WO2013099749A1 - Electrodeposition coating composition, and dissociation catalyst therefor - Google Patents

Electrodeposition coating composition, and dissociation catalyst therefor Download PDF

Info

Publication number
WO2013099749A1
WO2013099749A1 PCT/JP2012/083028 JP2012083028W WO2013099749A1 WO 2013099749 A1 WO2013099749 A1 WO 2013099749A1 JP 2012083028 W JP2012083028 W JP 2012083028W WO 2013099749 A1 WO2013099749 A1 WO 2013099749A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
parts
electrodeposition coating
coating composition
hydrocarbon group
Prior art date
Application number
PCT/JP2012/083028
Other languages
French (fr)
Japanese (ja)
Inventor
岡田 貴之
Original Assignee
日東化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東化成株式会社 filed Critical 日東化成株式会社
Publication of WO2013099749A1 publication Critical patent/WO2013099749A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/448Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications characterised by the additives used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4419Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained otherwise than by polymerisation reactions only involving carbon-to-carbon unsaturated bonds
    • C09D5/443Polyepoxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/50Phosphorus bound to carbon only

Definitions

  • the present invention includes an organic tin-free electrodeposition coating composition that does not contain an organic tin compound and can ensure good coating curability under the same baking conditions as the present, and is contained in this composition. It relates to a dissociation catalyst.
  • Electrodeposition coating is a primer coating for parts with a bag structure such as automobiles, electrical appliances, etc., because it has better throwing power and less environmental pollution than air spray coating and electrostatic spray coating. As a result, it has been widely put into practical use.
  • cationic electrodeposition coating can be applied continuously, and is therefore widely used as a method for undercoating a large article such as an automobile body that requires high corrosion resistance.
  • Cationic electrodeposition coating generally uses a coating component as a cathode in a cationic electrodeposition coating composition in which a binder component containing a cationic resin and a curing agent is dispersed in an aqueous medium containing a neutralizing agent such as an organic acid. It is performed by immersing and applying a voltage.
  • an electrodeposition coating film is deposited on the surface of the cathode (substrate) due to an electrochemical reaction. Since the electrodeposition coating film thus formed contains a curing agent together with a cationic resin, the coating film is cured by baking the coating film after completion of electrodeposition coating, and a desired cured coating film is formed. Is done.
  • an amine-modified epoxy resin is used from the viewpoint of corrosion resistance, and as a curing agent, a block crosslinking agent in which a reactive site is blocked with a blocking agent (eg, polyisocyanate).
  • a blocking agent eg, polyisocyanate
  • Block polyisocyanates blocked with a blocking agent such as alcohol have been used.
  • a dissociation catalyst of a block cross-linking agent is added, and an organic tin compound has been used as a typical dissociation catalyst.
  • organotin compounds can cause deodorization catalyst poisoning in baking furnaces in painting lines, and future use may be restricted due to recent environmental regulations for organotin compounds. It has been desired to develop a cationic electrodeposition coating composition that uses a dissociation catalyst instead of.
  • Patent Documents 1 to 3 Cationic electrodeposition coating compositions using zinc borate, quaternary ammonium organic acid salts, zinc compounds and the like as alternative dissociation catalysts for the organotin compounds have been proposed (Patent Documents 1 to 3). However, these compounds have insufficient effects as dissociation catalysts, and the curability and anticorrosion properties are not practically satisfactory.
  • a cationic electrodeposition coating composition not containing an organic tin compound a cationic electrodeposition coating composition containing a water-soluble or water-dispersible phosphonium group-containing compound obtained by reacting a phosphonium group-containing compound with an epoxy compound is provided. It has been proposed (Patent Document 4). However, this technique is intended to improve the anticorrosion property, and the effect as a dissociation catalyst is not satisfactory, and it is necessary to add an organic tin compound such as dibutyltin oxide as a dissociation catalyst.
  • JP 7-331130 A Japanese Patent Laid-Open No. 11-152432 JP 2000-336287 A JP 2002-265878 A
  • the present invention has been made in view of the above circumstances, and does not contain an organic tin compound, and an organic tin-free cationic electrodeposition coating composition that can ensure good coating curability under the same baking conditions as the current one.
  • the purpose is to provide goods.
  • R 1 to R 4 are the same or different and each has 1 to 8 carbon atoms substituted with a hydrocarbon group having 1 to 8 carbon atoms, an aromatic hydrocarbon group, or a functional group other than a hydroxyl group.
  • a hydrocarbon group or an aromatic hydrocarbon group is represented.
  • X represents an organic acid group, a hydroxyl group, an aliphatic sulfonic acid group, an aromatic sulfonic acid group, or a halide.
  • An electrodeposition coating composition containing a quaternary phosphonium salt A represented by formula (II) and a base resin B is provided.
  • the present inventors evaluated the performance of many substances as a dissociation catalyst of a block cross-linking agent (block polyisocyanate, etc.). As a result, an electric charge containing a quaternary phosphonium salt having a specific structure was obtained. The present inventors have found that the coating composition has very excellent characteristics and have completed the present invention.
  • the quaternary phosphonium salt is similar to the quaternary ammonium salt in terms of electronic structure, but the performance of the quaternary phosphonium salt as a dissociation catalyst is nonetheless It was a surprising result that far exceeded.
  • R 1 to R 4 in the general formula (1) was not large, and the evaluation result did not change greatly between 1 and 8 carbon atoms.
  • R 1 to R 4 were a phenyl group
  • the evaluation results were slightly inferior to those when R 1 to R 4 were an alkyl group, but sufficient results for practical use were obtained.
  • R 1 ⁇ R 4 was evaluated for the case where R 1 ⁇ R 4 are different from each other, R 1 ⁇ because if R 4 are all identical and similar results were obtained, it was found that it is not necessary R 1 ⁇ R 4 are not all identical.
  • Patent Document 4 a quaternary phosphonium salt having an alkyl group substituted with a hydroxyl group is used as an anticorrosive agent.
  • the catalytic performance of this substance was evaluated, good results were not obtained.
  • the catalytic performance of the quaternary phosphonium salt having an alkyl group substituted with an alkoxy group was evaluated, the same result as that of the quaternary phosphonium salt having an unsubstituted alkyl group was obtained. From these results, it was concluded that if the substituents of R 1 to R 4 were other than a hydroxyl group, the influence on the evaluation results was not significant.
  • a cationic electrodeposition coating composition excellent in curability, corrosion resistance, and finish properties equivalent to or higher than that in the case where it is blended without using an organic tin compound.
  • Electrodeposition paint composition comprises: General formula (1): [Wherein R 1 to R 4 are the same or different and each has 1 to 8 carbon atoms substituted with a hydrocarbon group having 1 to 8 carbon atoms, an aromatic hydrocarbon group, or a functional group other than a hydroxyl group. A hydrocarbon group or an aromatic hydrocarbon group is represented. X represents an organic acid group, a hydroxyl group, an aliphatic sulfonic acid group, an aromatic sulfonic acid group, or a halide. A quaternary phosphonium salt A and a base resin B.
  • R 1 to R 4 are the same or different and each is substituted with a functional group other than a hydrocarbon group having 1 to 8 carbon atoms, an aromatic hydrocarbon group, or a hydroxyl group. Represents 8 to 8 hydrocarbon groups or aromatic hydrocarbon groups.
  • hydrocarbon group having 1 to 8 carbon atoms examples include saturated carbonization such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, and octyl group.
  • unsaturated hydrocarbon groups such as a hydrogen group, a vinyl group, an allyl group, a prenyl group, a crotyl group, and a cyclopentadienyl group.
  • aromatic hydrocarbon group examples include a phenyl group, a tolyl group, and a benzyl group.
  • hydrocarbon group having 1 to 8 carbon atoms or aromatic hydrocarbon group substituted with a functional group other than a hydroxyl group examples include an alkoxyalkyl group such as a methoxymethyl group, a methoxyethyl group, an ethoxymethyl group, and an ethoxyethyl group. Can be mentioned. Of these, a hydrocarbon group having 1 to 8 carbon atoms is preferable, and an ethyl group and a butyl group are particularly preferable.
  • X represents an organic acid group, a hydroxyl group, an aliphatic sulfonic acid group, an aromatic sulfonic acid group, or a halide.
  • organic acid of the organic acid group include aliphatic carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, 2-ethylbutyric acid, 2-ethylhexanoic acid, succinic acid, maleic acid, glycolic acid, and glyceric acid Aliphatic hydroxycarboxylic acids such as lactic acid, dimethylolpropionic acid, dimethylolbutyric acid, dimethylolvaleric acid, tartaric acid, malic acid, hydroxymalonic acid, dihydroxysuccinic acid, trihydroxysuccinic acid, hydroxymethylmalonic acid, Aromatic carboxylic acids such as benzoic acid, and amino acids such as glycine and N-acetylglycine.
  • organic acids formic acid, acetic acid, lactic acid, dimethylolpropionic acid and dimethylolbutyric acid are preferred, and formic acid and acetic acid are particularly preferred.
  • aliphatic sulfonic acid group include methanesulfonic acid, dodecylbenzenesulfonic acid, alkyl (C14-18) sulfonic acid, olefin (C14-16) sulfonic acid, and the like.
  • aromatic sulfonic acid group include benzenesulfonic acid, paratoluenesulfonic acid, dodecylbenzenesulfonic acid, and the like.
  • the halide include iodide, bromide, chloride, and fluoride. You may use these individually or in combination of 2 or more types.
  • the quaternary phosphonium salt A of the present invention can be produced by a known method.
  • a quaternary phosphonium organic acid salt or a quaternary phosphonium aliphatic or aromatic sulfonate can be converted into a quaternary phosphonium halide by a nucleophilic reaction between a tertiary phosphine compound such as tributylphosphine and triphenylphosphine and an alkyl halide.
  • a tertiary phosphine compound such as tributylphosphine and triphenylphosphine and an alkyl halide.
  • it can be produced by salt exchange with a desired organic acid anion or an aliphatic or aromatic sulfonate anion.
  • quaternary phosphonium halide can also be produced by subjecting a commercially available quaternary phosphonium halide to a desired organic acid anion or an aliphatic or aromatic sulfonate anion. Furthermore, it can be produced by neutralizing a commercially available quaternary phosphonium hydroxide with a desired organic acid or an aliphatic or aromatic sulfonic acid.
  • the quaternary phosphonium hydroxide is obtained by obtaining a quaternary phosphonium halide by a nucleophilic reaction between a tertiary phosphine compound such as tributylphosphine or triphenylphosphine and an alkyl halide. It is obtained by passing through a packed column and replacing the halide with hydroxide.
  • the content of the quaternary phosphonium salt A in the electrodeposition coating composition of the present invention is not particularly limited, but usually, for example, 0.05 to 30 mass with respect to 100 parts by mass of the base resin B in the electrodeposition coating composition. Part, preferably 0.1 to 10 parts by weight. Even if the addition amount is out of the range of 0.1 to 10 parts by mass, no major problem is caused in the paint performance, but if it is within the range of 0.1 to 10 parts by mass, curability, anticorrosion, A practical balance such as stability of the electrodeposition paint is particularly improved.
  • the content of the quaternary phosphonium salt A is preferably 1 part by mass or more, more preferably 4 parts by mass or more, and further preferably 7 parts by mass or more with respect to 100 parts by mass of the base resin B. In this case, it is because curability and adhesiveness become especially high.
  • the content of the quaternary phosphonium salt A is, for example, 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 with respect to 100 parts by mass of the base resin B. 10, 15, 20, 25, 30 parts by mass, and may be within a range between any two of the numerical values exemplified here.
  • the electrodeposition coating composition in the present invention contains a curing agent C, a metal compound D, a neutralizing agent E, and other additives as necessary. can do.
  • Base resin B any resin such as an epoxy resin, an acrylic resin, a polybutadiene resin, an alkyd resin, and a polyester resin can be used, and among them, a polyamine resin such as an amine-added epoxy resin is preferable.
  • Examples of the amine-added epoxy resin include (i) an adduct of a polyepoxy compound and a primary monoamine or polyamine, a secondary monoamine or polyamine, or a 1,2 mixed polyamine (for example, US Pat. No. 3,984,843). (Ii) an adduct of a polyepoxide compound and a secondary monoamine or polyamine having a ketiminated primary amino group (see, for example, US Pat. No. 4,017,438); iii) A reaction product obtained by etherification of a polyepoxide compound and a hydroxy compound having a primary amino group that has been ketiminated (see, for example, JP-A-59-43013).
  • the polyepoxide compound used in the production of the amine-added epoxy resin is a compound having two or more epoxy groups in one molecule, and generally has a value of at least 200, preferably 400 to 4000, more preferably 800 to 2000. Those having a number average molecular weight are suitable, and those obtained by reaction of a polyphenol compound and epichlorohydrin are particularly preferred.
  • Examples of the polyphenol compound that can be used for forming the polyepoxide compound include bis (4-hydroxyphenyl) -2,2-propane, 4,4-dihydroxybenzophenone, bis (4-hydroxyphenyl) -1,1- Ethane, bis (4-hydroxyphenyl) -1,1-isobutane, bis (4-hydroxy-tert-butyl-phenyl) -2,2-propane, bis (2-hydroxynaphthyl) methane, tetra (4-hydroxyphenyl) ) -1,1,2,2-ethane, 4,4-dihydroxydiphenylsulfone, phenol novolak, cresol novolak, and the like.
  • the polyepoxide compound may be partially reacted with polyol, polyether polyol, polyester polyol, polyamine amide, polycarboxylic acid, polyisocyanate compound, or the like.
  • the polyepoxide compound may further be obtained by graft polymerization of ⁇ -caprolactone, an acrylic monomer, or the like.
  • the base resin B may be of any type of an external crosslinking type and an internal (or self) crosslinking type.
  • the base resin B may contain a block cross-linked portion (eg, a block polyisocyanate group) in which a cross-linked portion (eg: isocyanate group) is blocked with a blocking agent, and a block cross-linking agent (eg: block poly) having a block cross-linked portion.
  • the electrodeposition coating composition may contain a curing agent C comprising an isocyanate compound.
  • the cross-linking reaction requires a cross-linked part and an active hydrogen-containing part (for example, an amino group) that reacts with the cross-linking part.
  • the internal cross-linking type include those in which a block polyisocyanate group or the like is introduced into the molecule of the base resin B.
  • a method for introducing the blocked polyisocyanate group into the base resin B a known method can be used. For example, a reaction between a free isocyanate group in the partially blocked polyisocyanate compound and an active hydrogen-containing part in the base resin. Can be introduced.
  • the curing agent C used in combination is a block cross-linking agent having a block cross-linking portion (eg, a block polyisocyanate compound) or a compound having an active hydrogen-containing portion (eg: Amino resin). More specifically, when the base resin B contains an active hydrogen-containing part, it is preferable to use a block cross-linking agent, and when the base resin B contains a block cross-linking part, active hydrogen is used. It is preferable to use a compound having an inclusion part.
  • the block polyisocyanate compound can be obtained by addition reaction of a theoretical amount of a polyisocyanate compound and an isocyanate blocking agent.
  • polyisocyanate compound examples include aromatic or aliphatic polyisocyanates such as tolylene diisocyanate, xylylene diisocyanate, phenylene diisocyanate, bis (isocyanate methyl) cyclohexane, tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, and isophorone diisocyanate.
  • the terminal isocyanate containing compound obtained by making low molecular weight active hydrogen containing compounds, such as ethylene glycol, propylene glycol, a trimethylol propane, hexane triol, castor oil, react with the compound and the excess of these isocyanate compounds can be mentioned.
  • aromatic or aliphatic polyisocyanates such as tolylene diisocyanate, xylylene diisocyanate, phenylene diisocyanate, bis (isocyanate methyl) cyclohexane, tetram
  • the isocyanate blocking agent it is blocked by adding to the isocyanate group of the polyisocyanate compound, and the blocked polyisocyanate compound produced by the addition is stable at room temperature and when heated to about 100 to 200 ° C., It is desirable to be able to dissociate and regenerate free isocyanate groups.
  • the blocking agent examples include halogenated hydrocarbons such as 1-chloro-2-propanol and ethylene chlorohydrin, heterocyclic alcohols such as furfuryl alcohol and alkyl group-substituted furfuryl alcohol, phenol, m-cresol, phenols such as p-nitrophenol, p-chlorophenol and nonylphenol, oximes such as methyl ethyl ketoxime, methyl isobutyl ketone oxime, acetone oxime and cyclohexanone oxime, active methylene compounds such as acetylacetone, ethyl acetoacetate and diethyl malonate, ⁇ -caprolactam, aliphatic alcohols such as methanol, ethanol, n-propanol and isopropanol, aromatic alcohols such as benzyl alcohol, ethylene glycol monomethyl ether , It may be mentioned ethylene glycol monoethyl ether, ethylene glycol
  • the solid content weight ratio of the base resin B / curing agent C is preferably 1 to 9, and more preferably 1.5 to 4.
  • Metal compound D examples include compounds such as potassium, titanium, iron, copper, zinc, and bismuth, and compounds containing an organic group such as organic acid metal salts or metal alkoxides are preferable.
  • Examples of the potassium compound include potassium formate, potassium acetate, potassium propionate, potassium 2-ethylbutyrate, potassium 2-ethylhexanoate, potassium lactate, potassium dimethylolpropionate, and potassium benzoate.
  • Examples of the titanium compound include tetraisopropoxy titanium, tetrabutoxy titanium, diisopropoxy titanium bis (2-ethyl hexanate), isopropoxy titanium tris (2-ethyl hexanate), and the like.
  • Examples of the iron compound include basic iron acetate (III) and iron (III) 2-ethylhexanoate.
  • Examples of the copper compound include copper formate, copper acetate, copper propionate, copper 2-ethylbutyrate, copper 2-ethylhexanoate, copper lactate, copper dimethylolpropionate, and copper benzoate.
  • Examples of zinc compounds include zinc formate, zinc acetate, zinc propionate, zinc 2-ethylbutyrate, zinc 2-ethylhexanoate, zinc lactate, zinc dimethylolpropionate, zinc benzoate, and zinc acetylacetonate. It is done.
  • Examples of the bismuth compound include bismuth acetate and bismuth 2-ethylhexanoate.
  • zinc compounds are particularly preferable because of their curability and the availability of raw materials. You may use these individually or in combination of 2 or more types.
  • the content of the metal compound D in the electrodeposition coating composition of the present invention is not particularly limited, but is usually 0.5 to 2 mol, preferably 0.5 to 1. mol, based on 1 mol of the quaternary phosphonium salt A. 5 moles. When it exists in the said range, the effect of the adhesiveness and sclerosis
  • the electrodeposition coating composition of the present invention may further include a neutralizing agent E for dispersing the above components in water.
  • the neutralizing agent E include aliphatic carboxylic acids such as acetic acid, formic acid, propionic acid, and lactic acid.
  • the amount of the neutralizing agent E varies depending on the amount of amino groups in the base resin B, and may be any amount that can be dispersed in water.
  • the pH of the electrodeposition paint is in the range of 3.0 to 9.0. What is necessary is just to keep.
  • the number of equivalents of the neutralizing agent E necessary for neutralizing the amino group contained in the base resin B is 0.25 to 1.5, preferably 0.5 to 1.25. When it is in the above range, the effect of improving the finish, throwing power, low temperature curability and the like of the composition can be obtained.
  • conventional pigment pigments, extender pigments, organic solvents, pigment dispersants, coating surface modifiers, surfactants, antioxidants, ultraviolet absorbers, etc. Paint additives can be blended.
  • the electrodeposition paint composition of the present invention can be prepared, for example, by mixing the above components. First, the base resin B and the curing agent C are mixed, and the neutralizing agent E is added. After adding the quaternary phosphonium salt A to this, the quaternary phosphonium salt A may be dispersed in an aqueous medium which is water alone or a mixture of water and a hydrophilic organic solvent. May be added. If necessary, the electrodeposition coating composition of the present invention can be obtained by mixing the pigment dispersion paste.
  • the above pigment dispersion paste is mixed with a predetermined amount of a pigment dispersant and a pigment, and then a normal dispersion apparatus such as a ball mill or a sand grind mill is used until the particle size of the pigment in the mixture becomes a predetermined uniform particle size. It can be obtained by dispersing.
  • the paint additive can be added to the system at any stage.
  • Electroposition coating composition of the present invention can be applied to the surface of a desired substrate by electrodeposition coating.
  • electrodeposition coating is diluted with deionized water or the like so that the solid content concentration is about 5 to 40% by weight, and the pH is adjusted within the range of 3.0 to 9.0.
  • An electrodeposition bath composed of a coating composition can be usually adjusted to a bath temperature of 15 to 45 ° C. and under a load voltage of 100 to 400V.
  • the film thickness of the electrodeposition coating film that can be formed using the electrodeposition coating composition of the present invention is not particularly limited, but is generally 5 to 40 ⁇ m, particularly 10 to 10 ⁇ m based on the cured coating film. Within the range of 30 ⁇ m is preferable.
  • the baking temperature of the coating film is generally in the range of 100 to 200 ° C., preferably 140 to 180 ° C. on the surface of the object to be coated, and the baking time is 5 to 60 minutes, preferably about 10 to 30 minutes. It is preferable that the surface of the object to be coated is held.
  • Parts and % indicate “parts by mass” and “% by mass”.
  • Production Example 1 (Production of base resin B) 1900 parts of “jER1001” (Japan Epoxy Resin, bisphenol A type epoxy resin having an epoxy equivalent of about 950) is dissolved in 1012 parts of butyl cellosolve, 124 parts of diethylamine is added dropwise at 80 to 100 ° C., and then kept at 120 ° C. for 2 hours. Thus, an epoxy resin-amine adduct having an amine value of 47 was obtained.
  • “jER1001” Japanese Epoxy Resin, bisphenol A type epoxy resin having an epoxy equivalent of about 950
  • dimer acid type polyamide resin having an amine value of 100 (trade name “Versamide 460”, product of Henkel Hakusui Co., Ltd.) is dissolved in 429 parts of methyl isobutyl ketone and heated to 130 to 150 ° C. under reflux. The water produced was distilled off to change the terminal amino group of the amide resin to ketimine. This was held at 150 ° C. for about 3 hours, and cooled to 60 ° C. after the distillation of water stopped. Next, this product was added to the epoxy resin-amine adduct, heated to 100 ° C., held for 1 hour, and then cooled to room temperature. Then, 4433 parts of varnish B-1 of epoxy resin-amino-polyamide addition resin having an amine value of 65 ( Solid content: 70%) was obtained.
  • Production Example 2 (Production of curing agent C) After flowing nitrogen and sufficiently removing the water in the reaction vessel, 675 parts of 2,4- / 2,6-tolylene diisocyanate and 769 parts of MIBK were charged and mixed. In a nitrogen atmosphere, 1119 parts of 2-ethylhexanol was added dropwise at 70 to 90 ° C., and then maintained at 90 ° C. until the free isocyanate became 0.5% or less of the charged isocyanate, and then allowed to cool to room temperature to block 2563 parts of polyisocyanate C-1 (solid content: 70%) were obtained.
  • Production Example 8 (Production of bis (tetrabutylphosphonium) tartrate)
  • a 40% strength tetrabutylphosphonium hydroxide aqueous solution (Tokyo Chemical Industry Co., Ltd. reagent, 0.3 mol as tetrabutylphosphonium hydroxide), and 11 parts (0.15 mol) of L-tartaric acid
  • 100 parts of ionic water was charged and heated to 70-80 ° C. After reacting by stirring for 1 hour, water was concentrated to obtain 97 parts of bis (tetrabutylphosphonium) tartrate as a yellow transparent liquid.
  • Production Example 9 (Production of bis (tetrabutylphosphonium) malate)
  • a 40% strength tetrabutylphosphonium hydroxide aqueous solution (Tokyo Chemical Industry Co., Ltd. reagent, 0.3 moles as tetrabutylphosphonium hydroxide), and 8.5 parts (0.15 moles) of maleic acid
  • 100 parts of deionized water was charged and heated to 70-80 ° C. After stirring and reacting for 1 hour, water was concentrated to obtain 92 parts of bis (tetrabutylphosphonium) malate as a yellow transparent liquid.
  • Production Example 12 (Production of tetrabutylphosphonium hydroxide aqueous solution) Dissolve 20 parts of tetrabutylphosphonium bromide in 250 ml of ion-exchanged water, and pass through a column packed with 300 ml of strongly basic ion-exchange resin (IRA402BL-CL; pre-treated with 10% NaOH from Organo). 40 ml of ion-exchanged water was passed through to obtain 300 parts of a 5% strength aqueous solution of tetrabutylphosphonium hydroxide (0.05 mol as tetrabutylphosphonium hydroxide). The resulting aqueous solution was concentrated to make a 40% aqueous solution.
  • IRA402BL-CL strongly basic ion-exchange resin
  • Production Example 13 (Production of tetraethylphosphonium hydroxide aqueous solution) Dissolve 20 parts of tetraethylphosphonium bromide in 250 ml of ion-exchanged water, and pass through a column packed with 300 ml of strongly basic ion exchange resin (IRA402BL-CL; manufactured by Organo Co., Ltd., previously treated with 10% NaOH). 40 ml of exchange water was passed through to obtain 300 parts of a 5% concentration aqueous tetraethylphosphonium hydroxide solution (0.08 mol as tetraethylphosphonium hydroxide). The resulting aqueous solution was concentrated to make a 40% aqueous solution.
  • IRA402BL-CL strongly basic ion exchange resin
  • Production Example 14 (Production of tetraethylphosphonium acetate) To 300 parts (0.08 mol as tetraethylphosphonium hydroxide) of the tetraethylphosphonium hydroxide aqueous solution obtained in Production Example 12, 4.8 parts (0.08 mol) of acetic acid was charged and heated to 70 to 80 ° C. After reacting by stirring for 1 hour, water was concentrated to obtain 16.5 parts of tetraethylphosphonium acetate as a yellow transparent liquid.
  • Production Example 15 (Production of tetraphenylphosphonium acetate) Dissolve 20 parts of tetraphenylphosphonium bromide in 250 parts of methanol, and pass through a column packed with 300 ml of strongly basic ion exchange resin (IRA402BL-CL; manufactured by Organo Co., Ltd., previously treated with 10% NaOH), followed by methanol. 40 parts of water was passed through to obtain 300 parts of a 5% strength tetraphenylphosphonium hydroxide methanol solution (0.05 mol as tetraphenylphosphonium hydroxide).
  • IRA402BL-CL strongly basic ion exchange resin
  • tetraoctylphosphonium chloride aqueous solution Forty parts of tetraoctylphosphonium chloride aqueous solution was passed through a column packed with 300 ml of strongly basic ion exchange resin (IRA402BL-CL; made by Organo in advance 10% NaOH treatment), followed by 260 parts of purified water. As a result, 300 parts of a 6% concentration tetraoctylphosphonium hydroxide aqueous solution (0.04 mol as tetraoctylphosphonium hydroxide) was obtained. To 300 parts of the obtained tetraoctylphosphonium hydroxide aqueous solution, 2.4 parts (0.04 mol) of acetic acid was charged and heated to 70 to 80 ° C. After stirring and reacting for 1 hour, water was concentrated to obtain 19.8 parts of tetraoctylphosphonium acetate as a pale yellow liquid.
  • IRA402BL-CL strongly basic
  • tributyl (methoxyethyl) phosphonium chloride 40 parts of an aqueous solution of tributyl (methoxyethyl) phosphonium chloride was passed through a column packed with 300 ml of strongly basic ion exchange resin (IRA402BL-CL; manufactured by Organo, previously treated with 10% NaOH), followed by 260 parts of purified water. Water was passed through to obtain 300 parts of a 6% concentration tributyl (methoxyethyl) phosphonium hydroxide aqueous solution (0.07 mol as tributyl (methoxyethyl) phosphonium hydroxide).
  • IRA402BL-CL strongly basic ion exchange resin
  • tributyl (methoxyethyl) phosphonium hydroxide aqueous solution 4.2 parts (0.07 mol) of acetic acid was charged and heated to 70 to 80 ° C. After stirring and reacting for 1 hour, water was concentrated to obtain 20 parts of tributyl (methoxyethyl) phosphonium acetate as a pale yellow liquid.
  • Production Example 19 (Production of zinc 2-ethylbutyrate) A flask equipped with a Dean-Stark dewatering tube was charged with 39.2 parts (0.34 mol) of 2-ethylbutyric acid and 50 parts of n-heptane, and then 13.8 parts (0.17 mol) of zinc oxide were added. The mixture was heated to the reflux temperature of n-heptane, and the resulting water was refluxed and dehydrated for 1 hour. After reaction, n-heptane was concentrated to obtain 50 parts of zinc 2-ethylbutyrate as a milky white solid.
  • Production Example 20 (Production of zinc dimethylolpropionate) A flask was charged with 40 parts (0.3 mol) of dimethylolpropionic acid and 50 parts of water, and then 12 parts (0.15 mol) of zinc oxide were added and heated to 80 to 90 ° C. After stirring for 1 hour and reacting, the water was concentrated to obtain 50 parts of zinc dimethylolpropionate as a milky white solid.
  • Production Example 21 (Production of Isopropyl Titanium Tris (2-ethylhexanate)) A flask was charged with 25.5 parts (0.09 mol) of tetraisopropoxytitanium and 39 parts (0.27 mol) of 2-ethylhexanoic acid and heated to 80 to 90 ° C. The resulting isopropanol was distilled off under reduced pressure to obtain 50 parts of isopropyl titanium tris (2-ethylhexanate) as a yellow transparent liquid.
  • Examples 1-32 and Comparative Examples 1-4 production of electrodeposition coating composition
  • the components shown in Tables 1 to 3 were blended in the proportions (parts by mass) shown in Tables 1 to 3, and mixed and dispersed to produce an electrodeposition coating composition.
  • Tetrabutylphosphonium bromide General reagent Zinc acetate: Special grade reagent Product name “Neostan U-600”: Bismuth 2-ethylhexanoate Basic iron acetate (III): Special grade copper acetate: Special grade reagent Potassium acetate: Special grade reagent
  • Test example 1 (curability confirmation test)
  • the electrodeposition coating compositions obtained in Examples 1 to 32 and Comparative Examples 1 to 4 were subjected to chemical conversion treatment with Palbond # 3020 (trade name, manufactured by Nihon Parkerizing Co., Ltd., zinc phosphate treatment agent).
  • Palbond # 3020 trade name, manufactured by Nihon Parkerizing Co., Ltd., zinc phosphate treatment agent
  • a 70 mm cold-rolled dull steel plate was immersed, and this was used as a cathode for electrodeposition coating.
  • the electrodeposition conditions were a voltage of 250 V and an electrodeposition coating film having a film thickness (based on the dry film thickness) of about 20 ⁇ m was formed.
  • the coating film was washed with water and then baked.
  • the baking was performed using an electric hot air dryer at baking temperatures of 150 ° C./20 minutes, 160 ° C./20 minutes, and 170 ° C./20 minutes.
  • Each obtained electrodeposition coating plate was immersed in acetone at 40 ° C. for 24 hours, and the coating film weight residual ratio before and after the evaluation was evaluated according to the following criteria, thereby confirming the curability of the coating film.
  • the results are shown in Tables 1 to 3.
  • B 85% or more to less than 95%
  • C 75% or more to less than 85%
  • D less than 75%
  • Test Example 2 Anti-corrosion test
  • Each electrodeposition coated plate obtained by baking was subjected to a salt cut resistance test for 840 hours in accordance with JISZ-2371 so that the electrodeposition coating film was covered with a knife so as to reach the substrate.
  • the rust and blister width were evaluated according to the following criteria. The results are shown in Tables 1 to 3.
  • B The maximum width of rust and blisters is 2 mm or more and less than 3 mm (one side) from the cut part, and blisters are considerably conspicuous on the flat part.
  • C The maximum width of rust and blisters is 3 mm or more from the cut part and over the entire coated surface. Generation of blisters
  • Test Example 3 Each electrodeposition coating plate obtained by baking is subjected to cross cutting of 100 pieces of 2 mm mass with a cutter specified in 7.2 (e) of JIS K5400, and a cellophane adhesive tape specified in JIS Z1522 is adhered, It peeled at a stretch so that a tape and a coating surface hold
  • Test Example 4 The state of the electrodeposition paint stored for one month under the following storage conditions was visually confirmed. The results are shown in Tables 1 to 3. Storage temperature: 15 to 35 ° C., Storage humidity: 30 to 70%, Storage container: Tin can ⁇ : No abnormal state such as separation is observed even after one month has elapsed over time: X: Separation after one month has elapsed over time, etc. An abnormal condition is seen
  • Example 2 and 4 in which the content of the dissociation catalyst A was 0.1 or 0.5 parts by mass, the curability and adhesion were slightly inferior.
  • Example 3 in which the content is 4 parts by mass or more, curability and adhesion are excellent, and in Example 3 in which the content of the dissociation catalyst A is 10.3 parts by mass, all evaluations The highest evaluation results were obtained for the items. From this result, it was found that the content of the dissociation catalyst A is preferably 1 part by mass or more with respect to 100 parts by mass of the base resin B, and is saturated at 10 parts by mass.
  • Comparative Example 3 it was found that the catalyst performance of the quaternary ammonium salt was much lower than that of the quaternary phosphonium salt. Further, referring to Comparative Example 4, it was found that the catalytic performance of the quaternary phosphonium salt having an alkyl group substituted with a hydroxyl group is much lower than that of the quaternary phosphonium salt having an unsubstituted alkyl group.
  • Example 22 to 32 the combined use of a quaternary ammonium salt and a metal compound improves the curability and adhesion particularly at low temperature baking, and among the metal compounds, a zinc compound is particularly preferable. I understood. Further, referring to Examples 22 to 25, it was found that in Example 25 in which the molar ratio of the metal compound / quaternary ammonium salt was 11, the ratio of the metal compound was too large and the catalyst performance was slightly lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paints Or Removers (AREA)

Abstract

Provided is an organotin-free cationic electrodeposition coating composition which is capable of ensuring excellent coating film curability under baking conditions identical to those used in common practice, without including an organotin compound. According to the present invention, provided is an electrodeposition coating composition including (A) a quaternary phosphonium salt represented by formula (1), and (B) a base resin (in formula (1): R1-R4 are the same as or different to one another, each of which representing a C1-8 hydrocarbon group, an aromatic hydrocarbon group, or a C1-8 hydrocarbon group or an aromatic hydrocarbon group substituted by a functional group other than a hydroxyl group; and X represents an organic acid group, a hydroxyl group, an aliphatic sulfonic acid group, an aromatic sulfonic acid group, or a halide).

Description

電着塗料組成物、電着塗料組成物用解離触媒Electrodeposition coating composition, dissociation catalyst for electrodeposition coating composition
 本発明は、有機錫化合物を含まず、現行と同等の焼き付け条件にて良好な塗膜の硬化性を確保することができる有機錫フリーの電着塗料組成物、及びこの組成物に含有される解離触媒に関する。 The present invention includes an organic tin-free electrodeposition coating composition that does not contain an organic tin compound and can ensure good coating curability under the same baking conditions as the present, and is contained in this composition. It relates to a dissociation catalyst.
 金属材料を腐蝕から保護しその美感を使用期間中維持するため、その表面には一般に塗装が施される。電着塗装は、自動車、電気器具等、袋部構造を有する部材に対し、エアースプレー塗装や静電スプレー塗装と比較して、付き回り性に優れ、また環境汚染性も少ないことから、プライマー塗装として広く実用化されるに至っている。特にカチオン電着塗装は、連続的に塗装することができるので、自動車車体等の大型で、高い耐食性が要求される被塗物の下塗り塗装方法として汎用されている。 In order to protect the metal material from corrosion and maintain its aesthetics during use, the surface is generally painted. Electrodeposition coating is a primer coating for parts with a bag structure such as automobiles, electrical appliances, etc., because it has better throwing power and less environmental pollution than air spray coating and electrostatic spray coating. As a result, it has been widely put into practical use. In particular, cationic electrodeposition coating can be applied continuously, and is therefore widely used as a method for undercoating a large article such as an automobile body that requires high corrosion resistance.
 カチオン電着塗装は、一般にカチオン性樹脂および硬化剤を含むバインダー成分を、有機酸等の中和剤を含む水性媒体中に分散させてなるカチオン電着塗料組成物中に被塗物を陰極として浸漬させ、電圧を印加することにより行われる。 Cationic electrodeposition coating generally uses a coating component as a cathode in a cationic electrodeposition coating composition in which a binder component containing a cationic resin and a curing agent is dispersed in an aqueous medium containing a neutralizing agent such as an organic acid. It is performed by immersing and applying a voltage.
 塗装の過程において電極間に電圧を印加すると、電気化学的な反応により陰極(被塗物)表面で電着塗膜が析出する。このように形成された電着塗膜にはカチオン性樹脂とともに硬化剤が含まれるので、電着塗装終了後、当該塗膜を焼き付けることによって、塗膜が硬化し、所望の硬化塗膜が形成される。 When a voltage is applied between the electrodes during the coating process, an electrodeposition coating film is deposited on the surface of the cathode (substrate) due to an electrochemical reaction. Since the electrodeposition coating film thus formed contains a curing agent together with a cationic resin, the coating film is cured by baking the coating film after completion of electrodeposition coating, and a desired cured coating film is formed. Is done.
 カチオン電着塗料組成物に使用されるカチオン性樹脂としては、耐食性の観点から、アミン変性エポキシ樹脂が使用され、硬化剤として、反応部位がブロック剤でブロックされたブロック架橋剤(例:ポリイソシアネートをアルコール等のブロック剤でブロックしたブロックポリイソシアネート)が使用されてきた。 As the cationic resin used in the cationic electrodeposition coating composition, an amine-modified epoxy resin is used from the viewpoint of corrosion resistance, and as a curing agent, a block crosslinking agent in which a reactive site is blocked with a blocking agent (eg, polyisocyanate). Block polyisocyanates blocked with a blocking agent such as alcohol have been used.
 さらに塗膜の諸性能の目安である硬化性を向上させるためにブロック架橋剤の解離触媒を添加することが行われ、代表的な解離触媒として、有機錫化合物が使用されてきた。 Further, in order to improve the curability, which is a measure of various performances of the coating film, a dissociation catalyst of a block cross-linking agent is added, and an organic tin compound has been used as a typical dissociation catalyst.
 しかし、有機錫化合物は、塗装ラインの焼き付け炉の脱臭触媒被毒の原因となり得、また、昨今の有機錫化合物に対する環境規制動向から今後の使用が制限される可能性もあるため、有機錫化合物に代わる解離触媒を使用するカチオン性電着塗料組成物の開発が望まれてきた。 However, organotin compounds can cause deodorization catalyst poisoning in baking furnaces in painting lines, and future use may be restricted due to recent environmental regulations for organotin compounds. It has been desired to develop a cationic electrodeposition coating composition that uses a dissociation catalyst instead of.
 前記有機錫化合物の代替解離触媒として、ほう酸亜鉛、4級アンモニウム有機酸塩、亜鉛化合物などを用いたカチオン性電着塗料組成物が提案されている(特許文献1~3)。
しかし、これらの化合物では、解離触媒としての効果が不十分であり、硬化性、防食性は実用的に満足できるものではない。
Cationic electrodeposition coating compositions using zinc borate, quaternary ammonium organic acid salts, zinc compounds and the like as alternative dissociation catalysts for the organotin compounds have been proposed (Patent Documents 1 to 3).
However, these compounds have insufficient effects as dissociation catalysts, and the curability and anticorrosion properties are not practically satisfactory.
 また、有機錫化合物を含まないカチオン性電着塗料組成物として、エポキシ化合物にホスホニウム基含有化合物を反応させて得られる水溶性または水分散性のホスホニウム基含有化合物を含むカチオン電着塗料組成物が提案されている(特許文献4)。しかし、この技術は、防食性の向上を目的としたものであり、解離触媒としての効果は満足を得られるものでなく、ジブチルスズオキシドのような有機錫化合物を解離触媒として添加する必要がある。 Further, as a cationic electrodeposition coating composition not containing an organic tin compound, a cationic electrodeposition coating composition containing a water-soluble or water-dispersible phosphonium group-containing compound obtained by reacting a phosphonium group-containing compound with an epoxy compound is provided. It has been proposed (Patent Document 4). However, this technique is intended to improve the anticorrosion property, and the effect as a dissociation catalyst is not satisfactory, and it is necessary to add an organic tin compound such as dibutyltin oxide as a dissociation catalyst.
 このように、有機錫化合物を含まず、現行と同等の焼き付け条件にて良好な塗膜の硬化性を確保することができるカチオン電着塗料組成物はこれまでになかった。 Thus, there has never been a cationic electrodeposition coating composition that does not contain an organic tin compound and can ensure good coating curability under the same baking conditions as the current one.
特開平7-331130号公報JP 7-331130 A 特開平11-152432号公報Japanese Patent Laid-Open No. 11-152432 特開2000-336287号公報JP 2000-336287 A 特開2002-265878号公報JP 2002-265878 A
 本発明は、上記事情に鑑みなされたもので、有機錫化合物を含まず、現行と同等の焼き付け条件にて良好な塗膜の硬化性を確保することができる有機錫フリーのカチオン電着塗料組成物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and does not contain an organic tin compound, and an organic tin-free cationic electrodeposition coating composition that can ensure good coating curability under the same baking conditions as the current one. The purpose is to provide goods.
 すなわち、本発明によれば、一般式(1): 
Figure JPOXMLDOC01-appb-I000003
[式中、R~Rは、それぞれ同一又は異なって、炭素数1~8の炭化水素基、芳香族炭化水素基、又は水酸基以外の官能基で置換されている炭素数1~8の炭化水素基もしくは芳香族炭化水素基を表す。Xは、有機酸基、水酸基、脂肪族スルホン酸基、芳香族スルホン酸基、ハライドを表す。]で表される4級ホスホニウム塩Aと、基体樹脂Bを含有する電着塗料組成物が提供される。
That is, according to the present invention, the general formula (1):
Figure JPOXMLDOC01-appb-I000003
[Wherein R 1 to R 4 are the same or different and each has 1 to 8 carbon atoms substituted with a hydrocarbon group having 1 to 8 carbon atoms, an aromatic hydrocarbon group, or a functional group other than a hydroxyl group. A hydrocarbon group or an aromatic hydrocarbon group is represented. X represents an organic acid group, a hydroxyl group, an aliphatic sulfonic acid group, an aromatic sulfonic acid group, or a halide. An electrodeposition coating composition containing a quaternary phosphonium salt A represented by formula (II) and a base resin B is provided.
 本発明者らは、上記課題を解決すべく、多くの物質についてブロック架橋剤(ブロックポリイソシアネート等)の解離触媒としての性能を評価したところ、特定の構造を有する4級ホスホニウム塩を含有する電着塗料組成物が非常に優れた特性を有することを見出し、本発明を完成するに至った。 In order to solve the above-mentioned problems, the present inventors evaluated the performance of many substances as a dissociation catalyst of a block cross-linking agent (block polyisocyanate, etc.). As a result, an electric charge containing a quaternary phosphonium salt having a specific structure was obtained. The present inventors have found that the coating composition has very excellent characteristics and have completed the present invention.
 特筆すべき点は、4級ホスホニウム塩は、電子構造の点からは4級アンモニウム塩に類似しているが、それにも関わらず、4級ホスホニウム塩の解離触媒としての性能は、4級アンモニウム塩をはるかに上回るという驚くべき結果であった。 It should be noted that the quaternary phosphonium salt is similar to the quaternary ammonium salt in terms of electronic structure, but the performance of the quaternary phosphonium salt as a dissociation catalyst is nonetheless It was a surprising result that far exceeded.
 また、一般式(1)中のR~Rが性能に与える影響は大きくなく、炭素数が1~8の間では評価結果は大きくは変わらなかった。R~Rがフェニル基の場合は、R~Rがアルキル基の場合よりも評価結果は若干劣っていたが十分に実用に耐えうる結果が得られた。さらに、実験の手間を考慮してR~Rが全て同一である場合について多くの評価を行ったが、R~Rが互いに異なっている場合について評価を行ったところ、R~Rが全て同一の場合と同等の結果が得られたため、R~Rは必ずしも全て同一である必要がないことが分かった。 Further, the influence of R 1 to R 4 in the general formula (1) on the performance was not large, and the evaluation result did not change greatly between 1 and 8 carbon atoms. When R 1 to R 4 were a phenyl group, the evaluation results were slightly inferior to those when R 1 to R 4 were an alkyl group, but sufficient results for practical use were obtained. Furthermore, although made many evaluated if R 1 ~ R 4 are all in consideration of the time of the experiment are the same, was evaluated for the case where R 1 ~ R 4 are different from each other, R 1 ~ because if R 4 are all identical and similar results were obtained, it was found that it is not necessary R 1 ~ R 4 are not all identical.
 また、一般式(1)中のXが性能に与える影響も大きくなく、種々の有機酸やスルホン酸でほぼ同程度の評価結果が得られた。Xがハライドの場合には、有機酸やスルホン酸の場合よりも評価結果が若干劣っていたが十分に実用に耐えうる結果が得られた。 Also, the influence of X in the general formula (1) on the performance was not great, and almost the same evaluation results were obtained with various organic acids and sulfonic acids. When X was a halide, the evaluation result was slightly inferior to that of an organic acid or sulfonic acid, but a result that could sufficiently withstand practical use was obtained.
 また、特許文献4には、水酸基で置換されたアルキル基を有する4級ホスホニウム塩が防食剤として用いられているが、この物質の触媒性能を評価したところ良好な結果が得られなかった。一方、アルコキシ基で置換されたアルキル基を有する4級ホスホニウム塩の触媒性能を評価したところ、無置換のアルキル基を有する4級ホスホニウム塩と同等の結果が得られた。これらの結果から、R~Rの置換基が水酸基以外であれば評価結果に与える影響は大きくないと結論付けられた。 In Patent Document 4, a quaternary phosphonium salt having an alkyl group substituted with a hydroxyl group is used as an anticorrosive agent. However, when the catalytic performance of this substance was evaluated, good results were not obtained. On the other hand, when the catalytic performance of the quaternary phosphonium salt having an alkyl group substituted with an alkoxy group was evaluated, the same result as that of the quaternary phosphonium salt having an unsubstituted alkyl group was obtained. From these results, it was concluded that if the substituents of R 1 to R 4 were other than a hydroxyl group, the influence on the evaluation results was not significant.
 本発明によれば、有機錫化合物を使用せずに、これを配合した場合と同等ないしはそれ以上の硬化性、防食性、仕上がり性に優れたカチオン性電着塗料組成物を提供することができる。 According to the present invention, it is possible to provide a cationic electrodeposition coating composition excellent in curability, corrosion resistance, and finish properties equivalent to or higher than that in the case where it is blended without using an organic tin compound. .
 以下、本発明について詳細を説明する。 Hereinafter, the details of the present invention will be described.
電着塗料組成物
 本発明の電着塗料組成物は、
一般式(1):
Figure JPOXMLDOC01-appb-I000004
[式中、R~Rは、それぞれ同一又は異なって、炭素数1~8の炭化水素基、芳香族炭化水素基、又は水酸基以外の官能基で置換されている炭素数1~8の炭化水素基もしくは芳香族炭化水素基を表す。Xは、有機酸基、水酸基、脂肪族スルホン酸基、芳香族スルホン酸基、ハライドを表す。]で表される4級ホスホニウム塩A及び基体樹脂Bを含有する。
Electrodeposition paint composition The electrodeposition paint composition of the present invention comprises:
General formula (1):
Figure JPOXMLDOC01-appb-I000004
[Wherein R 1 to R 4 are the same or different and each has 1 to 8 carbon atoms substituted with a hydrocarbon group having 1 to 8 carbon atoms, an aromatic hydrocarbon group, or a functional group other than a hydroxyl group. A hydrocarbon group or an aromatic hydrocarbon group is represented. X represents an organic acid group, a hydroxyl group, an aliphatic sulfonic acid group, an aromatic sulfonic acid group, or a halide. A quaternary phosphonium salt A and a base resin B.
<4級ホスホニウム塩A>
 一般式(1)中、R~Rは、それぞれ同一又は異なって、炭素数1~8の炭化水素基、芳香族炭化水素基、又は水酸基以外の官能基で置換されている炭素数1~8の炭化水素基もしくは芳香族炭化水素基を表す。
<Quaternary phosphonium salt A>
In the general formula (1), R 1 to R 4 are the same or different and each is substituted with a functional group other than a hydrocarbon group having 1 to 8 carbon atoms, an aromatic hydrocarbon group, or a hydroxyl group. Represents 8 to 8 hydrocarbon groups or aromatic hydrocarbon groups.
 炭素数1~8の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基などの飽和炭化水素基、ビニル基、アリル基、プレニル基、クロチル基、シクロペンタジエニル基などの不飽和炭化水素基が挙げられる。
 芳香族炭化水素基としては、フェニル基、トリル基、ベンジル基などが挙げられる。
 水酸基以外の官能基で置換されている炭素数1~8の炭化水素基もしくは芳香族炭化水素基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基などが挙げられる。
 これらのうち、炭素数1~8の炭化水素基が好ましく、エチル基、ブチル基が特に好ましい。
Examples of the hydrocarbon group having 1 to 8 carbon atoms include saturated carbonization such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, and octyl group. Examples thereof include unsaturated hydrocarbon groups such as a hydrogen group, a vinyl group, an allyl group, a prenyl group, a crotyl group, and a cyclopentadienyl group.
Examples of the aromatic hydrocarbon group include a phenyl group, a tolyl group, and a benzyl group.
Examples of the hydrocarbon group having 1 to 8 carbon atoms or aromatic hydrocarbon group substituted with a functional group other than a hydroxyl group include an alkoxyalkyl group such as a methoxymethyl group, a methoxyethyl group, an ethoxymethyl group, and an ethoxyethyl group. Can be mentioned.
Of these, a hydrocarbon group having 1 to 8 carbon atoms is preferable, and an ethyl group and a butyl group are particularly preferable.
 一般式(1)中、Xは、有機酸基、水酸基、脂肪族スルホン酸基、芳香族スルホン酸基又はハライドを表す。
 有機酸基の有機酸としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、2-エチル酪酸、2-エチルヘキサン酸、コハク酸、マレイン酸などの脂肪族カルボン酸、グリコ-ル酸、グリセリン酸、乳酸、ジメチロ-ルプロピオン酸、ジメチロ-ル酪酸、ジメチロ-ル吉草酸、酒石酸、リンゴ酸、ヒドロキシマロン酸、ジヒドロキシコハク酸、トリヒドロキシコハク酸、ヒドロキシメチルマロン酸などの脂肪族ヒドロキシカルボン酸、安息香酸などの芳香族カルボン酸、グリシン、N-アセチルグリシンなどのアミノ酸などが挙げられる。これらの有機酸のうち、ギ酸、酢酸、乳酸、ジメチロ-ルプロピオン酸及びジメチロ-ル酪酸が好ましく、ギ酸及び酢酸が特に好ましい。
 脂肪族スルホン酸基としては、メタンスルホン酸、ドデシルベンゼンスルホン酸、アルキル(C14~18)スルホン酸、オレフィン(C14~16)スルホン酸などが挙げられる。
 芳香族スルホン酸基としては、ベンゼンスルホン酸、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸などが挙げられる。
 ハライドとしては、アイオダイド、ブロミド、クロリド、フルオライドなどが挙げられる。
 これらは単独又は2種以上を組み合わせて用いてもよい。
In general formula (1), X represents an organic acid group, a hydroxyl group, an aliphatic sulfonic acid group, an aromatic sulfonic acid group, or a halide.
Examples of the organic acid of the organic acid group include aliphatic carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, 2-ethylbutyric acid, 2-ethylhexanoic acid, succinic acid, maleic acid, glycolic acid, and glyceric acid Aliphatic hydroxycarboxylic acids such as lactic acid, dimethylolpropionic acid, dimethylolbutyric acid, dimethylolvaleric acid, tartaric acid, malic acid, hydroxymalonic acid, dihydroxysuccinic acid, trihydroxysuccinic acid, hydroxymethylmalonic acid, Aromatic carboxylic acids such as benzoic acid, and amino acids such as glycine and N-acetylglycine. Of these organic acids, formic acid, acetic acid, lactic acid, dimethylolpropionic acid and dimethylolbutyric acid are preferred, and formic acid and acetic acid are particularly preferred.
Examples of the aliphatic sulfonic acid group include methanesulfonic acid, dodecylbenzenesulfonic acid, alkyl (C14-18) sulfonic acid, olefin (C14-16) sulfonic acid, and the like.
Examples of the aromatic sulfonic acid group include benzenesulfonic acid, paratoluenesulfonic acid, dodecylbenzenesulfonic acid, and the like.
Examples of the halide include iodide, bromide, chloride, and fluoride.
You may use these individually or in combination of 2 or more types.
 本発明の4級ホスホニウム塩Aは公知の方法により製造できる。
 例えば、4級ホスホニウム有機酸塩または、4級ホスホニウム脂肪族または芳香族スルホン酸塩は、トリブチルホスフィン、トリフェニルホスフィンのような3級ホスフィン化合物とアルキルハライドとの求核反応によって4級ホスホニウムハライドを得たのち、所望の有機酸アニオンまたは、脂肪族または芳香族スルホン酸アニオンに塩交換することによって製造できる。
 また、市販の4級ホスホニウムハライドを所望の有機酸アニオンまたは、脂肪族または芳香族スルホン酸アニオンに塩交換することによっても製造できる。さらに、市販の4級ホスホニウムヒドロキシドを所望の有機酸または、脂肪族または芳香族スルホン酸にて中和することによっても製造できる。
 また、4級ホスホニウムヒドロキシドは、トリブチルホスフィン、トリフェニルホスフィンのような3級ホスフィン化合物とアルキルハライドとの求核反応によって4級ホスホニウムハライドを得たのち、これを、強塩基性イオン交換樹脂を充填したカラムに通液し、ハライドをヒドロキシドに置換することにより得られる。
The quaternary phosphonium salt A of the present invention can be produced by a known method.
For example, a quaternary phosphonium organic acid salt or a quaternary phosphonium aliphatic or aromatic sulfonate can be converted into a quaternary phosphonium halide by a nucleophilic reaction between a tertiary phosphine compound such as tributylphosphine and triphenylphosphine and an alkyl halide. After being obtained, it can be produced by salt exchange with a desired organic acid anion or an aliphatic or aromatic sulfonate anion.
It can also be produced by subjecting a commercially available quaternary phosphonium halide to a desired organic acid anion or an aliphatic or aromatic sulfonate anion. Furthermore, it can be produced by neutralizing a commercially available quaternary phosphonium hydroxide with a desired organic acid or an aliphatic or aromatic sulfonic acid.
In addition, the quaternary phosphonium hydroxide is obtained by obtaining a quaternary phosphonium halide by a nucleophilic reaction between a tertiary phosphine compound such as tributylphosphine or triphenylphosphine and an alkyl halide. It is obtained by passing through a packed column and replacing the halide with hydroxide.
 本発明の電着塗料組成物中における4級ホスホニウム塩Aの含有量は、特に制限されないが、通常、電着塗料組成物中の基体樹脂B100質量部に対して、例えば0.05~30質量部であり、好ましくは、0.1~10質量部である。添加量が上記0.1~10質量部の範囲外であっても特に塗料性能に大きな問題は生じないが、上記0.1~10質量部の範囲内であれば、硬化性、防食性、電着塗料の安定性等の実用的なバランスが特に良くなる。また、4級ホスホニウム塩Aの含有量は、基体樹脂B100質量部に対して、1質量部以上が好ましく、4質量部以上がさらに好ましく、7質量部以上がさらに好ましい。この場合、硬化性及び密着性が特に高くなるからである。4級ホスホニウム塩Aの含有量は、例えば、基体樹脂B100質量部に対して、0.05、0.1、0.5、1、2、3、4、5、6、7、8、9、10、15、20、25、30質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The content of the quaternary phosphonium salt A in the electrodeposition coating composition of the present invention is not particularly limited, but usually, for example, 0.05 to 30 mass with respect to 100 parts by mass of the base resin B in the electrodeposition coating composition. Part, preferably 0.1 to 10 parts by weight. Even if the addition amount is out of the range of 0.1 to 10 parts by mass, no major problem is caused in the paint performance, but if it is within the range of 0.1 to 10 parts by mass, curability, anticorrosion, A practical balance such as stability of the electrodeposition paint is particularly improved. Further, the content of the quaternary phosphonium salt A is preferably 1 part by mass or more, more preferably 4 parts by mass or more, and further preferably 7 parts by mass or more with respect to 100 parts by mass of the base resin B. In this case, it is because curability and adhesiveness become especially high. The content of the quaternary phosphonium salt A is, for example, 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 with respect to 100 parts by mass of the base resin B. 10, 15, 20, 25, 30 parts by mass, and may be within a range between any two of the numerical values exemplified here.
 本発明における電着塗料組成物には、前記4級ホスホニウム塩A及び基体樹脂Bのほかに、必要に応じて、硬化剤C、金属化合物D、中和剤E、その他の添加剤等を配合することができる。 In addition to the quaternary phosphonium salt A and the base resin B, the electrodeposition coating composition in the present invention contains a curing agent C, a metal compound D, a neutralizing agent E, and other additives as necessary. can do.
<基体樹脂B>
 基体樹脂Bとしては、エポキシ系、アクリル系、ポリブタジエン系、アルキド系、ポリエステル系などのいずれの樹脂でも使用することができるが、なかでもアミン付加エポキシ樹脂等のポリアミン樹脂が好ましい。
<Base resin B>
As the base resin B, any resin such as an epoxy resin, an acrylic resin, a polybutadiene resin, an alkyd resin, and a polyester resin can be used, and among them, a polyamine resin such as an amine-added epoxy resin is preferable.
 上記アミン付加エポキシ樹脂としては、例えば、(i)ポリエポキシ化合物と1級モノアミン又はポリアミン、2級モノアミン又はポリアミン、又は1,2級混合ポリアミンとの付加物(例えば、米国特許第3,984,299号明細書参照);(ii)ポリエポキシド化合物とケチミン化された1級アミノ基を有する2級モノアミン又はポリアミンとの付加物(例えば、米国特許第4,017,438号明細書参照);(iii)ポリエポキシド化合物とケチミン化された1級アミノ基を有するヒドロキシ化合物とのエーテル化により得られる反応物(例えば、特開昭59-43013号公報参照)等を挙げることができる。 Examples of the amine-added epoxy resin include (i) an adduct of a polyepoxy compound and a primary monoamine or polyamine, a secondary monoamine or polyamine, or a 1,2 mixed polyamine (for example, US Pat. No. 3,984,843). (Ii) an adduct of a polyepoxide compound and a secondary monoamine or polyamine having a ketiminated primary amino group (see, for example, US Pat. No. 4,017,438); iii) A reaction product obtained by etherification of a polyepoxide compound and a hydroxy compound having a primary amino group that has been ketiminated (see, for example, JP-A-59-43013).
 上記アミン付加エポキシ樹脂の製造に使用されるポリエポキシド化合物は、エポキシ基を1分子中に2個以上有する化合物であり、一般に少なくとも200、好ましくは400~4000、更に好ましくは800~2000の範囲内の数平均分子量を有するものが適しており、特にポリフェノ-ル化合物とエピクロルヒドリンとの反応によって得られるものが好ましい。 The polyepoxide compound used in the production of the amine-added epoxy resin is a compound having two or more epoxy groups in one molecule, and generally has a value of at least 200, preferably 400 to 4000, more preferably 800 to 2000. Those having a number average molecular weight are suitable, and those obtained by reaction of a polyphenol compound and epichlorohydrin are particularly preferred.
 前記ポリエポキシド化合物の形成のために用い得るポリフェノール化合物としては、例えば、ビス(4-ヒドロキシフェニル)-2,2-プロパン、4,4-ジヒドロキシベンゾフェノン、ビス(4-ヒドロキシフェニル)-1,1-エタン、ビス(4-ヒドロキシフェニル)-1,1-イソブタン、ビス(4-ヒドロキシ-tert-ブチル-フェニル)-2,2-プロパン、ビス(2-ヒドロキシナフチル)メタン、テトラ(4-ヒドロキシフェニル)-1,1,2,2-エタン、4,4-ジヒドロキシジフェニルスルホン、フェノールノボラック、クレゾールノボラック等を挙げることができる。 Examples of the polyphenol compound that can be used for forming the polyepoxide compound include bis (4-hydroxyphenyl) -2,2-propane, 4,4-dihydroxybenzophenone, bis (4-hydroxyphenyl) -1,1- Ethane, bis (4-hydroxyphenyl) -1,1-isobutane, bis (4-hydroxy-tert-butyl-phenyl) -2,2-propane, bis (2-hydroxynaphthyl) methane, tetra (4-hydroxyphenyl) ) -1,1,2,2-ethane, 4,4-dihydroxydiphenylsulfone, phenol novolak, cresol novolak, and the like.
 前記ポリエポキシド化合物としては、ポリオール、ポリエーテルポリオール、ポリエステルポリオール、ポリアミンアミド、ポリカルボン酸、ポリイソシアネート化合物などと一部反応させたものであってもよい。前記ポリエポキシド化合物としては、更に、ε-カプロラクトン、アクリルモノマーなどをグラフト重合させたものであってもよい。  The polyepoxide compound may be partially reacted with polyol, polyether polyol, polyester polyol, polyamine amide, polycarboxylic acid, polyisocyanate compound, or the like. The polyepoxide compound may further be obtained by graft polymerization of ε-caprolactone, an acrylic monomer, or the like. *
 基体樹脂Bは、外部架橋型及び内部(又は自己)架橋型のいずれのタイプのものであってもよい。架橋部(例:イソシアネート基)がブロック剤でブロックされたブロック架橋部(例:ブロックポリイソシアネート基)を基体樹脂Bが含有してもよく、ブロック架橋部を有するブロック架橋剤(例:ブロックポリイソシアネート化合物)からなる硬化剤Cを電着塗料組成物が含有してもよい。架橋反応は、架橋部と、これと反応する活性水素含有部(例:アミノ基)とが必要であるので、ブロック架橋部と活性水素含有部の両方が基体樹脂Bに含まれている場合には内部架橋型となり、これらのうちの一方のみが基体樹脂Bに含まれている場合には外部架橋型となる。
 内部架橋型のタイプとしては、基体樹脂Bの分子中に、ブロックポリイソシアネート基等を導入したものが挙げられる。基体樹脂B中へのブロックポリイソシアネート基の導入方法は、既知の方法を用いることができ、例えば、部分ブロックしたポリイソシアネート化合物中の遊離のイソシアネート基と基体樹脂中の活性水素含有部とを反応させることによって導入することができる。
The base resin B may be of any type of an external crosslinking type and an internal (or self) crosslinking type. The base resin B may contain a block cross-linked portion (eg, a block polyisocyanate group) in which a cross-linked portion (eg: isocyanate group) is blocked with a blocking agent, and a block cross-linking agent (eg: block poly) having a block cross-linked portion. The electrodeposition coating composition may contain a curing agent C comprising an isocyanate compound. The cross-linking reaction requires a cross-linked part and an active hydrogen-containing part (for example, an amino group) that reacts with the cross-linking part. Is an internal cross-linking type, and when only one of these is contained in the base resin B, it is an external cross-linking type.
Examples of the internal cross-linking type include those in which a block polyisocyanate group or the like is introduced into the molecule of the base resin B. As a method for introducing the blocked polyisocyanate group into the base resin B, a known method can be used. For example, a reaction between a free isocyanate group in the partially blocked polyisocyanate compound and an active hydrogen-containing part in the base resin. Can be introduced.
<硬化剤C>
 前記基体樹脂Bが外部架橋型の樹脂の場合、併用される硬化剤Cとしては、ブロック架橋部を有するブロック架橋剤(例:ブロックポリイソシアネート化合物)や、活性水素含有部を有する化合物(例:アミノ樹脂)が挙げられる。より具体的には、基体樹脂Bに活性水素含有部が含まれている場合には、ブロック架橋剤を用いることが好ましく、基体樹脂Bにブロック架橋部が含まれている場合には、活性水素含有部を有する化合物を用いることが好ましい。
<Curing agent C>
When the base resin B is an external cross-linking resin, the curing agent C used in combination is a block cross-linking agent having a block cross-linking portion (eg, a block polyisocyanate compound) or a compound having an active hydrogen-containing portion (eg: Amino resin). More specifically, when the base resin B contains an active hydrogen-containing part, it is preferable to use a block cross-linking agent, and when the base resin B contains a block cross-linking part, active hydrogen is used. It is preferable to use a compound having an inclusion part.
 ブロックポリイソシアネート化合物は、各々理論量のポリイソシアネート化合物とイソシアネートブロック剤とを付加反応させて得ることができる。 The block polyisocyanate compound can be obtained by addition reaction of a theoretical amount of a polyisocyanate compound and an isocyanate blocking agent.
 ポリイソシアネート化合物としては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、フェニレンジイソシアネート、ビス(イソシアネートメチル)シクロヘキサン、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、メチレンジイソシアネート、イソホロンジイソシアネートなどの芳香族、又は脂肪族のポリイソシアネート化合物、及びこれらのイソシアネート化合物の過剰量にエチレングリコール、プロピレングリコール、トリメチロールプロパン、ヘキサントリオール、ヒマシ油などの低分子活性水素含有化合物を反応させて得られる末端イソシアネート含有化合物を挙げることができる。  Examples of the polyisocyanate compound include aromatic or aliphatic polyisocyanates such as tolylene diisocyanate, xylylene diisocyanate, phenylene diisocyanate, bis (isocyanate methyl) cyclohexane, tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, and isophorone diisocyanate. The terminal isocyanate containing compound obtained by making low molecular weight active hydrogen containing compounds, such as ethylene glycol, propylene glycol, a trimethylol propane, hexane triol, castor oil, react with the compound and the excess of these isocyanate compounds can be mentioned. *
 イソシアネートブロック剤としては、ポリイソシアネート化合物のイソシアネート基に付加してブロックするものであり、そして付加によって生成するブロックポリイソシアネート化合物は常温において安定で且つ約100~200℃に加熱した際、ブロック剤を解離して遊離のイソシアネート基を再生しうるものであることが望ましい。 As the isocyanate blocking agent, it is blocked by adding to the isocyanate group of the polyisocyanate compound, and the blocked polyisocyanate compound produced by the addition is stable at room temperature and when heated to about 100 to 200 ° C., It is desirable to be able to dissociate and regenerate free isocyanate groups.
 ブロック剤としては、例えば1-クロロ-2-プロパノール、エチレンクロルヒドリン等のハロゲン化炭化水素類、フルフリルアルコール、アルキル基置換フルフリルアルコール等の複素環式アルコール類、フェノール、m-クレゾール、p-ニトロフェノール、p-クロロフェノール、ノニルフェノール等のフェノール類、メチルエチルケトオキシム、メチルイソブチルケトンオキシム、アセトンオキシム、シクロヘキサノンオキシム等のオキシム類、アセチルアセトン、アセト酢酸エチル、マロン酸ジエチル等の活性メチレン化合物類、ε-カプロラクタム、メタノール、エタノール、n-プロパノール、イソプロパノール等の脂肪族アルコール類、ベンジルアルコール等の芳香族アルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル等のグリコールエーテル類等を挙げることができる。 Examples of the blocking agent include halogenated hydrocarbons such as 1-chloro-2-propanol and ethylene chlorohydrin, heterocyclic alcohols such as furfuryl alcohol and alkyl group-substituted furfuryl alcohol, phenol, m-cresol, phenols such as p-nitrophenol, p-chlorophenol and nonylphenol, oximes such as methyl ethyl ketoxime, methyl isobutyl ketone oxime, acetone oxime and cyclohexanone oxime, active methylene compounds such as acetylacetone, ethyl acetoacetate and diethyl malonate, ε-caprolactam, aliphatic alcohols such as methanol, ethanol, n-propanol and isopropanol, aromatic alcohols such as benzyl alcohol, ethylene glycol monomethyl ether , It may be mentioned ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol ethers monomethyl ether and the like.
 前記、基体樹脂B/硬化剤Cの固形分重量比は、好ましくは1~9、より好ましくは1.5~4である。 The solid content weight ratio of the base resin B / curing agent C is preferably 1 to 9, and more preferably 1.5 to 4.
<金属化合物D>
 金属化合物Dとしては、例えば、カリウム、チタン、鉄、銅、亜鉛、ビスマスなどの化合物が挙げられ、有機酸金属塩類または金属アルコキシドなどの有機基を含む化合物が好ましい。
<Metal compound D>
Examples of the metal compound D include compounds such as potassium, titanium, iron, copper, zinc, and bismuth, and compounds containing an organic group such as organic acid metal salts or metal alkoxides are preferable.
 カリウム化合物としては、例えば、ギ酸カリウム、酢酸カリウム、プロピオン酸カリウム、2-エチル酪酸カリウム、2-エチルヘキサン酸カリウム、乳酸カリウム、ジメチロールプロピオン酸カリウム、安息香酸カリウムなどが挙げられる。
 チタン化合物としては、例えば、テトライソプロポキシチタン、テトラブトキシチタン、ジイソプロポキシチタンビス(2-エチルヘキサネート)、イソプロポキシチタントリス(2-エチルヘキサネート)などが挙げられる。
 鉄化合物としては、例えば、塩基性酢酸鉄(III)、2-エチルヘキサン酸鉄(III)などが挙げられる。
 銅化合物としては、例えば、ギ酸銅、酢酸銅、プロピオン酸銅、2-エチル酪酸銅、2-エチルヘキサン酸銅、乳酸銅、ジメチロールプロピオン酸銅、安息香酸銅などが挙げられる。
 亜鉛化合物としては、例えば、ギ酸亜鉛、酢酸亜鉛、プロピオン酸亜鉛、2-エチル酪酸亜鉛、2-エチルヘキサン酸亜鉛、乳酸亜鉛、ジメチロールプロピオン酸亜鉛、安息香酸亜鉛、亜鉛アセチルアセトナートなどが挙げられる。
 ビスマス化合物としては、例えば、酢酸ビスマス、2-エチルヘキサン酸ビスマスなどが挙げられる。
Examples of the potassium compound include potassium formate, potassium acetate, potassium propionate, potassium 2-ethylbutyrate, potassium 2-ethylhexanoate, potassium lactate, potassium dimethylolpropionate, and potassium benzoate.
Examples of the titanium compound include tetraisopropoxy titanium, tetrabutoxy titanium, diisopropoxy titanium bis (2-ethyl hexanate), isopropoxy titanium tris (2-ethyl hexanate), and the like.
Examples of the iron compound include basic iron acetate (III) and iron (III) 2-ethylhexanoate.
Examples of the copper compound include copper formate, copper acetate, copper propionate, copper 2-ethylbutyrate, copper 2-ethylhexanoate, copper lactate, copper dimethylolpropionate, and copper benzoate.
Examples of zinc compounds include zinc formate, zinc acetate, zinc propionate, zinc 2-ethylbutyrate, zinc 2-ethylhexanoate, zinc lactate, zinc dimethylolpropionate, zinc benzoate, and zinc acetylacetonate. It is done.
Examples of the bismuth compound include bismuth acetate and bismuth 2-ethylhexanoate.
 上記金属化合物Dの中でも、硬化性および原料の入手のし易さなどから、亜鉛化合物が特に好ましい。これらは単独又は2種以上を組み合わせて用いてもよい。 Among the above metal compounds D, zinc compounds are particularly preferable because of their curability and the availability of raw materials. You may use these individually or in combination of 2 or more types.
 本発明の電着塗料組成物中における金属化合物Dの含有量は、特に制限されないが、通常、4級ホスホニウム塩A1モルに対して、0.5~2モル、好ましくは0.5~1.5モルである。前記範囲にある場合、低温での密着性と硬化性の向上の効果が得られる。また、金属化合物D/4級ホスホニウム塩Aのモル比が10を超えると、低温での密着性と硬化性の向上効果が小さいので、金属化合物D/4級ホスホニウム塩Aのモル比は10以下が好ましい。 The content of the metal compound D in the electrodeposition coating composition of the present invention is not particularly limited, but is usually 0.5 to 2 mol, preferably 0.5 to 1. mol, based on 1 mol of the quaternary phosphonium salt A. 5 moles. When it exists in the said range, the effect of the adhesiveness and sclerosis | hardenability improvement at low temperature is acquired. Further, if the molar ratio of the metal compound D / 4 quaternary phosphonium salt A exceeds 10, the effect of improving the adhesion and curability at low temperature is small, so the molar ratio of the metal compound D / 4 quaternary phosphonium salt A is 10 or less. Is preferred.
<中和剤E>
 本発明の電着塗料組成物は、前記成分を水分散するための中和剤Eをさらに含むことができる。中和剤Eとしては、例えば、酢酸、ギ酸、プロピオン酸、乳酸などの脂肪族カルボン酸が挙げることができる。この中和剤Eの量は、上記基体樹脂B中のアミノ基の量によって異なるものであり、水分散できる量であればよく、電着塗料のpHを3.0~9.0の範囲に保つ量であればよい。本発明では前記基体樹脂Bに含まれるアミノ基を中和するのに必要な中和剤Eの当量数は、0.25~1.5、好ましくは0.5~1.25である。前記範囲にある場合、組成物の仕上り性、つきまわり性、低温硬化性などの向上の効果が得られる。
<Neutralizing agent E>
The electrodeposition coating composition of the present invention may further include a neutralizing agent E for dispersing the above components in water. Examples of the neutralizing agent E include aliphatic carboxylic acids such as acetic acid, formic acid, propionic acid, and lactic acid. The amount of the neutralizing agent E varies depending on the amount of amino groups in the base resin B, and may be any amount that can be dispersed in water. The pH of the electrodeposition paint is in the range of 3.0 to 9.0. What is necessary is just to keep. In the present invention, the number of equivalents of the neutralizing agent E necessary for neutralizing the amino group contained in the base resin B is 0.25 to 1.5, preferably 0.5 to 1.25. When it is in the above range, the effect of improving the finish, throwing power, low temperature curability and the like of the composition can be obtained.
<その他の添加剤>
 本発明の電着塗料組成物には、さらに必要に応じて、着色顔料、体質顔料、有機溶剤、顔料分散剤、塗面調整剤、界面活性剤、酸化防止剤、紫外線吸収剤などの慣用の塗料添加物を配合することができる。
<Other additives>
In the electrodeposition coating composition of the present invention, if necessary, conventional pigment pigments, extender pigments, organic solvents, pigment dispersants, coating surface modifiers, surfactants, antioxidants, ultraviolet absorbers, etc. Paint additives can be blended.
電着塗料組成物の製造方法
 本発明の電着塗料組成物は、例えば、上記成分を混合することにより調整することができる。
 まず、基体樹脂Bと硬化剤Cとを混合し、中和剤Eを加える。ここに上記4級ホスホニウム塩Aを加えた後、これを水単独かまたは水と親水性有機溶剤との混合物である水性媒体に分散させてもよいし、水分散後に上記4級ホスホニウム塩Aを加えてもよい。これに必要に応じて、顔料分散ペーストを混合することにより、本発明の電着塗料組成物を得ることができる。上記顔料分散ペーストは、顔料分散剤および顔料を所定量混合した後、その混合物中の顔料の粒径が所定の均一な粒径となるまで、ボールミルやサンドグラインドミルなどの通常の分散装置を用いて分散させることにより得ることができる。なお、塗料添加剤は任意の段階で系に加えることができる。
Method for Producing Electrodeposition Paint Composition The electrodeposition paint composition of the present invention can be prepared, for example, by mixing the above components.
First, the base resin B and the curing agent C are mixed, and the neutralizing agent E is added. After adding the quaternary phosphonium salt A to this, the quaternary phosphonium salt A may be dispersed in an aqueous medium which is water alone or a mixture of water and a hydrophilic organic solvent. May be added. If necessary, the electrodeposition coating composition of the present invention can be obtained by mixing the pigment dispersion paste. The above pigment dispersion paste is mixed with a predetermined amount of a pigment dispersant and a pigment, and then a normal dispersion apparatus such as a ball mill or a sand grind mill is used until the particle size of the pigment in the mixture becomes a predetermined uniform particle size. It can be obtained by dispersing. The paint additive can be added to the system at any stage.
電着塗料組成物の塗装方法
 本発明の電着塗料組成物は、電着塗装によって所望の基材表面に塗装することができる。
 電着塗装は、一般には、固形分濃度が約5~40重量%となるように脱イオン水などで希釈し、さらにpHを3.0~9.0の範囲内に調整した本発明の電着塗料組成物からなる電着浴を、通常、浴温15~45℃に調整し、負荷電圧100~400Vの条件で行うことができる。
Coating method of electrodeposition coating composition The electrodeposition coating composition of the present invention can be applied to the surface of a desired substrate by electrodeposition coating.
Generally, electrodeposition coating is diluted with deionized water or the like so that the solid content concentration is about 5 to 40% by weight, and the pH is adjusted within the range of 3.0 to 9.0. An electrodeposition bath composed of a coating composition can be usually adjusted to a bath temperature of 15 to 45 ° C. and under a load voltage of 100 to 400V.
 本発明の電着塗料組成物を用いて形成しうる電着塗膜の膜厚は、特に制限されるものではないが、一般的には、硬化塗膜に基づいて5~40μm、特に10~30μmの範囲内が好ましい。また、塗膜の焼き付け温度は、被塗物表面で一般に100~200℃の範囲、好ましくは140~180℃温度が適しており、焼き付け時間は5~60分間、好ましくは10~30分程度、被塗物表面が保持されることが好ましい。 The film thickness of the electrodeposition coating film that can be formed using the electrodeposition coating composition of the present invention is not particularly limited, but is generally 5 to 40 μm, particularly 10 to 10 μm based on the cured coating film. Within the range of 30 μm is preferable. The baking temperature of the coating film is generally in the range of 100 to 200 ° C., preferably 140 to 180 ° C. on the surface of the object to be coated, and the baking time is 5 to 60 minutes, preferably about 10 to 30 minutes. It is preferable that the surface of the object to be coated is held.
 以下、実施例を挙げて本発明をさらに詳細に説明する。本発明はこれによって限定されるものではない。尚、「部」及び「%」は「質量部」及び「質量%」を示す。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited thereby. “Parts” and “%” indicate “parts by mass” and “% by mass”.
製造例1(基体樹脂Bの製造)
 「jER1001」(ジャパンエポキシレジン社製、エポキシ当量約950のビスフェノールA型エポキシ樹脂)1900部を、ブチルセロソルブ1012部に溶解し、ジエチルアミン124部を80~100℃で滴下後、120℃で2時間保持してアミン価47をもつエポキシ樹脂-アミン付加物を得た。
Production Example 1 (Production of base resin B)
1900 parts of “jER1001” (Japan Epoxy Resin, bisphenol A type epoxy resin having an epoxy equivalent of about 950) is dissolved in 1012 parts of butyl cellosolve, 124 parts of diethylamine is added dropwise at 80 to 100 ° C., and then kept at 120 ° C. for 2 hours. Thus, an epoxy resin-amine adduct having an amine value of 47 was obtained.
 次に、アミン価100を持つダイマー酸タイプポリアミド樹脂(商品名「バーサミド460」、ヘンケル白水(株)製品)1000部を、メチルイソブチルケトン429部に溶解し、130~150℃に加熱還流し、生成水を留去して該アミド樹脂の末端アミノ基をケチミンに変えた。このものを150℃で約3時間保持し、水の留去が停止してから60℃に冷却した。次いで、このものを前記エポキシ樹脂-アミン付加物に加えて100℃に加熱し、1時間保持後室温に冷却してアミン価65のエポキシ樹脂-アミノ-ポリアミド付加樹脂のワニスB-1 4433部(固形分:70%)を得た。 Next, 1000 parts of dimer acid type polyamide resin having an amine value of 100 (trade name “Versamide 460”, product of Henkel Hakusui Co., Ltd.) is dissolved in 429 parts of methyl isobutyl ketone and heated to 130 to 150 ° C. under reflux. The water produced was distilled off to change the terminal amino group of the amide resin to ketimine. This was held at 150 ° C. for about 3 hours, and cooled to 60 ° C. after the distillation of water stopped. Next, this product was added to the epoxy resin-amine adduct, heated to 100 ° C., held for 1 hour, and then cooled to room temperature. Then, 4433 parts of varnish B-1 of epoxy resin-amino-polyamide addition resin having an amine value of 65 ( Solid content: 70%) was obtained.
製造例2(硬化剤Cの製造)
 窒素を流し反応容器内の水分を十分に除去した後、2,4-/2,6-トリレンジイソシアネート 675部とMIBK 769部を仕込み、混合した。窒素雰囲気下で2-エチルヘキサノール 1119部を70~90 ℃で滴下し、ついで遊離のイソシアネートが仕込んだイソシアネートの0.5%以下となるまで90℃を保持した後、室温まで放冷し、ブロックポリイソシアネートC-1 2563部(固形分:70%)を得た。
Production Example 2 (Production of curing agent C)
After flowing nitrogen and sufficiently removing the water in the reaction vessel, 675 parts of 2,4- / 2,6-tolylene diisocyanate and 769 parts of MIBK were charged and mixed. In a nitrogen atmosphere, 1119 parts of 2-ethylhexanol was added dropwise at 70 to 90 ° C., and then maintained at 90 ° C. until the free isocyanate became 0.5% or less of the charged isocyanate, and then allowed to cool to room temperature to block 2563 parts of polyisocyanate C-1 (solid content: 70%) were obtained.
製造例3(テトラブチルホスホニウムアセテートの製造)
 フラスコに、40%濃度のテトラブチルホスホニウムヒドロキシド水溶液 200部(東京化成工業(株)試薬、テトラブチルホスホニウムヒドロキシドとして0.3モル)、及び酢酸 17.5部(0.3モル)、脱イオン水80部を仕込み、70~80℃に加熱した。1時間撹拌し反応させた後、水を濃縮し、黄色透明液体としてテトラブチルホスホニウムアセテート 93部を得た。
Production Example 3 (Production of tetrabutylphosphonium acetate)
In a flask, 200 parts of a 40% strength tetrabutylphosphonium hydroxide aqueous solution (Tokyo Chemical Industry Co., Ltd. reagent, 0.3 mol as tetrabutylphosphonium hydroxide), and 17.5 parts (0.3 mol) of acetic acid, 80 parts of ionic water was charged and heated to 70-80 ° C. After stirring and reacting for 1 hour, water was concentrated to obtain 93 parts of tetrabutylphosphonium acetate as a yellow transparent liquid.
製造例4(テトラブチルホスホニウムホルメートの製造)
 フラスコに、40%濃度のテトラブチルホスホニウムヒドロキシド水溶液 200部(東京化成工業(株)試薬、テトラブチルホスホニウムヒドロキシドとして0.3モル)、及びギ酸 17.5部(0.3モル)、脱イオン水80部を仕込み、70~80℃に加熱した。1時間撹拌し反応させた後、水を濃縮し、黄色透明液体としてテトラブチルホスホニウムホルメート 89部を得た。
Production Example 4 (Production of tetrabutylphosphonium formate)
In a flask, 200 parts of a 40% strength tetrabutylphosphonium hydroxide aqueous solution (Tokyo Chemical Industry Co., Ltd. reagent, 0.3 mol as tetrabutylphosphonium hydroxide), and 17.5 parts (0.3 mol) of formic acid, deionized 80 parts of ionic water was charged and heated to 70-80 ° C. After stirring and reacting for 1 hour, water was concentrated to obtain 89 parts of tetrabutylphosphonium formate as a yellow transparent liquid.
製造例5(テトラブチルホスホニウムジメチロールプロピオネートの製造)
 フラスコに、40%濃度のテトラブチルホスホニウムヒドロキシド水溶液 200部(東京化成工業(株)試薬、テトラブチルホスホニウムヒドロキシドとして0.3モル)、及びジメチロールプロピオン酸 39.1部(0.3モル)、脱イオン水100部を仕込み、70~80℃に加熱した。1時間撹拌し反応させた後、水を濃縮し、黄色透明液体(室温で結晶化)としてテトラブチルホスホニウムジメチロールプロピオネート 114部を得た。
Production Example 5 (Production of tetrabutylphosphonium dimethylol propionate)
In a flask, 200 parts of a 40% strength aqueous solution of tetrabutylphosphonium hydroxide (Tokyo Chemical Industry Co., Ltd. reagent, 0.3 mol as tetrabutylphosphonium hydroxide) and 39.1 parts of dimethylolpropionic acid (0.3 mol) ), 100 parts of deionized water were charged and heated to 70-80 ° C. After stirring and reacting for 1 hour, water was concentrated to obtain 114 parts of tetrabutylphosphonium dimethylolpropionate as a yellow transparent liquid (crystallized at room temperature).
製造例6(テトラブチルホスホニウムラクテートの製造)
 フラスコに、40%濃度のテトラブチルホスホニウムヒドロキシド水溶液 200部(東京化成工業(株)試薬、テトラブチルホスホニウムヒドロキシドとして0.3モル)、及び乳酸 26.3部(0.3モル)、脱イオン水100部を仕込み、70~80℃に加熱した。1時間撹拌し反応させた後、水を濃縮し、黄色透明液体としてテトラブチルホスホニウムラクテート 101部を得た。
Production Example 6 (Production of tetrabutylphosphonium lactate)
In a flask, 200 parts of 40% strength tetrabutylphosphonium hydroxide aqueous solution (Tokyo Chemical Industry Co., Ltd. reagent, 0.3 mol as tetrabutylphosphonium hydroxide), and 26.3 parts (0.3 mol) of lactic acid, 100 parts of ionic water was charged and heated to 70-80 ° C. After stirring and reacting for 1 hour, water was concentrated to obtain 101 parts of tetrabutylphosphonium lactate as a yellow transparent liquid.
製造例7(テトラブチルホスホニウム(アセチルアミノアセテート)の製造)
 フラスコに、40%濃度のテトラブチルホスホニウムヒドロキシド水溶液 200部(東京化成工業(株)試薬、テトラブチルホスホニウムヒドロキシドとして0.3モル)、及びN-アセチルグリシン 34.2部(0.3モル)、脱イオン水100部を仕込み、70~80℃に加熱した。1時間撹拌し反応させた後、水を濃縮し、黄色透明液体としてテトラブチルホスホニウム(アセチルアミノアセテート) 109部を得た。
Production Example 7 (Production of tetrabutylphosphonium (acetylaminoacetate))
In a flask, 200 parts of 40% strength tetrabutylphosphonium hydroxide aqueous solution (Tokyo Chemical Industry Co., Ltd. reagent, 0.3 mol as tetrabutylphosphonium hydroxide) and 34.2 parts of N-acetylglycine (0.3 mol) ), 100 parts of deionized water were charged and heated to 70-80 ° C. After stirring and reacting for 1 hour, water was concentrated to obtain 109 parts of tetrabutylphosphonium (acetylaminoacetate) as a yellow transparent liquid.
製造例8(ビス(テトラブチルホスホニウム)タルタレートの製造)
 フラスコに、40%濃度のテトラブチルホスホニウムヒドロキシド水溶液 200部(東京化成工業(株)試薬、テトラブチルホスホニウムヒドロキシドとして0.3モル)、及びL-酒石酸 11部(0.15モル)、脱イオン水100部を仕込み、70~80℃に加熱した。1時間撹拌し反応させた後、水を濃縮し、黄色透明液体としてビス(テトラブチルホスホニウム)タルタレート 97部を得た。
Production Example 8 (Production of bis (tetrabutylphosphonium) tartrate)
In a flask, 200 parts of a 40% strength tetrabutylphosphonium hydroxide aqueous solution (Tokyo Chemical Industry Co., Ltd. reagent, 0.3 mol as tetrabutylphosphonium hydroxide), and 11 parts (0.15 mol) of L-tartaric acid, 100 parts of ionic water was charged and heated to 70-80 ° C. After reacting by stirring for 1 hour, water was concentrated to obtain 97 parts of bis (tetrabutylphosphonium) tartrate as a yellow transparent liquid.
製造例9(ビス(テトラブチルホスホニウム)マレートの製造)
 フラスコに、40%濃度のテトラブチルホスホニウムヒドロキシド水溶液 200部(東京化成工業(株)試薬、テトラブチルホスホニウムヒドロキシドとして0.3モル)、及びマレイン酸 8.5部(0.15モル)、脱イオン水100部を仕込み、70~80℃に加熱した。1時間撹拌し反応させた後、水を濃縮し、黄色透明液体としてビス(テトラブチルホスホニウム)マレート 92部を得た。
Production Example 9 (Production of bis (tetrabutylphosphonium) malate)
In a flask, 200 parts of a 40% strength tetrabutylphosphonium hydroxide aqueous solution (Tokyo Chemical Industry Co., Ltd. reagent, 0.3 moles as tetrabutylphosphonium hydroxide), and 8.5 parts (0.15 moles) of maleic acid, 100 parts of deionized water was charged and heated to 70-80 ° C. After stirring and reacting for 1 hour, water was concentrated to obtain 92 parts of bis (tetrabutylphosphonium) malate as a yellow transparent liquid.
製造例10(テトラブチルホスホニウムベンゾエートの製造)
 フラスコに、40%濃度のテトラブチルホスホニウムヒドロキシド水溶液 200部(東京化成工業(株)試薬、テトラブチルホスホニウムヒドロキシドとして0.3モル)、及び安息香酸 35.6部(0.3モル)、脱イオン水100部を仕込み、70~80℃に加熱した。1時間撹拌し反応させた後、水を濃縮し、黄色透明液体としてテトラブチルホスホニウムベンゾエート 111部を得た。
Production Example 10 (Production of tetrabutylphosphonium benzoate)
In a flask, 200 parts of a 40% strength tetrabutylphosphonium hydroxide aqueous solution (Tokyo Chemical Industry Co., Ltd. reagent, 0.3 mol as tetrabutylphosphonium hydroxide), and 35.6 parts (0.3 mol) of benzoic acid, 100 parts of deionized water was charged and heated to 70-80 ° C. After reacting by stirring for 1 hour, water was concentrated to obtain 111 parts of tetrabutylphosphonium benzoate as a yellow transparent liquid.
製造例11(テトラブチルホスホニウム-p-トルエンスルホネートの製造)
 フラスコに、40%濃度のテトラブチルホスホニウムヒドロキシド水溶液 200部(東京化成工業(株)試薬、テトラブチルホスホニウムヒドロキシドとして0.3モル)、及びp-トルエンスルホン酸・1水和物 57部(0.3モル)、脱イオン水100部を仕込み、70~80℃に加熱した。1時間撹拌し反応させた後、水を濃縮し、淡黄色透明液体としてテトラブチルホスホニウム-p-トルエンスルホネート 129部を得た。
Production Example 11 (Production of tetrabutylphosphonium-p-toluenesulfonate)
In a flask, 200 parts of a 40% strength tetrabutylphosphonium hydroxide aqueous solution (Tokyo Chemical Industry Co., Ltd. reagent, 0.3 mol as tetrabutylphosphonium hydroxide) and 57 parts of p-toluenesulfonic acid monohydrate ( 0.3 mol) and 100 parts of deionized water were charged and heated to 70-80 ° C. After reacting by stirring for 1 hour, water was concentrated to obtain 129 parts of tetrabutylphosphonium-p-toluenesulfonate as a pale yellow transparent liquid.
製造例12(テトラブチルホスホニウムヒドロキシド水溶液の製造)
 テトラブチルホスホニウムブロミド 20部をイオン交換水 250mlに溶解し、強塩基性イオン交換樹脂 300ml(IRA402BL-CL;オルガノ社製をあらかじめ10%NaOH処理したもの)を充填したカラムに通液し、続いてイオン交換水 40mlを通水し、5%濃度のテトラブチルホスホニウムヒドロキシド水溶液 300部(テトラブチルホスホニウムヒドロキシドとして0.05モル)を得た。得られた水溶液の水を濃縮し40%水溶液とした。
Production Example 12 (Production of tetrabutylphosphonium hydroxide aqueous solution)
Dissolve 20 parts of tetrabutylphosphonium bromide in 250 ml of ion-exchanged water, and pass through a column packed with 300 ml of strongly basic ion-exchange resin (IRA402BL-CL; pre-treated with 10% NaOH from Organo). 40 ml of ion-exchanged water was passed through to obtain 300 parts of a 5% strength aqueous solution of tetrabutylphosphonium hydroxide (0.05 mol as tetrabutylphosphonium hydroxide). The resulting aqueous solution was concentrated to make a 40% aqueous solution.
製造例13(テトラエチルホスホニウムヒドロキシド水溶液の製造)
 テトラエチルホスホニウムブロミド 20部をイオン交換水 250mlに溶解し、強塩基性イオン交換樹脂 300ml(IRA402BL-CL;オルガノ社製をあらかじめ10%NaOH処理したもの)を充填したカラムに通液し、続いてイオン交換水 40mlを通水し、5%濃度のテトラエチルホスホニウムヒドロキシド水溶液 300部(テトラエチルホスホニウムヒドロキシドとして0.08モル)を得た。得られた水溶液の水を濃縮し40%水溶液とした。
Production Example 13 (Production of tetraethylphosphonium hydroxide aqueous solution)
Dissolve 20 parts of tetraethylphosphonium bromide in 250 ml of ion-exchanged water, and pass through a column packed with 300 ml of strongly basic ion exchange resin (IRA402BL-CL; manufactured by Organo Co., Ltd., previously treated with 10% NaOH). 40 ml of exchange water was passed through to obtain 300 parts of a 5% concentration aqueous tetraethylphosphonium hydroxide solution (0.08 mol as tetraethylphosphonium hydroxide). The resulting aqueous solution was concentrated to make a 40% aqueous solution.
製造例14(テトラエチルホスホニウムアセテートの製造)
 製造例12で得られたテトラエチルホスホニウムヒドロキシド水溶液 300部(テトラエチルホスホニウムヒドロキシドとして0.08モル)に酢酸 4.8部(0.08モル)を仕込み、70~80℃に加熱した。1時間撹拌し反応させた後、水を濃縮し、黄色透明液体としてテトラエチルホスホニウムアセテート 16.5部を得た。
Production Example 14 (Production of tetraethylphosphonium acetate)
To 300 parts (0.08 mol as tetraethylphosphonium hydroxide) of the tetraethylphosphonium hydroxide aqueous solution obtained in Production Example 12, 4.8 parts (0.08 mol) of acetic acid was charged and heated to 70 to 80 ° C. After reacting by stirring for 1 hour, water was concentrated to obtain 16.5 parts of tetraethylphosphonium acetate as a yellow transparent liquid.
製造例15(テトラフェニルホスホニウムアセテートの製造)
 テトラフェニルホスホニウムブロミド 20部をメタノール 250部に溶解し、強塩基性イオン交換樹脂 300ml(IRA402BL-CL;オルガノ社製をあらかじめ10%NaOH処理したもの)を充填したカラムに通液し、続いてメタノール 40部を通水し、5%濃度のテトラフェニルホスホニウムヒドロキシドメタノール溶液 300部(テトラフェニルホスホニウムヒドロキシドとして0.05モル)を得た。得られたテトラフェニルホスホニウムヒドロキシドメタノール溶液 300部に酢酸 3部(0.05モル)を仕込み、70~80℃に加熱した。1時間撹拌し反応させた後、メタノールを濃縮し、黄色透明液体としてテトラフェニルホスホニウムアセテート 19部を得た。
Production Example 15 (Production of tetraphenylphosphonium acetate)
Dissolve 20 parts of tetraphenylphosphonium bromide in 250 parts of methanol, and pass through a column packed with 300 ml of strongly basic ion exchange resin (IRA402BL-CL; manufactured by Organo Co., Ltd., previously treated with 10% NaOH), followed by methanol. 40 parts of water was passed through to obtain 300 parts of a 5% strength tetraphenylphosphonium hydroxide methanol solution (0.05 mol as tetraphenylphosphonium hydroxide). To 300 parts of the resulting tetraphenylphosphonium hydroxide methanol solution was charged 3 parts (0.05 mol) of acetic acid and heated to 70-80 ° C. After reacting by stirring for 1 hour, methanol was concentrated to obtain 19 parts of tetraphenylphosphonium acetate as a yellow transparent liquid.
製造例16(テトラヘキシルホスホニウムアセテートの製造)
 フラスコに、トリヘキシルホスフィン(東京化成工業(株)試薬) 30部とヘキシルクロライド 12.6部(東京化成工業(株)試薬)を窒素雰囲気中で150℃ 、16時間反応した。反応液を50℃に冷却し、5%苛性ソーダ 6.7部を加え中和した。反応液を100℃、1時間加熱後水を加えて、無色透明やや粘稠な水溶液85.2部を得た。テトラヘキシルホスホニウムクロライドの含量は50%であった。
Production Example 16 (Production of tetrahexylphosphonium acetate)
In the flask, 30 parts of trihexylphosphine (Tokyo Chemical Industry Co., Ltd. reagent) and 12.6 parts of hexyl chloride (Tokyo Chemical Industry Co., Ltd. reagent) were reacted at 150 ° C. for 16 hours in a nitrogen atmosphere. The reaction solution was cooled to 50 ° C. and neutralized by adding 6.7 parts of 5% sodium hydroxide. The reaction solution was heated at 100 ° C. for 1 hour, and then water was added thereto to obtain 85.2 parts of a colorless transparent slightly viscous aqueous solution. The content of tetrahexylphosphonium chloride was 50%.
 テトラヘキシルホスホニウムクロライド水溶液 40部を強塩基性イオン交換樹脂 300ml(IRA402BL-CL;オルガノ社製をあらかじめ10%NaOH処理したもの)を充填したカラムに通液し、続いて精製水 260部を通水し、6%濃度のテトラヘキシルホスホニウムヒドロキシド水溶液 300部(テトラヘキシルホスホニウムヒドロキシドとして0.05モル)を得た。得られたテトラヘキシルホスホニウムヒドロキシド水溶液 300部に酢酸 3部(0.05モル)を仕込み、70~80℃に加熱した。1時間撹拌し反応させた後、水を濃縮し、淡黄色液体としてテトラヘキシルホスホニウムアセテート 20部を得た。 40 parts of tetrahexylphosphonium chloride aqueous solution was passed through a column packed with 300 ml of strongly basic ion exchange resin (IRA402BL-CL; manufactured by Organo, previously treated with 10% NaOH), followed by 260 parts of purified water. As a result, 300 parts of a 6% concentration tetrahexylphosphonium hydroxide aqueous solution (0.05 mol as tetrahexylphosphonium hydroxide) was obtained. To 300 parts of the resulting aqueous tetrahexylphosphonium hydroxide solution, 3 parts (0.05 mol) of acetic acid was charged and heated to 70-80 ° C. After reacting by stirring for 1 hour, water was concentrated to obtain 20 parts of tetrahexylphosphonium acetate as a pale yellow liquid.
製造例17(テトラオクチルホスホニウムアセテートの製造)
 フラスコに、トリオクチルホスフィン(東京化成工業(株)試薬) 30部とオクチルクロライド 12部(東京化成工業(株)試薬)を窒素雰囲気中で150℃ 、16時間反応した。反応液を50℃に冷却し、5%苛性ソーダ 6.7部を加え中和した。反応液を100℃、1時間加熱後水を加えて、無色透明やや粘稠な水溶液84部を得た。テトラオクチルホスホニウムクロライドの含量は50%であった。
Production Example 17 (Production of tetraoctylphosphonium acetate)
In a flask, 30 parts of trioctylphosphine (Tokyo Chemical Industry Co., Ltd. reagent) and 12 parts of octyl chloride (Tokyo Chemical Industry Co., Ltd. reagent) were reacted at 150 ° C. for 16 hours in a nitrogen atmosphere. The reaction solution was cooled to 50 ° C. and neutralized by adding 6.7 parts of 5% sodium hydroxide. The reaction solution was heated at 100 ° C. for 1 hour, and then water was added to obtain 84 parts of a colorless transparent slightly viscous aqueous solution. The content of tetraoctylphosphonium chloride was 50%.
 テトラオクチルホスホニウムクロライド水溶液 40部を強塩基性イオン交換樹脂 300ml(IRA402BL-CL;オルガノ社製をあらかじめ10%NaOH処理したもの)を充填したカラムに通液し、続いて精製水 260部を通水し、6%濃度のテトラオクチルホスホニウムヒドロキシド水溶液 300部(テトラオクチルホスホニウムヒドロキシドとして0.04モル)を得た。得られたテトラオクチルホスホニウムヒドロキシド水溶液 300部に酢酸 2.4部(0.04モル)を仕込み、70~80℃に加熱した。1時間撹拌し反応させた後、水を濃縮し、淡黄色液体としてテトラオクチルホスホニウムアセテート 19.8部を得た。 Forty parts of tetraoctylphosphonium chloride aqueous solution was passed through a column packed with 300 ml of strongly basic ion exchange resin (IRA402BL-CL; made by Organo in advance 10% NaOH treatment), followed by 260 parts of purified water. As a result, 300 parts of a 6% concentration tetraoctylphosphonium hydroxide aqueous solution (0.04 mol as tetraoctylphosphonium hydroxide) was obtained. To 300 parts of the obtained tetraoctylphosphonium hydroxide aqueous solution, 2.4 parts (0.04 mol) of acetic acid was charged and heated to 70 to 80 ° C. After stirring and reacting for 1 hour, water was concentrated to obtain 19.8 parts of tetraoctylphosphonium acetate as a pale yellow liquid.
製造例18(トリブチル(メトキシエチル)ホスホニウムアセテートの製造)
 フラスコに、トリブチルホスフィン(東京化成工業(株)試薬) 30部とクロロエチルメチルエーテル 14部(東京化成工業(株)試薬)を窒素雰囲気中で150℃ 、16時間反応した。反応液を50℃に冷却し、5%苛性ソーダ 9.5部を加え中和した。反応液を100℃、1時間加熱後水を加えて、無色透明やや粘稠な水溶液88部を得た。トリブチル(メトキシエチル)ホスホニウムクロライドの含量は50%であった。
Production Example 18 (Production of tributyl (methoxyethyl) phosphonium acetate)
In the flask, 30 parts of tributylphosphine (Tokyo Chemical Industry Co., Ltd. reagent) and 14 parts of chloroethyl methyl ether (Tokyo Chemical Industry Co., Ltd. reagent) were reacted at 150 ° C. for 16 hours in a nitrogen atmosphere. The reaction solution was cooled to 50 ° C. and neutralized by adding 9.5 parts of 5% sodium hydroxide. The reaction solution was heated at 100 ° C. for 1 hour, and then water was added to obtain 88 parts of a colorless and transparent slightly viscous aqueous solution. The content of tributyl (methoxyethyl) phosphonium chloride was 50%.
 トリブチル(メトキシエチル)ホスホニウムクロライド水溶液 40部を強塩基性イオン交換樹脂 300ml(IRA402BL-CL;オルガノ社製をあらかじめ10%NaOH処理したもの)を充填したカラムに通液し、続いて精製水 260部を通水し、6%濃度のトリブチル(メトキシエチル)ホスホニウムヒドロキシド水溶液 300部(トリブチル(メトキシエチル)ホスホニウムヒドロキシドとして0.07モル)を得た。得られたトリブチル(メトキシエチル)ホスホニウムヒドロキシド水溶液 300部に酢酸 4.2部(0.07モル)を仕込み、70~80℃に加熱した。1時間撹拌し反応させた後、水を濃縮し、淡黄色液体としてトリブチル(メトキシエチル)ホスホニウムアセテート 20部を得た。 40 parts of an aqueous solution of tributyl (methoxyethyl) phosphonium chloride was passed through a column packed with 300 ml of strongly basic ion exchange resin (IRA402BL-CL; manufactured by Organo, previously treated with 10% NaOH), followed by 260 parts of purified water. Water was passed through to obtain 300 parts of a 6% concentration tributyl (methoxyethyl) phosphonium hydroxide aqueous solution (0.07 mol as tributyl (methoxyethyl) phosphonium hydroxide). To 300 parts of the obtained tributyl (methoxyethyl) phosphonium hydroxide aqueous solution, 4.2 parts (0.07 mol) of acetic acid was charged and heated to 70 to 80 ° C. After stirring and reacting for 1 hour, water was concentrated to obtain 20 parts of tributyl (methoxyethyl) phosphonium acetate as a pale yellow liquid.
製造例19(2-エチル酪酸亜鉛の製造)
 ディーンスターク脱水管を装着したフラスコに、2-エチル酪酸 39.2部(0.34モル)、n-ヘプタン 50部を仕込み、次いで酸化亜鉛 13.8部(0.17モル)を添加した。n-ヘプタンの還流温度まで加熱し、生成する水の還流脱水を1時間行い反応させた後、n-ヘプタンを濃縮し、乳白色固体として2-エチル酪酸亜鉛 50部を得た。
Production Example 19 (Production of zinc 2-ethylbutyrate)
A flask equipped with a Dean-Stark dewatering tube was charged with 39.2 parts (0.34 mol) of 2-ethylbutyric acid and 50 parts of n-heptane, and then 13.8 parts (0.17 mol) of zinc oxide were added. The mixture was heated to the reflux temperature of n-heptane, and the resulting water was refluxed and dehydrated for 1 hour. After reaction, n-heptane was concentrated to obtain 50 parts of zinc 2-ethylbutyrate as a milky white solid.
製造例20(ジメチロールプロピオン酸亜鉛の製造)
 フラスコに、ジメチロールプロピオン酸 40部(0.3モル)、水 50部を仕込み、次いで酸化亜鉛 12部(0.15モル)を添加し、80~90℃に加熱した。1時間撹拌し反応させた後、水を濃縮し、乳白色固体としてジメチロールプロピオン酸亜鉛 50部を得た。
Production Example 20 (Production of zinc dimethylolpropionate)
A flask was charged with 40 parts (0.3 mol) of dimethylolpropionic acid and 50 parts of water, and then 12 parts (0.15 mol) of zinc oxide were added and heated to 80 to 90 ° C. After stirring for 1 hour and reacting, the water was concentrated to obtain 50 parts of zinc dimethylolpropionate as a milky white solid.
製造例21(イソプロピルチタントリス(2-エチルヘキサネート)の製造)
 フラスコに、テトライソプロポキシチタン 25.5部(0.09モル)、2-エチルヘキサン酸 39部(0.27モル)を仕込み、80~90℃に加熱した。生成するイソプロパノールを減圧留去し、黄色透明液体としてイソプロピルチタントリス(2-エチルヘキサネート) 50部を得た。
Production Example 21 (Production of Isopropyl Titanium Tris (2-ethylhexanate))
A flask was charged with 25.5 parts (0.09 mol) of tetraisopropoxytitanium and 39 parts (0.27 mol) of 2-ethylhexanoic acid and heated to 80 to 90 ° C. The resulting isopropanol was distilled off under reduced pressure to obtain 50 parts of isopropyl titanium tris (2-ethylhexanate) as a yellow transparent liquid.
比較製造例1(テトラメチルアンモニウムアセテートの製造)
 フラスコに、25%濃度のテトラメチルアンモニウムヒドロキシド水溶液 200部(東京化成工業(株)試薬、テトラメチルアンモニウムヒドロキシドとして0.55モル)、及び酢酸 33部(0.55モル)、脱イオン水80部を仕込み、70~80℃に加熱した。1時間撹拌し反応させた後、水を濃縮し、淡黄色固体としてテトラメチルアンモニウムアセテート 73部を得た。
Comparative Production Example 1 (Production of tetramethylammonium acetate)
In a flask, 200 parts of a 25% concentration tetramethylammonium hydroxide aqueous solution (Tokyo Chemical Industry Co., Ltd. reagent, 0.55 mol as tetramethylammonium hydroxide), and 33 parts (0.55 mol) of acetic acid, deionized water 80 parts were charged and heated to 70-80 ° C. After stirring and reacting for 1 hour, water was concentrated to obtain 73 parts of tetramethylammonium acetate as a pale yellow solid.
比較製造例2(トリス(3-ヒドロキシプロピル)ブチルホスホニウムブロミドの製造)
窒素雰囲気下で、フラスコにトリス(3-ヒドロキシプロピル)ホスフィン(ヒシコーリンP-500;日本化学工業社製) 20部(0.1モル)とトルエン 80部を添加し撹拌して混合した。次いでn-ブチルブロミド 13.7部(0.1モル)を添加し100℃で24時間反応させた。反応終了後、減圧下でトルエンを濃縮し、白色固体としてトリス(3-ヒドロキシプロピル)ブチルホスホニウムブロミド 34.5部を得た。
Comparative Production Example 2 (Production of tris (3-hydroxypropyl) butylphosphonium bromide)
Under a nitrogen atmosphere, 20 parts (0.1 mol) of tris (3-hydroxypropyl) phosphine (Hishicolin P-500; manufactured by Nippon Chemical Industry Co., Ltd.) and 80 parts of toluene were added to the flask and mixed with stirring. Subsequently, 13.7 parts (0.1 mol) of n-butyl bromide was added and reacted at 100 ° C. for 24 hours. After completion of the reaction, toluene was concentrated under reduced pressure to obtain 34.5 parts of tris (3-hydroxypropyl) butylphosphonium bromide as a white solid.
実施例1~32及び比較例1~4(電着塗料組成物の製造)
 表1~表3に示す成分を、表1~表3に示す割合(質量部)で配合し、混合分散することにより電着塗料組成物を製造した。
Examples 1-32 and Comparative Examples 1-4 (production of electrodeposition coating composition)
The components shown in Tables 1 to 3 were blended in the proportions (parts by mass) shown in Tables 1 to 3, and mixed and dispersed to produce an electrodeposition coating composition.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
テトラブチルホスホニウムブロミド:一般試薬
酢酸亜鉛:特級試薬
商品名「ネオスタンU-600」:2-エチルヘキサン酸ビスマス
塩基性酢酸鉄(III):特級試薬
酢酸銅:特級試薬
酢酸カリウム:特級試薬
Tetrabutylphosphonium bromide: General reagent Zinc acetate: Special grade reagent Product name “Neostan U-600”: Bismuth 2-ethylhexanoate Basic iron acetate (III): Special grade copper acetate: Special grade reagent Potassium acetate: Special grade reagent
試験例1(硬化性確認試験)
 実施例1~32及び比較例1~4で得られた電着塗料組成物中に、パルボンド#3020(商品名、日本パーカライジング社製、リン酸亜鉛処理剤)で化成処理した0.8×150×70mmの冷延ダル鋼板を浸漬し、これをカソードとして電着塗装を行った。電着条件は電圧250Vで、膜厚(乾燥膜厚に基づいて)約20μmの電着塗膜を形成した。
Test example 1 (curability confirmation test)
The electrodeposition coating compositions obtained in Examples 1 to 32 and Comparative Examples 1 to 4 were subjected to chemical conversion treatment with Palbond # 3020 (trade name, manufactured by Nihon Parkerizing Co., Ltd., zinc phosphate treatment agent). A 70 mm cold-rolled dull steel plate was immersed, and this was used as a cathode for electrodeposition coating. The electrodeposition conditions were a voltage of 250 V and an electrodeposition coating film having a film thickness (based on the dry film thickness) of about 20 μm was formed.
 該塗膜を水洗後、焼き付けを行った。焼き付けは、電気熱風乾燥機を用いて、焼き付け温度150℃/20分及び160℃/20分及び170℃/20分で行った。
 得られた各電着塗板を、40℃のアセトン中に24時間浸漬し、その前後の塗膜重量残存率を以下の基準で評価することにより、塗膜の硬化性を確認した。結果を表1~表3に示す。
A:95%以上
B:85%以上~95%未満
C:75%以上~85%未満
D:75%未満
The coating film was washed with water and then baked. The baking was performed using an electric hot air dryer at baking temperatures of 150 ° C./20 minutes, 160 ° C./20 minutes, and 170 ° C./20 minutes.
Each obtained electrodeposition coating plate was immersed in acetone at 40 ° C. for 24 hours, and the coating film weight residual ratio before and after the evaluation was evaluated according to the following criteria, thereby confirming the curability of the coating film. The results are shown in Tables 1 to 3.
A: 95% or more B: 85% or more to less than 95% C: 75% or more to less than 85% D: less than 75%
試験例2(防食性試験)
 前記焼き付けで得られた各電着塗板に、素地に達するように電着塗膜にナイフでクロスカット傷を入れ、これをJISZ-2371に準じて840時間耐塩水噴霧試験を行い、ナイフ傷からの錆、フクレ幅によって以下の基準で評価した。結果を表1~表3に示す。
A:錆、フクレの最大幅がカット部より2mm未満(片側)
B:錆、フクレの最大幅がカット部より2mm以上、3mm未満(片側)でかつ平面部にブリスタ-がかなり目立つ
C:錆、フクレの最大幅がカット部より3mm以上でかつ塗面全面にブリスタ-の発生がみられる
Test Example 2 (Anti-corrosion test)
Each electrodeposition coated plate obtained by baking was subjected to a salt cut resistance test for 840 hours in accordance with JISZ-2371 so that the electrodeposition coating film was covered with a knife so as to reach the substrate. The rust and blister width were evaluated according to the following criteria. The results are shown in Tables 1 to 3.
A: The maximum width of rust and blisters is less than 2mm from the cut part (one side)
B: The maximum width of rust and blisters is 2 mm or more and less than 3 mm (one side) from the cut part, and blisters are considerably conspicuous on the flat part. C: The maximum width of rust and blisters is 3 mm or more from the cut part and over the entire coated surface. Generation of blisters
試験例3(密着性試験)
 前記焼き付けで得られた各電着塗板に、2mmマス100個のクロスカットをJIS K5400の7.2(e)に規定されるカッターで行ない、JIS Z1522に規定されるセロハン粘着テープを密着させ、テープと塗面が約30°を保持するように一気に剥離し、剥離の状態を評価した。結果表1~表3に示す。
A:剥離面積0~2%
B:剥離面積2%以上5%未満
C:剥離面積5%以上30%未満
D:剥離面積30%以上
Test Example 3 (Adhesion test)
Each electrodeposition coating plate obtained by baking is subjected to cross cutting of 100 pieces of 2 mm mass with a cutter specified in 7.2 (e) of JIS K5400, and a cellophane adhesive tape specified in JIS Z1522 is adhered, It peeled at a stretch so that a tape and a coating surface hold | maintained about 30 degrees, and the state of peeling was evaluated. Results are shown in Tables 1 to 3.
A: peeling area 0-2%
B: Peeling area 2% or more and less than 5% C: Peeling area 5% or more and less than 30% D: Peeling area 30% or more
試験例4(塗料の安定性試験)
 以下の保管条件で1ヶ月間保管した電着塗料の状態を目視にて確認した。結果を表1~表3に示す。
保管温度:15~35℃、保管湿度:30~70%、保管容器:ブリキ缶
○:経時で1ケ月経過しても分離などの状態異常がみられない
×:経時で1ケ月経過に分離などの状態異常がみられる
Test Example 4 (Paint stability test)
The state of the electrodeposition paint stored for one month under the following storage conditions was visually confirmed. The results are shown in Tables 1 to 3.
Storage temperature: 15 to 35 ° C., Storage humidity: 30 to 70%, Storage container: Tin can ○: No abnormal state such as separation is observed even after one month has elapsed over time: X: Separation after one month has elapsed over time, etc. An abnormal condition is seen
考察
 実施例1~5を参照すると、解離触媒Aの含有量が0.1又は0.5質量部である実施例2及び4では硬化性及び密着性が若干劣っていたが、解離触媒Aの含有量が4質量部以上である実施例1、3、及び5では硬化性及び密着性が優れており、解離触媒Aの含有量が10.3質量部である実施例3では、全ての評価項目で最高の評価結果が得られた。この結果から、解離触媒Aの含有量は、基体樹脂B100質量部に対して、1質量部以上が好ましく、10質量部で飽和することが分かった。
Discussion With reference to Examples 1 to 5, in Examples 2 and 4 in which the content of the dissociation catalyst A was 0.1 or 0.5 parts by mass, the curability and adhesion were slightly inferior. In Examples 1, 3, and 5 in which the content is 4 parts by mass or more, curability and adhesion are excellent, and in Example 3 in which the content of the dissociation catalyst A is 10.3 parts by mass, all evaluations The highest evaluation results were obtained for the items. From this result, it was found that the content of the dissociation catalyst A is preferably 1 part by mass or more with respect to 100 parts by mass of the base resin B, and is saturated at 10 parts by mass.
 実施例1及び6~21を参照すると、4級ホスホニウム塩の炭化水素基の差異が評価結果に与える影響は小さいことが分かった。また、実施例17~18を参照すると、一般式(1)のR~Rがフェニル基の場合や、Xがハライドの場合には、評価結果が若干劣ることが分かった。 Referring to Examples 1 and 6 to 21, it was found that the influence of the difference in the hydrocarbon group of the quaternary phosphonium salt on the evaluation result was small. Further, referring to Examples 17 to 18, it was found that when R 1 to R 4 in the general formula (1) are phenyl groups or when X is a halide, the evaluation results are slightly inferior.
 実施例21を参照すると、一般式(1)のR~Rが互いに異なっている場合でも、R~Rが全て同じ場合と同様の評価結果が得られること、及びアルコキシ基で置換されたアルキル基を有する4級ホスホニウム塩は、無置換のものと同様の評価結果が得られることが分かった。 Referring to Example 21, even when the R 1 ~ R 4 in the general formula (1) are different from each other, the R 1 ~ R 4 are the same evaluation result as all the same is obtained, and substituted with an alkoxy group The quaternary phosphonium salt having an alkyl group thus obtained was found to give the same evaluation result as that of the unsubstituted one.
 また、比較例3を参照すると、4級アンモニウム塩の触媒性能は、4級ホスホニウム塩よりもはるかに低いことが分かった。また、比較例4を参照すると、水酸基で置換されたアルキル基を有する4級ホスホニウム塩の触媒性能は、無置換のアルキル基を有する4級ホスホニウム塩よりもはるかに低いことが分かった。 Further, referring to Comparative Example 3, it was found that the catalyst performance of the quaternary ammonium salt was much lower than that of the quaternary phosphonium salt. Further, referring to Comparative Example 4, it was found that the catalytic performance of the quaternary phosphonium salt having an alkyl group substituted with a hydroxyl group is much lower than that of the quaternary phosphonium salt having an unsubstituted alkyl group.
 実施例22~32を参照すると、4級アンモニウム塩と、金属化合物を併用することによって、特に低温焼き付け時の硬化性・密着性が向上することと、金属化合物の中でも亜鉛化合物が特に好ましいことが分かった。また、実施例22~25を参照すると、金属化合物/4級アンモニウム塩のモル比が11である実施例25では、金属化合物の割合が大きすぎて触媒性能が若干低下することが分かった。 Referring to Examples 22 to 32, the combined use of a quaternary ammonium salt and a metal compound improves the curability and adhesion particularly at low temperature baking, and among the metal compounds, a zinc compound is particularly preferable. I understood. Further, referring to Examples 22 to 25, it was found that in Example 25 in which the molar ratio of the metal compound / quaternary ammonium salt was 11, the ratio of the metal compound was too large and the catalyst performance was slightly lowered.

Claims (8)

  1. 一般式(1): 
    Figure JPOXMLDOC01-appb-I000001
    [式中、R~Rは、それぞれ同一又は異なって、炭素数1~8の炭化水素基、芳香族炭化水素基、又は水酸基以外の官能基で置換されている炭素数1~8の炭化水素基もしくは芳香族炭化水素基を表す。Xは、有機酸基、水酸基、脂肪族スルホン酸基、芳香族スルホン酸基、ハライドを表す。]で表される4級ホスホニウム塩Aと、基体樹脂Bを含有する電着塗料組成物。
    General formula (1):
    Figure JPOXMLDOC01-appb-I000001
    [Wherein R 1 to R 4 are the same or different and each has 1 to 8 carbon atoms substituted with a hydrocarbon group having 1 to 8 carbon atoms, an aromatic hydrocarbon group, or a functional group other than a hydroxyl group. A hydrocarbon group or an aromatic hydrocarbon group is represented. X represents an organic acid group, a hydroxyl group, an aliphatic sulfonic acid group, an aromatic sulfonic acid group, or a halide. An electrodeposition coating composition containing a quaternary phosphonium salt A represented by formula (I) and a base resin B.
  2. 前記一般式(1)において、R~Rで表される置換基が、それぞれ同一又は異なって、炭素数1~8の炭化水素基、芳香族炭化水素基、アルコキシアルキル基からなる群から選ばれる少なくとも1種である請求項1に記載の電着塗料組成物。 In the general formula (1), the substituents represented by R 1 to R 4 are the same or different and are each selected from the group consisting of a hydrocarbon group having 1 to 8 carbon atoms, an aromatic hydrocarbon group, and an alkoxyalkyl group. The electrodeposition coating composition according to claim 1, which is at least one selected.
  3. 更に、金属化合物Dを含む請求項1又は2記載の電着塗料組成物。 Furthermore, the electrodeposition coating composition of Claim 1 or 2 containing the metal compound D.
  4. 前記金属化合物Dが、カリウム、チタン、鉄、銅、亜鉛、ビスマスからなる群から選ばれる少なくとも1種の化合物である請求項3に記載の電着塗料組成物。 The electrodeposition coating composition according to claim 3, wherein the metal compound D is at least one compound selected from the group consisting of potassium, titanium, iron, copper, zinc, and bismuth.
  5. 前記金属化合物Dが、有機酸金属塩類および金属アルコキシドからなる群から選ばれる少なくとも1種の化合物である請求項3又は4記載の電着塗料組成物。 The electrodeposition coating composition according to claim 3 or 4, wherein the metal compound D is at least one compound selected from the group consisting of organic acid metal salts and metal alkoxides.
  6. 前記金属化合物Dが、亜鉛化合物である請求項3~5の何れか1つに記載の電着塗料組成物。 6. The electrodeposition coating composition according to claim 3, wherein the metal compound D is a zinc compound.
  7. 前記金属化合物D/前記4級ホスホニウム塩Aのモル比が0.5~2である、請求項3~6の何れか1つに記載の電着塗料組成物。 The electrodeposition coating composition according to any one of claims 3 to 6, wherein a molar ratio of the metal compound D / the quaternary phosphonium salt A is 0.5 to 2.
  8. 一般式(1): 
    Figure JPOXMLDOC01-appb-I000002
    [式中、R~Rは、それぞれ同一又は異なって、炭素数1~8の炭化水素基、芳香族炭化水素基、又は水酸基以外の官能基で置換されている炭素数1~8の炭化水素基もしくは芳香族炭化水素基を表す。Xは、有機酸基、水酸基、脂肪族スルホン酸基、芳香族スルホン酸基、ハライドを表す。]で表される4級ホスホニウム塩Aからなる電着塗料組成物用解離触媒。
    General formula (1):
    Figure JPOXMLDOC01-appb-I000002
    [Wherein R 1 to R 4 are the same or different and each has 1 to 8 carbon atoms substituted with a hydrocarbon group having 1 to 8 carbon atoms, an aromatic hydrocarbon group, or a functional group other than a hydroxyl group. A hydrocarbon group or an aromatic hydrocarbon group is represented. X represents an organic acid group, a hydroxyl group, an aliphatic sulfonic acid group, an aromatic sulfonic acid group, or a halide. ] The dissociation catalyst for electrodeposition coating compositions which consists of quaternary phosphonium salt A represented by these.
PCT/JP2012/083028 2011-12-26 2012-12-20 Electrodeposition coating composition, and dissociation catalyst therefor WO2013099749A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011283813A JP2015044885A (en) 2011-12-26 2011-12-26 Electrodeposition coating composition, dissociation catalyst for electrodeposition coating composition
JP2011-283813 2011-12-26

Publications (1)

Publication Number Publication Date
WO2013099749A1 true WO2013099749A1 (en) 2013-07-04

Family

ID=48697238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083028 WO2013099749A1 (en) 2011-12-26 2012-12-20 Electrodeposition coating composition, and dissociation catalyst therefor

Country Status (2)

Country Link
JP (1) JP2015044885A (en)
WO (1) WO2013099749A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138203A (en) * 2015-01-28 2016-08-04 関西ペイント株式会社 Thermosetting coating composition
CN108794528A (en) * 2018-06-15 2018-11-13 浙江大学 A kind of lactic acid quaternary phosphine type biocompatible ions liquid and its preparation method and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209694A (en) * 1998-01-23 1999-08-03 Dainippon Ink & Chem Inc Electrodeposition coating composition and coated article
JP2000239472A (en) * 1998-12-24 2000-09-05 Kansai Paint Co Ltd Curable resin composition
JP2008050689A (en) * 2006-07-25 2008-03-06 Kansai Paint Co Ltd Cationic electrodeposition coating material, electrodeposition coating method and coated article obtained by the electrodeposition coating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209694A (en) * 1998-01-23 1999-08-03 Dainippon Ink & Chem Inc Electrodeposition coating composition and coated article
JP2000239472A (en) * 1998-12-24 2000-09-05 Kansai Paint Co Ltd Curable resin composition
JP2008050689A (en) * 2006-07-25 2008-03-06 Kansai Paint Co Ltd Cationic electrodeposition coating material, electrodeposition coating method and coated article obtained by the electrodeposition coating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138203A (en) * 2015-01-28 2016-08-04 関西ペイント株式会社 Thermosetting coating composition
CN108794528A (en) * 2018-06-15 2018-11-13 浙江大学 A kind of lactic acid quaternary phosphine type biocompatible ions liquid and its preparation method and application
CN108794528B (en) * 2018-06-15 2020-07-07 浙江大学 Quaternary phosphonium lactate type biocompatible ionic liquid and preparation method and application thereof

Also Published As

Publication number Publication date
JP2015044885A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
EP1000985B1 (en) Cationic electrodeposition coating composition
JP2983370B2 (en) Electrodeposition coating composition
JP4058841B2 (en) Cationic electrodeposition coating composition and coating film
JP6019223B2 (en) Electrodeposition coating composition, catalyst for electrodeposition coating composition
WO2009145203A1 (en) Method for forming coating film
US6362255B2 (en) Cationic electrodeposition coating composition
WO2013099750A1 (en) Electrodeposition coating composition, and dissociation catalyst therefor
JP3843250B2 (en) Cationic coating composition
KR20030043662A (en) Cationic coating composition
WO2013099749A1 (en) Electrodeposition coating composition, and dissociation catalyst therefor
US20020119318A1 (en) Cationic paint composition
JP3874386B2 (en) Cationic electrodeposition coating composition
JPH05239386A (en) Composition for electrodeposition coating
EP2861681B1 (en) Dual-cure compositions useful for coating metal substrates and processes using the compositions
JP2000191958A (en) Cationic electrodeposition coating composition, formation of multiple coating film and multiple coating film
JP3910698B2 (en) Cationic electrodeposition coating composition
JP3910695B2 (en) Cationic electrodeposition coating composition
WO2016158319A1 (en) Electrodeposition-paint composition and electrodeposition-paint-composition catalyst
JPH1180622A (en) Cationic electrocoating composition
WO2016167147A1 (en) Electrodeposition coating material composition and catalyst for electrodeposition coating material composition
JP2001055538A (en) Cationic electrodeposition coating composition
JP2008050689A (en) Cationic electrodeposition coating material, electrodeposition coating method and coated article obtained by the electrodeposition coating method
WO2017187900A1 (en) Electrodeposition coating composition and method for producing same
JP2001354910A (en) Cationic electrodeposition coating composition
JPH09187726A (en) Highly corrosion resistant product coated with electrodeposition coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12863525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP