JP3872247B2 - Pyrolysis method of horizontal cylindrical rotary waste FRP - Google Patents

Pyrolysis method of horizontal cylindrical rotary waste FRP Download PDF

Info

Publication number
JP3872247B2
JP3872247B2 JP2000055166A JP2000055166A JP3872247B2 JP 3872247 B2 JP3872247 B2 JP 3872247B2 JP 2000055166 A JP2000055166 A JP 2000055166A JP 2000055166 A JP2000055166 A JP 2000055166A JP 3872247 B2 JP3872247 B2 JP 3872247B2
Authority
JP
Japan
Prior art keywords
cylinder
waste frp
thermal decomposition
waste
frp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000055166A
Other languages
Japanese (ja)
Other versions
JP2000327830A (en
Inventor
俊作 林田
Original Assignee
有限会社矢上船舶機器サービス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社矢上船舶機器サービス filed Critical 有限会社矢上船舶機器サービス
Priority to JP2000055166A priority Critical patent/JP3872247B2/en
Publication of JP2000327830A publication Critical patent/JP2000327830A/en
Application granted granted Critical
Publication of JP3872247B2 publication Critical patent/JP3872247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複合材廃プラスチック(以下、廃プラスチックと略記する)のリサイクルにおいて、熱伝導の悪い廃プラスチックの熱分解方法に属するものである。
特に、本発明は現在問題となっている廃FRPの廃棄について、リサイクルすることが要求されており、この分野について活用できるものである。
【0002】
【従来の技術】
従来、廃プラスチックを熱分解するロータリーキルン炉などが知られており、ロータリーキルン炉などを用いて廃プラスチックの熱分解が行われている。
【0003】
【発明が解決しようとする課題】
しかし、廃プラスチックを熱分解するロータリーキルン炉などで熱分解する場合、廃プラスチックを構成するガラス繊維等の非分解成分の残さ心材自身が回転することにより、綿状に膨張し炉内を閉塞し炉の能力を低下させていた。また、残さ心材は綿状に膨張して取り出されるため、再利用する場合には、整形する必要があって、再利用の障害となっていた。更に、炉内温度が不均一なため、高温で処理せざるをえず残さ心材の強度が劣化し再利用の妨げになっていた。
【0004】
本発明は、上記のような課題に鑑み、その課題を解決すべく創案されたものであって、その目的とするところは、廃プラスチックの熱分解において、非分解成分(残さ心材)をほぼそのままの形で取り出し、再利用しやすい状態で分離し、また、熱伝導の悪い廃プラスチックを出来るだけ熱分解温度に近い温度で熱分解し、残さ心材の強度が劣化するのを防ぐとともに熱分解生成物の性状を安定させ、熱分解生成物のガス化成分をそれぞれの凝縮温度で冷却分留し、熱分解生成物の液状成分と共に再生利用する横置円筒回転式廃プラスチックの熱分解方法を提供することにある。
【0009】
【課題を解決するための手段】
以上の目的を達成するために、請求項に係る横置円筒回転式廃FRPの熱分解方法は、炉内に横置された回転容器に廃FRP片を適当量充填して水平軸回りに回転させながら加熱ガスを供給すると共に、回転初期においては回転容器を低速で回転して同容器内の上記廃FRP片を自由落下させて加熱ガスを同容器内の廃FRP片全体に均等に浸透させ、熱分解温度に達した後は廃FRP片が自由落下しないように回転容器の回転を高めてその遠心力で廃FRP片を回転容器の内周面に張り付けて廃FRP片が自転するのを防ぐと共に、遠心力と重力の変動を利用して回転容器の内周面に張り付けた廃FRP片を内部振動させ、加熱ガスや熱分解生成物などの熱媒体との熱伝達を向上させて熱分解する手段よりなるものである。
【0010】
即ち、本発明は、外周に孔の開いた横長の中空軸と、同軸に配され外周に孔が開き一端側が開閉可能で他端側が閉塞された円筒と、上記円筒を内包し上記円筒を出し入れする開閉部を有しかつ一部に加熱ガスと熱分解生成物を排出する開口部を設けた炉と、上記中空軸に連結する加熱ガス供給源と、上記中空軸及び上記円筒とを回転させる動力源と、から構成される横置円筒回転式廃プラスチックの熱分解方法で、廃プラスチック特に廃FRPを再生利用するに適するものである。
【0011】
この様に構成された熱分解方法において、円筒の開閉可能側を開き廃プラスチック片を充填した後閉塞し、炉の開閉部を密閉し、中空軸及び円筒を動力源によって回転させ、遠心力と重力との変化を廃プラスチック片に与えながら加熱ガス供給源から熱分解温度に達した加熱ガスを中空軸に連続供給する。加熱ガスは、中空軸の孔を介して円筒の中心部から円周方向への流れを作り廃プラスチック片をい加熱して熱分解し、円筒外周の孔を介して炉の開口部より排出する。このようにして、廃プラスチック片を非分解成分(残さ心材)及び熱分解生成物であるガス化成分や液状成分などに分離する。
【0012】
同時に、円筒の回転数を調整して遠心力を重力以上に廃プラスチック片へ作用させ、重力による落下を防止することによって、残さ心材をほぼそのままの形状で分離する。また、円筒を回転させることにより遠心力と重力との変動及び廃プラスチック片の弾力とを相乗させて振動させ、加熱ガスを廃プラスチック片間にまんべんなく浸透させて熱伝達を向上させ、廃プラスチック片の温度むらを少なくして、熱分解可能な出来るだけ低い温度で効率良く熱分解する。
【0013】
そして、加熱ガスや熱分解生成物は、円筒外周部の孔から炉内に排出され、炉の一部の開口部から排出される。炉の一部にある開口部にパイプを設け、熱分解生成物の液状成分を分離し、熱分解生成物のガス化成分と加熱ガスとを冷却装置に送気して、ガス化成分をそれぞれの凝縮温度で冷却分留し、再生利用するものである。一方、非分解成分(残さ心材)は、炉の開閉部を開き、円筒の開閉可能部を開き、円筒外に取り出し再利用する。
【0014】
また、円筒の外周に案内羽根を設けることで、円筒の外周孔から排出される熱分解生成物は強制的な流れを作られ炉内を回転するので、炉と円筒との熱交換ができ、炉と円筒との温度を均一化して、熱分解生成物の回収を効率よくする。
更に、円筒内に複数の仕切り板を等間隔で放射状に設けることにより、円筒を補強し、円筒内に廃プラスチック片を均等に充填でき、回転起動時の偏りを制限できる。その結果、廃プラスチック片に当たる加熱ガスが均一になり廃プラスチック片の熱分解をさらに効率的にするものである。
【0015】
円筒の内側に適宜な周波数の電磁波を照射することにより加熱ガスや熱分解生成物を振動させ熱エネルギーを発生させて、廃プラスチック片を加熱し熱分解させることが可能となる。
【0016】
また、円筒の内側に適宜な位置に適宜な弾力のバネを設けることにより廃プラスチック片の振動を強制することができ、円筒内の部位による熱分解の不均一を修整することができる。更に、円筒の毎分回転数を大きくして廃プラスチック片の毎分内部振動回数を増やして熱分解をさらに効率的にするものである。
【0017】
また、廃プラスチック片の熱分解に必要な熱量を、加熱ガスの温度と流量とを加減することによって、熱分解の分解速度を調整することが出来る。
【0018】
また、廃プラスチック片の熱分解生成物に有害物質が生成される可能性のある場合などに、加熱ガスの種類や化学的性状を変えて供給し、熱分解生成物の性状を調整することが可能となる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の実施の形態−1の横断面図である。
図1において、1は外周に複数個の孔1aが開いた円筒形状の中空軸で、中空軸1の外周側には外周に複数個の孔2aが開いた回転容器としての円筒2が取付けられている。同円筒2は中空軸1と同心軸に配されている。この中空軸1及び円筒2は水平軸回りに回転するように取付けられている。また、同円筒2の一端の前板2bは取り外し可能である。2cは円筒2の他端に固定された後板である。3は円筒2を内包する炉で、3aは炉3の前壁で密閉ハッチ機構になっており、図中矢印の方向に摺動するものである。また、3bは炉3の後壁であり、同後壁3bには加熱ガス供給源4に連通する加熱ガス供給パイプ5が設けられており、炉3の一部に円筒2の孔2aから排出される熱分解生成物と加熱ガスとを排出する排出口3cが設けられている。なお、加熱ガス供給パイプ5は中空回転軸6を介して中空軸1の中空部に連通している。7は前壁3aを貫通する回転軸で回転用動力8に連結している。9は円筒2と回転駆動軸10との間に設けられた脱着軸受である。
【0020】
この様に構成された実施の形態において、ハッチ機構の前壁3a、脱着軸受9を取り外して円筒2を炉3外に取り出す。取り出された円筒2の前板2bを取り除き廃FRP片を適当量充填して前板2bを閉める。ついで、この円筒2を炉3内に入れ、脱着軸受9を炉3内にはめ込み、ついで前壁3aをはめ込んで炉3を密閉する。
【0021】
次に、加熱ガス供給源4から供給される加熱ガス11を加熱ガス供給パイプ5、中空回転軸6を介して中空軸1内に供給する。中空軸1内に供給された加熱ガス11は中空軸1の孔1aから円筒2に入り円筒2内の廃FRP片を加熱しながら円筒2内にある空気等を円筒2の孔2aを介して炉3の排出口3cから排出する。円筒2内の空気等が排出されると、回転用動力8を駆動して遠心力と重力との変化を廃FRP片にあたえながら加熱ガス供給源4から熱分解温度に達した加熱ガス11を中空軸1に連続供給する。加熱ガス11は中空軸1の孔1aから円筒2の中心部、そして中心部から円周方向への流れを作り円筒2内の温度を均一化して加熱ガス11で廃FRP片を熱分解する。こうして非分解成分(残さ心材)及び熱分解生成物であるガス化成分や液状成分などに分離する。
【0022】
この場合、回転用動力8の操作によって廃FRP片への回転数を調整し遠心力を重力以上に作用させ、重力による落下を防止することによって、廃FRP片の残さ心材をほぼそのまま再利用しやすい形状で分離させる。また、廃FRP片への回転数を回転用動力8の操作によって調整し、遠心力と重力との変動及び廃FRP片の弾力を相乗させて振動させ(例えば、回転半径25センチメートルで毎分60回転させる廃FRP片は、毎回ほぼ無重力と2倍の重力を受けることになる。)、加熱ガス11を廃FRP片間にまんべんなく浸透させる。その結果、熱伝達が向上し廃FRP片を効率良く熱分解することが出来る。一方、ガス化成分等11aは円筒2外周部の孔2aから炉3内に排出し、炉3の排出口3cから排出される。なお、このガス化成分等11aには加熱ガス11と熱分解生成物とが含まれており、またこの熱分解生成物は液状成分とガス化成分とが含まれている。
【0023】
一方、円筒2内に残るガラス繊維等の非分解成分(残さ心材)は、再び前壁3a及び脱着軸受9を取り除き、円筒2を炉3外に取り出し前板2bを取り外して円筒2内の非分解成分(残さ心材)をほぼそのままの形状でかつ強度の劣化を少なくして取り出す。この取り出された非分解成分(残さ心材)すなわちガラス繊維等はFRPの心材として再利用される。また、セメント等に混入して、引っ張り強度の強いコンクリートを得ること等により再利用される。
円筒2内から非分解成分(残さ心材)を取り出したら、再び上記の作業を繰り返す。
【0024】
次に本発明の実施の形態−2乃至実施の形態−4を、図2及び図3を用いて説明する。
図2は実施の形態−2乃至実施の形態−4の横断面図、図3はその III−III 矢視断面図である。なお、図2及び図3中の符合が図1の符合と同一のものは、均等物なので説明を省略する。
図2及び図3において、水平軸回りに回転する回転容器としての円筒2の外周側には、円筒2と同心軸に外筒2Aが設けられている。9aは外筒2Aの内側と回転駆動軸10との間に設けられた脱着軸受である。12aは円筒2と外筒2Aとの間を通過するガス化成分等11aを誘導する誘導管で、同誘導管12aは炉3の排出口3cを貫通する。13は誘導管12aの途中に設けられた液状成分等の貯留槽、12bは貯留槽13から一次冷却分留装置14への誘導管で、同一次冷却分留装置14は誘導管12bを流れるガス化成分等11bを冷却し分留されたものを貯留する一次冷却分留装置、15は一次冷却分留装置14の後流側に設けられ一次冷却分留装置14から誘導管12cを流れるガス化成分等11cを冷却し分留されたものを貯留する二次冷却分留装置である。なお、12dは二次冷却分留装置15からのガス化成分等11dを流す誘導管で、同誘導管12dは循環ポンプ16の吸入側に連結されガス化成分等11eを流す誘導管12eに連通している。また、17はガス化成分等11eの排気管で誘導管12eに分岐して設けられている。17aは同排気管17に介装された排気バルブで、循環ポンプ16の吐出側のガス化成分等11eを流す誘導管12eに連結している。18は流量調整バルブで排気管17の分岐点よりも後流側に介装され、19は流量調整バルブ18の後流側に誘導管12fに分岐して設けられた給気管で、同給気管19には給気バルブ19aが介装されている。誘導管12fは加熱ガス11のガス加熱管5aに連結されている。また、20は燃焼室で、20aは燃焼室上床、20bは燃焼室上床20aに設けられた複数の燃焼ガス排出口、21は燃焼室20に設置された燃焼装置である。22は燃焼室上床20aと外筒2Aとの間に設けられた加熱室である。この加熱室22には炉3を貫通したガス加熱管5aが燃焼ガス排出口20bの上部に配設されており、同ガス加熱管5aは上方に曲げられ加熱ガス供給パイプ5に連通している。
【0025】
この様に構成された実施の形態において、上記実施の形態−1で示した要領で、廃FRP片の熱処理を加熱ガス11に水蒸気を用いて熱分解を行なう。先ず、廃FRP片を円筒2内に充填しハッチ機構3Aで密閉し流量調整バルブ18を閉、排気バルブ17aを開とし、給気管19から水蒸気を加熱ガスの循環系内に充填しながら円筒2を回転用動力8で回転起動する。また、燃焼装置21を起動し燃料に着火して燃焼室20内で燃焼を開始する。次に、空気が排気管17から排気されたら、給気管19からの水蒸気の供給を止め、循環ポンプ16を起動し、流量調整バルブ18と排気バルブ17aとの開度を調整して、加熱ガス11循環系内の圧力と流量とを調整する。また、燃焼装置21の調整によって加熱室22内のガス加熱管5aに当たる燃焼ガス排出口20bから噴出する燃焼ガスの温度と噴出量とを調整する。この様にして、加熱ガス11の温度をコントロールして熱処理を開始する。
【0026】
この熱分解によって廃FRP片のガス化成分等11aは、円筒2外周の孔2aから排出され円筒2と外筒2Aとの空間路を通って誘導管12aに導かれ、液状成分は液体貯留槽13で分離される。そして、誘導管12bのガス化成分等11bは一次冷却分留装置14で冷却され、ガス化成分等11bが190℃程度に冷却されるとフタル酸等が分留される。ついで、一次冷却分留装置14で分留されないガス化成分等11cは誘導管12cを介し、二次冷却分留装置15に導かれる。ここでガス化成分等11cが140℃程度に冷却されるとスチレン等が分留される。更に、二次冷却分留装置15で分留されないガス化成分等11dは誘導管12dに導かれて循環ポンプ16で加圧される。そして、誘導管12eに導かれたガス化成分等11eの圧力を排気バルブ17aの開度で調整する。一方、再循環するガス化成分等11eは流量調整バルブ18の開度で流量調整して、再び水蒸気(加熱ガス11)と未留ガス(冷却分留されなかったガス化成分を以後未留ガスと言う。)とを加熱ガス11fとしてガス加熱管5aへ誘導し、熱処理が終了するまで加熱ガス11として再送気する。
【0027】
ついで、熱処理が終了したら燃焼装置21を止め加熱ガス11の温度を下げながら流量調整バルブ18を閉める。そして、給気管19から水蒸気を供給しながら水蒸気と未留ガスとを排気管17から放出して円筒2内に新しい水蒸気を充填する。次に、給気管19から水蒸気の供給を止め、循環ポンプ16を止め、回転用動力8を停止して円筒2の回転を止める。更に、炉3の冷却と共に給気管19から円筒2内を空気と置換してハッチ機構3Aを開放する。
この場合、未留ガス放出が環境上問題であれば、図示省略のガス処理装置で水蒸気と未留ガスとを分離貯留し、本実施の形態の再操作時の加熱ガスの加熱熱源として燃焼させる。
【0028】
本発明の実施の形態−3について説明する。
図3において、23a、23b、23c、・・・は円筒2の外周面にその円周方向に適宜な間隔で設けられた複数個の案内羽根である。円周方向に適宜な間隔で設けられた各案内羽根23a、23b、23c、・・・は、円筒2の軸方向に延設されている。
この案内羽根23a、23b、23c、・・・によって、円筒2Aの孔2aから放出されたガス化成分等11aは強制的な流れを作られながら外筒2A内を回転するので外筒2Aと円筒2との熱交換ができ、外筒2A内の温度を均一化する。その結果、廃FRP片の熱分解効率を高くすることが出来る。
【0029】
本発明の実施の形態−4について説明する。
図3において、24a、24b、24c、・・・は円筒2の内側に軸方向に複数個の放射状に設けられた仕切板である。この仕切板24a、24b、24c、・・・によって円筒2は補強され、複数個の隔室25a、25b、25c、・・・に分割されるので廃FRP片を均等に充填でき、回転起動時の偏りを制限できる。また、廃FRP片に当たる加熱ガス11の温度むらが少なくなり廃FRP片の再利用をさらに効率的にするものである。
なお、25a、25b、25c、・・・間の加熱ガス11の交流を良くするために、仕切板24a、24b、24c、・・・に複数の孔を設けても良い。
【0030】
ついで、本発明の実施の形態−5及び実施の形態−6を図4及び図5用いて説明する。
図4は、実施の形態−5及び実施の形態−6の横断面図である。
図5は、そのV−V矢視断面図である。
図4及び図5中の符合が、図1乃至図3の符合と同一なものは、均等物なので説明を省略する。
26は一次冷却分留装置の噴霧ノズルである。27は二次冷却分留装置の噴霧ノズルである。28は二次冷却分留装置15からのガス化成分等11dを流す誘導管12dの後流側に設けられた気液分離器及びガス化成分等11dの凝縮器(以後、気液分離器と略記する。)である、28aは気液分離器28内の凝縮器でガス化成分等11dの熱交換装置であり、28bはガス化成分等11dの液化した飽和液である。更に、12gは気液分離器28で分離されたガス化成分等11gの誘導管で循環ポンプ16の吸入側に連結している。12hは循環ポンプ16で加圧されたガス化成分等11hの誘導管で循環ポンプ16の吐出側に連結されている。29は誘導管12hに分岐し、排気バルブ17aを介装した排気管17と連結した未留ガスと加熱ガスとの主凝縮器である。
【0031】
この様に構成された実施の形態において、上記実施の形態−2で示した要領で、一次冷却分留装置の噴霧ノズル26から噴出量を調整した噴霧水(水の蒸発の潜熱と熱分解ガスの凝縮の潜熱との熱交換をさせる。)をガス化成分等11bに直接噴霧して冷却分留する。また、誘導管12cを介し二次冷却分留装置15に導かれたガス化成分等11cは、二次冷却分留装置の噴霧ノズル27から同様に噴霧水を直接噴霧して冷却分留する。更に、二次冷却分留装置15で分留されないガス化成分等11dは誘導管12dを介し気液分離器28でガス化成分等11gと液状成分とに再度分離される。また、噴霧され蒸発した水蒸気は気液分離器28内に設置された熱交換装置28aで冷却され飽和水28bとして回収し、再度噴霧水として利用しながら気液分離器28内に一定量貯留(飽和液は圧力が低下すると蒸発して器内の圧力を安定させる。)する。更に、ガス化成分等11gは誘導管12gに導かれて循環ポンプ16で加圧され、誘導管12hに導かれたガス化成分等11hの圧力を排気バルブ17aの開度で調整し、排気管17から排気させる。このガス化成分等11hの一部は適宜主凝縮器29で凝縮分離する。一方、誘導管12iの再循環するガス化成分等11iは流量調整バルブ18の開度で流量を調整して、再び加熱ガス(水蒸気と未留ガス)11iとしてガス加熱管5aへ誘導されて再送気させる。
【0032】
熱処理が終了したら、流量調整バルブ18を閉め、給気管19から新しい水蒸気を供給し、新しく供給した水蒸気を含むガス化成分等11gを循環ポンプ16を用いて、ガス化成分等11hを排気管17を介して主凝縮器29に注入し、水蒸気を液化して未留ガスを分離する。このようにして未留ガスも分離貯留して、加熱源として再利用する。
【0033】
本発明の実施の形態−6について説明する。
図4及び図5において、30は複数個の空気噴出孔30aを有する空気供給管で、同空気供給管30は加熱室22内でガス加熱管5aの下方に設けられており、一部が加熱室22を貫通し炉3外で空気供給装置31に連結されている。
また、円筒2の内側に電磁波を照射する電磁波照射装置32が中空軸1の外周面にその円周方向に適宜の間隔で複数設けられている。更に、円筒2の内周面の全域には均等間隔で複数のバネ33が設けられている。バネ33には例えば板バネが使用されている。
【0034】
このような構成において、加熱ガス11の温度をコントロールするため、燃焼ガスにより加熱されているガス加熱管5aに、空気供給装置31から供給された空気を空気供給管30の空気噴出孔30aから噴出させて当て、空気噴出孔30aから噴出される空気の量を調節することによって、より高度にガス加熱管5a内の加熱ガス11の温度をコントロールすることが出来る。このように、加熱ガス11の温度や流量を調節することによって、加熱ガス11が廃FRP片に与える熱量を調節でき、熱分解ガス化反応速度を調整することが可能となる。また、廃FRP片の熱分解生成物に有害物質が生成される可能性のある場合には加熱ガス11の種類や化学的性状を変えることによって、熱分解生成物の分解生成段階での性状を調整し無害化することが出来る。
【0035】
更に、電磁波照射装置32から照射される電磁波によって円筒2の内側の廃FRP片は加熱されるため、熱分解を早めることができる。また、バネ33は遠心力と重力との変動によって微小振動してバネ33に張り付いた廃FRP片を微小振動させて熱分解を早めることができる。
【0036】
〔実施の形態の効果〕
1)横置円筒2の回転数を調整し、廃FRP片に遠心力を与え、一回転毎の(遠心力+重力)と(遠心力−重力)との変動により振動させ、廃FRP片間に加熱ガス11を均等に浸透させるので、廃FRP片の熱分解を効率良く行なうことができる。
2)廃FRP片の熱分解に必要な熱量を加熱ガス11の温度と流量とを調整することによって廃FRP片の熱分解の分解速度を調整できる。
3)廃FRP片の熱分解が低温一定温度で処理できるため、熱分解生成物の成分が安定していて再生利用が容易になる。
4)円筒2の回転により廃FRP片の非分解成分のガラス繊維が膨張せず、低温処理のため強度の劣化が少なく再利用することが容易になる。
5)廃FRP片のガス化成分等を冷却分留し、廃FRP片の熱分解用加熱ガス11の加熱用熱源として未留ガスやスチレン等は再利用できるので、リサイクル効率が良い。
6)廃FRP片の熱分解生成物を分離分留し、加熱ガス等の凝縮分離により加熱処理がほぼ閉鎖された循環系内で処理され、更に加熱ガス11の種類や化学的性状を変えて熱分解するため有害物質を外部に排出することがない。
7)円筒2の回転により廃FRP片を振動させるため、振動装置が単純で騒音が少ない。また、回転運動のため動力消費を少なくすることができる。
8)円筒2に案内羽根23a、23b、23c、・・・により廃FRP片のガス化成分等11aの流れを強制することができ、外筒2A内の温度を均一化して廃FRP片の熱分解効率を高くすることができる。
9)円筒2内に隔室25a、25b、25c、・・・を設けたことにより廃FRP片を均等に充填することができ、円筒2を補強でき、回転起動時の偏りを制限できる。また、廃FRP片の温度むらをなくし均一に廃FRP片を熱分解できる。
10)加熱ガス11に水蒸気を用いてガス化成分等11b、11cを分留する冷却方法に、水を直接噴霧して熱交換させることによって熱交換効率を良くすることができる。また、冷却分留装置14及び二次冷却分留装置15を単純化でき、熱交換の速度が早く、噴霧量の調整によって廃FRP片のガス化成分の分留温度のコントロールが容易になる。
11)炉3内に燃焼室20を設け、炉3が外筒2Aを内包することにより外筒2Aを外側から加熱保温ができる。また、未留ガス等不要残さ物を燃焼室20で高温焼却して完全燃焼させ、加熱ガス11の加熱源として利用することができる。
12)気液分離器28を設けることにより循環ポンプ16に液状成分(水など)の流入を制限でき、また気液分離器28内に飽和水28bなど飽和状態の液体が存在することによって系内の圧力変動を緩和することができる。
【0037】
【発明の効果】
1)横置円筒の回転数を調整し廃プラスチック片に遠心力を与え、一回転毎の(遠心力+重力)と(遠心力−重力)との変動により振動させ、廃プラスチック片に加熱ガスを均等に浸透させることにより熱伝達が向上し、廃プラスチック片の熱分解可能な低温の一定温度で効率良く熱分解させることができる。
2)廃プラスチック片の熱分解に必要な熱量を、加熱ガスの温度と流量とを加減することによって熱分解の分解速度を調整することが出来る。
3)廃プラスチック片の熱分解生成物に有害物質が生成される可能性のある場合などに、加熱ガスの種類や化学的性状を変えて供給し、熱分解生成物の性状を調整し無害化することが可能となる。
4)廃プラスチック片の熱分解が一定温度で処理できるため、熱分解生成物の成分が安定していて、液状成分やガス化成分が冷却分留された物質の再生利用が容易になる。
5)円筒の回転数調整により、廃プラスチック片の非分解成分のガラス繊維等が膨張せず、低温処理のため強度の劣化が少なく再利用することが容易になる。
6)廃プラスチック片の熱分解生成物を分離分留、加熱ガス等の凝縮分離により加熱処理がほぼ閉鎖された循環系内で処理されるため有害物質を排出することがない。
7)円筒の回転により廃プラスチック片を振動させるため、振動装置が単純で騒音が少ない。また、回転運動のため動力消費を少なくすることができる。
8)円筒に案内羽根をつけることにより廃プラスチック片の熱分解生成物の流れを強制することができ、回転系内の温度を均一化して廃プラスチック片の熱分解効率を高くすることができる。
9)円筒内に隔室を設けたことにより廃プラスチック片を均等に充填することができ、円筒を補強し、回転起動時の偏りを制限できる。また、廃プラスチック片の温度むらをなくし、均一に廃プラスチック片を熱分解できる。
10)円筒の内側に電磁波を照射する電磁波照射装置を設けたことにより廃プラスチック片の熱分解を早めることができる。
11)円筒の内周面に適宜な間隔でバネを設けたことにより、バネは遠心力と重力との変動によって微小振動してバネに張り付いた廃プラスチック片を微小振動させて熱分解を早めることができる。
12)加熱ガスに水蒸気等不活性なガスを用いることにより、熱分解生成物の酸化や燃焼及び爆発を防止することができる。
13)ほぼ大気圧の下で加熱処理できるため装置の構造が簡単で製造コストを低減できる。
以上述べたような、本発明によって廃プラスチック片を効率良く加熱処理することができる。
また、本発明によって得られた処理物を効率良く再生利用することが出来る。
【図面の簡単な説明】
【図1】本発明の実施の形態−1の横断面図である。
【図2】本発明の実施の形態−2乃至実施の形態−4の横断面図である。
【図3】図2の III−III 矢視断面図である。
【図4】本発明の実施の形態−5及び実施の形態−6の横断面図である。
【図5】図4のV−V矢視断面図である。
【符号の説明】
1:中空軸、1a:孔
2:円筒、2A:外筒
2a:孔、2b:前板、2c:後板
3:炉、3a:前壁、3b:後壁、3c:排出口
3A:ハッチ機構
4:加熱ガス供給源
5:加熱ガス供給パイプ、5a:ガス加熱管
6:中空回転軸
7:回転軸
8:回転用動力
9、9a:脱着軸受
10:回転駆動軸
11:加熱ガス
11a、11b、11c、11d、11e、11f、11g、11h、11i:ガス化成分等
12a、12b、12c、12d、12e、12f、12g、12h、12i:誘導管
13:貯留槽
14:一次冷却分留装置
15:二次冷却分留装置
16:循環ポンプ
17:排気管、17a:排気バルブ
18:流量調整バルブ
19:給気管、19a:給気バルブ
20:燃焼室、20a:燃焼室上床、20b:燃焼ガス排出口
21:燃焼装置
22:加熱室
23a、23b、23c:案内羽根
24a、24b、24c:仕切板
25a、25b、25c:隔室
26:一次冷却分留装置の噴霧ノズル
27:二次冷却分留装置の噴霧ノズル
28:気液分離器、28a:熱交換装置、28b:飽和液
29:主凝縮器
30:空気供給管、30a:空気噴出孔
31:空気供給装置
32:電磁波照射装置
33:バネ
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to waste plastics having poor heat conductivity in recycling composite waste plastics (hereinafter abbreviated as waste plastics).Pyrolysis methodBelongs to.
  In particular, the present invention is required to recycle waste FRP that is currently a problem, and can be used in this field.
[0002]
[Prior art]
Conventionally, a rotary kiln furnace that thermally decomposes waste plastic is known, and the waste plastic is thermally decomposed using a rotary kiln furnace or the like.
[0003]
[Problems to be solved by the invention]
However, when pyrolyzing waste plastics in a rotary kiln furnace, etc., the remaining core material of non-decomposable components such as glass fibers that make up the waste plastic itself rotates, which expands into a cotton-like shape and closes the furnace. Had reduced its ability. In addition, since the remaining core material expands and is taken out in a cotton shape, it needs to be shaped when reused, which has been an obstacle to reuse. Furthermore, since the furnace temperature is not uniform, the strength of the remaining core material has been deteriorated due to the high temperature treatment, which has hindered reuse.
[0004]
  The present invention has been devised in view of the problems as described above, and has been devised in order to solve the problems. The object of the present invention is to substantially remove the non-decomposed component (residual core material) in the thermal decomposition of waste plastic. The waste plastics with poor heat conduction are pyrolyzed at a temperature close to the pyrolysis temperature as much as possible to prevent the residual core material from deteriorating and thermally decomposed. Horizontal cylindrical rotating waste plastic that stabilizes the properties of the product, cools and fractionates the gasification components of the pyrolysis products at their respective condensation temperatures, and recycles them together with the liquid components of the pyrolysis productsPyrolysis methodIs to provide.
[0009]
[Means for Solving the Problems]
  To achieve the above objectives,Claim1Horizontal cylinder rotating wasteFRPThe thermal decomposition method of this is discarded in a rotating container placed horizontally in the furnace.FRPA suitable amount is filled and heated gas is supplied while rotating around the horizontal axis. At the beginning of rotation, the rotating container is rotated at a low speed to dispose of the waste in the container.FRPLet the pieces fall freely and dispose of the heated gas in the same container.FRPInfiltrate evenly throughout the piece and abandon after reaching the pyrolysis temperatureFRPThe rotation of the rotating container is increased so that the piece does not fall freely and is discarded by its centrifugal force.FRPAffix the piece to the inner peripheral surface of the rotating containerFRPWaste that is stuck to the inner peripheral surface of the rotating container using centrifugal force and gravity fluctuations while preventing the piece from rotatingFRPIt consists of a means for thermally decomposing the piece by internal vibration to improve heat transfer with a heating medium such as a heated gas or a thermal decomposition product.
[0010]
  That is, the present invention includes a horizontally long hollow shaft having a hole in the outer periphery, a cylinder arranged coaxially, having a hole in the outer periphery, openable at one end and closed at the other end, and enclosing the cylinder and taking in and out the cylinder. A furnace having an opening / closing part for opening and partly provided with an opening for discharging heated gas and pyrolysis products, a heated gas supply source connected to the hollow shaft, and the hollow shaft and the cylinder are rotated. Horizontal cylindrical rotating waste plastic composed of a power sourcePyrolysis methodTherefore, it is suitable for recycling waste plastic, particularly waste FRP.
[0011]
  Configured like thisThermal decomposition methodThe cylinder openable side is opened and filled with waste plastic pieces and then closed, the furnace opening and closing part is sealed, the hollow shaft and the cylinder are rotated by a power source, and the change in centrifugal force and gravity is applied to the waste plastic pieces. While being supplied, the heated gas having reached the pyrolysis temperature is continuously supplied from the heated gas supply source to the hollow shaft. The heated gas creates a flow in the circumferential direction from the center of the cylinder through the hole of the hollow shaft, heats the waste plastic piece, pyrolyzes it, and discharges it from the opening of the furnace through the hole on the outer periphery of the cylinder. . In this manner, the waste plastic piece is separated into a non-decomposed component (residual core material) and a gasification component or a liquid component that is a thermal decomposition product.
[0012]
At the same time, by adjusting the rotational speed of the cylinder to cause the centrifugal force to act on the waste plastic piece more than gravity and to prevent dropping due to gravity, the remaining core material is separated in an almost intact shape. Also, by rotating the cylinder, the vibration of centrifugal force and gravity and the elasticity of the waste plastic piece are combined to vibrate, and the heated gas is uniformly permeated between the waste plastic pieces to improve the heat transfer, and the waste plastic pieces The thermal decomposition is efficiently carried out at as low a temperature as possible.
[0013]
The heated gas and the pyrolysis product are discharged into the furnace from the hole in the outer peripheral portion of the cylinder, and are discharged from a part of the opening of the furnace. A pipe is provided at the opening in a part of the furnace to separate the liquid component of the pyrolysis product, and the gasification component of the pyrolysis product and the heated gas are sent to the cooling device, and the gasification component is separated. The fraction is cooled and distilled at a condensation temperature of 2 to recycle. On the other hand, the non-decomposed component (residual core material) is opened and reused by opening the openable / closable part of the furnace, opening the openable / closable part of the cylinder, and out of the cylinder.
[0014]
In addition, by providing guide vanes on the outer periphery of the cylinder, the pyrolysis products discharged from the outer peripheral hole of the cylinder are forced to flow and rotate in the furnace, so heat exchange between the furnace and the cylinder can be performed, The temperature of the furnace and the cylinder is made uniform to efficiently recover the pyrolysis product.
Furthermore, by providing a plurality of partition plates radially in the cylinder at equal intervals, the cylinder can be reinforced and the cylinder can be uniformly filled with waste plastic pieces, and the bias at the start of rotation can be limited. As a result, the heated gas hitting the waste plastic piece becomes uniform, and the thermal decomposition of the waste plastic piece becomes more efficient.
[0015]
By irradiating the inside of the cylinder with electromagnetic waves of an appropriate frequency, the heated gas and the thermal decomposition product are vibrated to generate thermal energy, and the waste plastic piece can be heated and thermally decomposed.
[0016]
Further, by providing a spring having an appropriate elasticity at an appropriate position inside the cylinder, it is possible to force the vibration of the waste plastic piece, and to correct the nonuniformity of thermal decomposition due to the portion in the cylinder. Furthermore, the number of rotations per minute of the cylinder is increased to increase the number of internal vibrations per minute of the waste plastic piece, thereby making thermal decomposition more efficient.
[0017]
Further, the decomposition rate of the thermal decomposition can be adjusted by adjusting the temperature and flow rate of the heated gas to the amount of heat necessary for the thermal decomposition of the waste plastic piece.
[0018]
In addition, when there is a possibility that harmful substances may be generated in the pyrolysis products of waste plastic pieces, it is possible to adjust the properties of the pyrolysis products by supplying different types of heating gas and chemical properties. It becomes possible.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of Embodiment-1 of the present invention.
In FIG. 1, reference numeral 1 denotes a cylindrical hollow shaft having a plurality of holes 1 a on the outer periphery. A cylinder 2 as a rotating container having a plurality of holes 2 a on the outer periphery is attached to the outer periphery of the hollow shaft 1. ing. The cylinder 2 is arranged concentrically with the hollow shaft 1. The hollow shaft 1 and the cylinder 2 are attached so as to rotate around a horizontal axis. Further, the front plate 2b at one end of the cylinder 2 is removable. 2 c is a rear plate fixed to the other end of the cylinder 2. 3 is a furnace containing the cylinder 2, and 3a is a closed hatch mechanism on the front wall of the furnace 3, and slides in the direction of the arrow in the figure. Reference numeral 3b denotes a rear wall of the furnace 3, and a heating gas supply pipe 5 communicating with the heating gas supply source 4 is provided on the rear wall 3b, and a part of the furnace 3 is discharged from the hole 2a of the cylinder 2. A discharge port 3c is provided for discharging the thermal decomposition product and the heated gas. The heated gas supply pipe 5 communicates with the hollow portion of the hollow shaft 1 through the hollow rotary shaft 6. Reference numeral 7 denotes a rotary shaft that penetrates the front wall 3a and is connected to the rotational power 8. Reference numeral 9 denotes a detachable bearing provided between the cylinder 2 and the rotary drive shaft 10.
[0020]
In the embodiment thus configured, the front wall 3a of the hatch mechanism and the detachable bearing 9 are removed, and the cylinder 2 is taken out of the furnace 3. The removed front plate 2b of the cylinder 2 is removed, and an appropriate amount of waste FRP pieces is filled and the front plate 2b is closed. Next, the cylinder 2 is placed in the furnace 3, the desorption bearing 9 is fitted in the furnace 3, and then the front wall 3 a is fitted to seal the furnace 3.
[0021]
Next, the heated gas 11 supplied from the heated gas supply source 4 is supplied into the hollow shaft 1 through the heated gas supply pipe 5 and the hollow rotary shaft 6. The heated gas 11 supplied into the hollow shaft 1 enters the cylinder 2 from the hole 1a of the hollow shaft 1 and heats the waste FRP pieces in the cylinder 2 through the holes 2a of the cylinder 2 while heating the waste FRP pieces in the cylinder 2. The gas is discharged from the discharge port 3 c of the furnace 3. When the air or the like in the cylinder 2 is discharged, the heated gas 11 that has reached the thermal decomposition temperature from the heated gas supply source 4 while driving the rotational power 8 and applying a change in centrifugal force and gravity to the waste FRP piece. Continuously supplied to the hollow shaft 1. The heated gas 11 creates a flow from the hole 1a of the hollow shaft 1 to the center of the cylinder 2 and in the circumferential direction from the center to make the temperature inside the cylinder 2 uniform, and the heated FRP 11 thermally decomposes the waste FRP pieces. In this way, it is separated into a non-decomposed component (residual core material) and a gasification component or a liquid component which is a thermal decomposition product.
[0022]
In this case, the remaining core material of the waste FRP piece can be reused almost as it is by adjusting the rotational speed to the waste FRP piece by operating the rotational power 8 and causing the centrifugal force to act more than gravity and preventing the drop due to gravity. Separate with easy shape. Further, the number of revolutions to the waste FRP piece is adjusted by operating the rotational power 8, and the centrifugal force and gravity change and the elasticity of the waste FRP piece are combined to vibrate (for example, at a turning radius of 25 centimeters per minute). The waste FRP piece to be rotated 60 times receives almost zero gravity and double gravity each time.) The heated gas 11 is uniformly permeated between the waste FRP pieces. As a result, heat transfer is improved and waste FRP pieces can be efficiently thermally decomposed. On the other hand, the gasification component 11a is discharged into the furnace 3 from the hole 2a on the outer periphery of the cylinder 2 and is discharged from the discharge port 3c of the furnace 3. The gasification component 11a includes the heated gas 11 and a thermal decomposition product, and the thermal decomposition product includes a liquid component and a gasification component.
[0023]
On the other hand, non-decomposing components (residual core material) such as glass fibers remaining in the cylinder 2 remove the front wall 3a and the detachable bearing 9 again, take the cylinder 2 out of the furnace 3, remove the front plate 2b, and remove the non-decomposition component in the cylinder 2. The decomposition component (residual core material) is taken out with almost the same shape and less deterioration in strength. The extracted non-decomposed component (residual core material), that is, glass fiber or the like is reused as the FRP core material. Moreover, it is reused by mixing with cement etc. and obtaining concrete with high tensile strength.
When the non-decomposed component (residual core material) is taken out from the cylinder 2, the above operation is repeated again.
[0024]
Next, Embodiment-2 to Embodiment-4 of the present invention will be described with reference to FIGS.
FIG. 2 is a cross-sectional view of Embodiment-2 to Embodiment-4, and FIG. 3 is a cross-sectional view taken along arrow III-III. 2 and 3 that are the same as those in FIG. 1 are equivalent to those in FIG.
2 and 3, an outer cylinder 2 </ b> A is provided concentrically with the cylinder 2 on the outer peripheral side of the cylinder 2 as a rotating container that rotates around the horizontal axis. Reference numeral 9 a denotes a detachable bearing provided between the inner side of the outer cylinder 2 </ b> A and the rotary drive shaft 10. Reference numeral 12 a denotes a guide pipe for guiding a gasification component 11 a passing between the cylinder 2 and the outer cylinder 2 A. The guide pipe 12 a passes through the discharge port 3 c of the furnace 3. 13 is a storage tank for liquid components and the like provided in the middle of the induction pipe 12a, 12b is an induction pipe from the storage tank 13 to the primary cooling fractionation apparatus 14, and the primary cooling fractionation apparatus 14 is a gas flowing through the induction pipe 12b. A primary cooling fractionation device 15 for cooling the fractionated component 11b and storing the fractionated fraction, 15 is provided on the downstream side of the primary cooling fractionation device 14 and is gasified to flow from the primary cooling fractionation device 14 through the induction pipe 12c. This is a secondary cooling fractionation device that cools the components 11c and stores fractionated fractions. Reference numeral 12d denotes a guide pipe for flowing the gasification component 11d from the secondary cooling fractionator 15, and the guide pipe 12d is connected to the suction side of the circulation pump 16 and communicates with the guide pipe 12e for flowing the gasification component 11e. is doing. Reference numeral 17 denotes an exhaust pipe for the gasification component 11e or the like, which is branched from the induction pipe 12e. An exhaust valve 17a is interposed in the exhaust pipe 17 and is connected to a guide pipe 12e through which the gasification component 11e on the discharge side of the circulation pump 16 flows. Reference numeral 18 denotes a flow rate adjusting valve that is interposed downstream from the branch point of the exhaust pipe 17, and 19 is an air supply pipe that is provided on the downstream side of the flow rate adjusting valve 18 and branches to the induction pipe 12 f. 19 is provided with an air supply valve 19a. The induction tube 12 f is connected to the gas heating tube 5 a of the heating gas 11. Further, 20 is a combustion chamber, 20a is a combustion chamber upper floor, 20b is a plurality of combustion gas discharge ports provided in the combustion chamber upper floor 20a, and 21 is a combustion apparatus installed in the combustion chamber 20. Reference numeral 22 denotes a heating chamber provided between the combustion chamber upper floor 20a and the outer cylinder 2A. In the heating chamber 22, a gas heating pipe 5 a penetrating the furnace 3 is disposed above the combustion gas discharge port 20 b, and the gas heating pipe 5 a is bent upward and communicates with the heating gas supply pipe 5. .
[0025]
In the embodiment thus configured, the waste FRP piece is thermally decomposed by using water vapor as the heating gas 11 in the manner shown in the embodiment-1. First, waste FRP pieces are filled into the cylinder 2 and sealed with the hatch mechanism 3A, the flow rate adjustment valve 18 is closed, the exhaust valve 17a is opened, and the cylinder 2 is filled with water vapor from the supply pipe 19 into the heating gas circulation system. Is rotated with the power 8 for rotation. In addition, the combustion device 21 is activated to ignite the fuel and start combustion in the combustion chamber 20. Next, when the air is exhausted from the exhaust pipe 17, the supply of water vapor from the air supply pipe 19 is stopped, the circulation pump 16 is started, the opening degree of the flow rate adjusting valve 18 and the exhaust valve 17a is adjusted, and the heated gas 11 Adjust the pressure and flow rate in the circulation system. Further, by adjusting the combustion device 21, the temperature and amount of the combustion gas ejected from the combustion gas discharge port 20 b that hits the gas heating pipe 5 a in the heating chamber 22 are adjusted. In this way, the temperature of the heated gas 11 is controlled to start the heat treatment.
[0026]
By this thermal decomposition, the gasified component 11a of the waste FRP piece is discharged from the hole 2a on the outer periphery of the cylinder 2 and guided to the guide pipe 12a through the space path between the cylinder 2 and the outer cylinder 2A. 13 and separated. And the gasification component etc. 11b of the induction pipe 12b is cooled by the primary cooling fractionation apparatus 14, and when the gasification component etc. 11b is cooled to about 190 degreeC, a phthalic acid etc. will be fractionated. Next, the gasification component 11c that is not fractionated by the primary cooling fractionator 14 is guided to the secondary cooling fractionator 15 via the induction pipe 12c. When the gasification component 11c is cooled to about 140 ° C., styrene and the like are fractionated. Furthermore, the gasification component 11d not fractionated by the secondary cooling fractionator 15 is guided to the induction pipe 12d and pressurized by the circulation pump 16. Then, the pressure of the gasification component 11e guided to the induction pipe 12e is adjusted by the opening degree of the exhaust valve 17a. On the other hand, the recirculated gasification component 11e is adjusted in flow rate by the opening degree of the flow rate adjusting valve 18, and the water vapor (heating gas 11) and the unreacted gas (gasified component that has not been subjected to cooling fractionation) are again treated as unreacted gas. Is referred to as the heating gas 11f to the gas heating pipe 5a and re-aired as the heating gas 11 until the heat treatment is completed.
[0027]
Next, when the heat treatment is completed, the combustion device 21 is stopped and the flow rate adjusting valve 18 is closed while the temperature of the heated gas 11 is lowered. Then, while supplying water vapor from the air supply pipe 19, the water vapor and unreacted gas are discharged from the exhaust pipe 17 to fill the cylinder 2 with new water vapor. Next, the supply of water vapor from the supply pipe 19 is stopped, the circulation pump 16 is stopped, the rotational power 8 is stopped, and the rotation of the cylinder 2 is stopped. Further, with the cooling of the furnace 3, the inside of the cylinder 2 is replaced with air from the air supply pipe 19 to open the hatch mechanism 3A.
In this case, if unreacted gas discharge is an environmental problem, water vapor and unreacted gas are separately stored in a gas processing device (not shown) and burned as a heating heat source for the heated gas at the time of re-operation in the present embodiment. .
[0028]
Embodiment 3 of the present invention will be described.
3, reference numerals 23a, 23b, 23c,... Are a plurality of guide vanes provided on the outer peripheral surface of the cylinder 2 at appropriate intervals in the circumferential direction. The guide blades 23 a, 23 b, 23 c,... Provided at appropriate intervals in the circumferential direction are extended in the axial direction of the cylinder 2.
Because of the guide vanes 23a, 23b, 23c,..., The gasification component 11a discharged from the hole 2a of the cylinder 2A rotates in the outer cylinder 2A while being forced to flow, so the outer cylinder 2A and the cylinder 2 can be exchanged with heat to equalize the temperature inside the outer cylinder 2A. As a result, the thermal decomposition efficiency of the waste FRP piece can be increased.
[0029]
Embodiment 4 of the present invention will be described.
3, 24a, 24b, 24c,... Are partition plates provided in a plurality of radial shapes in the axial direction inside the cylinder 2. In FIG. The cylinder 2 is reinforced by the partition plates 24a, 24b, 24c,... And divided into a plurality of compartments 25a, 25b, 25c,. Can be limited. Further, the temperature unevenness of the heated gas 11 hitting the waste FRP piece is reduced, and the reuse of the waste FRP piece is made more efficient.
In addition, in order to improve the alternating current of the heating gas 11 between 25a, 25b, 25c, ..., you may provide a some hole in the partition plates 24a, 24b, 24c, ....
[0030]
Next, Embodiment-5 and Embodiment-6 of the present invention will be described with reference to FIGS.
FIG. 4 is a cross-sectional view of Embodiment-5 and Embodiment-6.
FIG. 5 is a cross-sectional view taken along the line VV.
4 and 5 that are the same as those in FIGS. 1 to 3 are equivalent to those in FIGS.
Reference numeral 26 denotes a spray nozzle of the primary cooling fractionator. Reference numeral 27 denotes a spray nozzle of the secondary cooling fractionator. 28 is a gas-liquid separator provided on the downstream side of the induction pipe 12d through which the gasification component 11d from the secondary cooling fractionator 15 flows and a condenser of the gasification component 11d (hereinafter referred to as a gas-liquid separator). 28a is a condenser in the gas-liquid separator 28, which is a heat exchange device for the gasification component 11d and the like, and 28b is a saturated liquid in which the gasification component 11d is liquefied. Further, 12 g is an induction pipe of 11 g of gasified components and the like separated by the gas-liquid separator 28 and is connected to the suction side of the circulation pump 16. Reference numeral 12 h denotes a gasification component 11 h induction pipe pressurized by the circulation pump 16 and is connected to the discharge side of the circulation pump 16. Reference numeral 29 denotes a main condenser of the unreacted gas and the heated gas which is branched to the induction pipe 12h and connected to the exhaust pipe 17 having an exhaust valve 17a interposed therebetween.
[0031]
In the embodiment configured as described above, the spray water (the latent heat of evaporation of water and the pyrolysis gas) in which the ejection amount is adjusted from the spray nozzle 26 of the primary cooling fractionator in the manner described in the above embodiment-2. The heat is exchanged with the latent heat of condensation.) Is directly sprayed on the gasification component 11b and the like is cooled and fractionated. In addition, the gasification component 11c or the like led to the secondary cooling fractionator 15 through the induction pipe 12c is sprayed with spray water directly from the spray nozzle 27 of the secondary cooling fractionator to cool and fractionate. Further, the gasified component 11d not fractionated by the secondary cooling fractionator 15 is again separated into the gasified component 11g and the liquid component by the gas-liquid separator 28 through the induction tube 12d. Further, the sprayed and evaporated water vapor is cooled by a heat exchange device 28a installed in the gas-liquid separator 28, recovered as saturated water 28b, and stored in a certain amount in the gas-liquid separator 28 while being reused as spray water ( The saturated liquid evaporates and stabilizes the pressure in the vessel when the pressure drops. Further, the gasification component 11g is guided to the induction pipe 12g and pressurized by the circulation pump 16, and the pressure of the gasification component 11h guided to the induction pipe 12h is adjusted by the opening degree of the exhaust valve 17a. 17 is exhausted. A part of the gasified component 11h is appropriately condensed and separated by the main condenser 29. On the other hand, the recirculated gasification component 11i of the induction pipe 12i is adjusted to the flow rate by the opening degree of the flow adjustment valve 18, and is again guided to the gas heating pipe 5a as the heated gas (water vapor and unreacted gas) 11i and retransmitted. Let me know.
[0032]
When the heat treatment is completed, the flow rate adjusting valve 18 is closed, new water vapor is supplied from the air supply pipe 19, and 11 g of the gasification component containing the newly supplied water vapor is supplied to the exhaust pipe 17 using the circulation pump 16. Is injected into the main condenser 29, and water vapor is liquefied to separate unreacted gas. In this way, the unreacted gas is also separated and stored and reused as a heating source.
[0033]
Embodiment 6 of the present invention will be described.
4 and 5, reference numeral 30 denotes an air supply pipe having a plurality of air ejection holes 30a. The air supply pipe 30 is provided in the heating chamber 22 below the gas heating pipe 5a, and a part thereof is heated. It passes through the chamber 22 and is connected to the air supply device 31 outside the furnace 3.
A plurality of electromagnetic wave irradiation devices 32 that irradiate the inside of the cylinder 2 with electromagnetic waves are provided on the outer peripheral surface of the hollow shaft 1 at appropriate intervals in the circumferential direction. Further, a plurality of springs 33 are provided at equal intervals over the entire inner peripheral surface of the cylinder 2. For example, a plate spring is used as the spring 33.
[0034]
In such a configuration, in order to control the temperature of the heating gas 11, the air supplied from the air supply device 31 is ejected from the air ejection hole 30 a of the air supply pipe 30 to the gas heating pipe 5 a heated by the combustion gas. Thus, the temperature of the heated gas 11 in the gas heating pipe 5a can be controlled to a higher degree by adjusting the amount of air ejected from the air ejection hole 30a. Thus, by adjusting the temperature and flow rate of the heating gas 11, the amount of heat given to the waste FRP piece by the heating gas 11 can be adjusted, and the pyrolysis gasification reaction rate can be adjusted. In addition, when there is a possibility that harmful substances are generated in the thermal decomposition product of the waste FRP piece, the property of the thermal decomposition product in the decomposition generation stage is changed by changing the type and chemical properties of the heated gas 11. It can be adjusted and detoxified.
[0035]
Furthermore, since the waste FRP piece inside the cylinder 2 is heated by the electromagnetic wave irradiated from the electromagnetic wave irradiation device 32, thermal decomposition can be accelerated. Further, the spring 33 can be vibrated by a change in centrifugal force and gravity, and the waste FRP piece stuck to the spring 33 can be vibrated minutely to accelerate thermal decomposition.
[0036]
[Effect of the embodiment]
1) Adjust the number of rotations of the horizontal cylinder 2 to give centrifugal force to the waste FRP pieces, and vibrate by the fluctuation of (centrifugal force + gravity) and (centrifugal force-gravity) every rotation, and between the waste FRP pieces Since the heated gas 11 is permeated evenly, the waste FRP pieces can be thermally decomposed efficiently.
2) The decomposition rate of the thermal decomposition of the waste FRP piece can be adjusted by adjusting the temperature and flow rate of the heating gas 11 with the amount of heat necessary for the thermal decomposition of the waste FRP piece.
3) Since the thermal decomposition of the waste FRP pieces can be processed at a low temperature and a constant temperature, the components of the thermal decomposition products are stable and can be easily recycled.
4) The glass fiber of the non-decomposed component of the waste FRP piece does not expand due to the rotation of the cylinder 2, and it is easy to recycle due to low temperature treatment with little deterioration in strength.
5) Since the gasification component etc. of the waste FRP piece is cooled and fractionated, and the raw gas, styrene, etc. can be reused as the heat source for heating the heating gas 11 for thermal decomposition of the waste FRP piece, the recycling efficiency is good.
6) The thermal decomposition products of the waste FRP pieces are separated and fractionated, processed in a circulation system in which the heat treatment is almost closed by condensation separation of heated gas, etc., and further, the kind and chemical properties of the heated gas 11 are changed. No harmful substances are discharged to the outside due to thermal decomposition.
7) Since the waste FRP piece is vibrated by the rotation of the cylinder 2, the vibration device is simple and the noise is low. Moreover, power consumption can be reduced due to the rotational motion.
8) The flow of the gasification component 11a etc. of the waste FRP piece can be forced to the cylinder 2 by the guide vanes 23a, 23b, 23c,..., And the temperature of the waste FRP piece is made uniform by uniformizing the temperature in the outer cylinder 2A. Decomposition efficiency can be increased.
9) By providing the compartments 25a, 25b, 25c,... In the cylinder 2, the waste FRP pieces can be filled uniformly, the cylinder 2 can be reinforced, and the bias at the time of starting rotation can be limited. Further, the temperature variation of the waste FRP piece can be eliminated and the waste FRP piece can be thermally decomposed uniformly.
10) The heat exchange efficiency can be improved by spraying water directly and performing heat exchange in a cooling method in which the gasification components 11b and 11c are fractionally distilled using steam as the heating gas 11. Moreover, the cooling fractionator 14 and the secondary cooling fractionator 15 can be simplified, the heat exchange speed is fast, and the fractionation temperature of the gasification component of the waste FRP piece can be easily controlled by adjusting the spray amount.
11) The combustion chamber 20 is provided in the furnace 3, and the furnace 3 encloses the outer cylinder 2A, whereby the outer cylinder 2A can be heated and insulated from the outside. Further, unnecessary residues such as unrunned gas can be incinerated at high temperature in the combustion chamber 20 and completely burned, and can be used as a heating source of the heated gas 11.
12) By providing the gas-liquid separator 28, the inflow of the liquid component (such as water) can be restricted to the circulation pump 16, and the presence of a saturated liquid such as saturated water 28b in the gas-liquid separator 28 The pressure fluctuation can be reduced.
[0037]
【The invention's effect】
1) Adjust the rotational speed of the horizontal cylinder to give centrifugal force to the waste plastic piece, vibrate it by the fluctuation of (centrifugal force + gravity) and (centrifugal force-gravity) every rotation, and heat the waste plastic piece By uniformly infiltrating the resin, the heat transfer is improved, and the waste plastic piece can be efficiently thermally decomposed at a constant temperature that is low enough to be thermally decomposed.
2) The decomposition rate of thermal decomposition can be adjusted by adjusting the temperature and flow rate of the heated gas to the amount of heat necessary for the thermal decomposition of the waste plastic piece.
3) When there is a possibility that harmful substances may be generated in the pyrolysis products of waste plastic pieces, supply by changing the type and chemical properties of the heated gas and adjusting the properties of the pyrolysis products to make them harmless It becomes possible to do.
4) Since the thermal decomposition of the waste plastic piece can be processed at a constant temperature, the components of the thermal decomposition product are stable, and the recycling of the substance obtained by cooling and fractionating the liquid component and the gasification component is facilitated.
5) By adjusting the rotational speed of the cylinder, the glass fiber or the like of the non-decomposing component of the waste plastic piece does not expand, and the low-temperature treatment makes it easy to reuse because there is little deterioration in strength.
6) Since the thermal decomposition product of the waste plastic piece is processed in a circulation system in which the heat treatment is almost closed by separation / distillation, condensation of heated gas, etc., no harmful substances are discharged.
7) Since the waste plastic piece is vibrated by the rotation of the cylinder, the vibration device is simple and the noise is low. Moreover, power consumption can be reduced due to the rotational motion.
8) By attaching guide vanes to the cylinder, the flow of the pyrolysis product of the waste plastic piece can be forced, and the temperature in the rotating system can be made uniform to increase the thermal decomposition efficiency of the waste plastic piece.
9) By providing the compartment in the cylinder, it is possible to uniformly fill the waste plastic piece, to reinforce the cylinder, and to limit the bias at the start of rotation. Further, the temperature unevenness of the waste plastic piece can be eliminated, and the waste plastic piece can be thermally decomposed uniformly.
10) By providing the electromagnetic wave irradiation device for irradiating the electromagnetic wave inside the cylinder, the thermal decomposition of the waste plastic piece can be accelerated.
11) By providing springs on the inner peripheral surface of the cylinder at appropriate intervals, the springs vibrate slightly due to fluctuations in centrifugal force and gravity, and the waste plastic pieces stuck to the springs vibrate slightly to accelerate thermal decomposition. be able to.
12) By using an inert gas such as water vapor as the heating gas, oxidation, combustion and explosion of the thermal decomposition product can be prevented.
13) Since the heat treatment can be performed under almost atmospheric pressure, the structure of the apparatus is simple and the manufacturing cost can be reduced.
As described above, according to the present invention, waste plastic pieces can be efficiently heat-treated.
Further, the processed product obtained by the present invention can be efficiently recycled.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of Embodiment-1 of the present invention.
FIG. 2 is a cross-sectional view of Embodiment-2 to Embodiment-4 of the present invention.
3 is a cross-sectional view taken along arrow III-III in FIG. 2;
FIG. 4 is a cross-sectional view of Embodiment-5 and Embodiment-6 of the present invention.
5 is a cross-sectional view taken along arrow VV in FIG. 4;
[Explanation of symbols]
1: hollow shaft, 1a: hole
2: cylinder, 2A: outer cylinder
2a: hole, 2b: front plate, 2c: rear plate
3: furnace, 3a: front wall, 3b: rear wall, 3c: outlet
3A: Hatch mechanism
4: Heated gas supply source
5: heating gas supply pipe, 5a: gas heating pipe
6: Hollow rotating shaft
7: Rotating shaft
8: Power for rotation
9, 9a: Desorption bearing
10: Rotation drive shaft
11: heated gas
11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h, 11i: gasification components, etc.
12a, 12b, 12c, 12d, 12e, 12f, 12g, 12h, 12i: induction tube
13: Reservoir
14: Primary cooling fractionator
15: Secondary cooling fractionator
16: Circulation pump
17: exhaust pipe, 17a: exhaust valve
18: Flow rate adjustment valve
19: Air supply pipe, 19a: Air supply valve
20: Combustion chamber, 20a: Upper floor of combustion chamber, 20b: Combustion gas discharge port
21: Combustion device
22: Heating chamber
23a, 23b, 23c: guide vanes
24a, 24b, 24c: Partition plate
25a, 25b, 25c: compartment
26: Spray nozzle of primary cooling fractionator
27: Spray nozzle of secondary cooling fractionator
28: Gas-liquid separator, 28a: Heat exchange device, 28b: Saturated liquid
29: Main condenser
30: Air supply pipe, 30a: Air ejection hole
31: Air supply device
32: Electromagnetic wave irradiation device
33: Spring

Claims (8)

炉内に横置された回転容器に廃FRP片を適当量充填して水平軸回りに回転させながら加熱ガスを供給すると共に、回転初期においては回転容器を低速で回転して同容器内の上記廃FRP片を自由落下させて加熱ガスを同容器内の廃FRP片全体に均等に浸透させ、熱分解温度に達した後は廃FRP片が自由落下しないように回転容器の回転を高めてその遠心力で廃FRP片を回転容器の内周面に張り付けて廃FRP片が自転するのを防ぐと共に、遠心力と重力の変動を利用して回転容器の内周面に張り付けた廃FRP片を内部振動させ、加熱ガスや熱分解生成物などの熱媒体との熱伝達を向上させて熱分解することを特徴とする横置円筒回転式廃FRPの熱分解方法。While supplying a suitable amount of waste FRP pieces to a rotating container placed in the furnace and rotating it around a horizontal axis, the rotating container is rotated at a low speed at the initial stage of rotation, and the above-mentioned inside of the container is rotated. Freely drop the waste FRP piece to allow the heated gas to uniformly penetrate the entire waste FRP piece in the container, and after reaching the thermal decomposition temperature, increase the rotation of the rotating container so that the waste FRP piece does not fall freely. with waste FRP pieces stuck waste FRP pieces to the inner peripheral surface of the rotating container by centrifugal force prevent the rotation, the waste FRP pieces stuck to the inner peripheral surface of the rotating container by utilizing the variation of the centrifugal force and gravity A method of thermally decomposing a horizontal cylindrical rotary waste FRP , wherein the thermal decomposition is performed by internal vibration to improve heat transfer with a heat medium such as a heated gas or a pyrolysis product. 上記廃FRP片の熱分解生成物を炉外に取り出し再生利用物として分離分留する請求項記載の横置円筒回転式廃FRPの熱分解方法。Horizontal置円cylinder rotary waste FRP method pyrolysis of claim 1, wherein the separation fractionation as recycling was removed pyrolysis products of the waste FRP strip from the furnace. 熱分解生成物や加熱ガスを排出する開口部にパイプを設け、上記パイプがガス化成分をそれぞれの凝縮温度で冷却分留する冷却装置を通過する請求項1記載の横置円筒回転式廃FRPの熱分解方法。The horizontal cylindrical rotary waste FRP according to claim 1 , wherein a pipe is provided at an opening for discharging the pyrolysis product and the heated gas, and the pipe passes through a cooling device that cools and fractionates the gasification component at each condensation temperature. Thermal decomposition method. 回転容器としての円筒の外周に適宜の隙間をあけて外筒を設けると共に、上記円筒外周面にその円周方向に適宜な間隔で廃FRP片の熱分解生成物の流れを強制する複数個の案内羽根を設けた請求項1記載の横置円筒回転式廃FRPの熱分解方法。An outer cylinder is provided with an appropriate gap on the outer periphery of a cylinder as a rotating container, and a plurality of forcing the flow of pyrolysis products of the waste FRP pieces at an appropriate interval in the circumferential direction on the outer peripheral surface of the cylinder. The thermal decomposition method of the horizontal cylinder rotation waste FRP of Claim 1 which provided the guide blade. 回転容器としての円筒の内側に、軸方向に複数個の仕切板を放射状に設けた請求項1記載の横置円筒回転式廃FRPの熱分解方法。The method for thermally decomposing horizontal cylindrical rotary waste FRP according to claim 1 , wherein a plurality of partition plates are provided radially in the axial direction inside a cylinder as a rotary container. 回転容器としての円筒の内側に熱分解を早める電磁波を照射する電磁波照射装置を設けた請求項1記載の横置円筒回転式廃FRPの熱分解方法。The thermal decomposition method of the horizontal cylinder rotation type waste FRP of Claim 1 which provided the electromagnetic wave irradiation apparatus which irradiates the electromagnetic wave which accelerates | stimulates thermal decomposition inside the cylinder as a rotation container. 回転容器としての円筒の内周面に適宜な間隔で張り付いた廃FRP片を微小振動させて熱分解を早めるバネを設けた請求項1記載の横置円筒回転式廃FRPの熱分解方法。The thermal decomposition method of a horizontal cylindrical rotary waste FRP according to claim 1, further comprising a spring for causing micro-vibration of the waste FRP pieces attached to the inner peripheral surface of a cylinder as a rotary container at an appropriate interval to accelerate thermal decomposition. 上記冷却装置の冷却分留に噴霧水を熱分解生成物のガス化成分に直接噴霧して冷却する噴霧ノズルを設けた請求項記載の横置円筒回転式廃FRPの熱分解方法。4. The thermal decomposition method for a horizontal cylindrical rotary waste FRP according to claim 3 , wherein the cooling fraction of the cooling device is provided with a spray nozzle for directly spraying spray water onto the gasification component of the thermal decomposition product and cooling it.
JP2000055166A 1999-03-12 2000-03-01 Pyrolysis method of horizontal cylindrical rotary waste FRP Expired - Fee Related JP3872247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000055166A JP3872247B2 (en) 1999-03-12 2000-03-01 Pyrolysis method of horizontal cylindrical rotary waste FRP

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10991999 1999-03-12
JP11-109919 1999-03-12
JP2000055166A JP3872247B2 (en) 1999-03-12 2000-03-01 Pyrolysis method of horizontal cylindrical rotary waste FRP

Publications (2)

Publication Number Publication Date
JP2000327830A JP2000327830A (en) 2000-11-28
JP3872247B2 true JP3872247B2 (en) 2007-01-24

Family

ID=26449627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000055166A Expired - Fee Related JP3872247B2 (en) 1999-03-12 2000-03-01 Pyrolysis method of horizontal cylindrical rotary waste FRP

Country Status (1)

Country Link
JP (1) JP3872247B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4841065B2 (en) * 2001-06-21 2011-12-21 三菱重工メカトロシステムズ株式会社 Smoke removal device for SO3
HUE029838T2 (en) * 2013-03-28 2017-04-28 Elg Carbon Fibre Int Gmbh Pyrolysis assembly and method for the recovery of carbon fibres from plastics containing carbon fibre, and recycled carbon fibres
WO2015087415A1 (en) * 2013-12-11 2015-06-18 孝 大野 Manufacturing apparatus and manufacturing method for resin composite material
CN110142107B (en) * 2019-05-21 2024-03-29 西华大学 Double-deck ball-milling jar
CN112403690B (en) * 2019-08-22 2022-06-10 晨光生物科技集团股份有限公司 Explosion-proof horizontal centrifuge
CN114014382B (en) * 2021-10-29 2023-07-07 蜂巢能源科技有限公司 Method for preparing positive electrode material by adopting supergravity sintering device, positive electrode material and lithium ion battery

Also Published As

Publication number Publication date
JP2000327830A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
KR102095746B1 (en) Oil recovery device for waste pyrolysis and recovery method
JP3872247B2 (en) Pyrolysis method of horizontal cylindrical rotary waste FRP
CN104923556B (en) For the thermal desorption firing equipment that oil-contaminated soil is repaired
KR102258647B1 (en) Device for recycling composite material comprising carbon fiber and/or glass fiber reinforcement and recycling method using the device
JP2003503201A (en) Tire deterioration device and method
WO2020241551A1 (en) System and method for treating oil sludge
KR20000070052A (en) Plastic waste decomposing apparatus
JP2020523469A (en) Method and apparatus for pressureless catalytic depolymerization of hydrocarbon-containing materials
JP2005139303A (en) Carbonizing treatment system for organic matter
US20190048166A1 (en) Hybrid processing of waste material
KR100919793B1 (en) Thickening Apparatus Using Microwave
JPH09309714A (en) Active modification of carbonaceous material and apparatus using the same
JP6729906B1 (en) Heat treatment equipment
JP3889124B2 (en) Waste plastic continuous oil making equipment, waste plastic continuous oil making method
JP2005255841A (en) Thermal decomposition apparatus
JP2023073784A (en) Waste treatment apparatus and waste treatment plant
KR102547205B1 (en) Transfer equipment for Ultrasonic pyrolysis of Polymer waste
RU2014101600A (en) DEVICE AND METHOD FOR CONTINUOUS CARBONIZATION OF WOOD CHIP OR WASTE AND OTHER CARBONED ORGANIC MATERIALS
JP4421709B2 (en) Activated carbon microwave heating device
JP2005126454A (en) Plastic treatment apparatus
JP3111156U (en) Equipment for microwave pyrolysis recovery and recovery of waste tires
KR20230122364A (en) Pyrolysis equipment for Ultrasonic waves
JP2000256672A (en) Continuous carbonization unit
JP2004189848A (en) Method and system for carbonization treatment
RU2734311C1 (en) Pyrolysis unit for continuous action and method of processing solid household wastes

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees