JP3874386B2 - Cationic electrodeposition coating composition - Google Patents

Cationic electrodeposition coating composition Download PDF

Info

Publication number
JP3874386B2
JP3874386B2 JP34234397A JP34234397A JP3874386B2 JP 3874386 B2 JP3874386 B2 JP 3874386B2 JP 34234397 A JP34234397 A JP 34234397A JP 34234397 A JP34234397 A JP 34234397A JP 3874386 B2 JP3874386 B2 JP 3874386B2
Authority
JP
Japan
Prior art keywords
bismuth
electrodeposition coating
coating composition
lactic acid
electrodeposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34234397A
Other languages
Japanese (ja)
Other versions
JPH11100533A (en
Inventor
滋朗 西口
礼二郎 西田
文昭 中尾
忠義 平木
章 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP34234397A priority Critical patent/JP3874386B2/en
Priority to US09/463,597 priority patent/US6265079B1/en
Priority to CA 2298721 priority patent/CA2298721C/en
Priority to DE69837091T priority patent/DE69837091D1/en
Priority to EP98933953A priority patent/EP1000985B1/en
Priority to PCT/JP1998/003346 priority patent/WO1999006493A1/en
Publication of JPH11100533A publication Critical patent/JPH11100533A/en
Application granted granted Critical
Publication of JP3874386B2 publication Critical patent/JP3874386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、カチオン電着塗料組成物に関し、詳しくは鉛化合物を含まなくても防食性、仕上り性等に優れた電着塗膜を形成できる鉛フリ−のカチオン電着塗料組成物に関する。
【0002】
【従来技術及びその課題】
電着塗料は、つきまわり性に優れ、また耐久性や防食性などの性能に優れた塗膜を形成することができるため、従来より、それらの性能が要求される用途分野、例えば自動車車体の塗装、電気器具の塗装等に広く採用されている。
【0003】
電着塗料には、その防食性を一層向上させるために、しばしば防錆顔料、例えばクロム酸鉛、塩基性ケイ酸鉛、クロム酸ストロンチウムなどの鉛化合物やクロム化合物が配合されているが、該化合物は非常に有害な物質であり、公害対策上その使用には問題がある。そこで該鉛化合物等に代わる無毒性ないし低毒性の防錆顔料として、従来、リン酸亜鉛、リン酸鉄、リン酸アルミニウム、リン酸カルシウム、モリブデン酸亜鉛、モリブデン酸カルシウム、酸化亜鉛、酸化鉄、リンモリブデン酸アルミニウム、リンモリブデン酸亜鉛などの使用が検討されてきたが、これらの化合物は、前述の鉛化合物やクロム化合物ほどの防錆能を持たず、実用的には満足できるものではない。
【0004】
電着塗料において鉛化合物やクロム化合物と同等ないしはそれ以上の優れた防錆能を発揮する金属種としてビスマスが有効であり、その中でも乳酸ビスマスが特に有効であることは既に知られている。
【0005】
例えば、特表平7−506870号公報には、プロトン付加後水で希釈でき、そしてエステル交換反応及び/又はアミド交換反応及び/又はウレタン交換反応及び/又は末端二重結合の反応により架橋できる陽イオンコーティング結合剤および脂肪族ヒドロキシカルボン酸、好ましくは乳酸またはジメチロールプロピオン酸のビスマス塩類を含む触媒含有陽イオンコーティング結合剤の製造方法が開示されている。この提案に従えば、ビスマス塩類は酸化ビスマス1モルとそれぞれの脂肪族ヒドロキシカルボン酸7モルを反応することにより得られる。しかしながら、この方法では、単離乾燥したビスマス塩が貯蔵中に塊化する傾向があり、また、反応に用いる酸の量が次に全体のコーティング結合剤を中和するのに要する量よりも多いため、その結果、過剰の酸が電着塗料中に導入され、それによって電着タンクの操作中に要求される電流量がかなり増加するという問題点がある。
【0006】
【課題を解決するための手段】
本発明者らは、上記問題を解決すべく鋭意検討した結果、水溶性に優れたビスマス塩を用いれば電着浴中に安定且つ均一に分散できるのであり、かかるビスマス塩を得るには、乳酸ビスマスに使用する乳酸として、光学異性体のうちのL体が有用であることを見出し、該L−乳酸を特定割合以上用いてなる乳酸ビスマスを電着塗料組成物に含有せしめることにより、貯蔵安定性が良好で電着浴中に均一に分散可能であり、且つ仕上り性、防食性に優れた電着塗膜が得られるに至った。
【0007】
しかして、本発明によると、光学異性体のうちのL体が80%以上含まれる乳酸を用いてなる乳酸ビスマスを含有することを特徴とするカチオン電着塗料組成物が提供される。
【0008】
【発明の実施の形態】
本発明において乳酸ビスマスは、光学異性体のうちのL体が80%以上(即ちD体が20%未満)、好ましくは85%以上、さらに好ましくは90%以上含まれる乳酸を用いてなる。該乳酸ビスマスの製造に用いられる乳酸のL体含有量が80%未満では、乳酸ビスマスの水溶性が得られないので好ましくない。L−乳酸は、通常、発酵法により生成されるものである。
【0009】
上記乳酸ビスマスの製造に用いられるビスマス化合物としては、酸化ビスマス、水酸化ビスマス、塩基性炭酸ビスマスなどが挙げられ、特に酸化ビスマスが好適である。
【0010】
上記ビスマス化合物と乳酸との反応比は、種々選択可能であり、乳酸ビスマスは、例えば酸化ビスマス1モルに対してL体が80%以上含まれる乳酸を2〜10モル、好ましくは3〜8モルの比率で反応させて得られるものである。
【0011】
上記乳酸ビスマスは、例えば水溶液として、電着塗料組成物に導入できる。上記水溶液としては、具体的には、水の存在下で、酸化ビスマス1モルにL体が80%以上含まれる乳酸2〜10モル、好ましくは3〜8モルを室温〜90℃で1〜30時間程度反応させることにより、均一な乳酸ビスマス水溶液が再現良く得られ、これを電着塗料中に添加することができる。該乳酸が2モル未満ではビスマス塩の水溶化が困難であり、10モルを越えると過剰の酸が電着浴に入り電着タンクの操作中に要求される電流量が増加することになり電着塗装性が低下するので望ましくない。同様に水酸化ビスマスを用いた場合には水酸化ビスマス1モルにL体が80%以上含まれる乳酸1〜5モル、好ましくは1.5〜4モルを反応させるものである。また反応固形分濃度は、通常0.1〜80重量%の範囲内、好ましくは0.5〜70重量%の範囲内、より好ましくは1〜60重量%の範囲内が好適である。
【0012】
上記乳酸ビスマス水溶液は、電着塗料組成物に添加する際に、電着塗料組成物の水分散前に添加してもよいし、電着塗料組成物の水分散後に添加してもよい。電着塗料組成物の水分散前に添加する場合には該ビスマス塩水溶液の固形分濃度に特に制限はないが、電着塗料組成物の水分散後に添加する場合には乳酸ビスマス水溶液の固形分濃度を60重量%以下にすることが望ましい。かかる操作は電着塗料組成物中に乳酸ビスマス水溶液が均一に分散されるために必要である。尚、塗料配合の容易さ、貯蔵安定性を考慮すると、乳酸ビスマス水溶液は電着塗料組成物の水分散後に添加することが好ましい。
【0013】
本発明において乳酸ビスマスの電着塗料中における含有量は、厳密に規定されるものではなく、電着塗料に要求される性能に応じて広範囲にわたって変えることができるが、通常、電着塗料組成物中の樹脂固形分100重量部あたり、ビスマス含有量として0.1〜10重量部、好ましくは0.5〜5重量部の範囲内となるようにするのが好適である。該ビスマス含有量が0.1重量部未満では、形成される塗膜の防錆性が十分でなく、一方10重量部を越えると、電着塗料組成物の安定性が低下する傾向がみられる。
【0014】
上記乳酸ビスマスが含有される電着塗料組成物は、カチオン型であり、基体樹脂としては、エポキシ系、アクリル系、ポリブタジエン系、アルキド系、ポリエステル系などのいずれの樹脂でも使用することができるが、なかでも例えばアミン付加エポキシ樹脂に代表されるポリアミン樹脂が好ましい。
【0015】
上記アミン付加エポキシ樹脂としては、例えば、(i)ポリエポキシド化合物と1級モノ−及びポリアミン、2級モノ−及びポリアミン又は1、2級混合ポリアミンとの付加物(例えば、米国特許第3,984,299号明細書参照);(ii)ポリエポキシド化合物とケチミン化された1級アミノ基を有する2級モノ−及びポリアミンとの付加物(例えば、米国特許第4,017,438号明細書参照);(iii)ポリエポキシド化合物とケチミン化された1級アミノ基を有するヒドロキシ化合物とのエ−テル化により得られる反応物(例えば、特開昭59−43013号公報参照)等を挙げることができる。
【0016】
上記アミン付加エポキシ樹脂の製造に使用されるポリエポキシド化合物は、エポキシ基を1分子中に2個以上有する化合物であり、一般に少なくとも200、好ましくは400〜4000、更に好ましくは800〜2000の範囲内の数平均分子量を有するものが適しており、特にポリフェノ−ル化合物とエピクロルヒドリンとの反応によって得られるものが好ましい。該ポリエポキシド化合物の形成のために用い得るポリフェノ−ル化合物としては、例えば、ビス(4−ヒドロキシフェニル)−2,2−プロパン、4,4−ジヒドロキシベンゾフェノン、ビス(4−ヒドロキシフェニル)−1,1−エタン、ビス(4−ヒドロキシフェニル)−1,1−イソブタン、ビス(4−ヒドロキシ−tert−ブチル−フェニル)−2,2−プロパン、ビス(2−ヒドロキシナフチル)メタン、テトラ(4−ヒドロキシフェニル)−1,1,2,2−エタン、4,4−ジヒドロキシジフェニルスルホン、フェノ−ルノボラック、クレゾ−ルノボラック等を挙げることができる。
【0017】
該ポリエポキシド化合物は、ポリオ−ル、ポリエ−テルポリオ−ル、ポリエステルポリオ−ル、ポリアミドアミン、ポリカルボン酸、ポリイソシアネ−ト化合物などと一部反応させたものであってもよく、更にまた、ε−カプロラクトン、アクリルモノマ−などをグラフト重合させたものであってもよい。
【0018】
上記基体樹脂は、外部架橋型及び内部(又は自己)架橋型のいずれのタイプのものであってもよく、外部架橋型の樹脂の場合に併用される硬化剤としては、例えば(ブロック)ポリイソシアネ−ト化合物やアミノ樹脂等の従来から既知の架橋剤であることができ、特にブロックポリイソシアネ−ト化合物が好ましい。また、内部架橋型の樹脂としてはブロックポリイソシアネ−ト型を導入したものが好適である。
【0019】
上記外部架橋型で使用しうるブロックポリイソシアネ−ト化合物は、各々理論量のポリイソシアネ−ト化合物とイソシアネ−トブロック剤との付加反応生成物であることができる。このポリイソシアネ−ト化合物としては、例えば、トリレンジイソシアネ−ト、キシリレンジイソシアネ−ト、フェニレンジイソシアネ−ト、ビス(イソシアネ−トメチル)シクロヘキサン、テトラメチレンジイソシアネ−ト、ヘキサメチレンジイソシアネ−ト、メチレンジイソシアネ−ト、イソホロンジイソシアネ−トなどの芳香族、脂環族または脂肪族のポリイソシアネ−ト化合物、及びこれらのイソシアネ−ト化合物の過剰量にエチレングリコ−ル、プロピレングリコ−ル、トリメチロ−ルプロパン、ヘキサントリオ−ル、ヒマシ油などの低分子活性水素含有化合物を反応させて得られる末端イソシアネ−ト含有化合物を挙げることができる。
【0020】
一方、前記イソシアネ−トブロック剤はポリイソシアネ−ト化合物のイソシアネ−ト基に付加してブロックするものであり、そして付加によって生成するブロックポリイソシアネ−ト化合物は常温において安定で且つ約100〜200℃に加熱した際、ブロック剤を解離して遊離のイソシアネ−ト基を再生しうるものであることが望ましい。このような要件を満たすブロック剤としては、例えば、ε−カプロラクタム、γ−ブチロラクタムなどのラクタム系化合物;メチルエチルケトオキシム、シクロヘキサノンオキシムなどのオキシム系化合物;フェノ−ル、パラ−t−ブチルフェノ−ル、クレゾ−ルなどのフェノ−ル系化合物;n−ブタノ−ル、2−エチルヘキサノ−ルなどの脂肪族アルコ−ル類;フェニルカルビノ−ル、メチルフェニルカルビノ−ルなどの芳香族アルキルアルコ−ル類;エチレングリコ−ルモノブチルエ−テルなどのエ−テルアルコ−ル系化合物等を挙げることができる。これらのうち、オキシム系およびラクタム系のブロック剤は比較的低温で解離するブロック剤であるため、電着塗料組成物の硬化性の点から特に好適である。
【0021】
ブロックイソシアネ−ト基を基体樹脂分子中に有していて自己架橋するタイプにおける基体樹脂中へのブロックイソシアネ−ト基の導入方法は従来既知の方法を用いることができ、例えば部分ブロックしたポリイソシアネ−ト化合物中の遊離のイソシアネ−ト基と基体樹脂中の活性水素含有部とを反応させることによって導入することができる。
【0022】
基体樹脂の中和・水性化は、カチオン系樹脂の場合には通常、該樹脂をギ酸、酢酸、乳酸などの水溶性有機酸で中和して水溶化・水分散化することによって行なわれる。その際、前記乳酸ビスマス水溶液の一部又は全部を中和に用いることもできる。中和剤として酢酸及び/又はギ酸を用いると、仕上り性、つきまわり性、低温硬化性などに優れるので好ましい。
【0023】
本発明の電着塗料組成物は、さらに錫化合物を含有することができる。該錫化合物としては、例えば、ジブチル錫オキサイド、ジオクチル錫オキサイドなどの有機錫酸化物;ジブチル錫ジラウレ−ト、ジオクチル錫ジラウレ−ト、ジブチル錫ジアセテ−ト、ジオクチル錫ベンゾエ−トオキシ、ジブチル錫ベンゾエ−トオキシ、ジオクチル錫ジベンゾエ−ト、ジブチル錫ジベンゾエ−トなどのジアルキル錫の脂肪族または芳香族カルボン酸塩等を挙げることができ、このうち低温硬化性の点からジアルキル錫芳香族カルボン酸塩が好適である。電着塗料組成物中での錫化合物の含有量は、厳密に規定されるものではなく、電着塗料に要求される性能等に応じて広範囲にわたって変えることができるが、通常、電着塗料中の樹脂固形分100重量部あたりの錫含有量が0〜8重量部、好ましくは0.05〜5重量部の範囲内となるようにするのが好適である。
【0024】
本発明の電着塗料組成物は、さらに亜鉛化合物を含有することができる。該亜鉛化合物としては、例えば、リン酸亜鉛、蟻酸亜鉛、酢酸亜鉛、モリブデン酸亜鉛、酸化亜鉛、リンモリブデン酸亜鉛等を挙げることができる。電着塗料組成物中での亜鉛化合物の含有量は、厳密に規定されるものではなく、電着塗料に要求される性能等に応じて広範囲にわたって変えることができるが、通常、電着塗料中の樹脂固形分100重量部あたりの亜鉛含有量が0〜8重量部、好ましくは0.05〜5重量部の範囲内となるようにするのが好適である。
【0025】
本発明の電着塗料組成物には、さらに必要に応じて顔料類、有機溶剤、顔料分散剤、塗面調整剤などの塗料添加物を配合することができる。
【0026】
本発明の電着塗料組成物は、電着塗装によって所望の基材表面に塗装することができる。電着塗装は、一般には、固形分濃度が約5〜40重量%となるように脱イオン水などで希釈し、さらにpHを5.0〜9.0の範囲内に調整した本発明の電着塗料組成物からなる電着浴を、通常、浴温15〜35℃に調整し、負荷電圧100〜400Vの条件で行なうことができる。
【0027】
本発明の電着塗料組成物を用いて形成しうる電着塗膜の膜厚は、特に制限されるものではないが、一般的には、硬化塗膜に基づいて10〜40μmの範囲内が好ましい。また、塗膜の焼付け硬化温度は、一般に100〜200℃の範囲内が適している。
【0028】
【実施例】
以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれによって限定されるものではない。尚、「部」及び「%」は「重量部」及び「重量%」を示す。
【0029】
カチオン電着用クリヤ−エマルションの作成
「エポン1004」(注1)1900部をブチルセロソルブ1012部に溶解し、ジエチルアミン124部を80〜100℃で滴下後、120℃で2時間保持してアミン価47をもつエポキシ樹脂−アミン付加物を得た。
【0030】
次に、アミン価100を持つダイマ−酸タイプポリアミド樹脂(商品名「バ−サミド460」、ヘンケル白水(株)製品)1000部をメチルイソブチルケトン429部に溶解し、130〜150℃に加熱還流し、生成水を留去して該アミド樹脂の末端アミノ基をケチミンに変えた。このものを150℃で約3時間保持し、水の留去が停止してから60℃に冷却した。次いで、このものを前記エポキシ樹脂−アミン付加物に加えて100℃に加熱し、1時間保持後室温に冷却して固形分68%及びアミン価65のエポキシ樹脂−アミノ−ポリアミド付加樹脂のワニスを得た。
【0031】
上記で得たワニス103部(樹脂固形分で70部)、トリレンジイソシアネ−トの2−エチルヘキシルアルコ−ルブロック化物30部(固形分で)、10%酢酸15部を配合し、均一に撹拌した後、脱イオン水150部を強く撹拌しながら約15分かけて滴下し、固形分33.6%のカチオン電着用クリヤ−エマルションを得た。
【0032】
(注1)「エポン1004」:油化シェルエポキシ社製、ビスフェノ−ルA型エポキシ樹脂、エポキシ当量約950
乳酸ビスマス塩水溶液の製造
製造例1
フラスコに、90%L−乳酸300g(L−乳酸として3モル)及び脱イオン水657gを仕込み、60℃に加熱した。次いでこの中に酸化ビスマス233g(0.5モル)をゆっくり加え、60℃で4時間撹拌し反応させた。反応液に黄色の固形物が無くなり、透明になったことを確認した後、脱イオン水3572gを加え、固形分10%の乳酸ビスマス塩水溶液▲1▼を得た。
【0033】
製造例2
フラスコに、90%L−乳酸250g(L−乳酸として2.5モル)及び脱イオン水606gを仕込み、60℃に加熱した。次いでこの中に酸化ビスマス233g(0.5モル)をゆっくり加え、60℃で4時間撹拌し反応させた。反応液に黄色の固形物が無くなり、透明になったことを確認した後、脱イオン水3270gを加え、固形分9.8%の乳酸ビスマス塩水溶液▲2▼を得た。
【0034】
製造例3
フラスコに、90%L−乳酸200g(L−乳酸として2モル)及び脱イオン水555gを仕込み、60℃に加熱した。次いでこの中に酸化ビスマス233g(0.5モル)をゆっくり加え、60℃で4時間撹拌し反応させた。反応液に黄色の固形物が無くなり、透明になったことを確認した後、脱イオン水2964gを加え、固形分9.5%の乳酸ビスマス塩水溶液▲3▼を得た。
【0035】
製造例4
フラスコに、90%乳酸(D/Lが1/1であるラセミ体)300g(乳酸として3モル)及び脱イオン水657gを仕込み、60℃に加熱した。次いでこの中に酸化ビスマス233g(0.5モル)をゆっくり加え、60℃で4時間撹拌し反応させた。反応液に黄色の固形物が無くなり、透明になったことを確認した後、脱イオン水3572gを加えたところ、不溶物が大量に生成した。これを瀘過した後の水溶液▲4▼は、固形分が1.3%であった。
【0036】
製造例5
フラスコに、90%乳酸(ラセミ体)150g(乳酸として1.5モル)、90%L−乳酸150g(L−乳酸として1.5モル),及び脱イオン水657gを仕込み、60℃に加熱した。次いでこの中に酸化ビスマス233g(0.5モル)をゆっくり加え、60℃で5時間撹拌し反応させた。反応液に黄色の固形物が無くなり、透明になったことを確認した後、脱イオン水3572gを加えたところ、不溶物が大量に生成した。これを瀘過した後の水溶液▲5▼は、固形分が2.3%であった。
【0037】
実施例及び比較例
上記カチオン電着用クリヤ−エマルションに表1に示す配合組成で上記で製造した乳酸ビスマス塩水溶液を添加し、撹拌して各カチオン電着塗料組成物を得た。
【0038】
(注2)40%LSN105:商品名、三共有機合成(株)製、ジブチル錫ジベンゾエ−トのブチルセロソルブ/メチルイソブチルケトン40%溶液
塗装試験
上記実施例及び比較例で得た各カチオン電着塗料組成物中に、化成処理なしの0.8×150×70mmの冷延ダル鋼板(未処理板)およびパルボンド#3030(日本パ−カライジング社製、リン酸亜鉛処理剤)で化成処理した同サイズの冷延ダル鋼板(化成処理板)を夫々浸漬し、それをカソ−ドとして電着塗装を行なった。電着条件は電圧300Vで、膜厚(乾燥膜厚に基づいて)約20μmの電着塗膜を形成し、水洗後、焼付けを行なった。焼付けは雰囲気温度を2段階とし、焼付け時間を20分間として電気熱風乾燥器を用いて行なった。得られた塗装板の性能試験結果を表1に示す。
【0039】
性能試験は下記の方法に従って実施した。
【0040】
(*1)硬化性:焼付温度150℃で得られた各電着塗板の塗面をメチルイソイブチルケトンをしみこませた4枚重ねのガ−ゼで圧力約4kg/cm2 で約3〜4cmの長さを20往復こすった時の塗面外観を目視で以下の基準で評価した。
○:塗面に傷が認められない
△:塗面に傷が認められるが素地はみえない
×:塗膜が溶解し素地がみえる
(*2)防食性:焼付温度170℃で得られた各電着塗板に、素地に達するように電着塗膜にナイフでクロスカット傷を入れ、これをJIS Z−2371に準じて未処理板使用では480時間、化成処理板使用では840時間耐塩水噴霧試験を行ない、ナイフ傷からの錆、フクレ幅によって以下の基準で評価した。
【0041】
◎:錆、フクレの最大幅がカット部より1mm未満(片側)
○:錆、フクレの最大幅がカット部より1mm以上2mm未満(片側)
△:錆、フクレの最大幅がカット部より2mm以上3mm未満(片側)でかつ平面部にブリスタ−がかなり目立つ
×:錆、フクレの最大幅がカット部より3mm以上でかつ塗面全面にブリスタ−の発生がみられる
【0042】
【発明の効果】
本発明において、乳酸としてL−乳酸を特定割合以上用いてなる乳酸ビスマスは、再現性よく安定に製造でき、水溶性に優れるので電着浴中に安定且つ均一に分散可能で、得られる電着塗膜中にも均一に存在させることができる。従って、乳酸としてL−乳酸を特定割合以上用いてなる乳酸ビスマスを電着塗料組成物中に含有せしめることにより、公害対策上問題のある鉛化合物などの防錆顔料を使用せずに、これを配合した場合と同等ないしそれ以上の優れた防食性、仕上り性を有する電着塗膜が得られる。
【0043】
【表1】

Figure 0003874386
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cationic electrodeposition coating composition, and more particularly, to a lead-free cationic electrodeposition coating composition that can form an electrodeposition coating film excellent in anticorrosion properties, finish properties and the like without containing a lead compound.
[0002]
[Prior art and its problems]
Electrodeposition paints are excellent in throwing power and can form a coating film with excellent performance such as durability and anticorrosion. Therefore, conventionally, the electrodeposition paints are used in application fields where such performances are required, such as automobile bodies. Widely used for painting, painting electrical appliances, etc.
[0003]
In order to further improve the anticorrosion properties of the electrodeposition paint, a rust preventive pigment, for example, a lead compound such as lead chromate, basic lead silicate, strontium chromate or a chromium compound is blended. The compound is a very harmful substance, and there is a problem in its use as a countermeasure against pollution. Therefore, as a non-toxic or low-toxic rust preventive pigment that replaces the lead compound, conventionally, zinc phosphate, iron phosphate, aluminum phosphate, calcium phosphate, zinc molybdate, calcium molybdate, zinc oxide, iron oxide, phosphomolybdenum The use of aluminum oxide, zinc phosphomolybdate, and the like has been studied, but these compounds do not have the rust preventive ability as the above-mentioned lead compounds and chromium compounds, and are not satisfactory in practical use.
[0004]
Bismuth is effective as a metal species that exhibits an excellent rust-preventing ability equivalent to or higher than that of lead compounds and chromium compounds in electrodeposition coatings, and it is already known that bismuth lactate is particularly effective among them.
[0005]
For example, JP-A-7-506870 discloses a positive ion which can be diluted with water after protonation and crosslinked by transesterification and / or amide exchange and / or urethane exchange and / or terminal double bond reactions. Disclosed is a method for producing a catalyst-containing cationic coating binder comprising an ionic coating binder and an aliphatic hydroxycarboxylic acid, preferably a bismuth salt of lactic acid or dimethylolpropionic acid. According to this proposal, bismuth salts are obtained by reacting 1 mol of bismuth oxide with 7 mol of each aliphatic hydroxycarboxylic acid. However, in this process, the isolated and dried bismuth salt tends to agglomerate during storage, and the amount of acid used in the reaction is then higher than that required to neutralize the entire coating binder. As a result, an excess of acid is introduced into the electrodeposition paint, thereby significantly increasing the amount of current required during operation of the electrodeposition tank.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors can stably and uniformly disperse the bismuth salt in the electrodeposition bath by using a bismuth salt excellent in water solubility. As lactic acid used in bismuth, L-form of optical isomers is found useful, and storage stability is obtained by adding bismuth lactate using the L-lactic acid in a specific ratio or more to the electrodeposition coating composition. As a result, an electrodeposition coating film that has good properties, can be uniformly dispersed in the electrodeposition bath, and has excellent finish and anticorrosion properties has been obtained.
[0007]
Thus, according to the present invention, there is provided a cationic electrodeposition coating composition characterized by containing bismuth lactate using lactic acid containing 80% or more of L isomers among optical isomers.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, bismuth lactate is formed by using lactic acid containing L of the optical isomers in an amount of 80% or more (that is, the D isomer is less than 20%), preferably 85% or more, more preferably 90% or more. If the L-form content of lactic acid used for producing the bismuth lactate is less than 80%, the water solubility of bismuth lactate cannot be obtained, which is not preferable. L-lactic acid is usually produced by a fermentation method.
[0009]
Examples of the bismuth compound used in the production of the bismuth lactate include bismuth oxide, bismuth hydroxide, basic bismuth carbonate, and bismuth oxide is particularly preferable.
[0010]
The reaction ratio of the bismuth compound and lactic acid can be variously selected. The bismuth lactate is, for example, 2 to 10 mol, preferably 3 to 8 mol, of lactic acid containing 80% or more of L-form with respect to 1 mol of bismuth oxide. It is obtained by reacting at a ratio of
[0011]
The bismuth lactate can be introduced into the electrodeposition coating composition, for example, as an aqueous solution. Specifically, as the aqueous solution, in the presence of water, 2 to 10 mol, preferably 3 to 8 mol, of lactic acid containing 1% of bismuth oxide in an amount of 80% or more of L-form is contained at 1 to 30 at room temperature to 90 ° C. By reacting for about an hour, a uniform aqueous bismuth lactate solution can be obtained with good reproducibility, and this can be added to the electrodeposition paint. If the lactic acid is less than 2 mol, it is difficult to make the bismuth salt water-soluble. If the lactic acid exceeds 10 mol, excess acid enters the electrodeposition bath and the amount of current required during operation of the electrodeposition tank increases. This is not desirable because the coatability is reduced. Similarly, when bismuth hydroxide is used, 1 to 5 mol of lactic acid, preferably 1.5 to 4 mol, containing 80% or more of the L form in 1 mol of bismuth hydroxide is reacted. The reaction solid content concentration is usually within the range of 0.1 to 80% by weight, preferably within the range of 0.5 to 70% by weight, and more preferably within the range of 1 to 60% by weight.
[0012]
When the bismuth lactate aqueous solution is added to the electrodeposition coating composition, it may be added before the electrodeposition coating composition is dispersed in water, or may be added after the electrodeposition coating composition is dispersed in water. When added before water dispersion of the electrodeposition coating composition, there is no particular limitation on the solid content concentration of the aqueous bismuth salt solution, but when added after water dispersion of the electrodeposition coating composition, the solid content of the aqueous bismuth lactate solution is not limited. The concentration is desirably 60% by weight or less. Such an operation is necessary for uniformly dispersing the aqueous bismuth lactate solution in the electrodeposition coating composition. In view of ease of coating and storage stability, the bismuth lactate aqueous solution is preferably added after the electrodeposition coating composition is dispersed in water.
[0013]
In the present invention, the content of bismuth lactate in the electrodeposition paint is not strictly defined and can be varied over a wide range depending on the performance required for the electrodeposition paint. It is preferable that the bismuth content is 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight per 100 parts by weight of the resin solid content. If the bismuth content is less than 0.1 parts by weight, the rust prevention property of the formed coating film is not sufficient, while if it exceeds 10 parts by weight, the stability of the electrodeposition coating composition tends to be lowered. .
[0014]
The electrodeposition coating composition containing bismuth lactate is a cationic type, and as the base resin, any resin such as epoxy, acrylic, polybutadiene, alkyd, and polyester can be used. Of these, polyamine resins represented by amine-added epoxy resins are preferred.
[0015]
Examples of the amine-added epoxy resin include (i) an adduct of a polyepoxide compound and a primary mono- and polyamine, a secondary mono- and polyamine, or a 1,2 mixed polyamine (for example, U.S. Pat. No. 3,984,843). (Ii) an adduct of a polyepoxide compound and a secondary mono- and polyamine having a ketiminated primary amino group (see, for example, US Pat. No. 4,017,438); (Iii) A reaction product obtained by etherification of a polyepoxide compound and a ketiminated hydroxy compound having a primary amino group (for example, see JP-A-59-43013).
[0016]
The polyepoxide compound used in the production of the amine-added epoxy resin is a compound having two or more epoxy groups in one molecule, and is generally at least 200, preferably 400 to 4000, more preferably 800 to 2000. Those having a number average molecular weight are suitable, and those obtained by reaction of a polyphenol compound and epichlorohydrin are particularly preferred. Examples of the polyphenol compound that can be used for forming the polyepoxide compound include bis (4-hydroxyphenyl) -2,2-propane, 4,4-dihydroxybenzophenone, and bis (4-hydroxyphenyl) -1, 1-ethane, bis (4-hydroxyphenyl) -1,1-isobutane, bis (4-hydroxy-tert-butyl-phenyl) -2,2-propane, bis (2-hydroxynaphthyl) methane, tetra (4- Hydroxyphenyl) -1,1,2,2-ethane, 4,4-dihydroxydiphenylsulfone, phenol novolak, cresol novolak and the like.
[0017]
The polyepoxide compound may be partly reacted with polyol, polyether polyol, polyester polyol, polyamidoamine, polycarboxylic acid, polyisocyanate compound, etc. It may be obtained by graft polymerization of caprolactone, acrylic monomer or the like.
[0018]
The base resin may be of any type of external cross-linking type and internal (or self) cross-linking type. Examples of the curing agent used in the case of the external cross-linking type resin include (block) polyisocyanate. It can be a conventionally known crosslinking agent such as a thio compound or an amino resin, and a block polyisocyanate compound is particularly preferred. Further, as the internal cross-linking resin, a resin into which a block polyisocyanate type is introduced is preferable.
[0019]
The block polyisocyanate compound that can be used in the external crosslinking type can be an addition reaction product of a theoretical amount of a polyisocyanate compound and an isocyanate blocking agent. Examples of the polyisocyanate compound include tolylene diisocyanate, xylylene diisocyanate, phenylene diisocyanate, bis (isocyanate methyl) cyclohexane, tetramethylene diisocyanate, and hexamethylene diester. Aromatic, cycloaliphatic or aliphatic polyisocyanate compounds such as isocyanate, methylene diisocyanate, isophorone diisocyanate, etc., and ethylene glycol in excess of these isocyanate compounds And terminal isocyanate-containing compounds obtained by reacting low-molecular active hydrogen-containing compounds such as propylene glycol, trimethylolpropane, hexanetriol and castor oil.
[0020]
On the other hand, the isocyanate blocking agent is added and blocked to the isocyanate group of the polyisocyanate compound, and the block polyisocyanate compound produced by the addition is stable at room temperature and about 100 to 200 ° C. When heated to a high temperature, it is desirable that the blocking agent can be dissociated to regenerate free isocyanate groups. Examples of the blocking agent that satisfies such requirements include lactam compounds such as ε-caprolactam and γ-butyrolactam; oxime compounds such as methyl ethyl ketoxime and cyclohexanone oxime; phenol, para-t-butylphenol, crezo Phenolic compounds such as n-butanol; Aliphatic alcohols such as n-butanol and 2-ethylhexanol; Aromatic alkyl alcohols such as phenylcarbinol and methylphenylcarbinol And ether alcohol compounds such as ethylene glycol monobutyl ether. Of these, oxime-based and lactam-based blocking agents are particularly suitable from the viewpoint of curability of the electrodeposition coating composition because they are blocking agents that dissociate at a relatively low temperature.
[0021]
As a method for introducing a block isocyanate group into a base resin in a type having a block isocyanate group in the base resin molecule and self-crosslinking, a conventionally known method can be used. It can be introduced by reacting the free isocyanate group in the polyisocyanate compound with the active hydrogen-containing part in the base resin.
[0022]
In the case of a cationic resin, the base resin is generally neutralized and made aqueous by neutralizing the resin with a water-soluble organic acid such as formic acid, acetic acid, and lactic acid to make it water-soluble and water-dispersed. At that time, part or all of the aqueous bismuth lactate solution can be used for neutralization. It is preferable to use acetic acid and / or formic acid as a neutralizing agent because it is excellent in finish, throwing power, low temperature curability and the like.
[0023]
The electrodeposition coating composition of the present invention can further contain a tin compound. Examples of the tin compound include organic tin oxides such as dibutyltin oxide and dioctyltin oxide; dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin diacetate, dioctyltin benzoateoxy, dibutyltin benzoate Examples thereof include aliphatic or aromatic carboxylates of dialkyltin such as tooxy, dioctyltin dibenzoate, dibutyltin dibenzoate, etc. Among them, dialkyltin aromatic carboxylates are preferred from the viewpoint of low-temperature curability. It is. The content of the tin compound in the electrodeposition coating composition is not strictly defined and can be varied over a wide range according to the performance required for the electrodeposition coating. It is suitable that the tin content per 100 parts by weight of the resin solid content is in the range of 0 to 8 parts by weight, preferably 0.05 to 5 parts by weight.
[0024]
The electrodeposition coating composition of the present invention can further contain a zinc compound. Examples of the zinc compound include zinc phosphate, zinc formate, zinc acetate, zinc molybdate, zinc oxide, and zinc phosphomolybdate. The content of the zinc compound in the electrodeposition coating composition is not strictly defined and can be varied over a wide range according to the performance required for the electrodeposition coating. It is suitable that the zinc content per 100 parts by weight of the resin solid content is in the range of 0 to 8 parts by weight, preferably 0.05 to 5 parts by weight.
[0025]
The electrodeposition paint composition of the present invention may further contain paint additives such as pigments, organic solvents, pigment dispersants, and coating surface conditioners as necessary.
[0026]
The electrodeposition coating composition of the present invention can be applied to a desired substrate surface by electrodeposition coating. Generally, electrodeposition coating is diluted with deionized water or the like so that the solid content concentration is about 5 to 40% by weight, and the pH is adjusted within the range of 5.0 to 9.0. An electrodeposition bath composed of a coating composition can usually be adjusted to a bath temperature of 15 to 35 ° C. and carried out under a load voltage of 100 to 400V.
[0027]
The film thickness of the electrodeposition coating film that can be formed using the electrodeposition coating composition of the present invention is not particularly limited, but is generally within the range of 10 to 40 μm based on the cured coating film. preferable. Moreover, the baking hardening temperature of the coating film is generally suitable in the range of 100 to 200 ° C.
[0028]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited by this. “Parts” and “%” indicate “parts by weight” and “% by weight”.
[0029]
Preparation of Cation-Electric Clear Emulsion “Epon 1004” (Note 1) 1900 parts dissolved in 1012 parts butyl cellosolve, 124 parts diethylamine was added dropwise at 80 to 100 ° C., and held at 120 ° C. for 2 hours to give an amine value of 47 Having an epoxy resin-amine adduct.
[0030]
Next, 1000 parts of a dimer acid type polyamide resin (trade name “Basamide 460”, product of Henkel Hakusui Co., Ltd.) having an amine value of 100 is dissolved in 429 parts of methyl isobutyl ketone and heated to 130 to 150 ° C. under reflux. The generated water was distilled off to change the terminal amino group of the amide resin to ketimine. This was held at 150 ° C. for about 3 hours, and cooled to 60 ° C. after the distillation of water stopped. Next, this was added to the epoxy resin-amine adduct, heated to 100 ° C., held for 1 hour, and then cooled to room temperature to obtain a varnish of epoxy resin-amino-polyamide addition resin having a solid content of 68% and an amine value of 65. Obtained.
[0031]
Mix 103 parts of varnish obtained above (70 parts by solid resin content), 30 parts of 2-ethylhexyl alcohol blocked product of tolylene diisocyanate (solid content), 15 parts of 10% acetic acid, and uniformly After stirring, 150 parts of deionized water was added dropwise over about 15 minutes with vigorous stirring to obtain a cation electrodeposition clear emulsion having a solid content of 33.6%.
[0032]
(Note 1) “Epon 1004”: manufactured by Yuka Shell Epoxy Co., Ltd., bisphenol A type epoxy resin, epoxy equivalent of about 950
Production of aqueous bismuth lactate salt Production Example 1
A flask was charged with 300 g of 90% L-lactic acid (3 mol as L-lactic acid) and 657 g of deionized water, and heated to 60 ° C. Next, 233 g (0.5 mol) of bismuth oxide was slowly added thereto, and the mixture was stirred at 60 ° C. for 4 hours to be reacted. After confirming that the reaction solution was free of yellow solids and became transparent, 3572 g of deionized water was added to obtain an aqueous bismuth lactate salt solution (1) having a solid content of 10%.
[0033]
Production Example 2
A flask was charged with 250 g of 90% L-lactic acid (2.5 mol as L-lactic acid) and 606 g of deionized water and heated to 60 ° C. Next, 233 g (0.5 mol) of bismuth oxide was slowly added thereto, and the mixture was stirred at 60 ° C. for 4 hours to be reacted. After confirming that the reaction solution was free of yellow solids and became transparent, 3270 g of deionized water was added to obtain an aqueous bismuth lactate salt solution (2) having a solid content of 9.8%.
[0034]
Production Example 3
A flask was charged with 200 g of 90% L-lactic acid (2 mol as L-lactic acid) and 555 g of deionized water, and heated to 60 ° C. Next, 233 g (0.5 mol) of bismuth oxide was slowly added thereto, and the mixture was stirred at 60 ° C. for 4 hours to be reacted. After confirming that the reaction solution was free of yellow solids and became transparent, 2964 g of deionized water was added to obtain an aqueous bismuth lactate salt solution (3) having a solid content of 9.5%.
[0035]
Production Example 4
A flask was charged with 300 g of 90% lactic acid (racemic substance having a D / L of 1/1) (3 mol as lactic acid) and 657 g of deionized water, and heated to 60 ° C. Next, 233 g (0.5 mol) of bismuth oxide was slowly added thereto, and the mixture was stirred at 60 ° C. for 4 hours to be reacted. After confirming that the reaction solution was free of yellow solid and became transparent, 3572 g of deionized water was added, and a large amount of insoluble matter was produced. The aqueous solution (4) after this was filtered had a solid content of 1.3%.
[0036]
Production Example 5
A flask was charged with 150 g of 90% lactic acid (racemate) (1.5 mol as lactic acid), 150 g of 90% L-lactic acid (1.5 mol as L-lactic acid), and 657 g of deionized water, and heated to 60 ° C. . Next, 233 g (0.5 mol) of bismuth oxide was slowly added thereto, and the mixture was stirred at 60 ° C. for 5 hours to be reacted. After confirming that the reaction solution was free of yellow solid and became transparent, 3572 g of deionized water was added, and a large amount of insoluble matter was produced. The aqueous solution {circle around (5)} after filtration had a solid content of 2.3%.
[0037]
Examples and Comparative Examples The cation electrodeposition coating compositions were obtained by adding the aqueous bismuth lactate salt solution prepared as described above with the composition shown in Table 1 to the above-described clear emulsion for cationic electrodeposition and stirring.
[0038]
(Note 2) 40% LSN105: trade name, manufactured by Sansha Kogyo Co., Ltd., butyl cellosolve / methyl isobutyl ketone 40% solution of dibutyltin dibenzoate
Coating test In each of the cationic electrodeposition coating compositions obtained in the above examples and comparative examples, 0.8 × 150 × 70 mm cold-rolled dull steel plate (untreated plate) and Palbond # 3030 without chemical conversion treatment were used. Cold-rolled dull steel plates (chemical conversion treatment plates) of the same size subjected to chemical conversion treatment (manufactured by Nihon Parkerizing Co., Ltd., zinc phosphate treatment agent) were dipped, and electrodeposition coating was performed using them as cathodes. Electrodeposition conditions were a voltage of 300 V, an electrodeposition coating film having a film thickness (based on the dry film thickness) of about 20 μm was formed, washed with water, and baked. Baking was performed using an electric hot air drier at an atmosphere temperature of two stages and a baking time of 20 minutes. Table 1 shows the performance test results of the obtained coated plate.
[0039]
The performance test was performed according to the following method.
[0040]
(* 1) Curability: The coating surface of each electrodeposition coating plate obtained at a baking temperature of 150 ° C. is about 3 to 3 at a pressure of about 4 kg / cm 2 with a four-layered gauze impregnated with methyl isobutyl ketone. The appearance of the coated surface when the length of 4 cm was rubbed 20 times was visually evaluated according to the following criteria.
○: No scratches are observed on the coating surface. Δ: Scratches are observed on the coating surface, but the substrate is not visible. X: The coating film is dissolved and the substrate is visible. (* 2) Corrosion resistance: Each obtained at a baking temperature of 170.degree. The electrodeposition coating plate is cross-cut with a knife so as to reach the substrate, and this is subjected to salt-resistant spraying for 480 hours when using an untreated plate and 840 hours when using a chemical conversion treatment plate according to JIS Z-2371. The test was conducted, and evaluation was made according to the following criteria based on the rust and blister width from the knife scratch.
[0041]
A: Maximum width of rust and blisters is less than 1 mm from the cut part (one side)
○: The maximum width of rust and blisters is 1 mm or more and less than 2 mm from the cut part (one side)
Δ: The maximum width of rust and blisters is 2 mm or more and less than 3 mm (one side) from the cut part, and the blister is considerably conspicuous on the flat part. -Is observed [0042]
【The invention's effect】
In the present invention, bismuth lactate using L-lactic acid in a specific proportion or more as lactic acid can be stably produced with good reproducibility and is excellent in water solubility, so that it can be dispersed stably and uniformly in the electrodeposition bath, and the obtained electrodeposition It can be uniformly present in the coating film. Therefore, by adding bismuth lactate containing L-lactic acid as a lactic acid in a specific ratio or more to the electrodeposition coating composition, it can be used without using a rust preventive pigment such as a lead compound which has a problem in pollution control. An electrodeposition coating film having excellent anticorrosion properties and finish properties equivalent to or higher than when blended is obtained.
[0043]
[Table 1]
Figure 0003874386

Claims (4)

光学異性体のうちのL体が80%以上含まれる乳酸を用いてなる乳酸ビスマスを含有することを特徴とするカチオン電着塗料組成物。A cationic electrodeposition coating composition comprising bismuth lactate using lactic acid containing 80% or more of L isomers among optical isomers. 乳酸ビスマスを、水の存在下で酸化ビスマス1モルにL体が80%以上含まれる乳酸を2〜10モルの比率で反応させて得られる乳酸ビスマス水溶液として添加してなる請求項1記載のカチオン電着塗料組成物。The cation according to claim 1, wherein bismuth lactate is added as a bismuth lactate aqueous solution obtained by reacting lactic acid containing 1% by mole of bismuth oxide in an amount of 80% or more in the presence of water at a ratio of 2 to 10 moles. Electrodeposition paint composition. 乳酸ビスマスを、電着塗料中の樹脂固形分100重量部に対するビスマス含有量が0.1〜10重量部となるように含有する請求項1又は2記載のカチオン電着塗料組成物。The cationic electrodeposition coating composition of Claim 1 or 2 which contains bismuth lactate so that bismuth content may be 0.1-10 weight part with respect to 100 weight part of resin solid content in an electrodeposition coating material. ジアルキル錫芳香族カルボン酸塩化合物を含有する請求項1記載のカチオン電着塗料組成物。The cationic electrodeposition coating composition according to claim 1, comprising a dialkyltin aromatic carboxylate compound.
JP34234397A 1997-07-29 1997-12-12 Cationic electrodeposition coating composition Expired - Fee Related JP3874386B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP34234397A JP3874386B2 (en) 1997-07-29 1997-12-12 Cationic electrodeposition coating composition
US09/463,597 US6265079B1 (en) 1997-07-29 1998-07-28 Cationic electrodeposition coating composition
CA 2298721 CA2298721C (en) 1997-07-29 1998-07-28 Cationic electrodeposition coating composition
DE69837091T DE69837091D1 (en) 1997-07-29 1998-07-28 CATIONIC ELECTRODEAL PAINTING COMPOSITION
EP98933953A EP1000985B1 (en) 1997-07-29 1998-07-28 Cationic electrodeposition coating composition
PCT/JP1998/003346 WO1999006493A1 (en) 1997-07-29 1998-07-28 Cationic electrodeposition coating composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20268997 1997-07-29
JP9-202689 1997-07-29
JP34234397A JP3874386B2 (en) 1997-07-29 1997-12-12 Cationic electrodeposition coating composition

Publications (2)

Publication Number Publication Date
JPH11100533A JPH11100533A (en) 1999-04-13
JP3874386B2 true JP3874386B2 (en) 2007-01-31

Family

ID=26513529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34234397A Expired - Fee Related JP3874386B2 (en) 1997-07-29 1997-12-12 Cationic electrodeposition coating composition

Country Status (1)

Country Link
JP (1) JP3874386B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10479899B2 (en) 2015-03-06 2019-11-19 Nippon Paint Automotive Coatings Co., Ltd. Method for preparing cationic electrodeposition coating composition
WO2020241590A1 (en) 2019-05-29 2020-12-03 日本ペイント・オートモーティブコーティングス株式会社 Method for preparing cationic electrodeposition coating composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5325610B2 (en) 2009-03-02 2013-10-23 日本パーカライジング株式会社 Metal surface treatment composition, metal surface treatment method using the same, and metal surface treatment film using the same
JP5462561B2 (en) * 2009-09-14 2014-04-02 日本パーカライジング株式会社 Metal surface treatment composition, metal surface treatment method using the same, and metal surface treatment film using the same
CN105765006B (en) * 2013-11-18 2019-01-25 巴斯夫涂料有限公司 Use the two-stage method for containing Bi (III) composition dip-coating conductive substrates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10479899B2 (en) 2015-03-06 2019-11-19 Nippon Paint Automotive Coatings Co., Ltd. Method for preparing cationic electrodeposition coating composition
WO2020241590A1 (en) 2019-05-29 2020-12-03 日本ペイント・オートモーティブコーティングス株式会社 Method for preparing cationic electrodeposition coating composition

Also Published As

Publication number Publication date
JPH11100533A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
JP2983370B2 (en) Electrodeposition coating composition
CA2298721C (en) Cationic electrodeposition coating composition
EP1041125B1 (en) Cationic electrodeposition paint composition
US6436201B1 (en) Cationic electrodeposition paint composition
CA2306217C (en) Cationic electrodeposition coating composition
JP2000290542A (en) Cationic electrocoating composition and coated film
US5298148A (en) Electrodeposition paint compositions
JP3874386B2 (en) Cationic electrodeposition coating composition
JP3469868B2 (en) Cationic paint composition
JPH05239386A (en) Composition for electrodeposition coating
WO2013099750A1 (en) Electrodeposition coating composition, and dissociation catalyst therefor
EP0595341B1 (en) Electrodeposition paint composition
JP3910698B2 (en) Cationic electrodeposition coating composition
JP3685297B2 (en) Method for improving the exposure corrosion resistance of lead-free cationic electrodeposition coatings
JPH0774317B2 (en) Resin composition for electrodeposition paint
JP3108513B2 (en) Electrodeposition coating composition
JP3124088B2 (en) Electrodeposition coating composition
JP3910695B2 (en) Cationic electrodeposition coating composition
JPH06200192A (en) Electrodeposition coating composition
JPH1180622A (en) Cationic electrocoating composition
JP4309976B2 (en) Electrodeposition paint composition
JP2001055538A (en) Cationic electrodeposition coating composition
WO2013099749A1 (en) Electrodeposition coating composition, and dissociation catalyst therefor
JP2001354910A (en) Cationic electrodeposition coating composition
JP3920873B2 (en) Cationic electrodeposition coating composition

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees