JP5325610B2 - Metal surface treatment composition, metal surface treatment method using the same, and metal surface treatment film using the same - Google Patents

Metal surface treatment composition, metal surface treatment method using the same, and metal surface treatment film using the same Download PDF

Info

Publication number
JP5325610B2
JP5325610B2 JP2009048474A JP2009048474A JP5325610B2 JP 5325610 B2 JP5325610 B2 JP 5325610B2 JP 2009048474 A JP2009048474 A JP 2009048474A JP 2009048474 A JP2009048474 A JP 2009048474A JP 5325610 B2 JP5325610 B2 JP 5325610B2
Authority
JP
Japan
Prior art keywords
film
metal
electrolysis
composition
metal surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009048474A
Other languages
Japanese (ja)
Other versions
JP2010202921A (en
Inventor
亮助 川越
幸誠 屋部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009048474A priority Critical patent/JP5325610B2/en
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to BRPI1011479A priority patent/BRPI1011479A2/en
Priority to US13/254,175 priority patent/US20110311838A1/en
Priority to CN201080010019.4A priority patent/CN102341531B/en
Priority to RU2011139960/02A priority patent/RU2496925C2/en
Priority to CA2753823A priority patent/CA2753823C/en
Priority to EP10748442.0A priority patent/EP2405035A4/en
Priority to PCT/JP2010/000965 priority patent/WO2010100839A1/en
Priority to KR20117022991A priority patent/KR101317589B1/en
Priority to TW099105262A priority patent/TWI481679B/en
Publication of JP2010202921A publication Critical patent/JP2010202921A/en
Application granted granted Critical
Publication of JP5325610B2 publication Critical patent/JP5325610B2/en
Priority to US14/319,044 priority patent/US20140311914A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/10Electrophoretic coating characterised by the process characterised by the additives used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/448Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications characterised by the additives used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4488Cathodic paints
    • C09D5/4492Cathodic paints containing special additives, e.g. grinding agents
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/18Electrophoretic coating characterised by the process using modulated, pulsed, or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/54Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12569Synthetic resin

Description

本発明は金属材料、特に形状が複雑な金属構成体に対し、単一浸漬工程にて優れた耐食性を付与し得る皮膜を形成せしめることが可能な金属表面処理組成物、これを用いた金属表面処理方法およびこれらを用いた金属表面処理皮膜に関するものである。   The present invention relates to a metal surface treatment composition capable of forming a film capable of imparting excellent corrosion resistance to a metal material, particularly a metal structure having a complicated shape, by a single dipping process, and a metal surface using the same. The present invention relates to a treatment method and a metal surface treatment film using them.

従来、各種金属材料、特に形状が複雑な金属構成体に対して優れた耐食性を付与するための手法としては、高い付き廻り性を有する電着塗装が一般的に用いられてきた。しかし、電着塗装によって得られる電着塗膜のみでは、所望の耐食性が得られない場合が多いため、電着塗装の前段には標準的にリン酸亜鉛系化成処理等の化成型の塗装下地処理が適用されていた。   Conventionally, electrodeposition coating having high throwing power has been generally used as a method for imparting excellent corrosion resistance to various metal materials, particularly metal structures having complicated shapes. However, in many cases, the desired corrosion resistance cannot be obtained only with the electrodeposition coating film obtained by electrodeposition coating. Processing was applied.

電着塗装は、アニオン性樹脂エマルジョンを含有する水性塗料中で被塗物をアノード電解することによって塗膜を析出させるアニオン電着塗装と、カチオン樹脂エマルジョンを含有する水性塗料中で被塗物をカソード電解することによって塗膜を析出させるカチオン電着塗装とに大別できるが、鉄系金属材料の耐食性向上に対しては、電解処理中に素地金属が塗料中に溶出する心配の無いカチオン電着塗装が有利であり、鉄系材料を主とする金属構成体である自動車車体、自動車部品、家電製品、建築材料等に対してはカチオン電着塗装が広く適用されている。   Electrodeposition coating consists of an anionic electrodeposition coating in which a coating is deposited by anodic electrolysis in an aqueous paint containing an anionic resin emulsion, and an aqueous coating containing a cationic resin emulsion. Cathodic electrolysis can be broadly divided into cationic electrodeposition coating in which a coating film is deposited. To improve the corrosion resistance of ferrous metal materials, cationic electrolysis, which does not cause the base metal to elute into the paint during electrolytic treatment, is possible. Electrodeposition coating is advantageous, and cationic electrodeposition coating is widely applied to automobile bodies, automobile parts, home appliances, building materials, etc., which are metal components mainly composed of iron-based materials.

カチオン電着塗装の市場での歴史は長く、かつてはクロム化合物や鉛化合物を配合することによって防錆性を確保していた。ただし、これによっても防錆性は不充分であったため、リン酸亜鉛系化成処理等の下地処理が必須であった。
現在では環境規制、特に欧州におけるELV規制によりクロム化合物や鉛化合物が実質使用できなくなったため、代替成分が検討され、ビスマス化合物にその効果が見出されており、具体的には次に挙げる特許文献が開示されている。
Cationic electrodeposition coating has a long history in the market, and once it was rust-proof by blending chromium and lead compounds. However, since this also had insufficient rust prevention properties, a ground treatment such as a zinc phosphate chemical conversion treatment was essential.
Currently, chromium and lead compounds have become virtually unusable due to environmental regulations, especially the European ELV regulations, so alternative components have been studied and their effects have been found in bismuth compounds. Is disclosed.

特許文献1(特開平5−32919)には、ビスマス化合物をコーティングした顔料を少なくとも1種含有することを特徴とする電着塗料用樹脂組成物が開示されている。   Patent Document 1 (Japanese Patent Laid-Open No. 5-32919) discloses a resin composition for an electrodeposition coating, which contains at least one pigment coated with a bismuth compound.

特許文献2(WO99/31187)には、有機酸変性ビスマス化合物が非水溶性の形態で存在する水性分散液を配合した水性分散ペーストからなることを特徴とするカチオン電着塗料組成物が開示されている。   Patent Document 2 (WO 99/31187) discloses a cationic electrodeposition coating composition comprising an aqueous dispersion paste containing an aqueous dispersion in which an organic acid-modified bismuth compound is present in a water-insoluble form. ing.

特許文献3(特開2004−137367)には、コロイド状ビスマス金属、及び、スルホニウム基とプロパルギル基とを持つ樹脂組成物からなることを特徴とするカチオン電着塗料が開示されている。   Patent Document 3 (Japanese Patent Application Laid-Open No. 2004-137367) discloses a cationic electrodeposition coating material comprising a colloidal bismuth metal and a resin composition having a sulfonium group and a propargyl group.

特許文献4(特開2007−197688)には、水酸化ビスマス、ジルコニウム化合物及びタングステン化合物から選ばれる少なくとも1種の金属化合物の粒子を含んでなる電着塗料であって、該金属化合物が1〜1000nmであることを特徴とする電着塗料が開示されている。   Patent Document 4 (Japanese Patent Application Laid-Open No. 2007-197688) discloses an electrodeposition coating comprising particles of at least one metal compound selected from bismuth hydroxide, a zirconium compound, and a tungsten compound, wherein the metal compound contains 1 to An electrodeposition paint characterized by being 1000 nm is disclosed.

特許文献5(特開平11−80621)には、脂肪族アルコキシカルボン酸ビスマス塩水溶液を含有することを特徴とするカチオン電着塗料組成物が開示されている。   Patent Document 5 (Japanese Patent Application Laid-Open No. 11-80621) discloses a cationic electrodeposition coating composition containing an aqueous solution of an aliphatic alkoxycarboxylic acid bismuth salt.

特許文献6(特開平11−80622)には、2種以上の有機酸によるビスマス塩の水溶液であって、該有機酸の少なくとも1種が脂肪族ヒドロキシカルボン酸である有機酸ビスマス塩水溶液を含有することを特徴とするカチオン電着塗料組成物が開示されている。   Patent Document 6 (Japanese Patent Laid-Open No. 11-80622) includes an aqueous solution of a bismuth salt with two or more organic acids, wherein at least one of the organic acids is an aliphatic hydroxycarboxylic acid. A cationic electrodeposition coating composition characterized by the above is disclosed.

特許文献7(特開平11−100533)には、光学異性体のうちのL体が80%以上含まれる乳酸を用いてなる乳酸ビスマスを含有することを特徴とするカチオン電着塗料組成物が開示されている。   Patent Document 7 (Japanese Patent Laid-Open No. 11-100533) discloses a cationic electrodeposition coating composition characterized by containing bismuth lactate using lactic acid containing 80% or more of L isomers among optical isomers. Has been.

特許文献8(特開平11−106687)には、2種以上の有機酸によるビスマス塩の水溶液であって、該有機酸の少なくとも1種が脂肪族アルコキシカルボン酸である有機酸ビスマス塩水溶液を含有することを特徴とするカチオン電着塗料組成物が開示されている。   Patent Document 8 (Japanese Patent Laid-Open No. 11-106687) includes an aqueous solution of a bismuth salt containing two or more organic acids, wherein at least one of the organic acids is an aliphatic alkoxycarboxylic acid. A cationic electrodeposition coating composition characterized by the above is disclosed.

これらの特許文献は特許文献1〜4および特許文献5〜8に大別できる。すなわち、特許文献1〜4は水性塗料に対して不溶性のビスマス化合物または金属ビスマスを分散させたものであり、特許文献5〜8は少なくともビスマス化合物を固形分の残存が無くなるまで溶解させる、つまりBiイオンの状態にしてから塗料に添加することを特徴としている。   These patent documents can be roughly classified into patent documents 1 to 4 and patent documents 5 to 8. That is, Patent Documents 1 to 4 are those in which a bismuth compound or metal bismuth that is insoluble in an aqueous paint is dispersed, and Patent Documents 5 to 8 dissolve at least the bismuth compound until there is no remaining solids, that is, Bi. It is characterized by being added to the paint after being in an ionic state.

しかしながら、これらの特許文献におけるビスマス化合物は、あくまでクロム化合物や鉛化合物の代替として作用するものであり、リン酸亜鉛系化成処理等の下地処理無しには充分な耐食性は得られない。事実、これらの特許文献ではリン酸亜鉛系化成処理との組合せを前提とした実施例のみが開示されている。   However, the bismuth compounds in these patent documents only act as substitutes for chromium compounds and lead compounds, and sufficient corrosion resistance cannot be obtained without ground treatment such as zinc phosphate chemical conversion treatment. In fact, these patent documents disclose only examples based on the combination with zinc phosphate chemical conversion treatment.

一方、昨今ビスマス化合物以外の手法により耐食性を更に向上させ、リン酸亜鉛系化成処理等の下地処理を施さなくても、1コートにて充分な耐食性を確保し得る技術が検討されてきている。   On the other hand, recently, a technique has been studied in which corrosion resistance is further improved by a method other than a bismuth compound, and sufficient corrosion resistance can be ensured with one coat without applying a ground treatment such as a zinc phosphate chemical conversion treatment.

例えば特許文献9(特開2008−274392)には、金属基材に、皮膜形成剤を少なくとも2段階の多段通電方式で塗装することによって皮膜を形成する方法であって、(i)皮膜形成剤が、ジルコニウム化合物と、必要に応じて、チタン、コバルト、バナジウム、タングステン、モリブデン、銅、亜鉛、インジウム、アルミニウム、ビスマス、イットリウム、ランタノイド金属、アルカリ金属及びアルカリ土類金属から選ばれる少なくとも1種の金属(a)を含有する化合物とを合計金属量(質量換算)で30〜20,000ppmと、樹脂成分1〜40質量%とを含んでなり、(ii)金属基材を陰極として1段目の塗装を1〜50Vの電圧(V)で10〜360秒間通電することにより行い、次いで、金属基材を陰極として2段目以降の塗装を50〜400Vの電圧(V)で60〜600秒間通電することにより行い、そして(iii)電圧(V)と電圧(V)の差が少なくとも10Vであることを特徴とする表面処理皮膜の形成方法が開示されている。 For example, Patent Document 9 (Japanese Patent Application Laid-Open No. 2008-274392) discloses a method of forming a film by coating a metal substrate with a film forming agent by at least two stages of multi-stage energization methods, and (i) a film forming agent. Is at least one selected from a zirconium compound and, optionally, titanium, cobalt, vanadium, tungsten, molybdenum, copper, zinc, indium, aluminum, bismuth, yttrium, lanthanoid metal, alkali metal and alkaline earth metal The compound containing metal (a) comprises 30 to 20,000 ppm in terms of total metal (in terms of mass) and 1 to 40% by mass of the resin component, and (ii) the first stage using the metal substrate as the cathode performed by energizing the painting the 1~50V voltage (V 1) 10 to 360 sec 2, then, the metallic substrate as a cathode Wherein the difference in voltage 50~400V eyes after painting done by energizing 60 to 600 seconds (V 2), and (iii) a voltage (V 2) and the voltage (V 1) is at least 10V A method for forming a surface-treated film is disclosed.

また、特許文献10(特開2008−538383)には、(A)希土類金属化合物、(B)カチオン基を有する基体樹脂、および(C)硬化剤を含む水性塗料組成物であって、該水性塗料組成物に含まれる(A)希土類金属化合物の量が、塗料固形分に対して、希土類金属に換算して、0.05〜10重量%である水性塗料組成物に、被塗物を浸漬する、浸漬工程、該水性塗料組成物中において、被塗物を陰極として50V未満の電圧を印加する、前処理工程、および該水性塗料組成物中において、被塗物を陰極として50〜450Vの電圧を印加する、電着塗装工程、を包含する、複層塗膜形成方法が開示されている。   Patent Document 10 (Japanese Patent Application Laid-Open No. 2008-538383) discloses an aqueous coating composition containing (A) a rare earth metal compound, (B) a base resin having a cationic group, and (C) a curing agent, The amount of the rare earth metal compound (A) contained in the coating composition is immersed in an aqueous coating composition in which the amount of the rare earth metal compound is 0.05 to 10% by weight in terms of the rare earth metal with respect to the solid content of the coating. A dipping step, applying a voltage of less than 50 V as a cathode in the aqueous coating composition, and a pretreatment step, and applying a voltage of 50 to 450 V as the cathode in the aqueous coating composition. A method for forming a multilayer coating film including an electrodeposition coating step of applying a voltage is disclosed.

特開平5−32919号公報Japanese Patent Laid-Open No. 5-32919 WO99/31187号公報WO99 / 31187 特開2004−137367号公報JP 2004-137367 A 特開2007−197688号公報JP 2007-197688 A 特開平11−80621号公報Japanese Patent Laid-Open No. 11-80621 特開平11−80622号公報Japanese Patent Laid-Open No. 11-80622 特開平11−100533号公報Japanese Patent Laid-Open No. 11-100533 特開平11−106687号公報JP-A-11-106687 特開2008−274392号公報JP 2008-274392 A 特開2008−538383号公報JP 2008-538383 A

本発明者らは、これら従来技術について種々検討した結果、やはりリン酸亜鉛系化成皮膜等の前処理無しに充分な耐食性を付与する皮膜を金属材料の上に形成させるためには、Biの適用が最も効果的であるとの結論に達した。そしてBiの作用効果について再検討することとした。   As a result of various studies on these prior arts, the present inventors have applied Bi in order to form a coating on a metal material that also provides sufficient corrosion resistance without pretreatment such as a zinc phosphate-based chemical conversion coating. The conclusion is reached that is most effective. And we decided to reconsider the effect of Bi.

そして、Biの作用効果としては従来から、樹脂の硬化触媒としての機能と、素地金属の防食作用が注目されていたが、従来技術では、硬化触媒としての機能は望めるものの、金属の防食作用については極めて不充分であり、この作用を最大限に発揮させることこそ課題解決につながるものとして検討を進めた。   And, as a function and effect of Bi, the function of a resin as a curing catalyst and the anticorrosive action of a base metal have been attracting attention in the past, but the function as a curing catalyst can be expected in the prior art, but the anticorrosive action of a metal. Was considered to be a solution to the problem by maximizing this effect.

素地金属の防食作用はBiが金属に接触する面、すなわち素地金属表面と皮膜の界面に存在しなくてはならないが、従来技術ではBi成分が皮膜中に均一に分散してしまい、耐食性を発揮するに充分なBiが素地金属表面に存在していないものと推定した。   The anticorrosive action of the base metal must be on the surface where Bi contacts with the metal, that is, the interface between the base metal surface and the coating, but in the prior art, the Bi component is uniformly dispersed in the coating and exhibits corrosion resistance. It was estimated that sufficient Bi was not present on the base metal surface.

前述の如く特許文献1〜4は水性塗料に対して不溶性のビスマス化合物または金属ビスマスを分散させたものであるが、このような組成物から皮膜を析出させた場合、他の顔料と同様、皮膜中にBiは均一に分散してしまう。   As described above, Patent Documents 1 to 4 are those in which a bismuth compound or metal bismuth that is insoluble in an aqueous paint is dispersed. When a film is deposited from such a composition, the film is the same as other pigments. Bi is uniformly dispersed therein.

特許文献5〜8は少なくともビスマス化合物を固形分の残存が無くなるまで溶解させる、つまりBiイオンの状態にしてから塗料に添加することを特徴としているが、Biの安定化剤である有機酸のキレート能力が微弱であるため、組成物に投入した際、Biは徐々に加水分解してしまい、酸化物または水酸化物へと変化してしまうため、Biイオンとしての長期的な安定化は望めない。これによって、やはりBiは皮膜中に均一に分散してしまうのである。これらの特許文献において、やはりリン酸亜鉛系化成処理が下地処理として用いられていたのは、上記の推察を裏付けている。   Patent Documents 5 to 8 are characterized in that at least the bismuth compound is dissolved until there is no remaining solids, that is, Bi ions are added to the coating material, but the organic acid chelate is a Bi stabilizer. Since the ability is weak, Bi is gradually hydrolyzed when it is put into the composition, and changes to oxide or hydroxide, so long-term stabilization as Bi ion cannot be expected. . As a result, Bi is uniformly dispersed in the film. In these patent documents, the fact that the zinc phosphate-based chemical conversion treatment was used as the base treatment also supports the above-mentioned assumption.

一方、特許文献9および特許文献10は、素地金属上に無機系の皮膜を析出させた上に樹脂皮膜を積層させる技術であり、素地金属の防食の面で有利であるが、無機系の皮膜も樹脂皮膜もカソード電解による素地金属表面のpH上昇によって析出する機構であるため、積層皮膜の形成が容易でない。   On the other hand, Patent Document 9 and Patent Document 10 are techniques for depositing an inorganic film on a base metal and laminating a resin film, which is advantageous in terms of anticorrosion of the base metal. Both the resin film and the resin film have a mechanism that precipitates due to the pH increase on the surface of the base metal by cathodic electrolysis, so that it is not easy to form a laminated film.

本発明者らは、上記の従来技術の課題を解決するために、Biイオンを組成物中でより安定に存在させるために、キレート能力の高いアミノポリカルボン酸を適用し、低電圧カソード電解にてBiを還元析出させ、次いで高電圧カソード電解でBiイオンの拡散が不充分になった段階で、かかるpH上昇によって樹脂が析出する反応機構を見出した。   In order to solve the above-described problems of the prior art, the present inventors applied an aminopolycarboxylic acid having a high chelating ability in order to make Bi ions exist more stably in the composition, and thus applied to low voltage cathode electrolysis. Thus, a reaction mechanism was found in which resin was deposited by such pH increase at the stage where Bi was diffused and reduced by high voltage cathode electrolysis.

そして、これによって得られた皮膜は、Biの持つ樹脂の硬化触媒能はもちろん、素地金属表面により高濃度で存在するBiにより、素地金属の耐食性をも充分に向上し得ることを確認し、本発明の完成に至った。
すなわち、本発明は次に示す(1)〜(4)である。
And the film obtained by this confirms that the corrosion resistance of the base metal can be sufficiently improved by Bi present in a high concentration on the surface of the base metal as well as the curing catalyst ability of the resin of Bi. The invention has been completed.
That is, the present invention includes the following (1) to (4).

(1) ノニオン性および/またはカチオン性の樹脂エマルジョンを5〜30重量%、3価のBiイオンを100〜1000ppmおよびBiイオンに対して0.5〜10倍モル濃度のアミノポリカルボン酸を含有することを特徴とする電着塗装用組成物(電解によって有機無機複合皮膜を析出させるための金属表面処理組成物)。
(2) 3価のAlイオンを20〜500ppm含有することを特徴とする、前記(1)の電着塗装用組成物。
(3) 表面が清浄化された金属材料を、前記(1)又は前記(2)の組成物中に浸漬させた後、該金属材料を陰極とした電解工程(1)すなわち電圧0〜15Vにて10〜120秒間電解する工程および電解工程(2)すなわち電圧50〜300Vにて30〜300秒間電解する工程の双方を含み、かつ電解工程(1)を電解工程(2)に先立って電解処理し、その後水洗および焼付けを行うことにより、金属材料上に皮膜を析出せしめることを特徴とする金属表面処理方法。ここで、電解工程(1)及び(2)における「電圧X〜Y(V)」は、電圧X〜Yの範囲内で一定電圧を印加する態様でも又は経時的に印加電圧を変化させる態様でもよい。尚、電解工程(1)における「電圧0〜15V」の下限値「0V」は、一定電圧での態様ではなく、経時的に印加電圧を変化させる態様における所定時の電圧を意味する。
(4) 前記(1)又は前記(2)の組成物を用い、前記発明(3)の処理方法によって、金属Biおよび酸化BiがBiとして20〜250mg/m2付着し、全皮膜厚が5〜40μmであり、かつ皮膜厚の中心から金属材料側のBi付着量:Bが、全Bi付着量:Aに対して55%以上(B/A≧55%)となるBi付着分布であることを特徴とする金属表面処理皮膜。
(1) 5 to 30% by weight of nonionic and / or cationic resin emulsion containing 100 to 1000 ppm of trivalent Bi ion and 0.5 to 10 times molar concentration of aminopolycarboxylic acid with respect to Bi ion A composition for electrodeposition coating (a metal surface treatment composition for depositing an organic-inorganic composite film by electrolysis).
(2) The electrodeposition coating composition according to (1) above, which contains 20 to 500 ppm of trivalent Al ions.
(3) After immersing the metal material having a cleaned surface in the composition of (1) or (2), the electrolysis step (1) using the metal material as a cathode, that is, a voltage of 0 to 15V. Electrolysis for 10 to 120 seconds and electrolysis step (2), ie, for 30 to 300 seconds at a voltage of 50 to 300 V, and the electrolysis step (1) is electrolyzed prior to the electrolysis step (2). And then performing washing with water and baking to deposit a film on the metal material. Here, the “voltages X to Y (V)” in the electrolysis steps (1) and (2) may be a mode in which a constant voltage is applied within the range of the voltages X to Y or a mode in which the applied voltage is changed over time. Good. In addition, the lower limit “0V” of “voltage 0 to 15V” in the electrolysis step (1) means a voltage at a predetermined time in an aspect in which the applied voltage is changed over time, not in a constant voltage aspect.
(4) Using the composition of (1) or (2) above, metal Bi and oxidized Bi are deposited as Bi in an amount of 20 to 250 mg / m 2 by the treatment method of the invention (3), and the total film thickness is 5 to It is 40 μm, and the Bi adhesion amount on the metal material side from the center of the film thickness: B is a Bi adhesion distribution that is 55% or more (B / A ≧ 55%) with respect to the total Bi adhesion amount A. Characteristic metal surface treatment film.

第1図は、実施例および比較例での電解パターンである。FIG. 1 is an electrolysis pattern in Examples and Comparative Examples. 第2図は、実施例3における皮膜のEPMA線分析プロファイルである。FIG. 2 is an EPMA line analysis profile of the film in Example 3. 第3図は、Alイオン濃度およびpHの適正範囲を示した図である。FIG. 3 is a diagram showing appropriate ranges of Al ion concentration and pH.

本発明の金属表面処理組成物、金属表面処理方法および金属表面処理皮膜は、各種金属を腐食から防止する目的で使用される。金属材料は、特に限定されるものではないが、冷延鋼板、熱延鋼板、鋳物材、鋼管等の鉄鋼材料、それらの鉄鋼材料の上に亜鉛系めっき処理および/またはアルミニウム系めっきが施された材料、アルミニウム合金板、アルミニウム系鋳物材、マグネシウム合金版、マグネシウム系鋳物材等が挙げられる。特に形状が複雑な金属構成体、例えば、鉄系材料を主とする金属構成体である自動車車体、自動車部品、家電製品、建築材料等への使用に適している。   The metal surface treatment composition, metal surface treatment method and metal surface treatment film of the present invention are used for the purpose of preventing various metals from corrosion. The metal material is not particularly limited, but steel materials such as cold-rolled steel plates, hot-rolled steel plates, casting materials, steel pipes, etc., and zinc-based plating treatment and / or aluminum-based plating are applied on those steel materials. Materials, aluminum alloy plates, aluminum castings, magnesium alloy plates, magnesium castings, and the like. It is particularly suitable for use in metal structures having complicated shapes, for example, automobile bodies, automobile parts, home appliances, building materials, etc., which are metal structures mainly composed of iron-based materials.

本発明の金属表面処理用組成物は、当該組成物の全重量を基準として、ノニオン性および/またはカチオン性の水系樹脂を5〜30重量%含有することが好ましい。7〜25重量%が更に好ましく、10〜20重量%が最も好ましい。樹脂含有量が低過ぎると皮膜析出量が不足し、含有量が高過ぎると経済的に不利である。ここで、ノニオン性樹脂及びカチオン性樹脂のいずれも特に限定されるものではない。以下、各樹脂の製造例を示す。   The metal surface treatment composition of the present invention preferably contains 5 to 30% by weight of a nonionic and / or cationic aqueous resin based on the total weight of the composition. It is more preferably 7 to 25% by weight, and most preferably 10 to 20% by weight. If the resin content is too low, the amount of film deposition is insufficient, and if the content is too high, it is economically disadvantageous. Here, neither a nonionic resin nor a cationic resin is particularly limited. Hereafter, the manufacture example of each resin is shown.

ノニオン性樹脂エマルジョンについては基体樹脂にエチレンオキサイドのようなノニオン性官能基を導入させる方法、すなわち自己乳化法、およびノニオン界面活性剤を用いて乳化させる方法、すなわち強制乳化法のいずれかまたは双方の手法を用いて作製することができる。カチオン性樹脂エマルジョンについては基体樹脂にアミン基のようなカチオン性官能基を導入させる方法、すなわち自己乳化法、およびカチオン界面活性剤を用いて乳化させる方法、すなわち強制乳化法のいずれかまたは双方を同時に用いて作製することができる。更に、カチオン性官能基を導入後、ノニオン界面活性剤を乳化助剤として用いることもできる。また、自己乳化エマルジョンの分子量が小さい場合は、もはや粒子状のエマルジョンではなく水溶性樹脂となるが、水溶性樹脂であっても本発明の効果が損なわれるものではない。本発明における水系樹脂とは、水分散するエマルジョンと水溶性樹脂の総称である。   For the nonionic resin emulsion, either or both of a method of introducing a nonionic functional group such as ethylene oxide into the base resin, that is, a self-emulsification method and a method of emulsification using a nonionic surfactant, that is, a forced emulsification method. It can be produced using a technique. For the cationic resin emulsion, either or both of a method of introducing a cationic functional group such as an amine group into the base resin, that is, a self-emulsification method and a method of emulsification using a cationic surfactant, that is, a forced emulsification method, are used. They can be used at the same time. Furthermore, after introducing a cationic functional group, a nonionic surfactant can also be used as an emulsification aid. Moreover, when the molecular weight of the self-emulsifying emulsion is small, the emulsion is no longer a particulate emulsion but a water-soluble resin, but even the water-soluble resin does not impair the effects of the present invention. The water-based resin in the present invention is a general term for water-dispersed emulsions and water-soluble resins.

基体樹脂はいずれのタイプを用いても、本発明の効果を損なうものではないが、エポキシ、ウレタン、アクリルがより好ましい。
また、水系樹脂には、ブロック化ポリイソシアネートをはじめとする硬化剤を任意に配合することもできる。
Whichever type of base resin is used, the effect of the present invention is not impaired, but epoxy, urethane, and acrylic are more preferable.
In addition, a curing agent such as a blocked polyisocyanate can be arbitrarily added to the water-based resin.

本発明の金属表面処理組成物には、3価のBiイオンが100〜1000ppm含有されていることが好ましい。150〜800ppmが更に好ましく、200〜600ppmが最も好ましい。Biイオン濃度が低過ぎる場合、耐食性向上に必要な充分なBi付着量が得られず、高過ぎると組成物の電気伝導度が高くなり過ぎ、複雑な形状を有する金属材料への皮膜の付き廻り性が劣化すると共に、Bi付着量過多となり皮膜密着性を損なう恐れがある。組成物中のBiイオン濃度は、超遠心機により組成物を固液分離し、液相を高周波誘導結合プラズマ発光分光分析(ICP)もしくは原子吸光分光分析(AA)を用いて定量することができる。   The metal surface treatment composition of the present invention preferably contains 100 to 1000 ppm of trivalent Bi ions. 150 to 800 ppm is more preferable, and 200 to 600 ppm is most preferable. If the Bi ion concentration is too low, a sufficient amount of Bi adhesion necessary for improving the corrosion resistance cannot be obtained. If the Bi ion concentration is too high, the electrical conductivity of the composition becomes too high, and the coating on the metal material having a complicated shape is increased. As a result, the Bi adhesion amount becomes excessive and the film adhesion may be impaired. The Bi ion concentration in the composition can be determined by solid-liquid separation of the composition using an ultracentrifuge, and the liquid phase can be quantified using high frequency inductively coupled plasma emission spectrometry (ICP) or atomic absorption spectrometry (AA). .

ここで言うBiイオンとは、組成物中で固形化せず、完全に溶解状態になっているBi成分のことを指し、具体的には後述するアミノポリカルボン酸によってキレートを構成し、安定的に水溶化された状態であることを意味している。   Bi ion as used herein refers to a Bi component that is not solidified in the composition and is in a completely dissolved state. Specifically, a chelate is constituted by an aminopolycarboxylic acid described later, and is stable. It means that it is in a water-soluble state.

組成物中には更にアミノポリカルボン酸を含有する。アミノポリカルボン酸とは、分子中にアミノ基と複数のカルボキシル基を有するキレート剤の総称であり、具体的にはEDTA(エチレンジアミン四酢酸)、HEDTA(ヒドロキシエチルエチレンジアミン三酢酸)、NTA(ニトリロ三酢酸)、DTPA(ジエチレントリアミン五酢酸)、TTHA(トリエチレンテトラミン六酢酸)等が該当するが、Biイオンとのキレート安定度の観点からEDTA、HEDTA、NTAがより好ましい。   The composition further contains an aminopolycarboxylic acid. Aminopolycarboxylic acid is a generic term for chelating agents having an amino group and a plurality of carboxyl groups in the molecule. Specifically, EDTA (ethylenediaminetetraacetic acid), HEDTA (hydroxyethylethylenediaminetriacetic acid), NTA (nitrilotrimethyl). Acetic acid), DTPA (diethylenetriaminepentaacetic acid), TTHA (triethylenetetraminehexaacetic acid) and the like are applicable, and EDTA, HEDTA, and NTA are more preferable from the viewpoint of chelate stability with Bi ions.

アミノポリカルボン酸の濃度はBiイオンに対して0.5〜10倍モル濃度であることが好ましく、0.7〜5.0倍モル濃度が更に好ましく、1.0〜3.0倍モル濃度であることが最も好ましい。Biイオンに対する濃度比率が低過ぎるとBiイオンが組成物中で加水分解し、酸化物となってしまうため、有効なBiイオン濃度が低下し、結果として充分なBi付着量が得られなくなる。高過ぎると逆にBiイオンが安定化し過ぎ、やはり充分なBi付着量が得られなくなる。   The concentration of the aminopolycarboxylic acid is preferably 0.5 to 10 times the molar concentration with respect to Bi ions, more preferably 0.7 to 5.0 times the molar concentration, and 1.0 to 3.0 times the molar concentration. Most preferably. If the concentration ratio with respect to Bi ions is too low, Bi ions are hydrolyzed in the composition and become oxides, so that the effective Bi ion concentration is lowered, and as a result, a sufficient amount of Bi deposition cannot be obtained. On the other hand, if it is too high, Bi ions will be overstabilized and a sufficient amount of Bi will not be obtained.

本発明の組成物には、更に必要に応じて顔料、触媒、有機溶剤、顔料分散剤、界面活性剤等、塗料分野で通常使用されている添加剤を適用することもできる。顔料としては、チタン白、カーボンブラック等の着色顔料、クレー、タルク、バリタ等の体質顔料、トリポリリン酸アルミニウム、リン酸亜鉛等の防錆顔料、ジブチル錫オキサイド、ジオクチル錫オキサイド等の有機錫化合物、ジブチル錫ラウレート、ジブチル錫ジベンゾエートなどのジアルキル錫の脂肪酸もしくは芳香族カルボン酸塩などの錫化合物が挙げられる。   In the composition of the present invention, additives usually used in the paint field such as a pigment, a catalyst, an organic solvent, a pigment dispersant, and a surfactant can be further applied as necessary. Examples of pigments include colored pigments such as titanium white and carbon black, extender pigments such as clay, talc and barita, rust preventive pigments such as aluminum tripolyphosphate and zinc phosphate, organic tin compounds such as dibutyltin oxide and dioctyltin oxide, Examples thereof include dialkyltin fatty acids such as dibutyltin laurate and dibutyltin dibenzoate, and tin compounds such as aromatic carboxylates.

本発明に係る金属表面処理用組成物の液体媒体としては、水性媒体が好適であり、水がより好適である。尚、液体媒体が水である場合、液体媒体として水以外の他の水系溶媒(例えば、水溶性のアルコール類)を含有していてもよい。   As the liquid medium of the metal surface treatment composition according to the present invention, an aqueous medium is preferable, and water is more preferable. When the liquid medium is water, the liquid medium may contain an aqueous solvent other than water (for example, water-soluble alcohols).

組成物のpHは特に制限されるものではないが、通常2.0〜7.0、好ましくは3.0〜6.5の範囲に調整して使用することができる。
組成物の温度についても特に制約は無いが、電解処理によって皮膜を析出させる際は、通常15〜40℃、好ましくは20〜35℃の範囲内で使用することができる。
The pH of the composition is not particularly limited, but can be adjusted to a range of usually 2.0 to 7.0, preferably 3.0 to 6.5.
Although there is no restriction | limiting in particular also about the temperature of a composition, When depositing a film | membrane by electrolytic treatment, it can use normally within the range of 15-40 degreeC, Preferably it is 20-35 degreeC.

ここで、本発明に係る組成物はアミノポリカルボン酸を含有するが、特にカチオン性の樹脂と組み合わせた場合、過剰なアミノポリカルボン酸の存在により、ときとしてカチオン性樹脂のゲル化を招くことがある。このような場合には、カチオン性樹脂のカチオン基の量を減らすか或いはノニオン性の樹脂とする(或いは、カチオン性樹脂とノニオン性樹脂とを混合し、全体的なカチオン基量を相対的に減少させる)のが好適である。ところで、この場合、pHの上昇によっても樹脂があまり析出しない という別の問題を生じることがある。ここで、当該問題は、Alイオンを含有させることにより解消することが可能となる。この際、Alイオンを20〜500ppm含有することが好ましい。50〜400ppmが更に好ましく、100〜300ppmが最も好ましい。下限を下回るとAlイオンの塗膜析出向上効果が不充分となり、上限を上回ると組成物の電気伝導度が過剰となり、かえって付き廻り性を低下させる。   Here, the composition according to the present invention contains an aminopolycarboxylic acid, but particularly when combined with a cationic resin, the presence of excess aminopolycarboxylic acid sometimes causes gelation of the cationic resin. There is. In such a case, the amount of the cation group of the cationic resin is reduced or a nonionic resin is used (or the cationic resin and the nonionic resin are mixed, and the total amount of cation groups is relatively reduced. (Decrease) is preferred. By the way, in this case, another problem that the resin does not precipitate so much even when the pH is increased may occur. Here, the problem can be solved by including Al ions. At this time, it is preferable to contain 20 to 500 ppm of Al ions. 50 to 400 ppm is more preferable, and 100 to 300 ppm is most preferable. If the lower limit is not reached, the effect of improving the coating deposition of Al ions becomes insufficient, and if the upper limit is exceeded, the electrical conductivity of the composition becomes excessive, and the throwing power is reduced.

ここで、前述したAlイオンの作用機序は以下の通りである。つまり、イオン状のAlがカソード電解による金属表面pH上昇により微細な水酸化物コロイドになり、それがpH9前後でゼータ電荷を完全に失い急激に凝集を始める際、周りの樹脂をも巻き込んで析出するものと推定される。   Here, the mechanism of action of the Al ions described above is as follows. In other words, ionic Al becomes a fine hydroxide colloid due to the increase in pH of the metal surface due to cathode electrolysis, and when it completely loses zeta charge at around pH 9 and begins to agglomerate rapidly, the surrounding resin is also involved and precipitates. Presumed to be.

カソード電解によってAlイオンから水酸化物コロイドの電荷の消失にいたる一連の反応は瞬時に完了する必要がある。あらかじめ水酸化物になっていては、経時で凝集が始まってしまい、pH9前後での凝集能力が極端に減退する。よって、当該態様におけるAl成分は、組成物中ではあくまでイオンでいなければならないのである。   A series of reactions from cathodic electrolysis to disappearance of the charge of the hydroxide colloid must be completed instantaneously. If it has become a hydroxide in advance, aggregation starts over time, and the aggregation ability around pH 9 is extremely reduced. Therefore, the Al component in this embodiment must be in the form of ions in the composition.

また、金属イオンは通常キレート剤の存在によって安定化されるが、Alイオンの場合は、pH上昇に伴う水酸化物コロイドの生成を阻止する程の安定度を有するキレート剤は無いまたは稀である。少なくとも、電着塗料組成物に通常配合されている、酢酸、蟻酸、スルファミン酸、乳酸等の有機酸およびアミノポリカルボン酸には、Alイオンを安定化させるほどのキレート能力はない。   In addition, metal ions are usually stabilized by the presence of a chelating agent, but in the case of Al ions, there is no or rare chelating agent that is stable enough to prevent the formation of hydroxide colloid accompanying pH increase. . At least organic acids such as acetic acid, formic acid, sulfamic acid, and lactic acid and aminopolycarboxylic acids that are usually blended in electrodeposition coating compositions do not have a chelating ability to stabilize Al ions.

AlイオンはAl化合物を用いて添加することができる。Al化合物は特に限定されないが、硝酸塩、硫酸塩と言った無機酸塩または乳酸塩、酢酸塩と言った有機酸塩の形で添加することが可能である。   Al ions can be added using an Al compound. The Al compound is not particularly limited, but can be added in the form of an inorganic acid salt such as nitrate or sulfate, or an organic acid salt such as lactate or acetate.

更に、Alイオンを前述の範囲で含有することに加え、当該態様に係る組成物のpHをAlイオン濃度をA[ppm]としたとき次の計算式を満足するようにすることが好ましい。
3.5≦pH≦−Log((A×1.93×10−151/3
下記式であることが更に好ましい。
3.6≦pH≦−Log((A×1.93×10−151/3
下記式であることが最も好ましい。
3.7≦pH≦−Log((A×1.93×10−151/3
pHが下限を下回ると、析出効率が低下し付き廻り性も低下していく。pHが上限を上回ると、Alイオンが加水分解を起こしてしまうため、好ましくない。
Furthermore, in addition to containing Al ions in the above-mentioned range, it is preferable to satisfy the following calculation formula when the pH of the composition according to this embodiment is defined as A [ppm] Al ion concentration.
3.5 ≦ pH ≦ −Log ((A × 1.93 × 10 −15 ) 1/3 )
The following formula is more preferable.
3.6 ≦ pH ≦ −Log ((A × 1.93 × 10 −15 ) 1/3 )
The following formula is most preferable.
3.7 ≦ pH ≦ −Log ((A × 1.93 × 10 −15 ) 1/3 )
When the pH is lower than the lower limit, the deposition efficiency is lowered and the throwing power is also lowered. When the pH exceeds the upper limit, Al ions cause hydrolysis, which is not preferable.

−Log((A×1.93×10−151/3)の項は、25℃における水酸化Alの溶解度積:1.92×10−32から求められる。つまり、このpH以上になるとAlイオンは水酸化物として沈殿析出してしまい、もはやイオンではいられなくなる。ここで、25℃は、組成物の保存時及び使用時の典型的な温度である。 The term -Log ((A × 1.93 × 10 −15 ) 1/3 ) is obtained from the solubility product of Al hydroxide at 25 ° C .: 1.92 × 10 −32 . That is, when the pH is exceeded, Al ions precipitate as hydroxides and can no longer be ions. Here, 25 ° C. is a typical temperature during storage and use of the composition.

また、本発明の組成物の中には、Biイオン、Alイオンの他に、Feイオン、Znイオン、Ceイオン等の金属イオンを含有しても、本発明の効果を損なうものではない。むしろ、これらの金属イオンには、Alイオンほどではないものの、水系樹脂の析出を促進させる作用を有する。なお、Feイオンは2価よりも3価がより好ましい。   Further, the effects of the present invention are not impaired even if the composition of the present invention contains metal ions such as Fe ions, Zn ions, and Ce ions in addition to Bi ions and Al ions. Rather, these metal ions have the effect of promoting the precipitation of the aqueous resin, although not as much as the Al ions. The Fe ion is more preferably trivalent than divalent.

参考のため、Alイオン濃度およびpHの適正範囲を第3図に示す。   For reference, the appropriate range of Al ion concentration and pH is shown in FIG.

金属材料を本発明の組成物中に浸漬させた後、金属材料表面に皮膜を形成させるためには、金属材料を陰極とするカソード電解を行う必要がある。カソード電解は電圧0〜15Vにて10〜120秒間電解する電解工程(1)と電圧50〜300Vにて30〜300秒間電解する電解工程(2)の2工程であり、かつ電解工程(1)を電解工程(2)に先立って行う必要がある。   In order to form a film on the surface of the metal material after the metal material is immersed in the composition of the present invention, it is necessary to perform cathode electrolysis using the metal material as a cathode. Cathodic electrolysis is an electrolysis process (1) in which electrolysis is performed at a voltage of 0 to 15 V for 10 to 120 seconds and an electrolysis process (2) in which electrolysis is performed at a voltage of 50 to 300 V for 30 to 300 seconds. Need to be performed prior to the electrolysis step (2).

なお、電解工程(1)は主としてBiを優先的に付着させるために行われる工程であり、電解工程(2)は主として樹脂を優先的に析出させるために行われる工程である。充分な耐食性を得るためには、金属材料に直接接触しているBi、つまり金属材料と皮膜の界面に存在する界面Biの存在が必要であり、そのためには電解工程(1)と電解工程(2)の順番と条件が極めて重要となってくる。   The electrolysis step (1) is a step mainly performed for preferentially attaching Bi, and the electrolysis step (2) is a step mainly performed for precipitating the resin preferentially. In order to obtain sufficient corrosion resistance, Bi that is in direct contact with the metal material, that is, the presence of the interface Bi existing at the interface between the metal material and the film is required. For this purpose, the electrolysis step (1) and the electrolysis step ( The order and conditions of 2) are extremely important.

電解工程(1)の電圧は0〜15Vであり、10〜120秒間電解することが好ましい。電圧が下限を下回る場合、すなわち金属材料を陽極として電解した場合は、金属材料が組成物中に溶出してしまい、組成物の安定性を低下させるばかりか、耐食性の向上に必要な界面Biが充分付着しなくなる。上限を超える場合も、Biが金属表面に優先的に析出する前に樹脂析出が始まってしまうため、やはり充分な耐食性が得られなくなる。   The voltage in the electrolysis step (1) is 0 to 15 V, and electrolysis is preferably performed for 10 to 120 seconds. When the voltage is lower than the lower limit, that is, when electrolysis is performed using the metal material as an anode, the metal material is eluted in the composition, not only reducing the stability of the composition, but also the interface Bi necessary for improving the corrosion resistance. It will not adhere sufficiently. Even when the upper limit is exceeded, resin deposition starts before Bi is preferentially deposited on the metal surface, so that sufficient corrosion resistance cannot be obtained.

処理時間が下限を下回る場合も充分な界面Biが析出せず、上限を上回る場合は界面Biの付着量過多となり、皮膜の密着性が損なわれる場合がある。   Even when the treatment time is less than the lower limit, sufficient interface Bi is not deposited, and when the treatment time is more than the upper limit, the adhesion amount of the interface Bi becomes excessive, and the adhesion of the film may be impaired.

電解工程(2)の電圧は50〜300Vであり、30〜300秒間電解することが好ましい。電圧が下限を下回る場合は、樹脂皮膜の析出量が不充分となり、上限を上回る場合は、樹脂皮膜の析出過多により経済的に不利であるばかりか、皮膜の仕上がり外観が損なわれる場合がある。   The voltage in the electrolysis step (2) is 50 to 300 V, and electrolysis is preferably performed for 30 to 300 seconds. When the voltage is lower than the lower limit, the amount of the resin film deposited is insufficient. When the voltage is higher than the upper limit, the resin film is excessively deposited, which is economically disadvantageous, and the finished appearance of the film may be impaired.

電解工程(1)に次いで電解工程(2)に移行する際、電圧を瞬時に増加させる必要は無く、緩やかに増加させても本発明の効果を損なうものではない。   When shifting to the electrolysis step (2) after the electrolysis step (1), it is not necessary to increase the voltage instantaneously, and even if it is increased slowly, the effect of the present invention is not impaired.

本発明の組成物を用い、本発明の処理方法によって得られる皮膜中に存在するBiは金属および酸化物の形態で存在する。カソード電解によって析出するBiは、基本的に還元析出した金属Biであるが、その一部は特に皮膜の焼付け工程で酸化されて酸化物となる。また、電解工程(2)において高電圧がかかった場合、皮膜表面のpH上昇により、アミノポリカルボン酸によるBiの安定化が不充分となるため、特に皮膜表面側では酸化Biとしても析出する。   Bi present in the film obtained by the treatment method of the present invention using the composition of the present invention exists in the form of metal and oxide. Bi deposited by cathodic electrolysis is basically reduced Bi metal Bi, but a part of it is oxidized in particular in the coating baking process to become an oxide. Further, when a high voltage is applied in the electrolysis step (2), the stabilization of Bi by the aminopolycarboxylic acid is insufficient due to the increase in pH of the coating surface, so that it precipitates as oxidized Bi especially on the coating surface side.

Bi付着量は20〜250mg/m2が好ましく、30〜200mg/m2が更に好ましく、50〜150mg/m2が最も好ましい。Bi付着量が低過ぎると充分な耐食性が得られず、高過ぎるともはや耐食性の向上が望めないばかりか皮膜密着性を損なう場合もある。なお、Bi付着量は蛍光X線分光分析により定量可能である。尚、本特許請求の範囲及び本明細書における「金属Bi付着量」及び「酸化Bi付着量」は、当該蛍光X線分光分析で定量された値とする。尚、その他の形態として水酸化物の存在も否定できないが、当該測定方法で「金属Bi」又は「酸化Bi」として定量された場合には、その数値は「金属Bi付着量」又は「酸化Bi付着量」とすることとする。   The amount of Bi deposited is preferably 20 to 250 mg / m2, more preferably 30 to 200 mg / m2, and most preferably 50 to 150 mg / m2. If the amount of Bi deposited is too low, sufficient corrosion resistance cannot be obtained. If it is too high, improvement in corrosion resistance can no longer be expected, and film adhesion may be impaired. The amount of Bi attached can be quantified by fluorescent X-ray spectroscopic analysis. The “metal Bi adhesion amount” and “oxidized Bi adhesion amount” in the claims and in the present specification are values determined by the fluorescent X-ray spectroscopic analysis. In addition, the presence of hydroxides cannot be denied as other forms, but when quantified as “metal Bi” or “oxidized Bi” by the measurement method, the numerical value is “metal Bi adhesion amount” or “oxidized Bi”. It is assumed that “the amount of adhesion”.

得られる皮膜の全皮膜厚は3〜40μmが好ましく、5〜30μmが更に好ましく、7〜25μmが最も好ましい。薄過ぎると充分な耐食性が得られず、厚過ぎると経済的に不利なばかりか付き廻り性が低下する場合がある。皮膜厚は、素地金属が磁性金属であれば電磁誘導式膜厚計、素地金属が非磁性金属であれば渦電流式膜厚計により、測定可能である。   The total film thickness of the obtained film is preferably 3 to 40 μm, more preferably 5 to 30 μm, and most preferably 7 to 25 μm. If it is too thin, sufficient corrosion resistance cannot be obtained, and if it is too thick, not only is it economically disadvantageous, but the throwing power may be lowered. The film thickness can be measured by an electromagnetic induction type film thickness meter if the base metal is a magnetic metal, or by an eddy current film thickness meter if the base metal is a non-magnetic metal.

皮膜中のBiは、皮膜表面よりも素地金属側により多く存在する必要がある。具体的には、皮膜厚の中心から金属材料側のBi付着量:Bが、全Bi付着量:Aに対して55%以上(B/A≧55%)となるBi付着分布であることが好ましい。58%以上が更に好ましく、60%以上が最も好ましい。低過ぎると充分な耐食性が得られない。なお、90%を越えると皮膜表面側のBi濃度が極端に低下し、Biの持つ硬化触媒としての機能を失うので好ましくない。   Bi in the film needs to be present more on the base metal side than the film surface. Specifically, the Bi adhesion amount B on the metal material side from the center of the film thickness is a Bi adhesion distribution in which the total Bi adhesion amount: 55% or more (B / A ≧ 55%) with respect to A. preferable. It is more preferably 58% or more, and most preferably 60% or more. If it is too low, sufficient corrosion resistance cannot be obtained. Note that if it exceeds 90%, the Bi concentration on the surface side of the film is extremely lowered and the function of Bi as a curing catalyst is lost.

皮膜中のBi付着分布については、EPMAを用いて皮膜断面を線分析することにより測定可能である。同時に撮影した反射電子像によって素地金属と皮膜の界面および皮膜表面の位置を特定し、EPMA線分析による皮膜中のBi強度の積分値:Aおよび皮膜厚の中心から素地金属側のみの積分値:Bを求め、B/Aを算出することができる。   The distribution of Bi adhesion in the film can be measured by line analysis of the film cross section using EPMA. The position of the base metal-coating interface and the coating surface is specified from the backscattered electron images taken at the same time, and the integrated value of Bi intensity in the coating by EPMA line analysis: the integrated value of only the base metal side from the center of A and coating thickness: B can be obtained and B / A can be calculated.

以下に実施例および比較例を挙げて本発明の内容を具体的に説明する。   The contents of the present invention will be specifically described below with reference to examples and comparative examples.

樹脂エマルジョン
樹脂エマルジョンとしてBASF社製カチオン性エポキシ樹脂「Lugalvan EDC」(不揮発分:34%、以下略号「R1」)およびDIC社製ノニオン性ウレタン樹脂「VONDIC2220」(不揮発分:40%、以下略号「R2」)の2種を用いた。
Resin Emulsion Resin Emulsion BASF Cationic Epoxy Resin “Lugalvan EDC” (nonvolatile content: 34%, hereinafter abbreviated “R1”) and DIC Nonionic Urethane Resin “VONDIC2220” (nonvolatile content: 40%, hereinafter abbreviated “ Two types of R2 ") were used.

顔料分散ペースト
ジャパンエポキシレジン製エポキシ樹脂「jER828EL」1010部に対し、ビスフェノールAを390部、ダイセル化学工業製ポリカプロラクトンジオール「プラクセル212」、ジメチルベンジルアミン0.2部を加え、130℃でエポキシ当量が約1090になるまで反応させた。
Pigment Dispersion Paste Japan Epoxy Resin Epoxy Resin “jER828EL” 1010 parts, bisphenol A 390 parts, Daicel Chemical Industries polycaprolactone diol “Placcel 212”, dimethylbenzylamine 0.2 parts, add epoxy equivalent at 130 ° C. The reaction was allowed to reach about 1090.

次に、ジメチルエタノールアミン134部および乳酸(約90%)150部を加え、120℃で4時間反応させた。次いで、メチルイソブチルケトンを加えて固形分を調整し、不揮発分60重量%の顔料分散用樹脂を得た。   Next, 134 parts of dimethylethanolamine and 150 parts of lactic acid (about 90%) were added and reacted at 120 ° C. for 4 hours. Next, methyl isobutyl ketone was added to adjust the solid content to obtain a pigment dispersion resin having a nonvolatile content of 60% by weight.

上記で得られた顔料分散用樹脂8.3部に対し、酸化チタン15部、精製クレー7.0部、カーボンブラック0.3部、ジオクチル錫オキサイド1.0部、リン酸亜鉛3.0部および脱イオン水18部を加え、ボールミルにて20時間分散し、無機固形分50重量%の顔料分散ペーストを得た。これを実施例および比較例の各組成物中に無機固形分5.0重量%となるように添加した。   15 parts of titanium oxide, 7.0 parts of purified clay, 0.3 parts of carbon black, 1.0 part of dioctyltin oxide, and 3.0 parts of zinc phosphate with respect to 8.3 parts of the pigment dispersion resin obtained above. And 18 parts of deionized water were added and dispersed in a ball mill for 20 hours to obtain a pigment dispersion paste having an inorganic solid content of 50% by weight. This was added so that it might become 5.0 weight% of inorganic solid content in each composition of an Example and a comparative example.

Bi添加剤
Bi化合物とアミノポリカルボン酸を混合し、Biイオン濃度10,000ppmの種々のBi添加剤を作製した。
Bi additive Bi compound and aminopolycarboxylic acid were mixed to prepare various Bi additives having a Bi ion concentration of 10,000 ppm.

Bi添加剤1(以下略号「B1」)
蒸留水:500gにEDTA:8.38gを溶解させ、60℃に加温した後、硝酸ビスマス5水和物:23.21gを加えて固形分が完全に溶解するまで撹拌した。その後、最終的に全量を1.0Lとなるように更に蒸留水を加え「B1」を作製した。なお、この場合、EDTAはBiの0.6倍モル濃度となる。
Bi additive 1 (hereinafter abbreviated as “B1”)
Distilled water: 8.38 g of EDTA was dissolved in 500 g, heated to 60 ° C., bismuth nitrate pentahydrate: 23.21 g was added, and the mixture was stirred until the solid content was completely dissolved. Thereafter, distilled water was further added so that the total amount became 1.0 L, and “B1” was produced. In this case, EDTA has a molar concentration of 0.6 times that of Bi.

Bi添加剤2(以下略号「B2」)
蒸留水:500gにHEDTA:13.30gを溶解させ、60℃に加温した後、酸化ビスマス11.15gを加えて固形分が完全に溶解するまで撹拌した。最終的に全量が1.0Lとなるように更に蒸留水を加え、「B2」を作製した。なお、この場合HEDTAはBiの1.0倍モル濃度となる。
Bi additive 2 (hereinafter abbreviated as “B2”)
Distilled water: 13.30 g of HEDTA was dissolved in 500 g and heated to 60 ° C., and then 11.15 g of bismuth oxide was added and stirred until the solid content was completely dissolved. Distilled water was further added so that the total amount finally became 1.0 L, and “B2” was produced. In this case, HEDTA has a molar concentration of 1.0 times that of Bi.

Bi添加剤3(以下略号「B3」)
蒸留水:500gにHEDTA:39.90gを溶解させ、60℃に加温した後、酸化ビスマス:11.15gを加えて固形分が完全に溶解するまで撹拌した。最終的に全量が1.0Lとなるように更に蒸留水を加え、「B3」を作製した。なお、この場合HEDTAはBiの3.0倍モル濃度となる。
Bi additive 3 (hereinafter abbreviated as “B3”)
After dissolving 39.90 g of HEDTA in 500 g of distilled water and heating to 60 ° C., 11.15 g of bismuth oxide was added and stirred until the solid content was completely dissolved. Distilled water was further added so that the total amount finally became 1.0 L, and “B3” was produced. In this case, HEDTA has a molar concentration of 3.0 times that of Bi.

Bi添加剤4(以下略号「B4」)
蒸留水:500gにNTA:73.12gを溶解させ、60℃に加温した後、酸化ビスマス:11.15gを加えて固形分が完全に溶解するまで撹拌した。最終的に全量が1.0Lとなるように更に蒸留水を加え、「B4」を作製した。なお、この場合NTAはBiの8.0倍モル濃度となる。
Bi additive 4 (hereinafter abbreviated as “B4”)
Distilled water: NTA: 73.12 g was dissolved in 500 g and heated to 60 ° C., and then bismuth oxide: 11.15 g was added and stirred until the solid content was completely dissolved. Distilled water was further added so that the total amount was finally 1.0 L, and “B4” was produced. In this case, NTA is 8.0 times the molar concentration of Bi.

組成物の作製
無機固形分5.0重量%になる量の顔料分散ペーストに、第1表に示す組合せにて樹脂エマルジョンおよびBi添加剤を配合し、組成物を作製した。なお、それぞれの濃度は脱イオン水を用いて希釈し調整した。また、必要に応じて組成物のpHを硝酸またはアンモニアを用いて調整した。
Preparation of Composition A composition was prepared by blending a pigment dispersion paste having an inorganic solid content of 5.0% by weight with a resin emulsion and Bi additive in the combinations shown in Table 1. Each concentration was adjusted by diluting with deionized water. Further, the pH of the composition was adjusted with nitric acid or ammonia as necessary.

電解条件
対極であるアノード電極はSUS304を用い、アノードとカソードの極比は1.0とし、整流器により所定の電位を印加した。なお、カソード電解処理を行う際、組成物の温度は熱交換器によって30℃に保ち、インペラによって撹拌した。それぞれの詳細な電解条件を以下に示す。また、それぞれの電解パターンを第1図に図示する。
SUS304 was used for the anode electrode as the electrode opposite to the electrolysis conditions , the anode / cathode pole ratio was 1.0, and a predetermined potential was applied by a rectifier. When performing the cathode electrolysis treatment, the temperature of the composition was kept at 30 ° C. by a heat exchanger and stirred by an impeller. Each detailed electrolysis condition is shown below. Each electrolytic pattern is shown in FIG.

電解条件1(以下略号「E1」)
電解工程(1)として13Vにて15秒間電解後、直ちに電解工程(2)として280Vにて45秒間電解処理を行った。
電解条件2(以下略号「E2」)
電解工程(1)として8Vにて60秒間電解後、直ちに電解工程(2)として180Vにて180秒間電解処理を行った。
電解条件3(以下略号「E3」)
電解工程(1)として2Vにて110秒間電解後、直ちに電解工程(2)として60Vにて290秒間電解処理を行った。
電解条件4(以下略号「E4」)
電解工程(1)として0Vから60秒間かけて15Vまで昇圧し、更に30秒間かけて50Vまで昇圧してから、電解工程(2)として30秒間かけて200Vまで昇圧し、200Vを120秒間保持した。結果的に請求項4における電解工程(1)は60秒間、電解工程(2)は150秒間となる。
電解条件5(以下略号「E5」)
電解工程(1)として210Vにて160秒間電解処理を行い、電解工程(2)は行わなかった。
Electrolysis condition 1 (hereinafter abbreviated “E1”)
After the electrolysis at 13V for 15 seconds as the electrolysis step (1), the electrolysis process was immediately performed at 280V for 45 seconds as the electrolysis step (2).
Electrolysis condition 2 (hereinafter abbreviated as “E2”)
After electrolysis at 8V for 60 seconds as the electrolysis step (1), an electrolysis treatment was immediately performed at 180V for 180 seconds as the electrolysis step (2).
Electrolytic condition 3 (hereinafter abbreviated as “E3”)
As an electrolysis step (1), electrolysis was performed at 2 V for 110 seconds, and immediately thereafter, electrolysis was performed at 60 V for 290 seconds as an electrolysis step (2).
Electrolysis condition 4 (hereinafter abbreviated as “E4”)
In the electrolysis step (1), the pressure was increased from 0 V to 15 V over 60 seconds, and further increased to 50 V over 30 seconds. Then, in the electrolysis step (2), the pressure was increased to 200 V over 30 seconds, and 200 V was maintained for 120 seconds. . As a result, the electrolysis step (1) in claim 4 takes 60 seconds, and the electrolysis step (2) takes 150 seconds.
Electrolysis condition 5 (hereinafter abbreviated as “E5”)
As an electrolysis process (1), an electrolysis process was performed at 210 V for 160 seconds, and an electrolysis process (2) was not performed.

試験板の作製
試験板として、冷延鋼板:SPCC(JIS3141)70×150×0.8mm(以下、SPCと略す)を用い、あらかじめその表面を日本パーカライジング社製強アルカリ脱脂剤「FC−E2001」を使用して、120秒間スプレー処理することにより脱脂処理した。脱脂処理後は30秒間スプレー水洗し、実施例および比較例に示す組成物に浸漬させ、実施例および比較例に示す電解条件にてカソード電解処理を実施した。電解終了後の試験板は直ちに脱イオン水にて30秒間スプレー水洗し、電気オーブン中で180℃にて20分間焼付けを行った。
As a test plate , a cold rolled steel plate: SPCC (JIS 3141) 70 × 150 × 0.8 mm (hereinafter abbreviated as SPC) is used, and its surface is preliminarily strong alkaline degreasing agent “FC-E2001” manufactured by Nihon Parkerizing Co., Ltd. Was degreased by spraying for 120 seconds. After degreasing treatment, it was washed with spray water for 30 seconds, immersed in the compositions shown in Examples and Comparative Examples, and subjected to cathode electrolytic treatment under the electrolytic conditions shown in Examples and Comparative Examples. The test plate after completion of electrolysis was immediately rinsed with deionized water for 30 seconds and baked at 180 ° C. for 20 minutes in an electric oven.

皮膜特性の調査
試験板の上に析出した皮膜の皮膜特性を以下の方法で調査した。
皮膜厚測定:電磁誘導式膜厚計を用いて測定した。
Bi付着量:蛍光X線分光分析によって定量した。
Bi付着分布:試料断面をEPMAの線分析にて分析した。具体的方法は下記参照。
Investigation of film characteristics The film characteristics of the film deposited on the test plate were investigated by the following method.
Film thickness measurement: Measured using an electromagnetic induction film thickness meter.
Bi adhesion amount: quantified by fluorescent X-ray spectroscopic analysis.
Bi adhesion distribution: Sample cross section was analyzed by EPMA line analysis. See below for specific methods.

皮膜中のBi付着量分布測定は、EPMAを用いて分析した。皮膜処理後の金属材料を、埋め込み樹脂によって固定し、断面を研磨し、素地金属方向から析出皮膜表面方向にBiの線分析プロファイルを求めた。線分析プロファイルとは、マッピング分析データを基に、分析エリアの1次元方向に任意の幅で特性X線強度の平均値を算出したもので、幅を持った線分析と解することができる。測定条件は以下の通り。   Bi adhesion amount distribution measurement in the film was analyzed using EPMA. The metal material after the film treatment was fixed with an embedded resin, the cross section was polished, and a line analysis profile of Bi was obtained from the base metal direction to the deposited film surface direction. A line analysis profile is an average value of characteristic X-ray intensity calculated in an arbitrary width in the one-dimensional direction of an analysis area based on mapping analysis data, and can be interpreted as a line analysis having a width. The measurement conditions are as follows.

測定機器:島津製作所製EPMA−1610型
電子銃:CeB6カソード型
ビーム電流:50nA、ビーム電圧:15kV、ビーム径:1μmφ以下
積算回数:1回、1点あたりのサンプリング時間:100ms
分光結晶:PET(Bi Mα)
Measuring instrument: EPMA-1610 electron gun manufactured by Shimadzu Corporation: CeB6 cathode beam current: 50 nA, beam voltage: 15 kV, beam diameter: 1 μmφ or less Integration number: once, sampling time per point: 100 ms
Spectroscopic crystal: PET (Bi Mα)

同時に撮影した反射電子像によって素地金属と皮膜の界面および皮膜表面の位置を特定し、皮膜中のBi強度の積分値:Aおよび皮膜厚の中心から素地金属側のみの積分値:Bを求め、B/Aを算出した。
なお、参考のため代表的なプロファイルとして実施例4で得られた皮膜の分析結果を第2図に示す。
The position of the interface between the base metal and the film and the surface of the film is specified from the backscattered electron image taken at the same time, and the integrated value of Bi intensity in the film: A and the integrated value only on the base metal side from the center of the film thickness: B are obtained. B / A was calculated.
For reference, FIG. 2 shows the analysis result of the film obtained in Example 4 as a representative profile.

耐食性試験方法および評価方法
電着塗装した塗装板にクロスカットを施し、塩水噴霧試験(JIS−Z2371)を実施し、1000時間後のクロスカット部の片側最大膨れ幅を測定した。測定結果を基に、2mm未満:◎、2mm以上3mm未満:○、3mm以上4mm未満:△、4mm以上:×にて評価した。
結果を第1表に示す。
Corrosion Resistance Test Method and Evaluation Method A crosscut was applied to the electrodeposited coated plate, a salt spray test (JIS-Z2371) was performed, and the maximum swell width on one side of the crosscut portion after 1000 hours was measured. Based on the measurement results, the evaluation was made with less than 2 mm: ◎, 2 mm or more and less than 3 mm: ○, 3 mm or more and less than 4 mm: Δ, 4 mm or more: x.
The results are shown in Table 1.

第1表の実施例1〜6より、本発明の組成物を用いて本発明の処理方法を適用することによって、金属材料に対して充分な耐食性を確保し得る本発明の皮膜が得られていることがわかる。   From Examples 1 to 6 in Table 1, by applying the treatment method of the present invention using the composition of the present invention, the film of the present invention capable of ensuring sufficient corrosion resistance to the metal material is obtained. I understand that.

これに対し、比較例1はBiイオンおよびZnイオンを過剰に加えた以外は実施例1と同様の水準であるが、組成物中のトータル金属イオン濃度が過剰となり、Bi付着量過多であったと共に充分な皮膜厚が得られず、耐食性が不充分となった。   On the other hand, Comparative Example 1 was at the same level as Example 1 except that Bi ions and Zn ions were added excessively, but the total metal ion concentration in the composition was excessive, and the amount of Bi attached was excessive. In addition, a sufficient film thickness could not be obtained, and the corrosion resistance was insufficient.

比較例2は実施例4のBiイオン濃度を低減させ、電解条件を変更した水準であるが、Bi付着量が充分得られなかったばかりか素地金属表面へのBi被覆不足(B/Aの不足)により充分な耐食性が得られなかった。   Comparative Example 2 is a level in which the Bi ion concentration of Example 4 was reduced and the electrolysis conditions were changed, but not only a sufficient amount of Bi was obtained, but also Bi coating on the base metal surface was insufficient (B / A deficiency). Thus, sufficient corrosion resistance could not be obtained.

また、Biもアミノポリカルボン酸も加えていない比較例3では、Biの効果が全く得られず、耐食性不足となっている。
更に、実施例6の樹脂濃度を低減させ、添加金属を加えなかった比較例4は、樹脂濃度不足に加え、皮膜析出向上剤である添加金属の効果が得られなかったため、全く皮膜は析出しなかった。
Further, in Comparative Example 3 in which neither Bi nor aminopolycarboxylic acid was added, the effect of Bi was not obtained at all, and the corrosion resistance was insufficient.
Further, in Comparative Example 4 in which the resin concentration in Example 6 was reduced and the additive metal was not added, the effect of the additive metal as a film deposition improver was not obtained in addition to insufficient resin concentration. There wasn't.

このように、本発明の特徴であるBiイオンとアミノポリカルボン酸を配合した樹脂エマルジョン水溶液を用い、適正な電解条件でカソード電解することによって、金属材料に対して充分な耐食性を付与し得る皮膜、すなわち充分かつ有効なBi付着量とBi付着分布を有する樹脂皮膜の析出が可能となることが確認された。

Figure 0005325610
As described above, a coating capable of imparting sufficient corrosion resistance to a metal material by cathodic electrolysis under appropriate electrolysis conditions using a resin emulsion aqueous solution containing Bi ions and aminopolycarboxylic acid, which is a feature of the present invention. That is, it was confirmed that the resin film having a sufficient and effective Bi adhesion amount and Bi adhesion distribution can be deposited.
Figure 0005325610

Claims (4)

ノニオン性および/またはカチオン性の水系樹脂を5〜30重量%、3価のBiイオンを100〜1000ppmおよびBiイオンに対して0.5〜10倍モル濃度のアミノポリカルボン酸を含有することを特徴とする電着塗装用組成物。 5 to 30% by weight of nonionic and / or cationic aqueous resin, 100 to 1000 ppm of trivalent Bi ion, and 0.5 to 10 times molar concentration of aminopolycarboxylic acid with respect to Bi ion A composition for electrodeposition coating . 3価のAlイオンを20〜500ppm含有することを特徴とする、請求項1に記載の電着塗装用組成物。 The composition for electrodeposition coating according to claim 1, comprising 20 to 500 ppm of trivalent Al ions. 表面が清浄化された金属材料を、請求項1または2に記載の組成物中に浸漬させた後、該金属材料を陰極とした電解工程(1)すなわち電圧0〜15Vにて10〜120秒間電解する工程および電解工程(2)すなわち電圧50〜300Vにて30〜300秒間電解する工程の双方を含み、かつ電解工程(1)を電解工程(2)に先立って電解処理し、その後水洗および焼付けを行うことにより、金属材料上に皮膜を析出せしめることを特徴とする金属表面処理方法。   After the surface-cleaned metal material is immersed in the composition according to claim 1 or 2, the electrolysis step (1) using the metal material as a cathode, that is, a voltage of 0 to 15 V for 10 to 120 seconds. Including an electrolysis step and an electrolysis step (2), that is, a step of electrolysis for 30 to 300 seconds at a voltage of 50 to 300 V, and the electrolysis step (1) is electrolyzed prior to the electrolysis step (2), followed by washing with water and A metal surface treatment method characterized by depositing a film on a metal material by baking. 請求項1または2に記載の組成物を用い、請求項3に記載の処理方法によって、金属Biおよび酸化BiがBiとして20〜250mg/m2付着し、全皮膜厚が5〜40μmであり、かつ皮膜厚の中心から金属材料側のBi付着量:Bが、全Bi付着量:Aに対して55%以上(B/A≧55%)となるBi付着分布であることを特徴とする金属表面処理皮膜。   Using the composition according to claim 1 or 2, the treatment method according to claim 3, metal Bi and oxidized Bi are deposited as Bi in an amount of 20 to 250 mg / m 2, the total film thickness is 5 to 40 μm, and Metal surface, characterized in that the Bi adhesion amount on the metal material side from the center of the coating thickness: B is a Bi adhesion distribution that is 55% or more (B / A ≧ 55%) with respect to the total Bi adhesion amount: A Treatment film.
JP2009048474A 2009-03-02 2009-03-02 Metal surface treatment composition, metal surface treatment method using the same, and metal surface treatment film using the same Active JP5325610B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2009048474A JP5325610B2 (en) 2009-03-02 2009-03-02 Metal surface treatment composition, metal surface treatment method using the same, and metal surface treatment film using the same
KR20117022991A KR101317589B1 (en) 2009-03-02 2010-02-17 Composition for treating surface of metal, method for treating surface of metal using the composition, and coating film for treating surface of metal utilizing the composition and the method
CN201080010019.4A CN102341531B (en) 2009-03-02 2010-02-17 Composition for treating surface of metal, method for treating surface of metal using the composition, and coating film for treating surface of metal utilizing the composition and the method
RU2011139960/02A RU2496925C2 (en) 2009-03-02 2010-02-17 Composition for treatment of metal surface, method of surface treatment of metals using it, and film obtained by surface treatment of metals using it
CA2753823A CA2753823C (en) 2009-03-02 2010-02-17 Composition comprising bismuth ions for metal surface treatment, process for metal surface treatment using the same and metal surface treatment film using the same
EP10748442.0A EP2405035A4 (en) 2009-03-02 2010-02-17 Composition for treating surface of metal, method for treating surface of metal using the composition, and coating film for treating surface of metal utilizing the composition and the method
BRPI1011479A BRPI1011479A2 (en) 2009-03-02 2010-02-17 metal surface treatment composition, metal surface treatment process using the same and coating film for metal surface treatment using composition and the method
US13/254,175 US20110311838A1 (en) 2009-03-02 2010-02-17 Composition for treating surface of metal, method for treating surface of metal using the composition, and coating film for treating surface of metal utilizing the composition and the method
PCT/JP2010/000965 WO2010100839A1 (en) 2009-03-02 2010-02-17 Composition for treating surface of metal, method for treating surface of metal using the composition, and coating film for treating surface of metal utilizing the composition and the method
TW099105262A TWI481679B (en) 2009-03-02 2010-02-24 Composition for processing metal surface, method for processing metal surface using the composition, and processing film on metal surface formed by the composition and the method
US14/319,044 US20140311914A1 (en) 2009-03-02 2014-06-30 Composition for treating surface of metal, method for treating surface of metal using the composition, and coating film for treating surface of metal utilizing the composition and the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009048474A JP5325610B2 (en) 2009-03-02 2009-03-02 Metal surface treatment composition, metal surface treatment method using the same, and metal surface treatment film using the same

Publications (2)

Publication Number Publication Date
JP2010202921A JP2010202921A (en) 2010-09-16
JP5325610B2 true JP5325610B2 (en) 2013-10-23

Family

ID=42709411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009048474A Active JP5325610B2 (en) 2009-03-02 2009-03-02 Metal surface treatment composition, metal surface treatment method using the same, and metal surface treatment film using the same

Country Status (10)

Country Link
US (2) US20110311838A1 (en)
EP (1) EP2405035A4 (en)
JP (1) JP5325610B2 (en)
KR (1) KR101317589B1 (en)
CN (1) CN102341531B (en)
BR (1) BRPI1011479A2 (en)
CA (1) CA2753823C (en)
RU (1) RU2496925C2 (en)
TW (1) TWI481679B (en)
WO (1) WO2010100839A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5718753B2 (en) * 2011-07-19 2015-05-13 日本パーカライジング株式会社 Aqueous composition for metal surface treatment, metal surface treatment method using the same, method for producing metal material with film, and metal surface treatment film using these
EP2883981A4 (en) * 2012-08-08 2016-05-11 Nihon Parkerizing Metal surface treatment liquid, surface treatment method for metal bases, and metal base obtained by surface treatment method for metal bases
CN103469277B (en) * 2013-08-15 2016-06-22 嘉兴兴禾汽车零部件有限公司 A kind of anodic oxidation method for sealing of car aluminum or aluminium alloy part
WO2015029681A1 (en) * 2013-08-29 2015-03-05 日本軽金属株式会社 Aluminum-material anodization method
US10407578B2 (en) 2013-11-18 2019-09-10 Basf Coatings Gmbh Aqueous dip-coating composition for electroconductive substrates, comprising both dissolved and undissolved bismuth
CA2926162A1 (en) * 2013-11-18 2015-05-21 Basf Coatings Gmbh Aqueous dip-coating composition for electroconductive substrates, comprising dissolved bismuth
ES2662574T3 (en) 2013-11-18 2018-04-09 Henkel Ag & Co. Kgaa Two-step procedure for coating with immersion lacquer of electrically conductive substrates using a composition containing Bi (III)
CA2927271A1 (en) * 2013-11-19 2015-05-28 Basf Coatings Gmbh Aqueous dip-coating composition for electroconductive substrates, comprising aluminum oxide
KR20160096688A (en) * 2013-12-10 2016-08-16 바스프 코팅스 게엠베하 Aqueous coating composition for dip coating of electrically conductive substrates containing bismuth and a phosphorus-containing amine-blocked compound
JP7297092B2 (en) 2019-04-15 2023-06-23 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング Aqueous composition for dip coating of conductive substrates containing bismuth and lithium
EP4103762A4 (en) * 2020-02-14 2024-03-20 Henkel Ag & Co Kgaa Bismuth compositions for metal pretreatment applications
DE102022113626A1 (en) * 2022-05-31 2023-11-30 Bayerische Motoren Werke Aktiengesellschaft Method for immersion treatment of a component

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3442922A (en) * 1964-04-09 1969-05-06 Dow Chemical Co Iminodiacetate organotin,antimony,bismuth,titanium and germanium chelates
DE1965669B2 (en) * 1969-02-03 1976-04-22 Vianova Kunstharz, Ag, Wien Aqueous coatings
JPH0774317B2 (en) 1991-07-25 1995-08-09 関西ペイント株式会社 Resin composition for electrodeposition paint
JP3274232B2 (en) * 1993-06-01 2002-04-15 ディップソール株式会社 Tin-bismuth alloy plating bath and plating method using the same
DE4339084A1 (en) * 1993-11-16 1995-05-18 Herberts Gmbh Aqueous electrophoretically depositable dip lacquer and coating process using it
US5908912A (en) * 1996-09-06 1999-06-01 Ppg Industries Ohio, Inc. Electrodepositable coating composition containing bismuth and amino acid materials and electrodeposition method
JP3874386B2 (en) 1997-07-29 2007-01-31 関西ペイント株式会社 Cationic electrodeposition coating composition
JP3910695B2 (en) 1997-09-16 2007-04-25 関西ペイント株式会社 Cationic electrodeposition coating composition
JPH1180622A (en) 1997-09-04 1999-03-26 Kansai Paint Co Ltd Cationic electrocoating composition
JP3910698B2 (en) 1997-10-08 2007-04-25 関西ペイント株式会社 Cationic electrodeposition coating composition
WO1999031187A1 (en) 1997-12-12 1999-06-24 Kansai Paint Co., Ltd. Cationic electrodeposition paint composition
JP2000301062A (en) * 1999-04-19 2000-10-31 Kansai Paint Co Ltd Formation of double coating
JP4901039B2 (en) * 2001-09-27 2012-03-21 石原薬品株式会社 Replacement bismuth plating bath
DE10236347A1 (en) * 2002-08-08 2004-02-19 Basf Coatings Ag Electrodip paints, useful for coating electrically conductive materials, in preparation of electrodip coated components and/or in multilayer wet-on-wet painting, contain bismuth compounds and binder
JP4141791B2 (en) 2002-10-17 2008-08-27 日本ペイント株式会社 Gloss value control method for cationic electrodeposition paint and electrodeposition coating film
US7351319B2 (en) * 2003-01-24 2008-04-01 E. I. Du Pont De Nemours & Co. Cathodic electrodeposition coating compositions containing bismuth compounds and dicarboxylic acids, production and use thereof
US7632386B2 (en) * 2003-08-28 2009-12-15 E.I. Du Pont De Nemours And Company Process for producing coatings on electrically conductive substrates by cathodic electrodeposition coating
JP2005194389A (en) * 2004-01-07 2005-07-21 Nippon Paint Co Ltd Lead-free cationic electrodeposition coating composition
JP2008538383A (en) 2005-04-07 2008-10-23 日本ペイント株式会社 Multi-layer coating formation method
JP2007197688A (en) 2005-12-27 2007-08-09 Kansai Paint Co Ltd Electrodeposition paint
US7906002B2 (en) * 2006-08-04 2011-03-15 Kansai Paint Co., Ltd. Method for forming surface-treating film
JP5201916B2 (en) * 2006-09-08 2013-06-05 日本ペイント株式会社 Metal surface treatment method carried out as pretreatment for cationic electrodeposition coating, metal surface treatment composition used therefor, metal material excellent in throwing power of electrodeposition coating, and method for coating metal substrate
DE102007038824A1 (en) * 2007-08-16 2009-02-19 Basf Coatings Ag Use of bismuth subnitrate in electrodeposition paints
US20090169903A1 (en) * 2007-12-27 2009-07-02 Kansai Paint Co., Ltd. Process for producing metal substrate with multilayer film, metal substrate with multilayer film obtained by the process, and coated article
US20110073484A1 (en) * 2008-05-29 2011-03-31 Ryosuke Kawagoshi Metal material with a bismuth film attached and method for producing same, surface treatment liquid used in said method, and cationic electrodeposition coated metal material and method for producing same

Also Published As

Publication number Publication date
EP2405035A4 (en) 2015-05-06
BRPI1011479A2 (en) 2016-03-22
CA2753823C (en) 2013-12-31
KR101317589B1 (en) 2013-10-11
WO2010100839A1 (en) 2010-09-10
RU2496925C2 (en) 2013-10-27
CA2753823A1 (en) 2010-09-10
RU2011139960A (en) 2013-04-10
CN102341531A (en) 2012-02-01
TW201038688A (en) 2010-11-01
KR20110133581A (en) 2011-12-13
US20110311838A1 (en) 2011-12-22
JP2010202921A (en) 2010-09-16
EP2405035A1 (en) 2012-01-11
US20140311914A1 (en) 2014-10-23
CN102341531B (en) 2015-01-07
TWI481679B (en) 2015-04-21

Similar Documents

Publication Publication Date Title
JP5325610B2 (en) Metal surface treatment composition, metal surface treatment method using the same, and metal surface treatment film using the same
JP5462561B2 (en) Metal surface treatment composition, metal surface treatment method using the same, and metal surface treatment film using the same
WO2010001861A1 (en) Chemical conversion liquid for metal structure and surface treating method
WO2009081807A1 (en) Manufacturing method for surface-treated metallic substrate and surface-treated metallic substrate obtained by said manufacturing method, and metallic substrate treatment method and metallic substrate treated by said method
JP2008538383A (en) Multi-layer coating formation method
JP2010090407A (en) Liquid for treating metal surface, and method for treating metal surface
KR100921116B1 (en) Surface-treated metallic material
JP6172976B2 (en) Electrodeposition coating composition
KR20170118845A (en) Galvanized steel plate
JP2009174049A (en) Process for producing metal substrate with multilayer film, metal substrate with multilayer film obtained by the process, and coated article
JP5750013B2 (en) Electrodeposition coating composition and method for forming an electrocoating film on an object to be coated
JP5671210B2 (en) Metal surface treatment method
JP2007186745A (en) Steel sheet for fuel tank
JP5550580B2 (en) Metal surface treatment composition
JP5718753B2 (en) Aqueous composition for metal surface treatment, metal surface treatment method using the same, method for producing metal material with film, and metal surface treatment film using these
TWI568885B (en) Metal surface treating liquid, method for treating surface of metal substrate and metal substrate obtained by the method thereof
JP5249819B2 (en) Electrodeposition coating composition and electrodeposition coating method
JP5518622B2 (en) Metal surface treatment method and metal surface treatment film formed by the method
JP7400766B2 (en) Zinc-based electroplated steel sheet and its manufacturing method
JP4103861B2 (en) Blackened steel sheet and manufacturing method thereof
JP2000226691A (en) Production of surface treated steel sheet and surface treated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R150 Certificate of patent or registration of utility model

Ref document number: 5325610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250