が低下し、宇宙線の詳細な解析を困難にする。そして、二次元検出器112aのアノード数を増加させた場合、各アノードに対応して検出信号を順次読み出すようになるため、二次元検出器112aへの光の入射位置を求めるのに多くの時間を必要とし、時間分解能が損なわれて検出精度が低下する。
本発明は、上述した欠点を解消し、時間分解能に優れ、高い位置検出精度を得られるようにすることを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る入射光の二次元位置検出装置は、入射した光を第1の方向に反射する複数の第1ミラー素子と、これら第1ミラー素子と交互に配置されて前記光を第2の方向に反射する複数の第2ミラー素子とがマトリックス状に配置してあるミラーアレイと、前記第1ミラー素子が反射した前記光が入射し、前記光の入射位置に基づいて、前記ミラーアレイの前記第1ミラー素子の行方向または列方向の反射位置情報を出力する第1検出器と、前記第2ミラー素子が反射した前記光が入射し、前記光の入射位置に基づいて、前記ミラーアレイの前記第2ミラー素子の列方向または行方向の反射位置情報を出力する第2検出器と、この第2検出器と前記第1検出器との出力信号に基づいて、前記ミラーアレイにおける前記光の入射位置を求める位置特定回路と、を有することを特徴としている。
【0012】
このようになっている本発明は、光をミラーアレイに入射させて2つの方向に反射し、それぞれの方向に設けた第1検出器と第2検出器とによって、ミラーアレイを構成しているミラー素子の行方向または列方向の反射位置を求めるようにしているため、光の入射位置を求める時間を大幅に短縮できて高い時間分解能が得られるとともに、ミラー素子の数を多くすることにより、位置検出精度を向上することができる。
【0013】
前記第1検出器と前記第2検出器とは、前記光の入射によって電子を放出する変換部と、この変換部に対面して一方向に並列配置され、前記光の入射位置において放出された電子が入射する複数の電子検出電極とを有し、前記第1検出器と前記第2検出器とは、それぞれの前記電子検出電極の配列方向が交差するように配置する。これにより、各検出器の構造を簡素にできるとともに、光を反射してミラー素子の行方向の位置と列方向の位置とを容易に求めることができる。
【0014】
また、前記第1検出器の前記電子検出電極は、前記第1ミラー素子の行または列に対応して設け、前記第2検出器の前記電子検出電極は、前記第2ミラー素子の列または行に対応して設けることが望ましい。これにより、どのミラー素子が入射光を反射したか、すなわち光の入射位置を容易、確実に求めることができる。
【0015】
【発明の実施の形態】
以下、本発明に係る入射光の二次元位置検出装置の好ましい実施の形態を、添付図面に従って詳細に説明する。
図1は、本発明の実施の形態に係る入射光の二次元位置検出装置を備えた宇宙線望遠鏡の概略説明図である。この図1において、本発明に係る宇宙線望遠鏡1は、宇宙から飛来する宇宙線が地球大気に突入する際に発光する発光現象による光3をとらえる球面鏡2と、前記球面鏡2からの光3を伝送する光伝送路4と、光伝送路4によって導かれた光3が入射する光検出ユニット5とを有する。
【0016】
光検出ユニット5は、光3の入射によって電子を放出する光電変換部6と、前記光電変換部6に対面配置され、光電変換部6が放出した電子を増幅するマイクロチャンネルプレートからなる電子増幅部8とを有する。また、光検出ユニット5は、前記電子増幅部8が放出した増幅電子が入射し、入射した増幅電子の位置において発光する蛍光面10と、蛍光面10から放射した光が入射し、トリガ信号を生成する二次元位置検出装置12と、前記二次元位置検出装置12からのトリガ信号により開放されるシャッタ手段14と、シャッタ手段14の後方側に配置したCCDカメラからなる撮像装置16とを備えている。さらに、光検出ユニット5は、蛍光面10からの光を前記二次元位置検出装置12と撮像装置16とに分割するビームスプリッタ18を備えている。
【0017】
なお、撮像装置16は、撮像面が例えば128×128個の撮像領域に分割してある。そして、シャッタ手段14は、撮像装置16の各撮像領域に対応して128×128個のシャッタが設けられ、これらのシャッタが図示しないシャッタ駆動制御部により相互に独立して開閉される。
【0018】
実施形態に係る二次元位置検出装置12は、詳細は後述するが、ビームスプリッタ18からの光から二種類の検出信号(直交するX軸方向の検出信号とY軸方向の検出信号)を得る二次元検出器12aと、二次元検出器12aからの二種類の検出信号に基づいて光が入射した位置を検出し、当該位置に対応した位置情報の信号と、シャッタ手段14のシャッタを開放するトリガ信号とを出力する位置特定回路12bとからなる。
【0019】
二次元位置検出装置12の二次元検出器12aは、図2に示すように、レンズ20とマイクロミラーアレイ22と、一対の1次元アレイ光検出器26x、26yとから構成してある。レンズ20は、入射した光を平行光にする。マイクロミラーアレイ22は、レンズ20を透過した光を二方向に反射するようになっている。
【0020】
すなわち、マイクロミラーアレイ22は、入射した光を所定の角度で反射する複数の第1ミラー素子22a、…、および当該第1ミラー素子22a、…とは逆の角度で前記光を反射する複数の第2ミラー素子22b…を交互に配置した構造となっている。これらのミラー素子22a、22bは、所定の大きさ、例えば14μm×14μm程度の大きさに形成してあって、マトリックス状に配置してある。さらに、二次元位置検出装置12は、第1ミラー素子22aの1群と第2ミラー素子22bの1群とに対応して一対の1次元アレイ光検出器26x、26yを備えている。
【0021】
第1検出器である1次元アレイ光検出器26xは、マイクロミラーアレイ22の第1ミラー素子22aに対面して配置してあって、第1ミラー素子22aが反射した光が入射する。また、第2検出器である1次元アレイ光検出器26yは、マイクロミラーアレイ22の第2ミラー素子22bに対面して配置してあって、第2ミラー素子22bが反射した光が入射する。1次元アレイ光検出器26x、26yは、後述するように、マイクロミラーアレイ22の反射する光を受光して電子に変換し、マイクロチャンネルプレート(MCP)にて電子を増幅し、増幅した電子を検出する複数の電子検出電極24x、…、24y…を有している。そして、各電子検出電極24x、…、24y、…は、実施形態の場合、それぞれが直線状(帯状)に形成してあって、一方向に並列に配置してある。
【0022】
さらに、1次元アレイ光検出器26xは、マイクロミラーアレイ22に入射した光のX座標位置を検出するX軸用であって、電子検出電極24xがミラー素子22aの列に対応して設けてある。また、1次元アレイ光検出器26yは、マイクロミラーアレイ22に入射した光のY座標位置を検出するY軸用であって、電子検出電極24yがミラー素子22bの行に対応して設けてある。そして、X軸用1次元アレイ光検出器26xとY軸用1次元アレイ光検出器26yとは、これらを構成している各電子検出電極24x、24yとの配列方向が交差するように配置してある。実施形態の場合、電子検出電極24xの長手方向と、電子検出電極24yの長手方向とが直交するように配置してある。
【0023】
前記位置特定回路12bは、前記X軸用1次元アレイ光検出器26xの帯状の電子検出電極24x、…から得られたX軸座標の検出信号(位置信号)の波高を弁別するX軸用波高弁別回路28xと、Y軸用1次元アレイ光検出器26yの帯状の電子検出電極24y、…から得られたX軸座標の検出信号(位置信号)の波高を弁別するY軸用波高弁別回路28yと、トリガ判定回路28zから構成してある。トリガ判定回路28zは、X軸用波高弁別回路28xおよびY軸用波高弁別回路28yからの二種類の検出信号を基に、マイクロミラーアレイ22に入射した光の位置を判定し、入射光の位置情報と撮像系トリガ信号とを出力する。
【0024】
なお、マイクロミラーアレイ22は、制御回路30によって各ミラー素子22a、22bの傾きが制御されるようになっている。二次元位置検出装置12は、二次元検出器12aを構成するX軸用1次元アレイ光検出器26xとY軸用1次元アレイ光検出器26yとが同様に構成してある。X軸用1次元アレイ光検出器26xは、図3の拡大概略図に示すように、真空容器32を有していて、真空容器32の前面に光電変換部34が設けてある。また、X軸用1次元アレイ光検出器26xは、真空容器32の内部に、光電変換部34の次に、電子増幅モジュール(マイクロチャンネルプレート)36と、帯状の電子検出電極24x、…が多数設けられた検出モジュール38との順で配設したものである。
【0025】
前記光電変換部34は、光(光子)の入射によって電子を放出する。前記マイクロチャンネルプレート36は、光電変換部34に対面配置してあり、光電変換部34が放出した電子を増幅する電子増倍管が複数設けられた構造をしている。この電子増倍管(マイクロキャピラリー)は、直径が例えば6μm、長さが例えば0.5mm程度の加速管と、この加速管の両端に設けたアノードとカソードとからなる。このアノードとカソードとの間には、1000〜2000Vの直流電圧が印可されており、加速管内に入った電子は、カソードとアノードとの間に印可してある高電圧で加速され、加速管の内壁に衝突する毎に二次電子を生じて雪崩的に電子の数が増幅されて増幅電子として加速管から出射される。
【0026】
前記検出モジュール38は、セラミック材板SPの表面に金属薄膜で形成した帯状の電子検出電極24x、…が平面状に一方向に並列して多数設けられている。検出モジュール38は、帯状の電子検出電極24x、…にマイクロチャンネルプレート(電子増幅モジュール)36を構成している電子増倍管からの電子が入射すると、電子が入射した電子検出電極24xから信号(光電子パルス)を取り出せるようになっている。なお、Y軸用1次元アレイ光検出器26yは、X用1次元アレイ光検出器26xと同様に形成してあって、X用1次元アレイ光検出器26xを90度回転させた状態と同じである。
【0027】
図4は、実施形態に係る二次元位置検出装置12のX軸用1次元アレイ光検出器26xの電子検出電極24xと、Y軸用1次元アレイ光検出器26yの電子検出電極24yと、マイクロミラーアレイ22との関係を拡大して示した図である。この図4において、マイクロミラーアレイ22は、シリコンマイクロプロセス技術を用いて作られるDMD(Digital Micro Mirror Device)として形成してある。このDMDは、所定の大きさ(例えば、14μm×14μm角)の微小ミラー素子をマトリックス状に並べたものである。これを用いて所定の角度(例えばプラス10度)傾けた第1ミラー素子22aと、これとは逆に所定の角度(マイナス10度)傾けた第2ミラー素子22bとを交互に設定することで実現可能となる。なお、図4の場合、各第1ミラー素子22aは白抜きで示してあり、第2ミラー素子22bは黒塗りにして示してある。
【0028】
マイクロミラーアレイ22は、図4に示すように、ビームスプリッタ18から入射した光による入射光スポット50が形成されると、白抜きの一群の第1ミラー素子22aと、黒塗りにした一群の第2ミラー素子22bとがこれを反射する。第1ミラー素子22aは、X軸用1次元アレイ光検出器26xの光電変換部34に、反射光スポット52xを形成する。また、第2ミラー素子22bは、Y軸用1次元アレイ光検出器26yの光電変換部34に、反射光スポット52yを形成する。そして、各1次元アレイ光検出器26x、26yは、反射光スポット52x、52yに対応した位置の電子検出電極24x、24yから検出信号(光電子パルス)が出力される。
【0029】
なお、電子検出電極24xおよび電子検出電極24yは、実施形態の場合、それぞれ128個で構成されていて、マイクロミラーアレイ22が1024×1024個のミラー素子によって構成されている。そして、1024×1024個のミラー素子は、各行、各列の半分が第1ミラー素子22aであって、他の半分が第2ミラー素子22bとなっていて、これらが交互に配置されている。そして、実施形態の場合、各電子検出電極24x、24yは、撮像装置16の分割された128×128個の撮像領域の行と列とに対応している。すなわち、各電子検出電極24x、24yは、実施形態の場合、幅が8個分のミラー素子に相当する大きさに形成してある。このため、反射光スポットが形成された場合、1つの電子検出電極に対応するミラー素子の数がX軸方向およびY軸方向において同程度となる。したがって、X座標位置の信号とY座標位置の信号とを同時に出力することができる。
【0030】
また、X軸用1次元アレイ光検出器26xの各電子検出電極24xは、図4に示すように、長手方向がY軸に沿って配置され、Y軸用1次元アレイ光検出器26yの各電子検出電極24yは、長手方向がX軸に沿って配置される。したがって、X軸用1次元アレイ光検出器26xは、マイクロミラーアレイ22に入射した光のX座標位置の信号を出力し、Y軸用1次元アレイ光検出器26yは、マイクロミラーアレイ22に入射した光のY座標位置の信号を出力する。そして、各電子検出電極24x、24yは、撮像装置16の128×128個の撮像領域に対応しており、これらのいずれかから光電子パルスが出力されると、対応するシャッタが開放され、ビームスプリッタ18を透過した光が撮像装置16に入射する。
【0031】
このような宇宙線望遠鏡の動作について簡単に説明する。宇宙から飛来する宇宙線が地球大気に突入する際の発光現象による光3は、球面鏡2により光伝送路4へと導かれる。光伝送路4に導かれた光3は、光伝送路4の内部を通って光検出ユニット5の光電変換部6に入射される。
【0032】
光電変換部6に入射された光3は、光電変換部6により、その入射位置において光電子に変換され、光電変換部6から電子として放出される。光電変換部6から放出された電子は、電子増幅部8において加速され、個数が104〜107倍程度に増幅される。電子増幅部8で増幅され加速された電子は、蛍光面10に衝突して光に変換される。蛍光面10から放射された光は、ビームスプリッタ18によって、一部が二次元位置検出装置12側に、その残りが撮像装置16側に、それぞれ導かれる。
【0033】
二次元位置検出装置12に導かれた光は、二次元検出器12aに入射し、レンズ20を介してマイクロミラーアレイ22上の、蛍光面10の発光位置と対応した位置に入射光スポット50を形成する。この入射光スポット50は、マイクロミラーアレイ22を構成している各ミラー素子22a、22bによって反射され、X軸用1次元アレイ光検出器26xとY軸用1次元アレイ光検出器26yとの光電変換部34に反射光スポット52x、52yを形成する。各1次元アレイ光検出器26x、26yは、反射光スポット52x、52yに対応した各電子検出電極24x、24yから検出信号(光電子パルス)をX座標信号、Y座標信号として出力する。これらは、パラレル信号として位置特定回路12bの波高弁別回路28x、28Yを介してトリガ判定回路28zに入力する。トリガ判定回路28zは、パラレル入力したX座標信号、Y座標信号に基づいて、マイクロミラーアレイ22上の入射光スポット50の位置を求める。そして、トリガ判定回路28zは、トリガ信号を生成して入射光スポット50の位置情報とともに図示しないシャッタ駆動制御部に送出する。シャッタ駆動制御部は、入力した位置情報に対応したシャッタ手段14のシャッタを開放する。これにより、ビームスプリッタ18を透過した光が撮像装置16に入射し、撮像装置16がミラーアレイ22の入射光スポット50に対応した蛍光面10の位置の発光状態を撮像する。そして、大気中の発光点が移動すると、それに対応してシャッタ手段14の各シャッタが順次開放される。したがって、撮像装置16によって宇宙線の通過軌跡などを撮像することができる。
【0034】
このように、実施形態の二次元位置検出装置12によれば、X軸用1次元アレイ光検出器26xの帯状の電子検出電極24xから得られた検出信号も、Y軸用1次元アレイ光検出器26yの帯状の電子検出電極24yから得られた検出信号も1次元の信号であるが、両電子検出電極24xおよび電子検出電極24yが直交配置されているので、電子検出電極24xおよび電子検出電極24yからの検出信号に基づいて、位置特定回路12bで入射した光のマイクロミラーアレイ22上の位置、すなわち蛍光面10の発光位置を正確に特定することができる。しかも、実施形態においては、直交させた各電子検出電極24x、24yの出力信号を読み取るだけであるため、各検出電極24x、24yの数をnとした場合に、2n個の読み出しでよく、入射光位置を高速に求めることができる。したがって、撮像装置16による高速撮像が可能で、高い時間分解能が得られるとともに、位置検出精度が向上して宇宙線の解析精度を向上させることができる。
【0035】
図5は、他の実施形態に係る電子検出電極の説明図である。この図5において、検出モジュール38aは、セラミック材板SPの表面に金属薄膜で四角形状に形成した電極片44、…が複数設けてある。これらの電極片44は、撮像装置16の分割された撮像領域に対応した数だけ設けられ、実施形態の場合、128×128個がマトリックス状に配置してある。また、各電極片44は、同じ列の電子検出電極44、…が直列に電気的に導通状態に接続され、一端が対応する接続端子46、…に接続するような構造にしてある。このようになっている検出モジュール38aは、一対が電極片44の接続方向を直交するように配置される。
【0036】
図6は、さらに他の1次元アレイ光検出器を示したものである。この図6においては、1次元アレイ光検出器60の電子検出電極62だけが図示してあって、光電変換部やマイクロチャンネルプレートなどは省略してある。この1次元アレイ光検出器60は、電子検出電極62の複数が一列に配置してある。これらの電子検出電極62は、例えばミラー素子の8×8個分の大きさに形成してあって、撮像装置16のマトリックス状に分割された撮像領域の行または列の数に対応している。そして、各電子検出電極62のそれぞれから検出信号(光電子パルス)が出力されるようになっている。また、マイクロミラーアレイ22と1次元アレイ光検出器60との間には、円柱レンズなどからなる集光部64が配設してある。集光部64は、マイクロミラーアレイ22が反射した反射光66を、1次元アレイ光検出器60の複数の電子検出電極62が配列された方向と直行する方向に集光し、電子検出電極62の配列方向に沿った帯状の反射光ビームを形成して1次元アレイ光検出器60の光電変換部(図示せず)に入射させる。
【0037】
したがって、このように形成した1次元アレイ光検出器60の電子検出電極62の配列方向を、X軸用とY軸用とで相互に直交させることにより、前記と同様にしてマイクロミラーアレイに入射した光の位置を検出することができる。また、この1次元アレイ光検出器60は、マイクロチャンネルプレートの電子倍増管などを少なくすることができ、小型、安価にできる。
【0038】
なお、電子検出電極24は、マイクロミラーアレイ22を構成しているマトリックス状に配置されたミラー素子の、行または列に対応して設けることができる。ことにより、より詳細な位置情報を容易、確実に得ることができる。
【0039】
【発明の効果】
以上に説明したように、本発明によれば、光をミラーアレイに入射させて2つの方向に反射し、それぞれの方向に設けた第1検出器と第2検出器とによって、ミラーアレイを構成しているミラー素子の行方向または列方向の反射位置を求めるようにしているため、光の入射位置を求める時間を大幅に短縮でき、高い時間分解能が得られるとともに、ミラー素子の数を多くすることにより、位置検出精度を向上することができる。
【図面の簡単な説明】
【図1】 本発明の実施形態に係る入射光の二次元位置検出装置を備えた宇宙線望遠鏡の概略図である。
【図2】 本発明の実施の形態に係る二次元位置検出装置を示す概略図である。
【図3】 本発明の実施形態に係る二次元位置検出装置における二次元検出器を構成する1次元アレイ光検出器の概略図である。
【図4】 本発明の実施形態に係るミラーアレイの作用を説明する図である。
【図5】 他の実施形態に係る電子検出電極の説明図である。
【図6】 さらに他の実施形態に係る1次元アレイ光検出器の説明図である。
【図7】 従来の宇宙線望遠鏡の構成例を示す概要図である。
【符号の説明】
1………宇宙線望遠鏡、2………球面鏡、3………光、4………光伝送路、5………光検出ユニット、6………光電変換部、8………電子増幅部、10………蛍光面、12………二次元位置検出装置、12a………二次元検出器、12b………位置特定回路、14………シャッタ手段、16………撮像装置、18………ビームスプリッタ、22………マイクロミラーアレイ、22a………第1ミラー素子、22b………第2ミラー素子、24x、24y、41、62………電子検出電極、26x………第1検出器(X軸用1次元アレイ光検出電極)、26y………第2検出器(Y軸用1次元アレイ光検出器)、28z………トリガ判定回路、34、36………変換部(光電変換部、マイクロチャンネルプレート)。

Claims (3)

  1. 入射した光を第1の方向に反射する複数の第1ミラー素子と、これら第1ミラー素子と交互に配置されて前記光を第2の方向に反射する複数の第2ミラー素子とがマトリックス状に配置してあるミラーアレイと、
    前記第1ミラー素子が反射した前記光が入射し、前記光の入射位置に基づいて、前記ミラーアレイの前記第1ミラー素子の行方向または列方向の反射位置情報を出力する第1検出器と、
    前記第2ミラー素子が反射した前記光が入射し、前記光の入射位置に基づいて、前記ミラーアレイの前記第2ミラー素子の列方向または行方向の反射位置情報を出力する第2検出器と、
    この第2検出器と前記第1検出器との出力信号に基づいて、前記ミラーアレイにおける前記光の入射位置を求める位置特定回路と、
    を有することを特徴とする入射光の二次元位置検出装置。
  2. 請求項1に記載の入射光の二次元位置検出装置において、
    前記第1検出器と前記第2検出器とは、前記光の入射によって電子を放出する変換部と、この変換部に対面して一方向に並列配置され、前記光の入射位置において放出された電子が入射する複数の電子検出電極とを有し、
    前記第1検出器と前記第2検出器とのそれぞれの前記電子検出電極の配列方向が交差している、
    ことを特徴とする入射光の二次元位置検出装置。
  3. 請求項2に記載の入射光の二次元位置検出装置において、
    前記第1検出器の前記電子検出電極は、前記第1ミラー素子の行または列に対応して設けてあり、
    前記第2検出器の前記電子検出電極は、前記第2ミラー素子の列または行に対応して設けてある、
    ことを特徴とする入射光の二次元位置検出装置。
JP2003083454A 2003-03-25 2003-03-25 入射光の二次元位置検出装置 Expired - Fee Related JP3881629B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003083454A JP3881629B2 (ja) 2003-03-25 2003-03-25 入射光の二次元位置検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003083454A JP3881629B2 (ja) 2003-03-25 2003-03-25 入射光の二次元位置検出装置

Publications (2)

Publication Number Publication Date
JP2004294106A JP2004294106A (ja) 2004-10-21
JP3881629B2 true JP3881629B2 (ja) 2007-02-14

Family

ID=33398921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083454A Expired - Fee Related JP3881629B2 (ja) 2003-03-25 2003-03-25 入射光の二次元位置検出装置

Country Status (1)

Country Link
JP (1) JP3881629B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6754706B2 (ja) * 2017-02-14 2020-09-16 京セラ株式会社 電磁波検出装置、プログラム、および情報取得システム
JP2019211456A (ja) * 2018-06-07 2019-12-12 学校法人 東洋大学 青果物および果汁の品質検査装置
CN111458741A (zh) * 2020-03-19 2020-07-28 哈尔滨工程大学 一种用于宇宙射线μ子运动方向测量的方法
CN113594054A (zh) * 2021-05-24 2021-11-02 厦门大学 一种自带位置监测的微镜系统
GB202212110D0 (en) * 2022-08-19 2022-10-05 Univ Aston Systems and methods for investigating optical inputs

Also Published As

Publication number Publication date
JP2004294106A (ja) 2004-10-21

Similar Documents

Publication Publication Date Title
CN205752093U (zh) 光学系统、光检测器、光电倍增器检测器及其系统
JP5746044B2 (ja) 位置分解測定機器に入射する量子ビームの空間座標を取得する位置分解測定機器とその方法
US9685310B2 (en) System for recording spatial and temporal properties of ions emitted from a quadrupole mass filter
US10580630B2 (en) Photomultiplier tube and method of making it
JP2011517044A (ja) 画像増強装置
EP0651233B1 (en) Ultraviolet spatial sensor
US9524855B2 (en) Cascaded-signal-intensifier-based ion imaging detector for mass spectrometer
Hirvonen et al. Photon counting imaging with an electron-bombarded CCD: towards a parallel-processing photoelectronic time-to-amplitude converter
JP3881629B2 (ja) 入射光の二次元位置検出装置
US4602282A (en) Measuring devices for two-dimensional photon-caused or corpuscular-ray-caused image signals
US5043584A (en) Photon-counting type streak camera device
US5017782A (en) X-ray detector for radiographic imaging
US4797747A (en) Streak camera device having a plurality of streak tubes
JP2670405B2 (ja) 微弱光計測装置
Richmond et al. Eye-safe laser radar focal plane array for three-dimensional imaging
Vallerga et al. Optically sensitive MCP image tube with a Medipix2 ASIC readout
Choisser Detecting photoelectron images with semiconductor arrays for multichannel photon counting
CN114137548A (zh) 光电探测装置、包括其的激光雷达及使用其的探测方法
JP2524021B2 (ja) イメ―ジ管
JP4327625B2 (ja) 光の位置情報検出装置
JP2003520345A (ja) 光画像装置のマルチプル検出器としてのccdアレイ
KR101155412B1 (ko) 마이크로 채널 판을 갖는 광검출기, 그 광검출기를 사용한 샘플 분석시스템, 그 광검출기를 이용한 광검출방법 및 샘플분석방법
JP2018129559A (ja) 高速撮像装置
CN117571752A (zh) 成像设备、检测设备及成像方法
Jeffers Image intensifier systems and their applications to astronomy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141117

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees