JP3599372B2 - Organic sulfonic acid lithium salt - Google Patents

Organic sulfonic acid lithium salt Download PDF

Info

Publication number
JP3599372B2
JP3599372B2 JP15705194A JP15705194A JP3599372B2 JP 3599372 B2 JP3599372 B2 JP 3599372B2 JP 15705194 A JP15705194 A JP 15705194A JP 15705194 A JP15705194 A JP 15705194A JP 3599372 B2 JP3599372 B2 JP 3599372B2
Authority
JP
Japan
Prior art keywords
lithium
electrolyte
hexafluoro
aluminum
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15705194A
Other languages
Japanese (ja)
Other versions
JPH0827096A (en
Inventor
誠 ▲瀧▼澤
文彦 山元
池田  正紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP15705194A priority Critical patent/JP3599372B2/en
Publication of JPH0827096A publication Critical patent/JPH0827096A/en
Application granted granted Critical
Publication of JP3599372B2 publication Critical patent/JP3599372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、新規化合物である1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸リチウムに関する。本化合物は非水系電解液の電解質等として有用である。
【0002】
【従来の技術】
従来、非水系電解液の有機電解質としてトリフルオロメタンスルホン酸リチウムが用いられている。トリフルオロメタンスルホン酸リチウムは、四フッ化朋酸リチウム、六フッ化燐酸リチウムといった無機電解質にくらべてカーボネート、ラクトン等の非水系電解液溶媒に対する溶解度が高いのが特徴であるが、溶液中でアルミニウムが陽極酸化により腐食されるため、トリフルオロメタンスルホン酸リチウムを電解質とした場合材料にアルミニウムが使用できないという欠点があった。
【0003】
【発明が解決しようとする課題】
本発明の課題は、アルミニウムの腐食が起こりにくい非水系電解液の有機電解質として有用な化合物を提供することであり、また該化合物を電解質とした非水系電解液を提供することである。さらには、該電解液とアルミニウムを集電体とした電極からなる電池を提供することである。
【0004】
【課題を解決するための手段】
本発明者らは鋭意検討の結果、1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸リチウムが上記課題を解決する化合物であることを見いだし、本発明に至った。
以下、本発明に付いて詳しく述べる。
【0005】
本発明の化合物である1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸リチウム(CFCHFCFSOLi)は新規化合物である。合成方法は特に限定するものではないが、一例として、亜硫酸水素ナトリウムとヘキサフルオロプロピレンの付加反応によって生じる1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸ナトリウム(NaHSO+CF=CF−CF→CFCHFCFSONa)を加水分解した後炭酸リチウムと反応させることで合成できる。
【0006】
本発明の化合物1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸リチウムの用途は、具体的には一次又は二次電池の非水系電解液の電解質、有機合成反応の触媒等が挙げられる。
上記化合物を非水系電解液の電解質として用いる場合、非水系電解液の溶媒は、該化合物を溶解できる非プロトン性極性溶媒であれば特に限定されるものではなく、例えば、カーボネート類、エステル類、ラクトン類、エーテル類、ニトリル類、アミド類、スルホン類等が使用でき、中でもカーボネート類、エステル類、ラクトン類、エーテル類が好ましい。更には、単一の溶媒だけでなく、二種類以上の溶媒の混合物でも良い。この非水系電解液の電解質濃度は、0.1mol・dm−3以上飽和濃度以下が好ましく、更に好ましくは0.5mol・dm−3以上飽和濃度以上飽和濃度以下である。0.1mol・dm−3未満であると、電解液の電導度が低いため好ましくない。
【0007】
該非水系電解液とアルミニウムを集電体とした電極からなる電池としては、例えば、銅箔を集電体とし、リチウムイオンを吸蔵可能な炭素を主体とする負極と、アルミニウム箔を集電体とし、リチウム含有遷移金属カルコゲン化合物を主体とする正極からなるリチウムイオン二次電池などが挙げられる。
【0008】
【実施例】
以下に実施例を挙げ本発明を具体的に説明するが、本発明は実施例の範囲に限定されるものではない。
【0009】
【実施例1】
1:亜硫酸水素ナトリウムとヘキサフルオロプロピレンの付加反応
1,000mlの圧力容器に亜硫酸水素ナトリウム(NaHSO)80g、四ホウ酸ナトリウム10水和物(Na・10HO)36.7g、純水160ml及びヘキサフルオロプロピレン120gを加え、120℃で110時間反応した。反応液を濾過し、濾液を減圧下で脱水乾固した後エタノール300mlを加え3時間還流、生成した不溶固体を濾別し、濾液から脱溶媒して35.2gの1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸ナトリウム(CFCHFCFSONa)を得た。収率は18.0%であった。
2:1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸ナトリウムの加水分解
300mlの4つ口フラスコ内に上記1で合成した1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸ナトリウム18.0gと35%硫酸40mlを入れ15℃で2時間撹拌した後、純水80mlで希釈し、100mlのジエチルエーテルで3回抽出した。エーテル相から脱溶媒して15.0gの1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸1水和物(CFCHFCFSOH・HO)を得た。この1水和物に塩化チオニルSOCl15.5mlを加え、撹拌しながら室温から40℃まで昇温して脱水を行なった後、減圧蒸留して、2mmHgで70〜72℃の留分4.83gを採取した。1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸として0.021mole、収率は約30%であった。
3:1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸リチウムの合成
50mlのフラスコに1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸4.83gと純水5ml、炭酸リチウム0.783gを入れ室温で2時間撹拌した後、減圧下で脱水、乾燥して1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸リチウム4.74gを得た。収率は95.7%であった。
【0010】
図1に1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸リチウムCFCHFCFSOLiの赤外吸収スペクトルを示す。〔3,005cm−1(C−H); 1,640cm−1(S=O); 1,240cm−1(C−F)〕
また、他の物性についても以下に示す。
【0011】

Figure 0003599372
融点:453℃(DSC(セイコー電子(株):S−5000)で測定、昇温速度15℃/分)。
【0012】
Figure 0003599372
【0013】
【実施例2】
〔アルミニウム陽極酸化電流の測定〕
1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸リチウムの濃度1モル/lのプロピレンカーボネート溶液を電解液とし、作用電極をアルミニウム(市販のアルミ箔)、対電極及び参照電極をリチウム金属としたセルでアルミニウムを4.0V(vs.Li金属)の電位に保持したとき、電極間を21mA・cm−2の電流が流れた。
【0014】
【比較例1】
トリフルオロメタンスルホン酸リチウム(Aldrich社製)の濃度1モル/lのプロピレンカーボネート溶液を電解液とし、作用電極をアルミニウム(市販のアルミ箔)、対電極及び参照電極をリチウム金属としたセルでアルミニウムを4.0V(vs.Li金属)の電位に保持したとき、電極間を210mA・cm−2の電流が流れた。
【0015】
実施例2の電解液での電流値は比較例1の電解液での値の1/10であり、実施例1の電解液中ではアルミニウムの腐食速度は比較例1の電解液中の1/10となることを示している。
【0016】
【実施例3】
図2に示す円筒型非水電解液電池を下記のようにして作製した。
まず、LiCoOをボールミルで平均粒径3μmに粉砕した後、この粉末1重量部に対しグラファイト0.025重量部、アセチレンブラック0.025重量部、結合剤としてポリフッ化ビニリデン0.02重量部を加え、ジメチルホルムアミドを用いてペースト状にしたものを、厚さ15μmのアルミ箔の片面に乾燥膜厚が100μmになるように塗布して正極1を作製した。
【0017】
一方、市販の石油系ニードルコークス(興亜石油社製、KOA−SJ Coke)をボールミルで平均粒径10μmに粉砕した。このニードルコークスのBET表面積、真密度、X線回折より得られる面間隔d0.02,Lc(002) はそれぞれ、11m・g−1、2.13g・cm−3,3.44Å、52Åであった。この粉末1重量部に対して結合剤としてポリフッ化ビニリデン0.05重量部を加え、ジメチルホルムアミドを用いてペースト状にし、厚さ10μmの銅箔の片面に乾燥膜厚が130μmになるように塗布して負極2を作製した。なお、正極1及び負極2には、集電を行うためのアルミニウム製の正極リード端子3、銅製の負極リード端子4をそれぞれ溶接した。
【0018】
そして、正極1と負極2との間に、ポリエチレン製の微多孔膜からなるセパレータ5を介在させて互いに積層し、多数回巻回して、渦巻き型の電極体を作製した。さらに、この渦巻き型の電極体をSUS製電池容器6中に収納した。負極リード端子4を電池容器6の内底部にスポット溶接により接続し、正極リード端子3は電池封口板7に同様にして接続した。
【0019】
次に、この電極体が収納された電池缶容器6中に、プロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトンを体積比1対1対2で混合した混合溶媒に、電解質として本発明の化合物1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸リチウムを1.0mol・dm−3になるように溶解させて調整した電解液を注液し、該電池容器6と前記電池封口板7とをポリプロピレン製パッキング8を介し、嵌合することにより密封し、外径20mm、50mmの円筒型非水電解液電池を作製した。
【0020】
この電池を、充放電電流1A、充電終止電圧4.2V、放電終止電圧2.7V、で室温(20℃)において充放電試験を行ったところ、1サイクルめの放電容量1.0Ah、50サイクルめの放電容量保持率(50サイクルめの放電容量を1サイクルめの放電容量で割った百分率)75%という結果を得た。
【0021】
【発明の効果】
本発明により、有機電解質として有用な新規化合物1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸リチウムを得ることができる。本発明の化合物は電解質としてアルミニウムの腐食が起こりにくい非水系電解液を提供する。
【図面の簡単な説明】
【図1】本発明の化合物の赤外吸収スペクトルである。
【図2】本発明の実施例3で用いた非水電解液電池の縦断面図である。
【符号の説明】
1.帯状正極
2.帯状負極
3.正極リード端子
4.負極リード端子
5.セパレータ
6.電池容器
7.電池封口板
8.パッキング
9.絶縁板[0001]
[Industrial applications]
The present invention relates to a novel compound, lithium 1,1,2,3,3,3-hexafluoro-n-propanesulfonate. The present compound is useful as an electrolyte of a non-aqueous electrolyte.
[0002]
[Prior art]
Conventionally, lithium trifluoromethanesulfonate has been used as an organic electrolyte of a non-aqueous electrolyte. Lithium trifluoromethanesulfonate is characterized by having a higher solubility in nonaqueous electrolyte solvents such as carbonate and lactone than inorganic electrolytes such as lithium tetrafluorophosphate and lithium hexafluorophosphate. However, there is a drawback that aluminum cannot be used as a material when lithium trifluoromethanesulfonate is used as an electrolyte, because aluminum is corroded by anodic oxidation.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a compound useful as an organic electrolyte of a non-aqueous electrolytic solution in which corrosion of aluminum does not easily occur, and to provide a non-aqueous electrolytic solution using the compound as an electrolyte. It is still another object of the present invention to provide a battery comprising the electrolyte and an electrode using aluminum as a current collector.
[0004]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that lithium 1,1,2,3,3,3-hexafluoro-n-propanesulfonate is a compound that solves the above-mentioned problems, and have reached the present invention.
Hereinafter, the present invention will be described in detail.
[0005]
Lithium 1,1,2,3,3,3-hexafluoro-n-propanesulfonate (CF 3 CHFCF 2 SO 3 Li) which is a compound of the present invention is a novel compound. Although the synthesis method is not particularly limited, as an example, sodium 1,1,2,3,3,3-hexafluoro-n-propanesulfonate (NaHSO 3) generated by an addition reaction between sodium bisulfite and hexafluoropropylene is used. + CF 2 = CF-CF 3 → CF 3 CHFCF 2 SO 3 Na) is hydrolyzed and then reacted with lithium carbonate.
[0006]
The use of the compound 1,1,2,3,3,3-lithium hexafluoro-n-propanesulfonate of the present invention is specifically intended for use in electrolytes of non-aqueous electrolytes for primary or secondary batteries, and for organic synthesis reactions. And a catalyst.
When the compound is used as the electrolyte of the non-aqueous electrolyte, the solvent of the non-aqueous electrolyte is not particularly limited as long as it is an aprotic polar solvent that can dissolve the compound, and includes, for example, carbonates, esters, Lactones, ethers, nitriles, amides, sulfones and the like can be used, and among them, carbonates, esters, lactones and ethers are preferable. Further, not only a single solvent but also a mixture of two or more solvents may be used. The electrolyte concentration of the non-aqueous electrolyte is preferably 0.1 mol · dm −3 or more and a saturation concentration or less, more preferably 0.5 mol · dm −3 or more and a saturation concentration or more and a saturation concentration or less. If it is less than 0.1 mol · dm −3 , the conductivity of the electrolytic solution is low, which is not preferable.
[0007]
As the battery comprising the nonaqueous electrolyte and an electrode having aluminum as a current collector, for example, a copper foil as a current collector, a negative electrode mainly composed of carbon capable of absorbing lithium ions, and an aluminum foil as a current collector And a lithium ion secondary battery comprising a positive electrode mainly composed of a lithium-containing transition metal chalcogen compound.
[0008]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the scope of the examples.
[0009]
Embodiment 1
1: sodium bisulfite pressure vessel addition reaction 1,000ml of sodium bisulfite and hexafluoropropylene (NaHSO 3) 80g, sodium tetraborate decahydrate (Na 2 B 4 O 7 · 10H 2 O) 36. 7 g, 160 ml of pure water and 120 g of hexafluoropropylene were added and reacted at 120 ° C. for 110 hours. The reaction solution was filtered, the filtrate was dehydrated to dryness under reduced pressure, 300 ml of ethanol was added, and the mixture was refluxed for 3 hours. The resulting insoluble solid was separated by filtration. to give 3,3-hexafluoropropane -n--propane sulfonic acid (CF 3 CHFCF 2 SO 3 Na ). The yield was 18.0%.
2: Hydrolysis of sodium 1,1,2,3,3,3-hexafluoro-n-propanesulfonate 1,1,2,3,3,3 synthesized in the above 1 in a 300 ml four-necked flask. After adding 18.0 g of sodium hexafluoro-n-propanesulfonate and 40 ml of 35% sulfuric acid and stirring at 15 ° C. for 2 hours, the mixture was diluted with 80 ml of pure water and extracted three times with 100 ml of diethyl ether. The solvent was removed from the ether phase to obtain 15.0 g of 1,1,2,3,3,3-hexafluoro-n-propanesulfonic acid monohydrate (CF 3 CHFCF 2 SO 3 H.H 2 O). Was. To this monohydrate, 15.5 ml of thionyl chloride SOCl 2 was added, and the temperature was raised from room temperature to 40 ° C. with stirring to perform dehydration, followed by distillation under reduced pressure and a fraction at 70 to 72 ° C. at 2 mmHg. 83 g were collected. 0.021 mole of 1,1,2,3,3,3-hexafluoro-n-propanesulfonic acid was obtained, and the yield was about 30%.
3: Synthesis of lithium 1,1,2,3,3,3-hexafluoro-n-propanesulfonic acid 1,1,2,3,3,3-hexafluoro-n-propanesulfonic acid 4 was added to a 50 ml flask. 0.83 g, 5 ml of pure water and 0.783 g of lithium carbonate were stirred at room temperature for 2 hours, dehydrated and dried under reduced pressure, and dried with 1,1,2,3,3,3-hexafluoro-n-propanesulfonic acid. 4.74 g of lithium were obtained. The yield was 95.7%.
[0010]
FIG. 1 shows an infrared absorption spectrum of lithium 1,1,2,3,3,3-hexafluoro-n-propanesulfonate CF 3 CHFCF 2 SO 3 Li. [3,005 cm -1 (CH); 1,640 cm -1 (S = O); 1,240 cm -1 (CF)]
Other physical properties are also shown below.
[0011]
Figure 0003599372
Melting point: 453 ° C. (measured by DSC (Seiko Denshi Co., Ltd .: S-5000), heating rate 15 ° C./min).
[0012]
Figure 0003599372
[0013]
Embodiment 2
[Measurement of aluminum anodic oxidation current]
A propylene carbonate solution having a concentration of lithium 1,1,2,3,3,3-hexafluoro-n-propanesulfonate having a concentration of 1 mol / l was used as an electrolyte, and a working electrode was aluminum (a commercially available aluminum foil), a counter electrode and When aluminum was held at a potential of 4.0 V (vs. Li metal) in a cell in which the reference electrode was lithium metal, a current of 21 mA · cm −2 flowed between the electrodes.
[0014]
[Comparative Example 1]
A 1 mol / l propylene carbonate solution of lithium trifluoromethanesulfonate (manufactured by Aldrich) was used as an electrolyte, aluminum was used as a working electrode (a commercially available aluminum foil), and lithium was used as a counter electrode and a reference electrode. When maintained at a potential of 4.0 V (vs. Li metal), a current of 210 mA · cm −2 flowed between the electrodes.
[0015]
The current value of the electrolytic solution of Example 2 was 1/10 of the value of the electrolytic solution of Comparative Example 1, and the corrosion rate of aluminum in the electrolytic solution of Example 1 was 1/100 that of the electrolytic solution of Comparative Example 1. 10 is shown.
[0016]
Embodiment 3
The cylindrical nonaqueous electrolyte battery shown in FIG. 2 was produced as follows.
First, LiCoO 2 was pulverized with a ball mill to an average particle size of 3 μm, and 0.025 parts by weight of graphite, 0.025 parts by weight of acetylene black, and 0.02 parts by weight of polyvinylidene fluoride as a binder were added to 1 part by weight of the powder. In addition, a paste made using dimethylformamide was applied to one surface of an aluminum foil having a thickness of 15 μm so that the dry film thickness became 100 μm, to produce a positive electrode 1.
[0017]
On the other hand, a commercially available petroleum needle coke (KOA-SJ Coke, manufactured by Koa Oil Co., Ltd.) was pulverized with a ball mill to an average particle size of 10 μm. The needle coke has a BET surface area, a true density, and a plane spacing d 0.02 , Lc (002) obtained from X-ray diffraction, of 11 m 2 · g −1 , 2.13 g · cm −3 , 3.44 ° and 52 °, respectively. Met. To 1 part by weight of this powder, add 0.05 parts by weight of polyvinylidene fluoride as a binder, form a paste using dimethylformamide, and apply it to one side of a 10-μm-thick copper foil to a dry film thickness of 130 μm. Thus, a negative electrode 2 was produced. The positive electrode 1 and the negative electrode 2 were welded with a positive electrode lead terminal 3 made of aluminum and a negative electrode lead terminal 4 made of copper for current collection.
[0018]
Then, a separator 5 made of a microporous polyethylene film was interposed between the positive electrode 1 and the negative electrode 2, laminated one on another, and wound many times to produce a spiral electrode body. Further, the spiral electrode body was accommodated in a battery container 6 made of SUS. The negative electrode lead terminal 4 was connected to the inner bottom of the battery container 6 by spot welding, and the positive electrode lead terminal 3 was connected to the battery sealing plate 7 in the same manner.
[0019]
Next, a compound 1, 1 of the present invention was used as an electrolyte in a mixed solvent obtained by mixing propylene carbonate, ethylene carbonate, and γ-butyrolactone at a volume ratio of 1: 1 to 2 in the battery can 6 containing the electrode body. , 2,3,3,3-Lithium hexafluoro-n-propanesulfonate was dissolved and adjusted to 1.0 mol · dm -3 , and an electrolyte solution was injected, and the battery container 6 and the battery cap were sealed. The plate 7 was sealed by fitting it through a polypropylene packing 8 to produce a cylindrical nonaqueous electrolyte battery having an outer diameter of 20 mm and 50 mm.
[0020]
The battery was subjected to a charge / discharge test at room temperature (20 ° C.) at a charge / discharge current of 1 A, a charge end voltage of 4.2 V, and a discharge end voltage of 2.7 V. As a result, the first cycle had a discharge capacity of 1.0 Ah and 50 cycles. The discharge capacity retention rate (percentage of the discharge capacity at the 50th cycle divided by the discharge capacity at the first cycle) was 75%.
[0021]
【The invention's effect】
According to the present invention, a novel compound 1,1,2,3,3,3-hexafluoro-n-propanesulfonate useful as an organic electrolyte can be obtained. The compound of the present invention provides a non-aqueous electrolyte which is less likely to cause corrosion of aluminum as an electrolyte.
[Brief description of the drawings]
FIG. 1 is an infrared absorption spectrum of the compound of the present invention.
FIG. 2 is a longitudinal sectional view of a nonaqueous electrolyte battery used in Example 3 of the present invention.
[Explanation of symbols]
1. 1. Strip-shaped positive electrode 2. Strip negative electrode Positive electrode lead terminal4. Negative electrode lead terminal5. Separator 6. Battery container 7. 7. Battery sealing plate Packing 9. Insulating plate

Claims (2)

1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸リチウム。Lithium 1,1,2,3,3,3-hexafluoro-n-propanesulfonate. 1,1,2,3,3,3−ヘキサフルオロ−n−プロパンスルホン酸リチウムを含有する非水系電解液。A non-aqueous electrolyte containing lithium 1,1,2,3,3,3-hexafluoro-n-propanesulfonate.
JP15705194A 1994-07-08 1994-07-08 Organic sulfonic acid lithium salt Expired - Lifetime JP3599372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15705194A JP3599372B2 (en) 1994-07-08 1994-07-08 Organic sulfonic acid lithium salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15705194A JP3599372B2 (en) 1994-07-08 1994-07-08 Organic sulfonic acid lithium salt

Publications (2)

Publication Number Publication Date
JPH0827096A JPH0827096A (en) 1996-01-30
JP3599372B2 true JP3599372B2 (en) 2004-12-08

Family

ID=15641130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15705194A Expired - Lifetime JP3599372B2 (en) 1994-07-08 1994-07-08 Organic sulfonic acid lithium salt

Country Status (1)

Country Link
JP (1) JP3599372B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482302B2 (en) * 2003-02-14 2009-01-27 Daikin Industries, Ltd. Fluorosulfonic acid compound, process for producing the same, and use thereof
US7683209B2 (en) * 2005-06-07 2010-03-23 E.I. Du Pont De Nemours And Company Manufacture of hydrofluoroalkanesulfonic acids

Also Published As

Publication number Publication date
JPH0827096A (en) 1996-01-30

Similar Documents

Publication Publication Date Title
US8795893B2 (en) Nonaqueous secondary battery electrode, nonaqueous secondary battery including the same, and assembled battery
TWI358843B (en) Non-aqueous electrolyte and secondary battery usin
JP2003100347A (en) Nonaqueous electrolyte cell and nonaqueous electrolyte
JP2011523765A (en) Electrochemical cell containing ionic liquid electrolyte
JPWO2003091198A1 (en) Ionic liquid and dehydration method, electric double layer capacitor and secondary battery
JP4467247B2 (en) Ionic conductor using new molten salt
WO2020241161A1 (en) Electrolyte composition, solvent composition, non-aqueous electrolyte, and use thereof
CN102487151B (en) Lithium ion secondary battery
CN103456980A (en) Non-aqueous electrolyte battery and pack battery
JP3874435B2 (en) Organosulfonylimide lithium
JP4512949B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2003132944A (en) Nonaqueous system electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP3599372B2 (en) Organic sulfonic acid lithium salt
JPH10188977A (en) Lithium secondary battery
JP3836691B2 (en) Non-aqueous electrolyte battery
JP3599371B2 (en) Lithium organic sulfonate
JPH09106834A (en) Lithium-ion secondary battery
JP3991263B2 (en) Electrolyte material for lithium secondary battery and lithium secondary battery using the same
WO2022070492A1 (en) Lithium primary battery and non-aqueous electrolytic solution for lithium primary battery
JP7288776B2 (en) Aqueous electrolyte for power storage device and power storage device containing this water-based electrolyte
JPH0359963A (en) Lithium secondary battery
JP2000040524A (en) Electrolyte for lithium secondary battery and secondary battery
JP7288777B2 (en) Aqueous electrolyte for power storage device and power storage device containing this water-based electrolyte
JP4104293B2 (en) Electrolytes for electrochemical devices, electrolytes or solid electrolytes thereof, and batteries
JPH03289049A (en) Nonaqueous electrolytic secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

EXPY Cancellation because of completion of term