JP3875932B2 - Electrical circuit and control method - Google Patents

Electrical circuit and control method Download PDF

Info

Publication number
JP3875932B2
JP3875932B2 JP2002212200A JP2002212200A JP3875932B2 JP 3875932 B2 JP3875932 B2 JP 3875932B2 JP 2002212200 A JP2002212200 A JP 2002212200A JP 2002212200 A JP2002212200 A JP 2002212200A JP 3875932 B2 JP3875932 B2 JP 3875932B2
Authority
JP
Japan
Prior art keywords
current
voltage
load
value
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002212200A
Other languages
Japanese (ja)
Other versions
JP2004056935A (en
Inventor
泰也 寺田
圭一郎 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2002212200A priority Critical patent/JP3875932B2/en
Publication of JP2004056935A publication Critical patent/JP2004056935A/en
Application granted granted Critical
Publication of JP3875932B2 publication Critical patent/JP3875932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Control Of Voltage And Current In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は極低インピーダンスの負荷、特に二次電池に対する充電電流/電圧を制御するための電気回路および制御方法に関するものである。
【0002】
【従来の技術】
図4は、昇降圧チョッパ回路1を用いて二次電池2を充電する充電回路の構成の一例を示す図である。昇降圧チョッパ回路1は、サイリスタ11、12、ダイオード13、14、フィルタコンデンサCf、インダクタンスL1のコイルおよびインダクタンスL2のコイルによって構成される。抵抗R1はインダクタンスL1のコイルの抵抗成分であり、抵抗R2はインダクタンスL2のコイルの抵抗成分である。インダクタンスL1およびL2のインダクタンスは数mHオーダ、抵抗R1およびR2の抵抗は数mΩオーダであり、合成インピーダンスは非常に低い(本明細書において「極低インピーダンス」という。)。また、二次電池2自体も内部インピーダンスを持つ。
4は二次電池2の端子電圧を測定する電圧計、5は二次電池2に流れる電流を測定する電流計である。電圧計4および電流計5の測定結果は、電流制御装置30に入力される。電流制御装置30は、二次電池2に対して定電流充電を行うために、昇降圧チョッパ回路1に対して電圧指令値Em*を出力する回路である。6は外部電源である。尚、二次電池2は、例えば鉛蓄電池等で、繰り返し充放電を行えるものである。
【0003】
図5は、図4に示す充電回路の制御ブロック図である。以下、昇降圧チョッパ回路1のインダクタンスL1をインダクタンスL、昇降圧チョッパ回路1の抵抗R2と二次電池2の内部抵抗の合成抵抗を抵抗Rとして説明する。図5において、11は充電電流指令値Ib*と、電流計5(ゲイン18)からの充電電流検出値Ibdetとの差を求める加算器であり、その出力信号はPI制御器12に入力される。13は、PI制御器12の出力信号と、電圧計4からの二次電池端子電圧検出値Vbdetとの加算を求める加算器であり、その出力信号は充電電圧指令値Em*として昇降圧チョッパ装置1(ゲイン15)に入力される。16は、充電電圧指令値Em*に昇降圧チョッパ装置1のゲイン15を乗じた充電電圧Emと、二次電池端子電圧Vbの差を求める加算器である。そして、加算器16の出力信号に、インダクタンスLおよび抵抗Rの伝達関数17を乗じ、充電電流Ibが出力される。充電電流Ibは、電流計5のゲイン18を乗じて、充電電流検出値Ibdetとして、加算器11に入力される。
【0004】
このように、従来においては、充電電流Ibおよび充電電圧Vbを検出し、それをフィードバックさせて充電電圧指令値Em*を算出して定電流制御を行っていた。
【0005】
【発明が解決しようとする課題】
しかしながら従来の制御においては次の様な問題があった。即ち、インダクタンスLや抵抗Rは温度や磁気飽和の影響で変化する。また、二次電池2には充電状況に応じた化学的変化による内部インピーダンスの変動も生じる。更に、昇降圧チョッパ回路1と二次電池2は極低インピーダンスであるために、わずかな二次電池電圧の変動や、二次電池電圧の検出誤差によっても、充電電流Ibの変動は大きなものとなり、フィードバック制御の追従性が悪化する要因となっていた。
【0006】
更に、制御系全体の制御の遅れに占める、昇降圧チョッパ装置1による電圧変換の遅れの割合が大きい。このため、実際の昇降圧チョッパ装置1に係る遅れと、設計上の遅れとの差によって、制御系全体に遅れが生じ、追従性が更に悪化する要因となっていた。
【0007】
また、例えば、充電電流の供給側の問題等から、二次電池への充電電圧が500[mV]程度変動することを想定して充電回路を設計する場合がある。この場合、合成したインピーダンスが5[mΩ]の場合においては、電流が100[A]変動することとなり、充電電流/電圧の追従制御を困難にしている要因の1つであった。
【0008】
本発明は、極低インピーダンスの負荷に対する電流制御/電圧制御の追従性を改善することである。
【0009】
【課題を解決するための手段】
以上の課題を解決するために、請求項1記載の発明の電気回路は、二次電池又は電気二重層コンデンサの負荷(例えば、図1の二次電池2の内部インピーダンス)と、
電圧指令値に応じた電圧を前記負荷に印加する電圧印加装置(例えば、図1の昇降圧チョッパ装置1)と、
前記負荷に印加されている電流及び電圧を検出する検出手段(例えば、図1の電圧計4、電流計5)と、
前記電圧印加装置に出力する電圧指令値を前記検出手段の検出値に基づいてフィードバック制御する制御装置(例えば、図1の電流制御装置3)と、
を備えて構成される電気回路であって、
前記制御装置は、前記検出手段により検出された電流及び電圧に基づいて、前記負荷を含む回路のインピーダンスの変動を推定外乱値として算出する算出手段(例えば、図1の外乱値推定部200)を有し、出力する電圧指令値を、この算出手段により算出された推定外乱値に基づいて補正することを特徴としている。
【0010】
請求項2記載の発明の電気回路は、二次電池又は電気二重層コンデンサの負荷(例えば、図1の二次電池2の内部インピーダンス)と、
電流指令値に応じた電流を前記負荷に印加する電流印加装置と、
前記負荷に印加されている電流及び電圧を検出する検出手段(例えば、図1の電圧計4、電流計5)と、
前記電流印加装置に出力する電流指令値を前記検出手段の検出値に基づいてフィードバック制御する制御装置(例えば、図1の電流制御装置3)と、
を備えて構成される電気回路であって、
前記制御装置は、前記検出手段により検出された電流及び電圧に基づいて、前記負荷を含む回路のインピーダンスの変動を推定外乱値として算出する算出手段(例えば、図1の外乱オブザーバ200)を有し、出力する電流指令値を、この算出手段により算出された推定外乱値に基づいて補正することを特徴としている。
【0011】
この請求項1または2記載の発明によれば、電圧指令値と、負荷に印加されている電流及び電圧に基づいて推定外乱値を算出し、この推定外乱値を用いて電流指令値又は電圧指令値を補正する。このため、負荷を含む回路のインピーダンスの変動を推定外乱値として予期(推定)してフィードバック制御できるため、電流制御又は電圧制御の追従性を向上させることができる。
【0013】
また二次電池又は電気二重層コンデンサに対する充電電圧又は充電電流の制御特性
を向上させることができる。
【0014】
また、請求項記載の発明のように、二次電池又は電気二重層コンデンサの負荷への充電電流を制御する制御方法として、前記負荷に印加されている電流及び電圧を検出する検出工程と、前記検出した電流及び電圧に基づいて、前記負荷を含む回路のインピーダンスの変動を推定外乱値として算出する算出工程と、前記検出した電流及び電圧と前記算出した推定外乱値に基づいて前記負荷に印加する電流値を設定する設定工程と、を含む制御方法を実現することとしてもよい。
【0015】
【発明の実施の形態】
以下、電圧印加装置および電流印加装置である昇降圧チョッパ回路を用いて、二次電池を充電する充電回路に対して本発明を適用した実施の形態を説明する。なお、図中、図4および5と同一の符号を付した部分は従来の充電回路と同一物を表しており、その詳細な説明を省略する。
【0016】
図1は本実施の形態の充電回路を示す図である。図1において、電流制御装置3は外乱値推定部200を備える。外乱値推定部200は、二次電池端子電圧検出値Vbdetおよび充電電流検出値Ibdetに基づき、外乱オブザーバを用いた推定外乱値を算出する算出手段として機能する。そして、電流制御装置3は、算出した推定外乱値を用いたフィードバック制御を行う。
【0017】
図2は、図1に示す充電回路の制御ブロック図である。図2において、21は二次電池端子電圧検出値Vbdetと、充電電圧指令値Em*との差を求める加算器である。そして、加算器21の出力信号にインダクタンスLおよび抵抗Rのノミナル値を含んだインピーダンスの伝達関数22を乗じ、出力信号Ib^を出力する。
【0018】
23は、出力信号Ib^と、充電電流検出値Ibdetの差を求める加算器であり、出力信号ΔIb^を出力する。出力信号ΔIb^に、インダクタンスLおよび抵抗Rのノミナル値のインピーダンスに一次遅れフィルタ(1/(Tfs+1))を挿入した伝達関数24を乗じ、推定外乱値ΔEmfbを出力する。ここで、一次遅れフィルタは、充電電流指令値Ib*に対する応答を改善するために挿入される。そして加算器1が、推定外乱値ΔEmfb、二次電池端子電圧検出値VbdetおよびPI制御器12の出力信号を加算し、充電電圧指令値Em*を出力する。
【0019】
ここで、図5の従来の制御ブロック図において、入力を充電電流指令値Ib*および二次電池端子電圧Vb、出力を充電電流Ibとした場合の充電電流Ibの伝達関数を求めると次のようになる。
【数1】

Figure 0003875932
【0020】
ここで、
【数2】
Figure 0003875932
とし、式(2)、(3)および(4)を式(1)に代入すると、
【数3】
Figure 0003875932
となる。
【0021】
一方、本実施の形態の充電回路の制御ブロック図において、同様に充電電流Ibの伝達関数を求めると次のようになる。
【数4】
Figure 0003875932
【0022】
ここで、式(2)、(3)および(4)を式(6)に代入すると、
【数5】
Figure 0003875932
となる。
【0023】
外乱値推定部200による外乱オブザーバの使用有無による充電電流Ibの伝達関数を比較すると、次式のようになる。
【数6】
Figure 0003875932
【0024】
即ち、式(7)は、下線部で示す項によって、抵抗RおよびインダクタンスLのインピーダンスの値変動が充電電流Ibの値に反映されている。
【0025】
更に式(7)を展開すると次式となる。
【数7】
Figure 0003875932
【0026】
ここで、
【数8】
Figure 0003875932
とおき、式(9)および(10)を式(8)に代入すると、次式となる。
【数9】
Figure 0003875932
【0027】
更に、式(11)の右辺の分母および分子にRN/LNをかけると、
【数10】
Figure 0003875932
ここで、(LN/RN)≫TfとなるようにTfを設定する。即ち、Tf/(LN/RN)≒0であり、Tf・RN/LN≒0とおくと、
【数11】
Figure 0003875932
【0028】
以上より、PI制御器12において、KP=LN/Td、KI=RN/Tdとすれば、充電電流Ibは式(13)のように一次遅れ系で表すことができる。即ち、充電電流指令値Ib*の入力に対して、充電電流Ibが二次遅れ以上の応答に見られる振動を伴った応答をせず、理想的な応答を行う。
【0029】
図3は、充電電流指令値Ib*のステップ入力に対して、外乱値推定部200による推定外乱値を用いたフィードバック制御を行う場合(外乱オブザーバを使用した場合)と、行わない場合(使用しない場合)の充電電流検出値Ibdetの変化を示した図である。図3において、外乱オブザーバを使用しない場合には、充電電流検出値Ibdetが充電電流指令値Ib*に収束(追従)するまでに約0.09[秒]かかった。これに対し、外乱オブザーバを使用した場合には、充電電流検出値Ibdetは約0.07[秒]で充電電流指令値Ib*とに収束(追従)し、外乱オブザーバを使用しなかった場合に比べて、約0.02[秒]早く収束した。
【0030】
また、外乱オブザーバを使用しなかった場合には、充電電流検出値Ibdetが一時的に充電電流指令値Ib*を超えた後に収束(追従)したのに対し、外乱オブザーバを使用した場合には、充電電流指令値Ib*を超えることなく収束(追従)した。
【0031】
以上のように、外乱オブザーバを用いたフィードバック制御を行うことにより、インピーダンスの変動の大きい極低インピーダンスである負荷であっても、その充電電流の定電流制御における追従性を向上させることができる。
【0032】
尚、本発明の電気回路および制御方法は、上述の実施の形態例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、電流制御装置3が定電流制御を行うこととして説明したが、定電圧制御を行うこととしてもよいし、二次電池ではなく極低インピーダンスである電気二重層コンデンサ等の他の負荷を用いることとしてもよい。
【0033】
但し、極低インピーダンスの負荷に対する電流又は電圧の制御であるため、負荷のインピーダンスはより低い方が好ましく、また電流や電圧はより高い方が本発明の特徴が顕著に表れる。例えば、負荷のインピーダンスが1[Ω]以下で、負荷に流れる電流が10[A]以上の電気回路への適用が好適である。
【0034】
【発明の効果】
本発明によれば、電圧指令値と、負荷に印加されている電流及び電圧に基づいて推定外乱値を算出し、この推定外乱値を用いて電流指令値又は電圧指令値を補正する。このため、負荷を含む回路のインピーダンスの変動を推定外乱値として予期(推定)してフィードバック制御できるため、電流制御又は電圧制御の追従性を向上させることができる。
【図面の簡単な説明】
【図1】本実施の形態における昇降圧チョッパ回路を用いて二次電池を充電する充電回路。
【図2】本実施の形態における図1の充電回路の制御ブロック図。
【図3】充電電流指令値Ib*のステップ入力に対する、充電電流検出値Ibdetおよび充電電流検出値Ibdetの変化を示した図。
【図4】従来の昇降圧チョッパ回路を用いて二次電池を充電する充電回路。
【図5】図4の充電回路の制御ブロック図。
【符号の説明】
1 昇降圧チョッパ回路
11、12 サイリスタ
13、14 ダイオード
2 二次電池
3 電流制御装置
200 外乱値推定部
4 電圧計
5 電流計[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric circuit and a control method for controlling a charging current / voltage for an extremely low impedance load, particularly a secondary battery.
[0002]
[Prior art]
FIG. 4 is a diagram illustrating an example of a configuration of a charging circuit that charges the secondary battery 2 using the step-up / step-down chopper circuit 1. The step-up / down chopper circuit 1 includes thyristors 11 and 12, diodes 13 and 14, a filter capacitor Cf, a coil having an inductance L1, and a coil having an inductance L2. The resistor R1 is a resistance component of the coil having the inductance L1, and the resistor R2 is a resistance component of the coil having the inductance L2. The inductances of the inductances L1 and L2 are on the order of several mH, the resistances of the resistors R1 and R2 are on the order of several mΩ, and the combined impedance is very low (referred to herein as “very low impedance”). Further, the secondary battery 2 itself has an internal impedance.
4 is a voltmeter that measures the terminal voltage of the secondary battery 2, and 5 is an ammeter that measures the current flowing through the secondary battery 2. The measurement results of the voltmeter 4 and the ammeter 5 are input to the current control device 30. The current control device 30 is a circuit that outputs a voltage command value Em * to the step-up / step-down chopper circuit 1 in order to perform constant current charging on the secondary battery 2. 6 is an external power source. In addition, the secondary battery 2 is a lead storage battery etc., and can perform charging / discharging repeatedly.
[0003]
FIG. 5 is a control block diagram of the charging circuit shown in FIG. Hereinafter, the inductance L1 of the step-up / step-down chopper circuit 1 will be described as an inductance L, and the combined resistance of the resistance R2 of the step-up / step-down chopper circuit 1 and the internal resistance of the secondary battery 2 will be described as a resistance R. In FIG. 5, reference numeral 11 denotes an adder for obtaining a difference between the charging current command value Ib * and the charging current detection value Ibdet from the ammeter 5 (gain 18), and an output signal thereof is input to the PI controller 12. . Reference numeral 13 denotes an adder that calculates the addition of the output signal of the PI controller 12 and the secondary battery terminal voltage detection value Vbdet from the voltmeter 4, and the output signal is a step-up / step-down chopper device as a charge voltage command value Em * 1 (gain 15). Reference numeral 16 denotes an adder for obtaining a difference between the charging voltage Em obtained by multiplying the charging voltage command value Em * by the gain 15 of the step-up / step-down chopper device 1 and the secondary battery terminal voltage Vb. Then, the output signal of the adder 16 is multiplied by the transfer function 17 of the inductance L and the resistance R, and the charging current Ib is output. The charging current Ib is multiplied by the gain 18 of the ammeter 5 and input to the adder 11 as a charging current detection value Ibdet.
[0004]
As described above, conventionally, the charging current Ib and the charging voltage Vb are detected and fed back to calculate the charging voltage command value Em * to perform constant current control.
[0005]
[Problems to be solved by the invention]
However, the conventional control has the following problems. That is, the inductance L and the resistance R change due to the influence of temperature and magnetic saturation. In addition, the secondary battery 2 is also subject to fluctuations in internal impedance due to chemical changes in accordance with the state of charge. Further, since the step-up / step-down chopper circuit 1 and the secondary battery 2 have extremely low impedance, the fluctuation of the charging current Ib becomes large even if the secondary battery voltage fluctuates or the secondary battery voltage detection error occurs. As a result, the follow-up performance of the feedback control deteriorated.
[0006]
Furthermore, the ratio of the voltage conversion delay by the buck-boost chopper device 1 occupying the control delay of the entire control system is large. For this reason, a delay is caused in the entire control system due to a difference between the delay related to the actual step-up / step-down chopper device 1 and the design delay, which is a factor that further deteriorates the followability.
[0007]
Further, for example, a charging circuit may be designed on the assumption that the charging voltage to the secondary battery varies by about 500 [mV] due to a problem on the charging current supply side. In this case, when the combined impedance is 5 [mΩ], the current fluctuates by 100 [A], which is one of the factors that make it difficult to control the charging current / voltage.
[0008]
It is an object of the present invention to improve the followability of current control / voltage control for a very low impedance load.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the electric circuit according to the first aspect of the present invention includes a load of a secondary battery or an electric double layer capacitor (for example, an internal impedance of the secondary battery 2 of FIG. 1),
A voltage application device (for example, a step-up / down chopper device 1 in FIG. 1) that applies a voltage according to a voltage command value to the load;
Detecting means (for example, a voltmeter 4 and an ammeter 5 in FIG. 1) for detecting a current and a voltage applied to the load;
A control device (for example, the current control device 3 in FIG. 1) that feedback-controls the voltage command value output to the voltage application device based on the detection value of the detection means;
An electrical circuit comprising:
Wherein the control device, on the basis of the I Ri detected current and voltage to the detecting means, calculating means for calculating a variation in the impedance of the circuit including the load as an estimated disturbance value (e.g., disturbance value estimating unit 200 of FIG. 1 ) And the output voltage command value is corrected based on the estimated disturbance value calculated by the calculating means.
[0010]
The electric circuit of the invention according to claim 2 is a load of a secondary battery or an electric double layer capacitor (for example, internal impedance of the secondary battery 2 in FIG. 1),
A current application device for applying a current according to a current command value to the load;
Detecting means (for example, a voltmeter 4 and an ammeter 5 in FIG. 1) for detecting a current and a voltage applied to the load;
A control device (for example, the current control device 3 in FIG. 1) that feedback-controls the current command value output to the current application device based on the detection value of the detection means;
An electrical circuit comprising:
Wherein the control device, on the basis of the I Ri detected current and voltage to the detecting means, calculating means for calculating a variation in the impedance of the circuit including the load as an estimated disturbance value (e.g., the disturbance observer 200 in FIG. 1) The current command value to be output is corrected based on the estimated disturbance value calculated by the calculating means.
[0011]
According to the first or second aspect of the invention, the estimated disturbance value is calculated based on the voltage command value and the current and voltage applied to the load, and the current command value or voltage command is calculated using the estimated disturbance value. Correct the value. For this reason, since the fluctuation of the impedance of the circuit including the load can be expected (estimated) as an estimated disturbance value and feedback control can be performed, the follow-up property of the current control or voltage control can be improved.
[0013]
Moreover , the control characteristic of the charging voltage or charging current for the secondary battery or the electric double layer capacitor can be improved.
[0014]
Further, as a control method for controlling a charging current to a load of a secondary battery or an electric double layer capacitor as in the invention of claim 3, a detection step of detecting a current and a voltage applied to the load , Based on the detected current and voltage , a calculation step of calculating a fluctuation in impedance of a circuit including the load as an estimated disturbance value; and applying to the load based on the detected current and voltage and the calculated estimated disturbance value It is good also as implement | achieving the control method including the setting process which sets the electric current value to perform.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment in which the present invention is applied to a charging circuit for charging a secondary battery using a voltage step-up / step-down chopper circuit that is a voltage application device and a current application device will be described. In the figure, the same reference numerals as those in FIGS. 4 and 5 denote the same parts as those of the conventional charging circuit, and detailed description thereof will be omitted.
[0016]
FIG. 1 is a diagram showing a charging circuit of the present embodiment. In FIG. 1, the current control device 3 includes a disturbance value estimation unit 200. The disturbance value estimation unit 200 functions as a calculation unit that calculates an estimated disturbance value using a disturbance observer based on the secondary battery terminal voltage detection value Vbdet and the charging current detection value Ibdet. The current control device 3 performs feedback control using the calculated estimated disturbance value.
[0017]
FIG. 2 is a control block diagram of the charging circuit shown in FIG. In FIG. 2, reference numeral 21 denotes an adder for obtaining a difference between the secondary battery terminal voltage detection value Vbdet and the charging voltage command value Em * . Then, the output signal of the adder 21 is multiplied by an impedance transfer function 22 including the nominal values of the inductance L and the resistance R, and an output signal Ib ^ is output.
[0018]
An adder 23 obtains a difference between the output signal Ib ^ and the charging current detection value Ibdet, and outputs an output signal ΔIb ^. The estimated disturbance value ΔEmfb is output by multiplying the output signal ΔIb ^ by the transfer function 24 in which the nominal delay impedance (1 / (Tfs + 1)) is inserted into the impedance of the nominal value of the inductance L and the resistor R. Here, the first-order lag filter is inserted in order to improve the response to the charging current command value Ib *. The adder 1 3, the estimated disturbance value DerutaEmfb, adds the output signals of the secondary battery terminal voltage detection value Vbdet and PI controller 12, and outputs a charging voltage command value Em *.
[0019]
Here, in the conventional control block diagram of FIG. 5, the transfer function of the charging current Ib when the input is the charging current command value Ib * and the secondary battery terminal voltage Vb and the output is the charging current Ib is as follows. become.
[Expression 1]
Figure 0003875932
[0020]
here,
[Expression 2]
Figure 0003875932
And substituting Equations (2), (3), and (4) into Equation (1),
[Equation 3]
Figure 0003875932
It becomes.
[0021]
On the other hand, in the control block diagram of the charging circuit of the present embodiment, the transfer function of the charging current Ib is obtained similarly as follows.
[Expression 4]
Figure 0003875932
[0022]
Here, when the expressions (2), (3) and (4) are substituted into the expression (6),
[Equation 5]
Figure 0003875932
It becomes.
[0023]
When the transfer function of the charging current Ib according to whether or not the disturbance observer is used by the disturbance value estimation unit 200 is compared, the following equation is obtained.
[Formula 6]
Figure 0003875932
[0024]
That is, in the expression (7), the fluctuations in the impedance values of the resistor R and the inductance L are reflected in the value of the charging current Ib by the term indicated by the underlined portion.
[0025]
Furthermore, when formula (7) is expanded, the following formula is obtained.
[Expression 7]
Figure 0003875932
[0026]
here,
[Equation 8]
Figure 0003875932
When substituting Equations (9) and (10) into Equation (8), the following equation is obtained.
[Equation 9]
Figure 0003875932
[0027]
Furthermore, when R N / L N is applied to the denominator and numerator of the right side of the formula (11),
[Expression 10]
Figure 0003875932
Here, Tf is set so that (L N / R N ) >> Tf. That is, Tf / (L N / R N ) ≈0, and Tf · R N / L N ≈0,
[Expression 11]
Figure 0003875932
[0028]
As described above, in the PI controller 12, if K P = L N / Td and K I = R N / Td, the charging current Ib can be expressed by a first-order lag system as shown in Expression (13). In other words, the charging current Ib * does not respond with the vibration seen in the response of the second order delay or more, and an ideal response is made to the input of the charging current command value Ib * .
[0029]
FIG. 3 shows the case where the feedback control using the estimated disturbance value by the disturbance value estimation unit 200 is performed on the step input of the charging current command value Ib * (when the disturbance observer is used) and when it is not performed (not used). It is the figure which showed the change of the charging current detection value Ibdet of the case. In FIG. 3, when the disturbance observer is not used, it takes about 0.09 [seconds] for the charging current detection value Ibdet to converge (follow up) to the charging current command value Ib * . On the other hand, when the disturbance observer is used, the charge current detection value Ibdet converges (follows) to the charge current command value Ib * at about 0.07 [seconds], and the disturbance observer is not used. Compared to about 0.02 [seconds], it converged faster.
[0030]
Further, in the case when not using the disturbance observer, whereas the convergence (follow) the after charging current detection value Ibdet exceeds temporarily charging current command value Ib *, using the disturbance observer, The battery converged (followed up) without exceeding the charging current command value Ib *.
[0031]
As described above, by performing the feedback control using the disturbance observer, it is possible to improve the followability in the constant current control of the charging current even for a load having a very low impedance with a large impedance fluctuation.
[0032]
Note that the electric circuit and the control method of the present invention are not limited to the above-described embodiments, and various changes can be made without departing from the scope of the present invention. For example, the current control device 3 has been described as performing constant current control. However, constant voltage control may be performed, and another load such as an electric double layer capacitor having an extremely low impedance is used instead of a secondary battery. It is good as well.
[0033]
However, since the current or voltage is controlled for a load with an extremely low impedance, the load impedance is preferably lower, and the current and voltage are higher, and the characteristics of the present invention become more prominent. For example, application to an electric circuit in which the impedance of the load is 1 [Ω] or less and the current flowing through the load is 10 [A] or more is suitable.
[0034]
【The invention's effect】
According to the present invention, the estimated disturbance value is calculated based on the voltage command value and the current and voltage applied to the load, and the current command value or the voltage command value is corrected using the estimated disturbance value. For this reason, since the fluctuation of the impedance of the circuit including the load can be expected (estimated) as an estimated disturbance value and feedback control can be performed, the follow-up property of the current control or voltage control can be improved.
[Brief description of the drawings]
FIG. 1 is a charging circuit that charges a secondary battery using a step-up / step-down chopper circuit in the present embodiment.
FIG. 2 is a control block diagram of the charging circuit of FIG. 1 in the present embodiment.
FIG. 3 is a diagram showing changes in a charging current detection value Ibdet and a charging current detection value Ibdet with respect to a step input of the charging current command value Ib * .
FIG. 4 is a charging circuit that charges a secondary battery using a conventional buck-boost chopper circuit.
FIG. 5 is a control block diagram of the charging circuit in FIG. 4;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Buck-boost chopper circuit 11, 12 Thyristor 13, 14 Diode 2 Secondary battery 3 Current control apparatus 200 Disturbance value estimation part 4 Voltmeter 5 Ammeter

Claims (3)

二次電池又は電気二重層コンデンサの負荷と、
電圧指令値に応じた電圧を前記負荷に印加する電圧印加装置と、
前記負荷に印加されている電流及び電圧を検出する検出手段と、
前記電圧印加装置に出力する電圧指令値を前記検出手段の検出値に基づいてフィードバック制御する制御装置と、
を備えて構成される電気回路であって、
前記制御装置は、前記検出手段により検出された電流及び電圧に基づいて、前記負荷を含む回路のインピーダンスの変動を推定外乱値として算出する算出手段を有し、出力する電圧指令値を、この算出手段により算出された推定外乱値に基づいて補正することを特徴とする電気回路。
A load of a secondary battery or an electric double layer capacitor ;
A voltage application device that applies a voltage according to a voltage command value to the load;
Detecting means for detecting current and voltage applied to the load;
A control device that feedback-controls a voltage command value to be output to the voltage application device based on a detection value of the detection means;
An electrical circuit comprising:
Wherein the control device, on the basis of the I Ri detected current and voltage to the detecting means includes a calculating means for calculating a variation in the impedance of the circuit including the load as an estimated disturbance value, a voltage command value to be output, An electric circuit which corrects based on the estimated disturbance value calculated by the calculating means.
二次電池又は電気二重層コンデンサの負荷と、
電流指令値に応じた電流を前記負荷に印加する電流印加装置と、
前記負荷に印加されている電流及び電圧を検出する検出手段と、
前記電流印加装置に出力する電流指令値を前記検出手段の検出値に基づいてフィードバック制御する制御装置と、
を備えて構成される電気回路であって、
前記制御装置は、前記検出手段により検出された電流及び電圧に基づいて、前記負荷を含む回路のインピーダンスの変動を推定外乱値として算出する算出手段を有し、出力する電流指令値を、この算出手段により算出された推定外乱値に基づいて補正することを特徴とする電気回路。
A load of a secondary battery or an electric double layer capacitor ;
A current application device for applying a current according to a current command value to the load;
Detecting means for detecting current and voltage applied to the load;
A control device that feedback-controls a current command value output to the current application device based on a detection value of the detection means;
An electrical circuit comprising:
Wherein the control device, on the basis of the I Ri detected current and voltage to the detecting means includes a calculating means for calculating a variation in the impedance of the circuit including the load as an estimated disturbance value, a current command value to be output, An electric circuit which corrects based on the estimated disturbance value calculated by the calculating means.
二次電池又は電気二重層コンデンサの負荷への充電電流を制御する制御方法であって、A control method for controlling a charging current to a load of a secondary battery or an electric double layer capacitor,
前記負荷に印加されている電流及び電圧を検出する検出工程と、  A detection step of detecting a current and a voltage applied to the load;
前記検出した電流及び電圧に基づいて、前記負荷を含む回路のインピーダンスの変動を推定外乱値として算出する算出工程と、  Based on the detected current and voltage, a calculation step of calculating a fluctuation in impedance of a circuit including the load as an estimated disturbance value;
前記検出した電流及び電圧と前記算出した推定外乱値に基づいて前記負荷に印加する電流値を設定する設定工程と、  A setting step of setting a current value to be applied to the load based on the detected current and voltage and the calculated estimated disturbance value;
を含むことを特徴とする制御方法。  The control method characterized by including.
JP2002212200A 2002-07-22 2002-07-22 Electrical circuit and control method Expired - Fee Related JP3875932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002212200A JP3875932B2 (en) 2002-07-22 2002-07-22 Electrical circuit and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002212200A JP3875932B2 (en) 2002-07-22 2002-07-22 Electrical circuit and control method

Publications (2)

Publication Number Publication Date
JP2004056935A JP2004056935A (en) 2004-02-19
JP3875932B2 true JP3875932B2 (en) 2007-01-31

Family

ID=31935201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002212200A Expired - Fee Related JP3875932B2 (en) 2002-07-22 2002-07-22 Electrical circuit and control method

Country Status (1)

Country Link
JP (1) JP3875932B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003451A (en) * 2005-06-27 2007-01-11 Nissan Motor Co Ltd Abnormality detection device of current sensor
JP2007003452A (en) * 2005-06-27 2007-01-11 Nissan Motor Co Ltd Offset current calculation device of current sensor
JP5495288B2 (en) * 2009-05-14 2014-05-21 Necインフロンティア株式会社 Power supply device and output stabilization method for power supply device
JP5478190B2 (en) * 2009-10-23 2014-04-23 株式会社豊田中央研究所 DCDC converter system
JP5488097B2 (en) * 2010-03-24 2014-05-14 トヨタ自動車株式会社 Current estimation device and DCDC converter control system
FR2961965B1 (en) * 2010-06-25 2012-07-13 Valeo Sys Controle Moteur Sas DEVICE FOR CHARGING ACCUMULATION MEANS
CN104221265B (en) * 2012-06-04 2018-04-27 住友重机械工业株式会社 Work machine and its control method
JP6310846B2 (en) * 2012-07-10 2018-04-11 マクセルホールディングス株式会社 Non-contact power transmission system and secondary battery pack

Also Published As

Publication number Publication date
JP2004056935A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
US20210296999A1 (en) Method for controlling the input voltage frequency of a dc-dc converter
Pandey et al. Robust control of mismatched buck DC–DC converters by PWM-based sliding mode control schemes
US10928458B2 (en) Secondary battery state detection device and secondary battery state detection method
US10461236B2 (en) Thermoelectric generator
JP4882706B2 (en) Device for measuring input / output characteristics of analog circuit including operational amplifier and method for measuring input / output characteristics of analog circuit including operational amplifier
JP2018096953A (en) Battery state estimation device
JP3875932B2 (en) Electrical circuit and control method
JP2007068290A (en) Voltage conversion system
JP3949350B2 (en) Interconnection device
CN113497556A (en) DC-DC converter
KR20210122617A (en) Dc-dc converter
JP2018137841A (en) Power factor improvement circuit and charger
JP2018137840A (en) Power factor improvement circuit
JP5383521B2 (en) DC power supply
JP3852372B2 (en) Secondary battery charge rate estimation device
JP2012105467A (en) Charger
JP3402117B2 (en) Inverter
CN110798065B (en) Control device of boost converter
JP5534508B2 (en) DC power supply
JP6505062B2 (en) Voltage conversion device and device
JP6636595B1 (en) Power converter
JP4967738B2 (en) Method for adjusting input / output characteristics of analog circuit including operational amplifier
JP4666149B2 (en) Secondary battery input / output possible power estimation device
JP3400504B2 (en) Method for suppressing input vibration of semiconductor power converter
KR101470871B1 (en) Apparatus and method for contoling boost converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees