JP3889124B2 - Waste plastic continuous oil making equipment, waste plastic continuous oil making method - Google Patents

Waste plastic continuous oil making equipment, waste plastic continuous oil making method Download PDF

Info

Publication number
JP3889124B2
JP3889124B2 JP21427297A JP21427297A JP3889124B2 JP 3889124 B2 JP3889124 B2 JP 3889124B2 JP 21427297 A JP21427297 A JP 21427297A JP 21427297 A JP21427297 A JP 21427297A JP 3889124 B2 JP3889124 B2 JP 3889124B2
Authority
JP
Japan
Prior art keywords
inner cylinder
pretreatment
waste plastic
cylinder
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21427297A
Other languages
Japanese (ja)
Other versions
JPH1161146A (en
Inventor
健 黒木
Original Assignee
健 黒木
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 健 黒木 filed Critical 健 黒木
Priority to JP21427297A priority Critical patent/JP3889124B2/en
Publication of JPH1161146A publication Critical patent/JPH1161146A/en
Application granted granted Critical
Publication of JP3889124B2 publication Critical patent/JP3889124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃棄プラスチックを加熱分解して油化する技術に関し、特に工業用バーナーなどの燃料油としての適性が高い組成の油化物を効率的に得る油化技術に関する。
【0002】
【従来の技術】
廃棄プラスチックの油化処理については、既に多種多様な考え方や装置形態が提案されている。しかし実用的な稼働を可能としているものが未だないのが実情である。
【0003】
例えば押出し成形機の機構を応用する技術、つまり押出し成形機の特徴であるスクリューコンベヤのような連続的搬送手段による連続搬送を行ないながら加熱しつつ油化分解を連続的に行なう技術もその一つである。押出し成形機の機構を応用するについては、その機構が高度に完成した技術であることから、コンパクトな装置形態で比較的大きな処理量が可能であり、また連続的な自動処理が可能であるなどの期待が持たれ、世界各国で多数の研究開発が進められて来た。しかしその実用化がなされていないのは上記の通りである。
【0004】
押出し成形機方式も含めて、従来の油化技術がその実用稼働に至らないのには、分解過程における炭化物(カーボン)の大量発生が大きな要因の一つとなっている。即ちカーボンが多量に発生すると、これが分解反応器の内壁に付着して熱伝導を阻害し、分解反応の安定的な制御が困難となり、そのために望ましい組成の回収物を効率的に得ることが出来ず、また装置のメンテナンスに多大の労力と時間を必要とし、さらに反応過程の危険性が増すので多くの監視要員を必要とすることになる。そしてこの結果、経済性に劣り、実用機としての稼働に結び付けることができなくなる。
【0005】
また得られる回収物の組成を十分に制御できないということも実用稼働を阻害する要因となっている。即ち、回収物は、工業用バーナーなどの燃料油として適性のある成分構成であることが現実的に最も望ましい。しかるに従来技術にあっては、その回収物がカーボンの混入により低質化を招いたり、逆に過剰分解によりガソリン分の過剰を来たして燃料油としての適性を欠くなど、システムの実用的稼働に不可欠である回収物の付加価値性を高めることが出来ず、実用的なシステムとしての稼働に結び付けることができないのが実情である。
【0006】
以上のように廃棄プラスチックの油化技術を実用的なシステムとするには、カーボンの発生防止や回収物の組成制御が不可欠である。そしてそのためには、ポリマーの分解やカーボン発生のメカニズムについての正確な知識と、これに基づいた適切な対応が当然に求められるが、従来の技術は、何れもこれらの点に不十分なものがあり、カーボンの発生を有効に防止することができず、また回収物の組成制御を有効に行なうことが出来ていなかったと考えられる。
【0007】
このような観点から本願発明者は、ポリマーの分解及びカーボンの発生のメカニズムについて、より深く研究分析を行ない、以下のような知見を得た。先ずポリマーの油化分解であるが、これは、廃棄プラスチックの固形ポリマーが溶融して液相ポリマーとなり、それから液相ポリマーがさらに加熱を受けることによりポリマーの高次構造が壊れて低次構造に移り、この状態で初めて分解を生じるようになり、そして分解を生じると分解温度などに応じた種々の分子量分布を持つ気化物が発生し、これを冷却することで一定の組成を持った回収物が得られる、という一連の過程を経て生じる。そして回収物の組成に最も大きく影響するのは液相ポリマーに対する加熱温度の制御乃至分解反応の制御であり、したがって液相ポリマーに対する温度制御乃至分解反応制御が回収物の組成にとって最も重要な要素となる。
【0008】
次にカーボンの発生は、分解で発生した気化物、特に低分子化の進んだ気化物がさらに過剰の加熱を受ける場合にその殆どが発生する。しかるに、従来の技術は何れも気化物が固形ポリマーや液相ポリマーに閉じ込められたり包み込まれたりして過剰加熱を逃れ得ないような条件で処理を行なっており、このことがカーボンの大量発生の最大の原因となっている。したがって液相ポリマーから生じる気化物を素早く液相ポリマーなどから分離させて過剰加熱に曝される状態をなくしてやることが最も大事なことである。
【0009】
特に、押出し成形機機構を応用した従来の技術では、スクリューの強力な搬送による圧縮力やせん断力も加熱源として利用するという押出し成形の考え方の延長から、液状化した後にも高密度な状態に圧縮して搬送するようにしており、この結果、気化物が閉じ込められてカーボンの大量発生を招き易くなり、また熱伝導率の低い液相ポリマーに厚い層を形成させることになるので、液相ポリマーの均一な温度制御に困難を来たしてしまい、回収物の組成制御を有効に行なうことが出来ていなかった。
【0010】
【発明が解決しようとする課題】
本発明は、以上のような知見に基づいてなされたものであり、廃棄プラスチックの油化装置、特に上記のような利点を期待できる押出し成形機機構を応用する連続油化装置について、カーボンの発生を有効に防止し、また望ましい組成の回収物を効率的に得るための分解制御を効果的に行なえるようにすることを目的としている。
【0011】
【課題を解決するための手段】
上記のような目的を実現するための本発明による連続油化装置は、外周に搬送羽根が設けられ且つ回転可能とされた内筒、この内筒の外周との間で反応室を形成する外筒、前記内筒の内部に設けられるコア筒、及びこのコア筒の内部に設けられる搬送羽根付きの回転軸を備えてなっている。この連続油化装置で油化処理を行なうには、コア筒の内部に供給される廃棄プラスチックを回転軸の搬送羽根によりコア筒の一方側から他方側に向けて搬送し、この搬送中の廃棄プラスチックに、内筒の内側からコア筒に供給する加熱エネルギーで加熱することにより脱塩化水素や脱シアンなどの予備処理を施し、この予備処理で得られる予備処理物を前記反応室に供給し、この反応室に供給された予備処理物を、内筒の回転により反応室内で一方側から他方側に向けて搬送しつつ、内筒の内側から反応室に供給する加熱エネルギーで溶融させて液相ポリマーとすると共に、この液相ポリマーに反応室の底で液深の浅い液層を形成させ、そして内筒の回転に応じて内筒の外周面に前記液層から液相ポリマーを掻き上げることで液相ポリマーに内筒の外周面で薄膜を形成させつつ液相ポリマーの分解・気化を生じさせる。
【0012】
このような本発明による連続油化装置の特徴の一つは、内筒の外周面で液相ポリマーに薄膜を形成させ、この薄膜化した液相ポリマーを内筒の内側からの加熱エネルギーで分解・気化させるよにしたことである。このため、分解・気化を生じようとする液相ポリマーが例えば0.5 mm以下のような薄膜で加熱源と接することになり、その全体を常に均一な温度に保つことができる。また液相ポリマーから生じる気化物を素早く液相ポリマーから離脱させて気化物が過剰加熱に曝される状態をなくしてやることができ、カーボンの発生を有効に防止することができる。さらに分解・気化のための液相ポリマーに対する加熱効率が格段に高くなり、分解効率を大幅に向上させることができる。この結果、ポリマーの分解反応を効果的に制御することが可能となり、望ましい組成の高品質な油化物を効率的に回収することができる。また装置のメンテナンスについての負担を大幅に軽減できるし、さらに反応過程の監視が実質的に不要となって無人化運転を可能とすることもできる。
【0013】
本発明による連続油化装置は、上記のような特徴の他に、例えばポリ塩化ビニルやポリアクリロニトリルなどのように加熱により塩化水素やシアンを放出するプラスチックが混ざっている混合廃棄プラスチックの油化処理を脱塩化水素などの予備処理に連続して行なえるという特徴を持つ。特に内筒の内部を利用して予備処理を施す点に特徴がり、このため予備処理と油化処理を連続的に施せる装置でありながら全体が大幅にコンパクト化し、また油化分解用の加熱エネルギーを予備処理に兼用することで大幅に省エネ化を図ることもできる。
【0014】
【実施の形態】
以下、本発明の一実施形態について説明する。本実施形態による連続油化装置は、図1に示すように、全体が円筒状で水平状態乃至若干傾斜した状態で設置される反応器1、この反応器1に廃棄プラスチックを供給するフィーダー2、及び反応器1の内部に設けてある後述の予備処理室から反応室に廃棄プラスチックを移すための移送フィーダー3を主な要素とする。
【0015】
反応器1は、外筒5、内筒6、コア筒7、及び回転軸8を外側から順に同心的に組み合わせた構造とする。外筒5と内筒6の間は所定の間隔を設けて反応室10とする。この反応室10は、外筒5と内筒6の間隔を相対的に狭くした溶融ゾーンMと広くした反応ゾーンRからなる構造とする。また反応室10には気化物送出口11を設け、この気化物送出口11から気化物を図外の回収装置に送り出せるようにする。また内筒6とコア筒7の間も所定の間隔を設けて熱風路12とし、図示せぬ加熱バーナーから吹き込ませた高温の熱風を吹き通せるようにする。さらにコア筒7と回転軸8の間も所定の間隔を設けて予備処理室14とし、この予備処理室14の始端部をフィーダー2と接続させ、また終端部を移送フィーダー3と接続させる。また予備処理室14には、そこで脱塩化水素などにより発生するガスを排気するために脱気口15を設ける。
【0016】
内筒6は、その外周にスクリューコンベア状の搬送羽根16を設けると共に、その外周に設けたギア17、17を介して駆動手段18により回転させることができるようにし、反応室10に後述のようにして供給される廃棄プラスチックやその液相ポリマーを反応室内で矢印Xの如く搬送できるようにする。
【0017】
同様に回転軸8もその外周にスクリューコンベア状の搬送羽根20を設け、且つ駆動手段21により回転させることができるようにし、予備処理室14にフィーダー2から供給される廃棄プラスチックを予備処理室内で矢印Yの如く搬送できるようにする。
【0018】
移送フィーダー3は、予備処理室14から取り込む廃棄プラスチックを適当な量について貯留しつつ反応室10に供給できるようにする。そのために取込み用のスクリューコンベア23と供給用のスクリューコンベア24、それに所定容量の貯留タンク25をからなる構造とする。また移送フィーダー3には、その周囲に内筒6の熱風路12と連通する分岐熱風路12bを設け、移動中の廃棄プラスチックの温度を保てるようにする。
【0019】
このような連続油化装置による廃棄プラスチックの油化処理は以下のようにして進められる。フィーダー2から予備処理室14に供給される固形状の廃棄プラスチックは回転軸8の搬送羽根20により矢印Y方向に連続的に搬送される。そしてこの搬送中に、熱風路12の高温の熱風からコア筒7を介して供給される加熱エネルギーにより廃棄プラスチックが250〜300℃に加熱され、廃棄プラスチックに混ざっているポリ塩化ビニルやポリアクリロニトリルについて脱塩化水素や脱シアンなどの反応を生じる。これで発生したガスは脱気口15を通じて外部に排出される。
【0020】
このように予備処理を受けた予備処理物は、予備処理室14の終端部に至ると、移送フィーダー3がスクリューコンベア23で貯留タンク25に取り込む。その一方で移送フィーダー3はスクリューコンベア24で貯留タンク25から予備処理物を定量的に反応室10に供給する。反応室10に供給された予備処理物は、内筒6の搬送羽根16により矢印X方向に連続的に搬送される。そしてこの搬送中に、熱風路12の高温の熱風から内筒6を介して供給される加熱エネルギーにより予備処理物が加熱される。反応室10における加熱温度は溶融ゾーンMと反応ゾーンRで異ならせる。それには内筒6の熱伝導率を溶融ゾーンMに対応する部分と反応ゾーンRに対応する部分で異ならせる。加熱温度は、廃棄プラスチックの主体が例えばポリスチレンであるかポリエチレンであるかなどによって異なるが、例えば触媒を用いない場合であれば、通常は溶融ゾーンが400〜500℃で反応ゾーンが450〜600℃である。
【0021】
溶融ゾーンMでは既に予備処理室14での加熱を受けて軟化している予備処理物が上記のような温度に加熱されることで溶融して液相ポリマーとなる。この液相ポリマーは搬送が進むのにつれて徐々に浅い層をなすようになり、反応ゾーンRでは、図2に見られるように、反応室10の底で液深の浅い液層Lを形成する状態となる。この状態では内筒6の回転に応じてこれに液相ポリマーが掻き上げられる。そのため液相ポリマーは内筒6の外周面で薄膜Fを形成する。そしてこの薄膜Fの状態で内筒6を介して熱風路12の高温の熱風により加熱されて分解・気化する。これにより発生する気化物は、浅い液層Lを除いて、反応室10の全体に充満しつつ、順次気化物送出口11から送り出される。
【0022】
【発明の効果】
以上説明したように本発明によると、カーボンの発生を有効に防止して、分解反応の効果的な制御が可能となり、望ましい組成の高品質な油化物を効率的に回収することができる。またポリ塩化ビニルなどが混ざっている混合廃棄プラスチックについても、効率的に処理を行なえ、同様に望ましい組成の高品質な油化物を効率的に回収することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態による連続油化装置を簡略化して示す一部断面を含む側面図。
【図2】図1中の反応器の断面図。
【符号の説明】
5 外筒
6 内筒
7 コア筒
8 回転軸
10 反応室
16 搬送羽根
20 搬送羽根
F 薄膜
L 液層
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a technique for thermally decomposing waste plastic to make it oily, and particularly to an oiling technique for efficiently obtaining an oily product having a composition suitable for a fuel oil such as an industrial burner.
[0002]
[Prior art]
Various ideas and device forms have already been proposed for the oily treatment of waste plastics. However, the reality is that there is still nothing that enables practical operation.
[0003]
For example, a technology that applies the mechanism of an extrusion molding machine, that is, a technique that continuously performs hydrocracking while heating while performing continuous conveyance using a continuous conveyance means such as a screw conveyor, which is a feature of the extrusion molding machine. It is. As for the mechanism of the extrusion molding machine, since the mechanism is a highly completed technology, a relatively large amount of processing is possible in a compact device form, and continuous automatic processing is possible. A lot of research and development has been promoted around the world. However, the practical use has not been made as described above.
[0004]
The large amount of carbides (carbon) generated during the decomposition process is one of the major reasons why conventional oil production technologies, including extrusion molding machines, do not come into practical use. In other words, when a large amount of carbon is generated, it adheres to the inner wall of the decomposition reactor and hinders heat conduction, making it difficult to stably control the decomposition reaction. Therefore, a recovered material having a desired composition can be obtained efficiently. In addition, the maintenance of the apparatus requires a great amount of labor and time, and further increases the risk of the reaction process, which requires a lot of monitoring personnel. As a result, it is inferior in economic efficiency and cannot be linked to operation as a practical machine.
[0005]
In addition, the fact that the composition of the collected product cannot be sufficiently controlled is also a factor impeding practical operation. That is, it is practically most desirable that the recovered material has a component composition suitable as a fuel oil such as an industrial burner. However, in the case of the conventional technology, the recovered material is inferior in quality due to carbon contamination, or on the contrary, the gasoline is excessively decomposed due to excessive decomposition and lacks suitability as a fuel oil. In reality, it is impossible to increase the added value of the collected material, and it cannot be linked to operation as a practical system.
[0006]
As described above, prevention of carbon generation and composition control of recovered materials are indispensable for making the plasticizing technology for waste plastic into a practical system. To that end, it is natural that accurate knowledge about the mechanism of polymer decomposition and carbon generation and appropriate measures based on this are required. However, all of the conventional techniques are insufficient for these points. It is considered that the generation of carbon could not be effectively prevented and the composition control of the recovered material could not be effectively performed.
[0007]
From this point of view, the inventor of the present application conducted a deeper research and analysis on the mechanism of polymer decomposition and carbon generation, and obtained the following knowledge. First, the oily decomposition of the polymer is that the solid polymer of the waste plastic melts into a liquid phase polymer, and then the liquid phase polymer is further heated to break the higher order structure of the polymer into a lower order structure. In this state, decomposition begins for the first time, and when decomposition occurs, vaporized substances with various molecular weight distributions depending on the decomposition temperature, etc. are generated, and this is cooled and recovered with a certain composition. It is generated through a series of processes that can be obtained. The greatest influence on the composition of the recovered material is the control of the heating temperature or the decomposition reaction for the liquid phase polymer. Therefore, the temperature control or the decomposition reaction control for the liquid phase polymer is the most important factor for the composition of the recovered material. Become.
[0008]
Next, most of the carbon is generated when the vapor generated by the decomposition, particularly the vaporized with a low molecular weight, is further subjected to excessive heating. However, all of the conventional technologies perform the treatment under conditions where the vaporized material is trapped or encapsulated in a solid polymer or liquid phase polymer and cannot escape excessive heating. It is the biggest cause. Therefore, it is most important to quickly separate the vapor generated from the liquid phase polymer from the liquid phase polymer and the like so as to eliminate the state of being exposed to excessive heating.
[0009]
In particular, in the conventional technology that applies the extruder mechanism, the compression force and shear force due to the powerful conveyance of the screw are also used as a heating source, so that the compression is compressed to a high density state even after liquefaction. As a result, the vaporized substance is confined to easily generate a large amount of carbon, and a thick layer is formed on the liquid phase polymer having low thermal conductivity. Thus, it was difficult to control the temperature uniformly, and the composition control of the recovered material could not be performed effectively.
[0010]
[Problems to be solved by the invention]
The present invention has been made on the basis of the above-described knowledge, and it is possible to generate carbon in an oil plasticizing device for waste plastics, particularly in a continuous oiling device that applies an extruder mechanism that can be expected to have the advantages described above. It is an object of the present invention to effectively prevent decomposition and to effectively carry out decomposition control for efficiently obtaining a recovered material having a desired composition.
[0011]
[Means for Solving the Problems]
The continuous oil making apparatus according to the present invention for realizing the above object is an outer cylinder that is provided with a conveying blade on its outer periphery and is rotatable, and an outer cylinder that forms a reaction chamber with the outer periphery of the inner cylinder. A cylinder, a core cylinder provided inside the inner cylinder, and a rotating shaft with a conveying blade provided inside the core cylinder are provided. In order to perform oiling with this continuous oil generator, the waste plastic supplied to the inside of the core cylinder is conveyed from one side of the core cylinder to the other side by the conveying blades of the rotating shaft, and the waste during the conveyance is discarded. The plastic is subjected to a pretreatment such as dehydrochlorination or decyanide by heating with heating energy supplied from the inside of the inner cylinder to the core cylinder, and a pretreatment product obtained by this pretreatment is supplied to the reaction chamber, The pretreatment material supplied to the reaction chamber is transported from one side to the other side in the reaction chamber by the rotation of the inner cylinder, and is melted by the heating energy supplied from the inner side of the inner cylinder to the reaction chamber. A liquid layer having a shallow liquid depth is formed at the bottom of the reaction chamber in the liquid phase polymer, and the liquid phase polymer is scraped from the liquid layer on the outer peripheral surface of the inner cylinder according to the rotation of the inner cylinder. With liquid phase polymer While forming a thin film on the outer peripheral surface of the tube causes decomposition and vaporization of the liquid phase polymer.
[0012]
One of the features of the continuous oil making apparatus according to the present invention is that a thin film is formed on the liquid phase polymer on the outer peripheral surface of the inner cylinder, and the thinned liquid phase polymer is decomposed by heating energy from the inside of the inner cylinder.・ I was trying to vaporize. For this reason, the liquid phase polymer which is going to cause decomposition and vaporization comes into contact with the heating source with a thin film of, for example, 0.5 mm or less, and the whole can always be kept at a uniform temperature. Further, it is possible to quickly remove the vapor generated from the liquid phase polymer from the liquid phase polymer, thereby eliminating the state in which the vapor is exposed to excessive heating, thereby effectively preventing the generation of carbon. Furthermore, the heating efficiency for the liquid phase polymer for decomposition and vaporization is remarkably increased, and the decomposition efficiency can be greatly improved. As a result, the decomposition reaction of the polymer can be effectively controlled, and a high-quality oily product having a desired composition can be efficiently recovered. Further, the burden on the maintenance of the apparatus can be greatly reduced, and further, the monitoring of the reaction process is substantially unnecessary, and the unmanned operation can be enabled.
[0013]
In addition to the above-described features, the continuous oil making apparatus according to the present invention is an oil treatment for mixed waste plastic in which plastics that release hydrogen chloride and cyanide are mixed by heating, such as polyvinyl chloride and polyacrylonitrile. Has the feature that it can be continuously performed in a pretreatment such as dehydrochlorination. In particular, it is characterized by the fact that pretreatment is performed using the inside of the inner cylinder. Therefore, it is a device that can perform pretreatment and oily treatment continuously, but the whole is greatly downsized, and heating energy for oily decomposition is also available. It is also possible to achieve significant energy savings by using this for pretreatment.
[0014]
[Embodiment]
Hereinafter, an embodiment of the present invention will be described. As shown in FIG. 1, the continuous oil making apparatus according to this embodiment is a reactor 1 that is entirely cylindrical and installed in a horizontal state or a slightly inclined state, a feeder 2 that supplies waste plastic to the reactor 1, The main component is a transfer feeder 3 for transferring waste plastic from a pretreatment chamber (described later) provided in the reactor 1 to the reaction chamber.
[0015]
The reactor 1 has a structure in which an outer cylinder 5, an inner cylinder 6, a core cylinder 7, and a rotating shaft 8 are concentrically combined in order from the outside. A predetermined space is provided between the outer cylinder 5 and the inner cylinder 6 to form a reaction chamber 10. The reaction chamber 10 has a structure composed of a melting zone M in which the distance between the outer cylinder 5 and the inner cylinder 6 is relatively narrowed and a reaction zone R in which the distance is widened. Further, a vaporized substance outlet 11 is provided in the reaction chamber 10 so that the vaporized substance can be sent out from the vaporized substance outlet 11 to a recovery device (not shown). A predetermined interval is also provided between the inner cylinder 6 and the core cylinder 7 to form a hot air passage 12 so that hot hot air blown from a heating burner (not shown) can be blown. Further, a predetermined interval is also provided between the core cylinder 7 and the rotary shaft 8 to form a preliminary processing chamber 14, the starting end portion of the preliminary processing chamber 14 is connected to the feeder 2, and the terminal end portion is connected to the transfer feeder 3. The pretreatment chamber 14 is provided with a degassing port 15 for exhausting gas generated by dehydrochlorination.
[0016]
The inner cylinder 6 is provided with screw conveyor-like conveying blades 16 on the outer periphery thereof, and can be rotated by driving means 18 via gears 17 and 17 provided on the outer periphery thereof. In this way, the waste plastic and its liquid phase polymer supplied can be transported as indicated by an arrow X in the reaction chamber.
[0017]
Similarly, the rotary shaft 8 is also provided with screw conveyor-like conveying blades 20 on the outer periphery thereof, and can be rotated by the driving means 21, and waste plastic supplied from the feeder 2 to the pretreatment chamber 14 is disposed in the pretreatment chamber. It can be transported as indicated by arrow Y.
[0018]
The transfer feeder 3 enables the waste plastic taken in from the pretreatment chamber 14 to be supplied to the reaction chamber 10 while storing an appropriate amount. For this purpose, the screw conveyor 23 for intake, the screw conveyor 24 for supply, and a storage tank 25 having a predetermined capacity are used. Further, the transfer feeder 3 is provided with a branch hot air passage 12b communicating with the hot air passage 12 of the inner cylinder 6 around the transfer feeder 3, so that the temperature of the waste plastic being moved can be maintained.
[0019]
The plasticizing process of waste plastic by such a continuous oil converting apparatus proceeds as follows. The solid waste plastic supplied from the feeder 2 to the pretreatment chamber 14 is continuously conveyed in the direction of arrow Y by the conveying blade 20 of the rotating shaft 8. And during this conveyance, the waste plastic is heated to 250 to 300 ° C. by the heating energy supplied from the hot hot air in the hot air passage 12 through the core cylinder 7, and polyvinyl chloride and polyacrylonitrile mixed in the waste plastic Reactions such as dehydrochlorination and desiccation occur. The generated gas is discharged to the outside through the deaeration port 15.
[0020]
When the preliminary processed material thus subjected to the preliminary processing reaches the end of the preliminary processing chamber 14, the transfer feeder 3 takes in the storage tank 25 by the screw conveyor 23. On the other hand, the transfer feeder 3 quantitatively supplies the preprocessed material from the storage tank 25 to the reaction chamber 10 by the screw conveyor 24. The pre-treatment product supplied to the reaction chamber 10 is continuously conveyed in the direction of arrow X by the conveying blade 16 of the inner cylinder 6. And during this conveyance, a preliminary-processed material is heated with the heating energy supplied through the inner cylinder 6 from the hot hot air of the hot air path 12. FIG. The heating temperature in the reaction chamber 10 is made different between the melting zone M and the reaction zone R. For this purpose, the thermal conductivity of the inner cylinder 6 is made different between a portion corresponding to the melting zone M and a portion corresponding to the reaction zone R. The heating temperature varies depending on whether the waste plastic is mainly composed of, for example, polystyrene or polyethylene. For example, when a catalyst is not used, the melting zone is usually 400 to 500 ° C and the reaction zone is 450 to 600 ° C. It is.
[0021]
In the melting zone M, the pre-processed material that has already been softened by being heated in the pre-processing chamber 14 is heated to the above temperature to melt and become a liquid phase polymer. The liquid phase polymer gradually forms a shallow layer as the conveyance proceeds, and in the reaction zone R, a liquid layer L having a shallow liquid depth is formed at the bottom of the reaction chamber 10 as shown in FIG. It becomes. In this state, the liquid phase polymer is scraped up according to the rotation of the inner cylinder 6. Therefore, the liquid phase polymer forms a thin film F on the outer peripheral surface of the inner cylinder 6. And in the state of this thin film F, it is heated and decomposed | disassembled and vaporized by the hot air of the hot air path 12 via the inner cylinder 6. FIG. The vaporized material generated thereby is sequentially sent out from the vaporized material delivery port 11 while filling the entire reaction chamber 10 except for the shallow liquid layer L.
[0022]
【The invention's effect】
As described above, according to the present invention, the generation of carbon can be effectively prevented, the decomposition reaction can be effectively controlled, and a high-quality oily product having a desired composition can be efficiently recovered. Also, mixed waste plastic mixed with polyvinyl chloride or the like can be processed efficiently, and a high-quality oily product having a desirable composition can be efficiently recovered.
[Brief description of the drawings]
FIG. 1 is a side view including a partial cross-section showing a simplified continuous oil making apparatus according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the reactor in FIG.
[Explanation of symbols]
5 Outer cylinder 6 Inner cylinder 7 Core cylinder 8 Rotating shaft 10 Reaction chamber 16 Conveying blade 20 Conveying blade F Thin film L Liquid layer

Claims (2)

外周に搬送羽根が設けられ且つ回転可能とされた内筒
この内筒の外周との間で反応室を形成するようにして、前記内筒の外部に前記内筒の長手方向にその長手方向が沿うようにして配された外筒
前記内筒の内周との間で熱風路を形成するようにして、前記内筒の内部に前記内筒の長手方向にその長手方向が沿うようにして配された、その内側を予備処理室とするコア筒
このコア筒の内部に前記コア筒の長手方向にその長手方向が沿うようにして配され且つ回転可能とされた搬送羽根付きの回転軸
前記熱風路に熱風を吹き込むことにより、前記予備処理室と前記反応室とを加熱するバーナーと、
前記予備処理室と連通するようにして前記コア筒の一方側に接続されており、そこで加熱による予備処理が行われることにより予備処理物となる廃棄プラスチックを前記予備処理室に供給するフィーダーと、
前記予備処理室と連通するようにして前記コア筒の他方側に接続されているとともに、前記反応室と連通するようにして前記外筒の他方側に接続されており、そこで加熱によって分解・気化される前記予備処理物を前記予備処理室から取出してから前記反応室に供給する移送フィーダーと、
前記反応室と連通するようにして前記外筒に接続されており、前記反応室で前記予備処理物が分解・気化されることによって発生した気化成分を取出す取り出し口と、
を備えており、
前記回転軸は、それが回転することで、前記廃棄プラスチックを、それが備える搬送羽根により前記予備処理室内で前記内筒の一方側から他方側へ搬送するようになっており、
前記内筒は、それが回転することで、前記予備処理物を、それが備える搬送羽根により前記内筒の他方側から一方側に搬送するようになっている、
廃棄プラスチックの連続油化装置。
And inner cylinder transport blade is a and rotatable provided on an outer periphery,
So as to form a reaction chamber between the outer periphery of the inner cylinder, an outer cylinder disposed so as the longitudinal direction in the longitudinal direction of the inner tube to the outside of the inner cylinder is along,
A hot air path is formed between the inner cylinder and the inner circumference of the inner cylinder, and the inner cylinder is arranged so that its longitudinal direction is along the longitudinal direction of the inner cylinder. A core cylinder and
A rotating shaft with conveying blades and is rotatable arranged that as the longitudinal direction along the interior of the core tube in the longitudinal direction of the core tube,
A burner for heating the pretreatment chamber and the reaction chamber by blowing hot air into the hot air path;
A feeder that is connected to one side of the core cylinder so as to communicate with the pretreatment chamber, and that supplies waste plastic that becomes a pretreatment object by performing pretreatment by heating to the pretreatment chamber;
It is connected to the other side of the core cylinder so as to communicate with the pretreatment chamber, and is connected to the other side of the outer cylinder so as to communicate with the reaction chamber, where it is decomposed and vaporized by heating. A transfer feeder for removing the pretreated material from the pretreatment chamber and supplying the pretreated material to the reaction chamber;
An outlet that is connected to the outer cylinder so as to communicate with the reaction chamber, and takes out the vaporized components generated by the decomposition and vaporization of the pretreated material in the reaction chamber;
With
The rotating shaft is configured to convey the waste plastic from one side of the inner cylinder to the other side in the pretreatment chamber by a conveying blade provided in the rotating shaft.
The inner cylinder is configured to convey the preliminary processed material from the other side of the inner cylinder to the one side by a conveyance blade included in the inner cylinder as it rotates.
Continuous plasticizing equipment for waste plastic .
外周に搬送羽根が設けられ且つ回転可能とされた内筒、この内筒の外周との間で反応室を形成するようにして、前記内筒の外部に前記内筒の長手方向にその長手方向が沿うようにして配された外筒、前記内筒の内周との間で熱風路を形成するようにして、前記内筒の内部に前記内筒の長手方向にその長手方向が沿うようにして配された、その内側を予備処理室とするコア筒このコア筒の内部に前記コア筒の長手方向にその長手方向が沿うようにして配され且つ回転可能とされた搬送羽根付きの回転軸を備える廃棄プラスチックの連続油化装置にて実行される方法であって、
前記予備処理室と連通するようにして前記コア筒の一方側に接続されており、そこで加熱による予備処理が行われることにより予備処理物となる廃棄プラスチックを前記予備処理室に供給するフィーダーから前記予備処理室に廃棄プラスチックを供給し、
前記熱風路に熱風を吹き込むことにより、前記予備処理室と前記反応室とを加熱し、
コア筒の内部に供給され廃棄プラスチックを回転軸の搬送羽根によりコア筒の一方側から他方側に向けて搬送しつつ、この搬送中の廃棄プラスチックを前記熱風路に吹き込んだ熱風により加熱することにより予備処理を施し、
この予備処理により得られる予備処理物を移送フィーダーにより取出して前記反応室に供給し、
前記予備処理物から生じた液相ポリマーに反応室の底で液深の浅い液層を形成させ、そして内筒の回転に応じて内筒の外周面に前記液層から液相ポリマーを掻き上げることで液相ポリマーに内筒の外周面で薄膜を形成させつつ、前記熱風路に吹き込んだ熱風により加熱することでその液相ポリマーの分解・気化を生じさせ、
分解・気化させた成分を前記反応室と連通するようにして前記外筒に接続された取り出し口から取出すにあたり、
前記予備処理室内では、前記廃棄プラスチックを前記内筒の一方側から他方側へ搬送し、
前記反応室内では、前記廃棄プラスチックを前記内筒の他方側から一方側に搬送する、
廃棄プラスチックの連続油化方法。
And inner cylinder transport blade is a and rotatable provided on the outer periphery, so as to form a reaction chamber between the outer periphery of the inner tube, a longitudinal direction in a longitudinal of the inner tube to the outside of the inner tube A hot air path is formed between the outer cylinder arranged in the direction and the inner periphery of the inner cylinder, and the longitudinal direction of the inner cylinder is aligned with the longitudinal direction of the inner cylinder. manner arranged a core barrel for the inner and pretreatment chamber, the interior longitudinally to the conveying blades whose longitudinal direction is the way arranged with and rotatable along the core tube of the core barrel A method of being carried out in a continuous plasticizer for waste plastic comprising a rotating shaft with
It is connected to one side of the core cylinder so as to communicate with the pretreatment chamber, and from the feeder that supplies waste plastic as a pretreatment material to the pretreatment chamber by performing pretreatment by heating there. Supply waste plastic to the pretreatment chamber,
By blowing hot air into the hot air path, the pretreatment chamber and the reaction chamber are heated,
While conveying toward the one side of the core tube on the other side by a waste plastic which is supplied to the inside of the core tube carrying blade of the rotary shaft, heating by hot air blown into the waste plastic in the conveying said heated air path Pre-treatment by
The pretreatment product obtained by this pretreatment is taken out by a transfer feeder and supplied to the reaction chamber,
A liquid phase polymer having a shallow liquid depth is formed at the bottom of the reaction chamber on the liquid phase polymer generated from the pretreatment product , and the liquid phase polymer is scraped up from the liquid layer on the outer peripheral surface of the inner cylinder according to the rotation of the inner cylinder. By causing the liquid phase polymer to form a thin film on the outer peripheral surface of the inner cylinder, by heating with the hot air blown into the hot air path, the liquid phase polymer is decomposed and vaporized ,
In taking out the decomposed and vaporized components from the outlet connected to the outer cylinder so as to communicate with the reaction chamber,
In the pretreatment chamber, the waste plastic is transported from one side of the inner cylinder to the other side,
Wherein in the reaction chamber, to transport the waste plastic from the other side of the inner tube to one side,
A method for continuously converting waste plastic to oil.
JP21427297A 1997-08-08 1997-08-08 Waste plastic continuous oil making equipment, waste plastic continuous oil making method Expired - Fee Related JP3889124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21427297A JP3889124B2 (en) 1997-08-08 1997-08-08 Waste plastic continuous oil making equipment, waste plastic continuous oil making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21427297A JP3889124B2 (en) 1997-08-08 1997-08-08 Waste plastic continuous oil making equipment, waste plastic continuous oil making method

Publications (2)

Publication Number Publication Date
JPH1161146A JPH1161146A (en) 1999-03-05
JP3889124B2 true JP3889124B2 (en) 2007-03-07

Family

ID=16652993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21427297A Expired - Fee Related JP3889124B2 (en) 1997-08-08 1997-08-08 Waste plastic continuous oil making equipment, waste plastic continuous oil making method

Country Status (1)

Country Link
JP (1) JP3889124B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265957A (en) * 2001-03-08 2002-09-18 Nippon Shoene Kankyo Seihin:Kk Thermal decomposition method for waste plastic liquefaction
JP4734485B2 (en) * 2005-07-01 2011-07-27 独立行政法人産業技術総合研究所 Waste plastic processing apparatus and waste plastic processing method
CN101469270B (en) * 2007-12-27 2012-08-22 牛斌 Industrial continuous plastic cracker
WO2009086655A1 (en) * 2007-12-29 2009-07-16 Bin Niu Industrial continuous pyrolizer
KR101289867B1 (en) * 2012-09-20 2013-07-30 (주)케이비친환경 Eco-friendly multi liquefaction oil-refining
KR102392544B1 (en) * 2020-11-20 2022-05-02 한국에너지기술연구원 Manufacturing device of solid refuse fuel from waste plastic

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119476B2 (en) * 1971-12-22 1976-06-17
JPS5222390B2 (en) * 1972-12-29 1977-06-17
JPS62187791A (en) * 1986-02-14 1987-08-17 Isao Fujita Method of recovering oily hydrocarbon fuel or such from plastic scrap
JPH08112580A (en) * 1994-10-14 1996-05-07 Nippon Steel Corp Continuous treatment of combined waste
JP3653111B2 (en) * 1994-12-27 2005-05-25 健 黒木 Method and apparatus for continuously converting waste plastic to continuous oil

Also Published As

Publication number Publication date
JPH1161146A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
JPS6321544Y2 (en)
KR101558432B1 (en) Device for manufacturing recycled carbon fibers, and method for manufacturing recycled carbon fibers
KR101085930B1 (en) Process and apparatus for use in recycling composite materials
US7648561B2 (en) Process and apparatus for use in recycling composite materials
JP3653111B2 (en) Method and apparatus for continuously converting waste plastic to continuous oil
JP2008285601A (en) Method for regenerative treatment of carbon fiber
JP3889124B2 (en) Waste plastic continuous oil making equipment, waste plastic continuous oil making method
JP2004035851A (en) Liquefaction apparatus
JPH11106758A (en) Method for liquefying waste plastic
KR20220083913A (en) Extrusion device for recycling waste plastic with improved melting efficiency through heat transfer oil
JP2992486B2 (en) Waste plastic decomposition equipment
EP1052279A1 (en) Apparatus for decomposing waste plastics
JP4278193B2 (en) Waste plastic thermal decomposition reactor
CN100408295C (en) Method for recycling foamed polystyrol resin
JP3655034B2 (en) Waste plastic processing method and processing equipment
JP2004083684A (en) Waste plastics treatment apparatus
KR20210095327A (en) Melting apparatus for waste plastic processing
KR102374303B1 (en) Apparatus for recycling waste material
JP2002317072A (en) Apparatus for treating waste plastic
JPH10130658A (en) Continuous method for converting plastic waste into oil
JP4024406B2 (en) Waste plastic processing equipment
WO2024157483A1 (en) Resin material thermal decomposition treatment method, resin material thermal decomposition treatment system, and vent device
JP3745662B2 (en) Polymer waste transport equipment
JP3673046B2 (en) Waste plastic decomposition equipment
KR20030028316A (en) A Oil Recovery Device Using Pyrolysis Of High Molecule Waste-plastic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees