JP3874435B2 - Organosulfonylimide lithium - Google Patents

Organosulfonylimide lithium Download PDF

Info

Publication number
JP3874435B2
JP3874435B2 JP26159995A JP26159995A JP3874435B2 JP 3874435 B2 JP3874435 B2 JP 3874435B2 JP 26159995 A JP26159995 A JP 26159995A JP 26159995 A JP26159995 A JP 26159995A JP 3874435 B2 JP3874435 B2 JP 3874435B2
Authority
JP
Japan
Prior art keywords
lithium
electrolyte
solution
xchfcf
nli
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26159995A
Other languages
Japanese (ja)
Other versions
JPH09104686A (en
Inventor
誠 瀧澤
文彦 山元
池田  正紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP26159995A priority Critical patent/JP3874435B2/en
Publication of JPH09104686A publication Critical patent/JPH09104686A/en
Application granted granted Critical
Publication of JP3874435B2 publication Critical patent/JP3874435B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規化合物:(XCHFCF2 SO2 2 NLi(但しXはF又はCF3 )に関する。本化合物は、非水系電解液の電解質若しくは高分子固体電解質の塩として、特にリチウムイオン二次電池の非水系電解液の電解質として有用である。
【0002】
【従来の技術】
従来、非水系電解液の電解質として四フッ化硼酸リチウム、六フッ化燐酸リチウムといった無機電解質が用いられているが、これらの無機電解質は水によって容易に分解するため、電解液溶媒中の数ppm程度の水とも徐々に反応、分解し、電解液中の電解質濃度が低下する。その結果、例えば二次電池では容量低下などが起こる。
この無機電解質の欠点を解決するものとして特開平4−56069号公報にトリフルオロメタンスルホン酸リチウムに代表される有機スルホン酸リチウム塩が開示されている。これらの有機スルホン酸リチウム塩は無機電解質に比べ水と反応しにくいので、電解液中の電解質濃度の低下は改善される。しかしながら、有機スルホン酸リチウム塩は四フッ化硼酸リチウム、六フッ化燐酸リチウムに比べ溶液中での解離度が低く、高電導度の電解液を得られない。
【0003】
有機スルホン酸リチウム塩と同等の耐加水分解性を有し、かつ有機スルホン酸リチウム塩より解離度が高く、高電導度の電解液を得られる電解質として、特開平5−326018号公報、特開平6−176769号公報及び機能材料,15(5) P.50−8(1995)にビス(トリフルオロスルホニル)イミドリチウムが開示されている。ところが、ビス(トリフルオロスルホニル)イミドリチウムの溶液中ではアルミニウムが陽極酸化により腐食されるため、該溶液を電解液としたリチウムイオン二次電池では正極の集電体にアルミニウムが使用できないという欠点があった。
特表平3−501860号公報には化合物:((RSO2 2 N)y M(但しRは一価の有機基、Mはy価の金属元素を表す。)の製造方法が開示されているが、実施例に記載されているのはパーフルオロアルキル化合物のみである。
【0004】
【発明が解決しようとする課題】
本発明の課題は、耐加水分解性に優れ、高電導度の溶液を得られ、かつその溶液はアルミニウムを腐食しない化合物を提供することであり、また該化合物を電解質とした非水系電解液を提供することである。さらには、該電解液とアルミニウムを集電体とした電極からなる電池を提供することである。
【0005】
【課題を解決するための手段】
本発明者らは、鋭意検討の結果、式:(XCHFCF2 SO2 2 NLi(但しXはF又はCF3 )で表される有機スルホニルイミドリチウムは上記課題を解決する化合物であることを見出し、本発明に至った。
すなわち、本発明は下記のとおりである。
1. 式:(XCHFCF2 SO2 2 NLi(但しXはF又はCF3 )で表される有機スルホニルイミドリチウム。
2. 式:(XCHFCF2 SO2 2 NLi(但しXはF又はCF3 )で表される有機スルホニルイミドリチウムを含有する非水系電解液。
3. 式:(XCHFCF2 SO2 2 NLi(但しXはF又はCF3 )で表される有機スルホニルイミドリチウムを含有する非水系電解液とアルミニウムを集電体とした電極とからなる電池。
【0006】
以下、本発明について詳しく述べる。
本発明の化合物:(XCHFCF2 SO2 2 NLi(但しXはF又はCF3 )で表される有機スルホニルイミドリチウムは新規化合物である。
合成方法は特に限定するものではないが、一例として以下の多段階反応による方法が挙げられる。
(1) 亜硫酸水素ナトリウムとX−CF=CF2 で表されるパーフルオロオレフィンとの付加反応による、式:XCHFCF2 SO3 Naで表される有機スルホン酸ナトリウムの合成(NaHSO3 +X−CF=CF2 →XCHFCF2 SO3 Na(但しXはF又はCF3 ))、
(2) 式:XCHFCF2 SO3 Naで表される有機スルホン酸ナトリウムと五塩化リンとの反応による、式:XCHFCF2 SO2 Clで表される有機スルホニルクロライド合成(XCHFCF2 SO3 Na+PCl5 →XCHFCF2 SO2 Cl+POCl3 +NaCl(但しXはF又はCF3 ))、
(3) 式:XCHFCF2 SO2 Clで表される有機スルホニルクロライドとビス(トリメチルシリル)イミドリチウムの反応による、式:(XCHFCF2 SO2 2 NLiで表される有機スルホニルイミドリチウム合成(2XCHFCF2 SO2 Cl+((CH3 3 Si)2 NLi→(XCHFCF2 SO2 2 NLi+2(CH3 3 SiCl(但しXはF又はCF3 ))が挙げられる。
【0007】
本発明の化合物:(XCHFCF2 SO2 2 NLi(但しXはF又はCF3 )で表される有機スルホニルイミドリチウムの用途は、具体的には一次又は二次電池の非水系電解液の電解質、高分子固体電解質の塩、有機合成反応の触媒等が挙げられる。
本発明の化合物を電解質とする非水系電解液の溶媒は、該化合物を溶解できる非プロトン性極性溶媒であれば特に限定するものでなく、例えばカーボネート類、エステル類、ラクトン類、エーテル類、ニトリル類、アミド類、スルホン類等が使用でき、中でもカーボネート類、エステル類、ラクトン類、エーテル類が好ましい。更には、単一の溶媒だけでなく二種類以上の溶媒の混合物でもよい。この非水系電解液の電解質濃度は0.1mol・dm-3以上飽和濃度以下が好ましく、更に好ましくは0.5mol・dm-3以上飽和濃度以下である。濃度が0.1mol・dm-3より小さい場合、電解液の電導度が低いため好ましくない。
【0008】
該非水系電解液とアルミニウムを集電体とした電極からなる電池としては、例えば、銅箔を集電体とし、リチウムイオンを吸蔵することが可能な炭素を主体とする負極と、アルミニウム箔を集電体とし、リチウム含有遷移金属カルコゲン化合物を主体とする正極からなるリチウムイオン二次電池などが挙げられる。
本発明の化合物を塩として用いる高分子固体電解質には、例えばポリエチレングリコール(PEG)セグメントを主体とするポリマーに0.1mol・dm-3以上5mol・dm-3以下の濃度となるように本発明のリチウム塩を直接溶解させたもの、あるいはPEGセグメントを主体とするポリマー、ポリアクリロニトリル(PAN)やポリフッ化ビニリデン(PVdF)を本発明のリチウム塩の濃度が0.1mol・dm-3以上飽和濃度以下の非水系溶媒溶液10〜200重量部で膨潤させたもの等が挙げられる。
【0009】
【発明の実施の形態】
以下に実施例を挙げ本発明を具体的に説明する。
【0010】
【実施例1】
ビス(1,1,2,2−テトラフルオロエタンスルホニル)イミドリチウムの合成。
(1) 亜硫酸水素ナトリウムとテトラフルオロエチレンの付加反応
1000mlの圧力容器に亜硫酸水素ナトリウム(NaHSO3 )80g、四硼酸ナトリウム10水和物(Na2 4 7 ・10H2 O)36.7g、純水160ml及びテトラフルオロエチレン100gを加え、120℃で110時間反応した。反応液を濾過し、濾液を減圧下で脱水乾固した後エタノール300mlを加え3時間還流、生成した不溶固体を濾別し、濾液から脱溶媒して31.4gの1,1,2,2−テトラフルオロエタンスルホン酸ナトリウム(HCF2 CF2 SO3 Na)を得た。収率20.1%。
(2) 1,1,2,2−テトラフルオロエタンスルホン酸ナトリウムと五塩化リンの反応
300mlの4つ口フラスコ内に49.2gの五塩化リンと100gのオキシ塩化リンを入れ、撹拌しながら上記(1)で合成した1,1,2,2−テトラフルオロエタンスルホン酸ナトリウム30.0gを滴下漏斗から滴下した後、加熱して23時間還流状態を維持した。続いて、常圧蒸留を行い105〜110℃の留分を分離、氷水中に滴下して下層を分離し、500mlの水で1時間水洗、無水硫酸ナトリウムで脱水して10.2gの無色透明の1,1,2,2−テトラフルオロエタンスルホン酸クロライド(HCF2 CF2 SO2 Cl)を得た。収率は69.0%。
【0011】
(3) ビス(1,1,2,2−テトラフルオロエタンスルホニル)イミドリチウムの合成。
300mlの4つ口フラスコ内にビス(テトラメチルシリル)イミドリチウム((CH3 3 Si)2 NLiの1.0mol・dm-3THF溶液を40.0ml入れ、0℃に保持して上記(2)で合成した1,1,2,2−テトラフルオロエタンスルホン酸クロライド(HCF2 CF2 SO2 Cl)を8.0g滴下した。この混合液を室温で10日間撹拌した後、不溶物を濾別した反応液を60℃、15mmHgで蒸発乾固して3.6gのビス(1,1,2,2−テトラフルオロエタンスルホニル)イミドリチウム((HCF2 CF2 SO2 2 NLi)を得た。収率59.3%。
赤外吸収スペクトル:3005cm-1(C−H);1640cm-1(S=O);1140cm-1(C−F)
19F−NMRスペクトル(CFCl3 基準):−136ppm(2F);−139ppm(2F)
融点:480℃(DSC(セイコー電子(株):S−5000)で測定、昇温速度15℃/分)。
元素分析(括弧内計算値):Li=1.9(2.0)%,C=13.2(13.7)%,H=0.7(0.6)%,O=18.4(18.2)%,N=4.4(4.0)%,F=41.0(43.2)%,S=18.5(18.3)%
【0012】
【実施例2】
ビス(1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホニル)イミドリチウムの合成。
(1) 亜硫酸水素ナトリウムとヘキサフルオロプロピレンの付加反応
1000mlの圧力容器に亜硫酸水素ナトリウム(NaHSO3 )80g、四硼酸ナトリウム10水和物(Na2 4 7 ・10H2 O)36.7g、純水160ml及びヘキサフルオロプロピレン120gを加え、120℃で110時間反応した。反応液を濾過し、濾液を減圧下で脱水乾固した後エタノール300mlを加え3時間還流、生成した不溶固体を濾別し、濾液から脱溶媒して35.2gの1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸ナトリウム(CF3 CHFCF2 SO3 Na)を得た。収率18.0%。
(2) 1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸ナトリウムと五塩化リンの反応
300mlの4つ口フラスコ内に49.2gの五塩化リンと100gのオキシ塩化リンを入れ、撹拌しながら上記(1)で合成した1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸ナトリウム30.0gを滴下漏斗から滴下した後、加熱して23時間還流状態を維持した。続いて、常圧蒸留を行い105〜110℃の留分を分離、氷水中に滴下して下層を分離し、500mlの水で1時間水洗、無水硫酸ナトリウムで脱水して21.2gの無色透明の1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸クロライド(CF3 CHFCF2 SO2 Cl)を得た。収率71.5%。
【0013】
(3) ビス(1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホニル)イミドリチウムの合成。
300mlの4つ口フラスコ内にビス(テトラメチルシリル)イミドリチウム((CH3 3 Si)2 NLiの1.0mol/dm3 THF溶液を40.0ml入れ、0℃に保持して上記(2)で合成した1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸クロライド(CF3 CHFCF2 SO2 Cl)を20.1g滴下した。この混合液を室温で10日間撹拌した後、不溶物を濾別した反応液を60℃、15mmHgで蒸発乾固して10.3gのビス(1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホニル)イミドリチウム((CF3 CHFCF2 SO2 2 NLi)を得た。収率57.3%。
赤外吸収スペクトル:3005cm-1(C−H);1640cm-1(S=O);1240cm-1(C−F)
19F−NMRスペクトル(CFCl3 基準):−78ppm(3F:t,J=7Hz);−109ppm(1F:md,J=220Hz),−116ppm(1F:md,J=230Hz);−205ppm(1F:m)
融点:502℃(DSC(セイコー電子(株):S−5000)で測定、昇温速度15℃/分)。
元素分析(括弧内計算値):Li=1.7(1.5)%,C=17.2(16.0)%,H=0.7(0.4)%,O=15.0(14.2)%,F=49.0(50.6)%,S=14.5(14.2)%
【0014】
【実施例3】
アルミニウム陽極酸化電流の測定1:実施例1で合成したビス(1,1,2,2−テトラフルオロエタンスルホニル)イミドリチウムの濃度0.7mol/dm-3のプロピレンカーボネート/ジメトキシエタン(1:1 容積比)溶液を電解液とし、作用電極をアルミニウム(市販のアルミ箔)、対電極及び参照電極をリチウム金属としたセルでアルミニウムを4.0V(vs.Li金属)の電位に保持したとき、電極間を5μA・cm-2の電流が流れた。
【0015】
【実施例4】
アルミニウム陽極酸化電流の測定2:実施例2で合成したビス(1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホニル)イミドリチウムの濃度0.7mol・dm-3のプロピレンカーボネート/ジメトキシエタン(1/1 容積比)溶液を電解液とし、作用電極をアルミニウム(市販のアルミ箔)、対電極及び参照電極をリチウム金属としたセルでアルミニウムを4.0V(vs.Li金属)の電位に保持したとき、電極間を3μA・cm-2の電流が流れた。
【0016】
【実施例5】
溶液の電導度の測定1:実施例1で合成したビス(1,1,2,2−テトラフルオロエタンスルホニル)イミドリチウムの濃度0.7mol・dm-3のプロピレンカーボネート/ジメトキシエタン(1/1 容積比)溶液の電導度を電導度測定計(東亜電波(株):CM−60S)と電導度セル(東亜電波(株):CG−511B)によって測定し、23℃で2.97mScm-1の値を得た。
【0017】
【実施例6】
溶液の電導度の測定2:実施例1で合成したビス(1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホニル)イミドリチウムの濃度0.7mol・dm-3のプロピレンカーボネート/ジメトキシエタン(1/1 容積比)溶液の電導度を電導度測定計(東亜電波(株):CM−60S)と電導度セル(東亜電波(株):CG−511B)によって測定し、23℃で3.01mScm-1の値を得た。
【0018】
【比較例1】
ビス(トリフルオロメタンスルホニル)イミドリチウムの濃度0.7mol・dm-3のプロピレンカーボネート/ジメトキシエタン(1/1 容積比)溶液を電解液とし、作用電極をアルミニウム(市販のアルミ箔)、対電極及び参照電極をリチウム金属としたセルでアルミニウムを4.0V(vs.Li金属)の電位に保持したとき、電極間を210mA・cm-2の電流が流れた。実施例3及び実施例4の電解液での電流値は比較例1の電解液での値の1/10000以下であり、実施例3及び実施例4の電解液中ではアルミニウムの腐食速度は比較例1の電解液中の1/10000以下となることを示している。
【0019】
【比較例2】
溶液の電導度の測定:パーフルオロブタンスルホン酸リチウムの濃度0.7mol・dm-3のプロピレンカーボネート/ジメトキシエタン(1/1 容積比)溶液の電導度を電導度測定計(東亜電波(株):CM−60S)と電導度セル(東亜電波(株):CG−511B)によって測定し、23℃で2.10mScm-1の値を得た。
【0020】
【実施例7】
図3に示す円筒型非水電解液電池を下記のようにして作製した。
まず、LiCoO2 をボールミルで平均粒径3μmに粉砕した後、この粉末1重量部に対しグラファイト0.025重量部、アセチレンブラック0.025重量部、結合剤としてポリフッ化ビニリデン0.02重量部を加え、ジメチルホルムアミドを用いてペースト状にしたものを、厚さ15μmのアルミ箔の片面に乾燥膜厚が100μmになるように塗布して正極1を作製した。一方、市販の石油系ニードルコークス(興亜石油社製、KOA−SJ Coke)をボールミルで平均粒径10μmに粉砕した。このニードルコークスのBET表面積、真密度、X線回折より得られる面間隔d002 、Lc(002) はそれぞれ、11m2 ・g-1、2.13g・cm-3、3.44Å、52Åであった。この粉末1重量部に対して結合剤としてポリフッ化ビニリデン0.05重量部を加え、ジメチルホルムアミドを用いてペースト状にし、厚さ10μmの銅箔の片面に乾燥膜厚が130μmになるように塗布して負極2を作製した。なお、正極1及び負極2には、集電を行うためのアルミニウム製の正極リード端子3、銅製の負極リード端子4をそれぞれ溶接した。そして、正極1と負極2の間に、ポリエチレン製の微多孔膜からなるセパレータ5を介在させて互いに積層し、多数回捲回して、渦巻型の電極体を作製した。そして、この渦巻型の電極体をSUS製電池容器6中に収納した。負極リード端子4を電池容器6の内底部にスポット溶接により接続し、正極リード端子3は電池封口板7に同様にして接続した。
【0021】
次に、この電極体が収納された電池缶容器6中に、プロピレンカーボネート、ジエトキシメタンを体積比1対1で混合した混合溶媒に、電解質として実施例1の化合物ビス(1,1,2,2−テトラフルオロエタンスルホニル)イミドリチウムを0.7mol・dm-3になるように溶解させて調整した電解液を注液し、該電池容器6と前記電池封口板7とをポリプロピレン製パッキング8を介し、嵌合してかしめることで密封し、外径20mm、50mmの円筒型非水電解液電池を作製した。この電池を、充放電電流0.3A、充電終止電圧4.2V、放電終止電圧2.7Vで室温(約20℃)において充放電試験を行ったところ、1サイクルめの放電容量0.90Ah、100サイクルめの放電容量保持率(100サイクルめの放電容量を1サイクルめの容量で割った百分率)90%という結果を得た。
【0022】
【実施例8】
図3に示す円筒型非水電解液電池を、プロピレンカーボネート、ジエトキシメタンを体積比1対1で混合した混合溶媒に、電解質として実施例2の化合物ビス(1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホニル)イミドリチウムを0.7mol・dm-3になるように溶解させて調整した電解液を注液する以外は、実施例7と同様にして作製した。該電池容器6と前記電池封口板7とをポリプロピレン製パッキング8を介し、嵌合してかしめることで密封し、外径20mm、50mmの円筒型非水電解液電池を作製した。この電池を、充放電電流0.3A、充電終止電圧4.2V、放電終止電圧2.7Vで室温(約20℃)において充放電試験を行ったところ、1サイクルめの放電容量0.90Ah、100サイクルめの放電容量保持率(100サイクルめの放電容量を1サイクルめの容量で割った百分率)93%という結果を得た。
【0023】
【発明の効果】
本発明により、有機電解質として有用な新規化合物:(XCHFCF2 SO2 2 NLi(但しXはF又はCF3 )で表される有機スルホニルイミドリチウムを得ることができる。本発明の化合物は電解質として耐加水分解性に優れ、かつアルミニウムの腐食が起こりにくい非水系電解液を提供する。
【図面の簡単な説明】
【図1】本発明の実施例1の化合物の赤外吸収スペクトルである。
【図2】本発明の実施例2の化合物の赤外吸収スペクトルである。
【図3】本発明の実施例7及び実施例8で用いた非水電解液電池の縦断面図である。
【符号の説明】
1 帯状正極
2 帯状負極
3 正極リード端子
4 負極リード端子
5 セパレーター
6 電池容器
7 電池封口板
8 パッキング
9 絶縁板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel compound: (XCHFCF 2 SO 2 ) 2 NLi (where X is F or CF 3 ). This compound is useful as an electrolyte of a non-aqueous electrolyte solution or a salt of a polymer solid electrolyte, and particularly as an electrolyte of a non-aqueous electrolyte solution of a lithium ion secondary battery.
[0002]
[Prior art]
Conventionally, inorganic electrolytes such as lithium tetrafluoroborate and lithium hexafluorophosphate have been used as electrolytes for non-aqueous electrolytes, but these inorganic electrolytes are easily decomposed by water, so several ppm in the electrolyte solvent. It gradually reacts and decomposes with a certain amount of water, and the electrolyte concentration in the electrolytic solution decreases. As a result, for example, capacity reduction occurs in the secondary battery.
As a solution to the drawbacks of the inorganic electrolyte, Japanese Patent Application Laid-Open No. 4-56069 discloses an organic sulfonic acid lithium salt typified by lithium trifluoromethanesulfonate. Since these organic sulfonic acid lithium salts are less likely to react with water than inorganic electrolytes, the decrease in electrolyte concentration in the electrolytic solution is improved. However, the organic sulfonic acid lithium salt has a lower degree of dissociation in the solution than lithium tetrafluoroborate and lithium hexafluorophosphate, and an electrolytic solution having a high conductivity cannot be obtained.
[0003]
As electrolytes having hydrolysis resistance equivalent to that of organic sulfonic acid lithium salts and having a higher degree of dissociation than organic sulfonic acid lithium salts and having high conductivity, Japanese Patent Application Laid-Open No. 5-326018 and Japanese Patent Application Laid-Open 6-176769 and functional materials, 15 (5) P.C. 50-8 (1995) discloses bis (trifluorosulfonyl) imidolithium. However, since aluminum is corroded by anodic oxidation in a solution of bis (trifluorosulfonyl) imide lithium, a lithium ion secondary battery using the solution as an electrolyte has a drawback that aluminum cannot be used as a positive electrode current collector. there were.
Japanese Patent Publication No. 3-501860 discloses a method for producing a compound: ((RSO 2 ) 2 N) y M (where R represents a monovalent organic group and M represents a y-valent metal element). However, only perfluoroalkyl compounds are described in the examples.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a compound having excellent hydrolysis resistance and a high conductivity, and that the solution does not corrode aluminum, and a non-aqueous electrolyte containing the compound as an electrolyte is provided. Is to provide. Furthermore, it is providing the battery which consists of an electrode which used this electrolyte solution and aluminum as a collector.
[0005]
[Means for Solving the Problems]
The present inventors have conducted extensive study results, the formula: found that (XCHFCF 2 SO 2) organic sulfonyl imide represented by 2 NLi (where X is F or CF 3) is a compound to solve the above problems The present invention has been reached.
That is, the present invention is as follows.
1. An organic sulfonylimide lithium represented by the formula: (XCHFCF 2 SO 2 ) 2 NLi (where X is F or CF 3 ).
2. A nonaqueous electrolytic solution containing an organic sulfonylimide lithium represented by the formula: (XCHFCF 2 SO 2 ) 2 NLi (where X is F or CF 3 ).
3. A battery comprising a nonaqueous electrolytic solution containing an organic sulfonylimide lithium represented by the formula: (XCHFCF 2 SO 2 ) 2 NLi (where X is F or CF 3 ) and an electrode using aluminum as a current collector.
[0006]
The present invention will be described in detail below.
The compound of the present invention: (XCHFCF 2 SO 2 ) 2 NLi (where X is F or CF 3 ), the organic sulfonylimide lithium is a novel compound.
The synthesis method is not particularly limited, and examples thereof include the following multistage reaction method.
(1) by addition reaction between perfluoro olefin represented by sodium bisulfite and X-CF = CF 2, wherein: XCHFCF 2 SO 3 Synthesis of an organic sodium sulfonate represented by Na (NaHSO 3 + X-CF = CF 2 → XCHFCF 2 SO 3 Na (where X is F or CF 3 )),
(2): by reaction with XCHFCF 2 SO 3 organic sodium sulfonate represented by Na and phosphorus pentachloride, wherein: XCHFCF organic sulfonyl represented by 2 SO 2 Cl chloride synthesis (XCHFCF 2 SO 3 Na + PCl 5 → XCHFCF 2 SO 2 Cl + POCl 3 + NaCl (where X is F or CF 3 )),
(3) Synthesis of organic sulfonylimide lithium represented by the formula: (XCHFCF 2 SO 2 ) 2 NLi by reaction of an organic sulfonyl chloride represented by the formula: XCHFCF 2 SO 2 Cl and bis (trimethylsilyl) imide lithium (2XCHFCF 2 SO 2 Cl + ((CH 3 ) 3 Si) 2 NLi → (XCHFCF 2 SO 2) 2 NLi + 2 (CH 3) 3 SiCl ( where X is F or CF 3)) and the like.
[0007]
The use of the organic sulfonylimide lithium represented by the compound of the present invention: (XCHFCF 2 SO 2 ) 2 NLi (where X is F or CF 3 ), specifically, is an electrolyte of a non-aqueous electrolyte solution of a primary or secondary battery And salts of polymer solid electrolytes, catalysts for organic synthesis reactions, and the like.
The solvent of the non-aqueous electrolyte solution containing the compound of the present invention as an electrolyte is not particularly limited as long as it is an aprotic polar solvent capable of dissolving the compound. For example, carbonates, esters, lactones, ethers, nitriles Amides, sulfones and the like can be used, among which carbonates, esters, lactones and ethers are preferred. Furthermore, not only a single solvent but also a mixture of two or more solvents may be used. The electrolyte concentration of the nonaqueous electrolyte solution is preferably 0.1 mol · dm -3 or higher saturated concentration or less, still more preferably a saturated concentration or less 0.5 mol · dm -3 or more. When the concentration is less than 0.1 mol · dm −3 , the conductivity of the electrolytic solution is low, which is not preferable.
[0008]
As a battery composed of an electrode using the non-aqueous electrolyte and aluminum as a current collector, for example, a copper foil as a current collector, a carbon-based negative electrode capable of occluding lithium ions, and an aluminum foil are collected. Examples thereof include a lithium ion secondary battery including a positive electrode mainly composed of a lithium-containing transition metal chalcogen compound.
The solid polymer electrolyte using the compound of the present invention as a salt is, for example, a polymer mainly composed of polyethylene glycol (PEG) segments so that the concentration thereof is 0.1 mol · dm −3 or more and 5 mol · dm −3 or less. The concentration of the lithium salt of the present invention is a saturated concentration of 0.1 mol · dm −3 or more of a polymer obtained by directly dissolving a lithium salt, or a polymer mainly composed of PEG segments, polyacrylonitrile (PAN) or polyvinylidene fluoride (PVdF). Examples thereof include those swollen with 10 to 200 parts by weight of the following non-aqueous solvent solution.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described with reference to examples.
[0010]
[Example 1]
Synthesis of bis (1,1,2,2-tetrafluoroethanesulfonyl) imidolithium.
(1) Addition reaction of sodium bisulfite and tetrafluoroethylene In a 1000 ml pressure vessel, 80 g of sodium bisulfite (NaHSO 3 ), 36.7 g of sodium tetraborate decahydrate (Na 2 B 4 O 7 .10H 2 O), 160 ml of pure water and 100 g of tetrafluoroethylene were added and reacted at 120 ° C. for 110 hours. The reaction solution was filtered, and the filtrate was dehydrated and dried under reduced pressure, and then 300 ml of ethanol was added and refluxed for 3 hours. The formed insoluble solid was filtered off, and the solvent was removed from the filtrate to remove 31.4 g of 1,1,2,2 - give sodium tetrafluoroethane sulfonate (HCF 2 CF 2 SO 3 Na ). Yield 20.1%.
(2) Reaction of sodium 1,1,2,2-tetrafluoroethanesulfonate with phosphorus pentachloride Place 49.2 g of phosphorus pentachloride and 100 g of phosphorus oxychloride in a 300 ml four-necked flask while stirring. 30.0 g of sodium 1,1,2,2-tetrafluoroethanesulfonate synthesized in (1) above was dropped from the dropping funnel, and then heated to maintain the reflux state for 23 hours. Subsequently, atmospheric distillation is performed to separate a fraction at 105 to 110 ° C., and the lower layer is separated by dropping into ice water, washed with 500 ml of water for 1 hour, dehydrated with anhydrous sodium sulfate, and 10.2 g of colorless and transparent. Of 1,1,2,2-tetrafluoroethanesulfonic acid chloride (HCF 2 CF 2 SO 2 Cl) was obtained. Yield 69.0%.
[0011]
(3) Synthesis of bis (1,1,2,2-tetrafluoroethanesulfonyl) imidolithium.
40.0 ml of a 1.0 mol · dm −3 THF solution of bis (tetramethylsilyl) imidolithium ((CH 3 ) 3 Si) 2 NLi was placed in a 300 ml four-necked flask and maintained at 0 ° C. synthesized 1,1,2,2-tetrafluoroethane sulfonic acid chloride in 2) (HCF 2 CF 2 SO 2 Cl) was 8.0g dropwise. The mixture was stirred at room temperature for 10 days, and then the reaction solution obtained by filtering insolubles was evaporated to dryness at 60 ° C. and 15 mmHg to obtain 3.6 g of bis (1,1,2,2-tetrafluoroethanesulfonyl). Imidolithium ((HCF 2 CF 2 SO 2 ) 2 NLi) was obtained. Yield 59.3%.
Infrared absorption spectrum: 3005 cm −1 (C—H); 1640 cm −1 (S═O); 1140 cm −1 (C—F)
19 F-NMR spectrum (CFCl 3 standard): -136 ppm (2F); -139 ppm (2F)
Melting point: 480 ° C. (measured with DSC (Seiko Electronics Co., Ltd .: S-5000), heating rate 15 ° C./min).
Elemental analysis (calculated values in parentheses): Li = 1.9 (2.0)%, C = 13.2 (13.7)%, H = 0.7 (0.6)%, O = 18.4 (18.2)%, N = 4.4 (4.0)%, F = 41.0 (43.2)%, S = 18.5 (18.3)%
[0012]
[Example 2]
Synthesis of bis (1,1,2,3,3,3-hexafluoro-n-propanesulfonyl) imidolithium.
(1) Addition reaction of sodium bisulfite and hexafluoropropylene In a 1000 ml pressure vessel, 80 g of sodium bisulfite (NaHSO 3 ), 36.7 g of sodium tetraborate decahydrate (Na 2 B 4 O 7 .10H 2 O), 160 ml of pure water and 120 g of hexafluoropropylene were added and reacted at 120 ° C. for 110 hours. The reaction solution was filtered, and the filtrate was dehydrated and dried under reduced pressure, and then 300 ml of ethanol was added and refluxed for 3 hours. The formed insoluble solid was filtered off, and the solvent was removed from the filtrate to remove 35.2 g of 1,1,2,3. , 3,3-hexafluoro-n-propanesulfonic acid sodium salt (CF 3 CHFCF 2 SO 3 Na) was obtained. Yield 18.0%.
(2) Reaction of sodium 1,1,2,3,3,3-hexafluoro-n-propanesulfonate with phosphorus pentachloride 49.2 g of phosphorus pentachloride and 100 g of oxychloride in a 300 ml four-necked flask 30.0 g of sodium 1,1,2,3,3,3-hexafluoro-n-propanesulfonic acid synthesized in the above (1) was added dropwise from a dropping funnel while stirring, and then heated to 23 The reflux state was maintained for a time. Subsequently, atmospheric distillation was performed to separate a fraction at 105 to 110 ° C., and this was dropped into ice water to separate the lower layer, washed with 500 ml of water for 1 hour, dehydrated with anhydrous sodium sulfate and 21.2 g of colorless and transparent. Of 1,1,2,3,3,3-hexafluoro-n-propanesulfonic acid chloride (CF 3 CHFCF 2 SO 2 Cl) was obtained. Yield 71.5%.
[0013]
(3) Synthesis of bis (1,1,2,3,3,3-hexafluoro-n-propanesulfonyl) imide lithium.
In a 300 ml four-necked flask, 40.0 ml of a 1.0 mol / dm 3 THF solution of bis (tetramethylsilyl) imidolithium ((CH 3 ) 3 Si) 2 NLi was placed and maintained at 0 ° C. (2 20.1 g of 1,1,2,3,3,3-hexafluoro-n-propanesulfonic acid chloride (CF 3 CHFCF 2 SO 2 Cl) synthesized in (1) was added dropwise. The mixture was stirred at room temperature for 10 days, and then the reaction solution from which insolubles had been filtered off was evaporated to dryness at 60 ° C. and 15 mmHg, and then 10.3 g of bis (1,1,2,3,3,3-hexa). Fluoro-n-propanesulfonyl) imidolithium ((CF 3 CHFCF 2 SO 2 ) 2 NLi) was obtained. Yield 57.3%.
Infrared absorption spectrum: 3005cm -1 (C-H) ; 1640cm -1 (S = O); 1240cm -1 (C-F)
19 F-NMR spectrum (CFCl 3 standard): −78 ppm (3F: t, J = 7 Hz); −109 ppm (1F: md, J = 220 Hz), −116 ppm (1F: md, J = 230 Hz); 1F: m)
Melting point: 502 ° C. (measured with DSC (Seiko Electronics Co., Ltd .: S-5000), heating rate 15 ° C./min).
Elemental analysis (calculated values in parentheses): Li = 1.7 (1.5)%, C = 17.2 (16.0)%, H = 0.7 (0.4)%, O = 15.0 (14.2)%, F = 49.0 (50.6)%, S = 14.5 (14.2)%
[0014]
[Example 3]
Measurement of aluminum anodic oxidation current 1: propylene carbonate / dimethoxyethane (1: 1) of bis (1,1,2,2-tetrafluoroethanesulfonyl) imide lithium synthesized in Example 1 at a concentration of 0.7 mol / dm -3 (Volume ratio) When the solution was an electrolyte, the working electrode was aluminum (commercially available aluminum foil), the counter electrode and the reference electrode were lithium metal, and the aluminum was held at a potential of 4.0 V (vs. Li metal), A current of 5 μA · cm −2 flowed between the electrodes.
[0015]
[Example 4]
Measurement of aluminum anodic oxidation current 2: propylene carbonate having a concentration of 0.7 mol · dm −3 of bis (1,1,2,3,3,3-hexafluoro-n-propanesulfonyl) imide lithium synthesized in Example 2 / Dimethoxyethane (1/1 volume ratio) solution is used as electrolyte, aluminum is 4.0V (vs. Li metal) in a cell in which the working electrode is aluminum (commercially available aluminum foil) and the counter electrode and reference electrode are lithium metal. When this potential was maintained, a current of 3 μA · cm −2 flowed between the electrodes.
[0016]
[Example 5]
Measurement of conductivity of solution 1: propylene carbonate / dimethoxyethane (1/1) having a concentration of 0.7 mol · dm −3 of bis (1,1,2,2-tetrafluoroethanesulfonyl) imide lithium synthesized in Example 1 Volume ratio) The conductivity of the solution was measured with a conductivity meter (Toa Radio Co., Ltd .: CM-60S) and a conductivity cell (Toa Radio Co., Ltd .: CG-511B), and 2.97 mScm −1 at 23 ° C. Was obtained.
[0017]
[Example 6]
Measurement of conductivity of solution 2: propylene carbonate having a concentration of 0.7 mol · dm −3 of bis (1,1,2,3,3,3-hexafluoro-n-propanesulfonyl) imide lithium synthesized in Example 1 / Dimethoxyethane (1/1 volume ratio) conductivity of the solution was measured with a conductivity meter (Toa Radio Co., Ltd .: CM-60S) and a conductivity cell (Toa Radio Co., Ltd .: CG-511B), 23 A value of 3.01 mScm −1 was obtained at 0 ° C.
[0018]
[Comparative Example 1]
A propylene carbonate / dimethoxyethane (1/1 volume ratio) solution of bis (trifluoromethanesulfonyl) imidolithium having a concentration of 0.7 mol · dm −3 is used as an electrolyte, the working electrode is aluminum (commercially available aluminum foil), a counter electrode, When aluminum was held at a potential of 4.0 V (vs. Li metal) in a cell in which the reference electrode was lithium metal, a current of 210 mA · cm −2 flowed between the electrodes. The current values in the electrolytic solutions of Example 3 and Example 4 are 1 / 10,000 or less of the values in the electrolytic solution of Comparative Example 1, and the corrosion rates of aluminum in the electrolytic solutions of Examples 3 and 4 are compared. It shows that it becomes 1 / 10,000 or less in the electrolyte solution of Example 1.
[0019]
[Comparative Example 2]
Measurements of conductivity of the solution: propylene carbonate / dimethoxyethane (1/1 volume ratio) of perfluorobutane sulfonic acid lithium concentration 0.7 mol · dm -3 conductivity a conductivity meter of solution (Toa Telecommunications Co. : CM-60S) and a conductivity cell (Toa Radio Co., Ltd .: CG-511B), a value of 2.10 mScm -1 was obtained at 23 ° C.
[0020]
[Example 7]
The cylindrical nonaqueous electrolyte battery shown in FIG. 3 was produced as follows.
First, LiCoO 2 was pulverized to an average particle size of 3 μm by a ball mill, and 0.025 part by weight of graphite, 0.025 part by weight of acetylene black and 0.02 part by weight of polyvinylidene fluoride as a binder were added to 1 part by weight of this powder. In addition, a paste formed using dimethylformamide was applied to one surface of an aluminum foil having a thickness of 15 μm so as to have a dry film thickness of 100 μm, thereby producing a positive electrode 1. On the other hand, commercially available petroleum-based needle coke (manufactured by Koa Oil Co., Ltd., KOA-SJ Coke) was pulverized with a ball mill to an average particle size of 10 μm. The surface distances d 002 and Lc (002) obtained from the BET surface area, true density, and X-ray diffraction of this needle coke were 11 m 2 · g −1 , 2.13 g · cm −3 , 3.44 mm and 52 mm, respectively. It was. Add 0.05 parts by weight of polyvinylidene fluoride as a binder to 1 part by weight of this powder, paste it into a paste using dimethylformamide, and apply it on one side of a 10 μm thick copper foil to a dry film thickness of 130 μm. Thus, negative electrode 2 was produced. The positive electrode 1 and the negative electrode 2 were welded with an aluminum positive electrode lead terminal 3 and a copper negative electrode lead terminal 4 for current collection, respectively. Then, a separator 5 made of a polyethylene microporous film was interposed between the positive electrode 1 and the negative electrode 2 and laminated together and wound many times to produce a spiral electrode body. The spiral electrode body was housed in a SUS battery container 6. The negative electrode lead terminal 4 was connected to the inner bottom portion of the battery container 6 by spot welding, and the positive electrode lead terminal 3 was connected to the battery sealing plate 7 in the same manner.
[0021]
Next, the compound bis (1,1,2,2) of Example 1 was used as an electrolyte in a mixed solvent in which propylene carbonate and diethoxymethane were mixed at a volume ratio of 1: 1 in a battery can container 6 containing the electrode body. , 2-tetrafluoroethanesulfonyl) imidolithium dissolved in 0.7 mol · dm −3 , and an electrolytic solution prepared by pouring the battery container 6 and the battery sealing plate 7 into the polypropylene packing 8 The cylindrical non-aqueous electrolyte battery having an outer diameter of 20 mm and an outer diameter of 50 mm was manufactured by fitting and crimping. When this battery was subjected to a charge / discharge test at room temperature (about 20 ° C.) with a charge / discharge current of 0.3 A, a charge end voltage of 4.2 V, and a discharge end voltage of 2.7 V, a discharge capacity of 0.90 Ah for the first cycle, The discharge capacity retention rate at the 100th cycle (percentage obtained by dividing the discharge capacity at the 100th cycle by the capacity at the first cycle) was 90%.
[0022]
[Example 8]
The compound non-aqueous electrolyte battery shown in FIG. 3 was mixed with propylene carbonate and diethoxymethane in a volume ratio of 1: 1, and the compound bis (1,1,2,3,3) of Example 2 as an electrolyte. , 3-hexafluoro-n-propanesulfonyl) imidolithium was prepared in the same manner as in Example 7 except that an electrolytic solution prepared by dissolving it to 0.7 mol · dm −3 was poured. The battery container 6 and the battery sealing plate 7 were fitted and crimped through a polypropylene packing 8 to be sealed, thereby producing a cylindrical nonaqueous electrolyte battery having an outer diameter of 20 mm and 50 mm. When this battery was subjected to a charge / discharge test at room temperature (about 20 ° C.) with a charge / discharge current of 0.3 A, a charge end voltage of 4.2 V, and a discharge end voltage of 2.7 V, a discharge capacity of 0.90 Ah for the first cycle, As a result, a discharge capacity retention ratio of the 100th cycle (percentage obtained by dividing the discharge capacity of the 100th cycle by the capacity of the first cycle) was 93%.
[0023]
【The invention's effect】
According to the present invention, an organic sulfonylimide lithium represented by a novel compound useful as an organic electrolyte: (XCHFCF 2 SO 2 ) 2 NLi (where X is F or CF 3 ) can be obtained. The compound of the present invention provides a non-aqueous electrolyte that is excellent in hydrolysis resistance as an electrolyte and hardly corrodes aluminum.
[Brief description of the drawings]
FIG. 1 is an infrared absorption spectrum of the compound of Example 1 of the present invention.
FIG. 2 is an infrared absorption spectrum of the compound of Example 2 of the present invention.
FIG. 3 is a longitudinal sectional view of a non-aqueous electrolyte battery used in Example 7 and Example 8 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Band-shaped positive electrode 2 Band-shaped negative electrode 3 Positive electrode lead terminal 4 Negative electrode lead terminal 5 Separator 6 Battery container 7 Battery sealing plate 8 Packing 9 Insulating plate

Claims (3)

式:(XCHFCF2 SO2 2 NLi(但しXはF又はCF3 )で表される有機スルホニルイミドリチウム。An organic sulfonylimide lithium represented by the formula: (XCHFCF 2 SO 2 ) 2 NLi (where X is F or CF 3 ). 式:(XCHFCF2 SO2 2 NLi(但しXはF又はCF3 )で表される有機スルホニルイミドリチウムを含有する非水系電解液。A nonaqueous electrolytic solution containing an organic sulfonylimide lithium represented by the formula: (XCHFCF 2 SO 2 ) 2 NLi (where X is F or CF 3 ). 式:(XCHFCF2 SO2 2 NLi(但しXはF又はCF3 )で表される有機スルホニルイミドリチウムを含有する非水系電解液とアルミニウムを集電体とした電極とからなる電池。A battery comprising a nonaqueous electrolytic solution containing an organic sulfonylimide lithium represented by the formula: (XCHFCF 2 SO 2 ) 2 NLi (where X is F or CF 3 ) and an electrode using aluminum as a current collector.
JP26159995A 1995-10-09 1995-10-09 Organosulfonylimide lithium Expired - Lifetime JP3874435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26159995A JP3874435B2 (en) 1995-10-09 1995-10-09 Organosulfonylimide lithium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26159995A JP3874435B2 (en) 1995-10-09 1995-10-09 Organosulfonylimide lithium

Publications (2)

Publication Number Publication Date
JPH09104686A JPH09104686A (en) 1997-04-22
JP3874435B2 true JP3874435B2 (en) 2007-01-31

Family

ID=17364155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26159995A Expired - Lifetime JP3874435B2 (en) 1995-10-09 1995-10-09 Organosulfonylimide lithium

Country Status (1)

Country Link
JP (1) JP3874435B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3750179B2 (en) * 1996-03-22 2006-03-01 三菱化学株式会社 Purification method of organic acid lithium salt
US5962546A (en) * 1996-03-26 1999-10-05 3M Innovative Properties Company Cationically polymerizable compositions capable of being coated by electrostatic assistance
CA2215849A1 (en) * 1997-09-11 1999-03-11 Christophe Michot New solvent and electrolytic composition with high conductivity and wide stability range
JP4889240B2 (en) * 2005-05-20 2012-03-07 旭化成株式会社 Asymmetric organic sulfonylimide salt electrolyte and electrolyte and electrochemical device using the same
JP4684006B2 (en) * 2005-05-20 2011-05-18 旭化成株式会社 Fluorine-containing organic sulfonylimide salt electrolyte, electrolytic solution and electrochemical element using the same
US7683209B2 (en) 2005-06-07 2010-03-23 E.I. Du Pont De Nemours And Company Manufacture of hydrofluoroalkanesulfonic acids
JP2008222657A (en) * 2007-03-14 2008-09-25 Asahi Kasei Corp Method for producing sulfonimide
JP5191267B2 (en) * 2008-04-23 2013-05-08 旭化成株式会社 Purification method of sulfonimide salt
FR2983466B1 (en) * 2011-12-06 2014-08-08 Arkema France USE OF MIXTURES OF LITHIUM SALTS AS ELECTROLYTES OF LI-ION BATTERIES

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2637284B1 (en) * 1988-10-05 1991-07-05 Elf Aquitaine SYNTHESIS OF SULFONYLIMIDURES
JPH05326018A (en) * 1992-05-20 1993-12-10 Matsushita Electric Ind Co Ltd Lithium secondary battery
DE4217366A1 (en) * 1992-05-26 1993-12-02 Bayer Ag Imides and their salts and their use
WO1995026056A1 (en) * 1994-03-21 1995-09-28 Centre National De La Recherche Scientifique Ionic conducting material having good anticorrosive properties
JP3117369B2 (en) * 1994-09-12 2000-12-11 セントラル硝子株式会社 Method for producing sulfonimide

Also Published As

Publication number Publication date
JPH09104686A (en) 1997-04-22

Similar Documents

Publication Publication Date Title
JP3737729B2 (en) Non-aqueous electrolyte battery and non-aqueous electrolyte
US9130240B2 (en) Ionic liquid, lithium secondary battery electrolyte comprising the ionic liquid, and lithium secondary battery comprising the electrolyte
KR20030079736A (en) Material for electrolytic solutions and use thereof
JP2001110450A (en) Electrolyte for electrochemical device
WO2009141999A1 (en) Non-aqueous solvent and non-aqueous electrolyte for an electrical storage device, non-aqueous electrical storage device wherein same are used, lithium secondary battery, and electrical double-layer capacitor
KR102445815B1 (en) magnesium salt
JP6593802B2 (en) Inorganic coordination polymers as gelling agents
JP4467247B2 (en) Ionic conductor using new molten salt
JP2002110235A (en) Electrolyte for electrochemical device and battery using the same
JP6600631B2 (en) Non-aqueous electrolyte containing monofluorophosphate ester salt and non-aqueous electrolyte battery using the same
JP2007188694A (en) Electrochemical device
JP3874435B2 (en) Organosulfonylimide lithium
WO2019201431A1 (en) Additives and methods to add additives in a rechargeable non-aqueous lithium-air battery
JP4880936B2 (en) Lithium ion secondary battery
JP2003007336A (en) Nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution for use in the same
JP4512949B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP4889240B2 (en) Asymmetric organic sulfonylimide salt electrolyte and electrolyte and electrochemical device using the same
JP2001512714A (en) Method for producing perfluoroalkane-1-sulfonyl (perfluoroalkylsulfonyl) imide-N-sulfonyl-containing metanide, imide and sulfonate compounds and perfluoroalkane-1-N-sulfonylbis (perfluoroalkylsulfonyl) methanide compound
JP6270634B2 (en) Active material, sodium ion battery and lithium ion battery using the same
JP3836691B2 (en) Non-aqueous electrolyte battery
JP3599372B2 (en) Organic sulfonic acid lithium salt
JP3599371B2 (en) Lithium organic sulfonate
TW202122378A (en) Composition
JPH09106834A (en) Lithium-ion secondary battery
JP3991263B2 (en) Electrolyte material for lithium secondary battery and lithium secondary battery using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

EXPY Cancellation because of completion of term