JPH10130658A - Continuous method for converting plastic waste into oil - Google Patents

Continuous method for converting plastic waste into oil

Info

Publication number
JPH10130658A
JPH10130658A JP29021296A JP29021296A JPH10130658A JP H10130658 A JPH10130658 A JP H10130658A JP 29021296 A JP29021296 A JP 29021296A JP 29021296 A JP29021296 A JP 29021296A JP H10130658 A JPH10130658 A JP H10130658A
Authority
JP
Japan
Prior art keywords
heating plate
phase polymer
oil
liquid
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29021296A
Other languages
Japanese (ja)
Inventor
Takeshi Kuroki
健 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP29021296A priority Critical patent/JPH10130658A/en
Publication of JPH10130658A publication Critical patent/JPH10130658A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous method for converting plastic wastes into an oil, whereby the formation of carbon can be effectively prevented, and the decomposition can effectively be controlled to efficiently recover an oil product of desirable quality. SOLUTION: This method comprises heating and melting plastic wastes to form a liquid-phase polymer and decomposing and vaporizing the liquid-phase polymer to recover the formed oil. In this method, the decomposition and vaporization of the liquid-phase polymer is performed while a film F is being formed on one surface of a heating plate 2 heated by applying thereto heat energy from the other side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃棄プラスチック
を加熱分解して油化する技術に関し、特に工業用バーナ
ーなどの燃料油としての適性が高い組成の油化物を効率
的に得る油化技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for thermally decomposing waste plastics to convert the waste plastics into oil, and more particularly to an oil conversion technique for efficiently obtaining an oily product having a composition highly suitable as fuel oil for industrial burners and the like. .

【0002】[0002]

【従来の技術】廃棄プラスチックの油化処理について
は、既に多種多様な考え方や装置形態が提案されてい
る。しかし実用的な稼働を可能としているものが未だな
いのが実情である。
2. Description of the Related Art A variety of ideas and apparatus configurations have already been proposed for liquefying waste plastics. However, the fact is that there is still nothing that enables practical operation.

【0003】従来の油化技術がその実用稼働に至らない
のには、分解過程における炭化物(カーボン)の大量発
生が大きな要因の一つとなっている。即ちカーボンが多
量に発生すると、これが分解反応器の内壁に付着して熱
伝導を阻害し、分解反応の安定的な制御が困難となり、
そのために望ましい組成の回収物を効率的に得ることが
出来ず、また装置のメンテナンスに多大の労力と時間を
必要とし、さらに反応過程の危険性が増すので多くの監
視要員を必要とすることになる。そしてこの結果、経済
性に劣り、実用機としての稼働に結び付けることができ
なくなる。
[0003] One of the major factors that prevents conventional oil-forming technology from being put into practical use is the large amount of carbides generated during the decomposition process. In other words, when a large amount of carbon is generated, it adheres to the inner wall of the decomposition reactor and inhibits heat conduction, making it difficult to stably control the decomposition reaction,
As a result, it is not possible to efficiently obtain a recovered material having a desired composition, requires a great deal of labor and time for maintenance of the apparatus, and further increases the risk of the reaction process, thus requiring a large number of monitoring personnel. Become. As a result, the economy is poor, and it cannot be linked to the operation as a practical machine.

【0004】また得られる回収物の組成を十分に制御で
きないということも実用稼働を阻害する要因となってい
る。即ち、回収物は、工業用バーナーなどの燃料油とし
て適性のある成分構成であることが現実的に最も望まし
い。しかるに従来技術にあっては、その回収物が、未分
解ポリマーの混入、あるいはカーボンの混入により低質
化を招いたり、逆に過剰分解によりガソリン分の収率増
加を来たして燃料油としての適性を欠くなど、システム
の実用的稼働に不可欠である回収物の付加価値性を高め
ることが出来ず、実用的なシステムとしての稼働に結び
付けることができないのが実情である。
[0004] Further, the inability to control the composition of the obtained recovered material sufficiently is a factor that hinders practical operation. That is, it is practically most desirable that the recovered material has a component composition suitable as a fuel oil for an industrial burner or the like. However, in the prior art, the recovered product is degraded due to the incorporation of undecomposed polymer or carbon, or conversely, excessive cracking increases the gasoline yield, thereby deteriorating its suitability as a fuel oil. However, it is not possible to increase the added value of the collected material, which is indispensable for the practical operation of the system, for example, and it cannot be linked to the operation as a practical system.

【0005】以上のように、廃棄プラスチックの油化技
術を実用的なシステムとするには、カーボンの発生防止
や回収物の油質制御が不可欠である。そしてそのために
は、ポリマーの分解やカーボン発生のメカニズムについ
ての正確な知識と、これに基づいた適切な対応が当然に
求められるが、従来の技術は、何れもこれらの点に不十
分なものがあり、カーボンの発生を有効に防止すること
ができず、また回収物の油質制御を有効に行なうことが
出来ていなかったと考えられる。
[0005] As described above, in order to make the waste plastic oil liquefaction technology a practical system, it is essential to prevent the generation of carbon and control the oil quality of the recovered material. For this purpose, it is necessary to have accurate knowledge of the mechanism of polymer decomposition and carbon generation and appropriate measures based on this, but none of the conventional technologies are inadequate in these respects. It is considered that the generation of carbon could not be effectively prevented, and the control of oil quality of the recovered material could not be effectively performed.

【0006】このような観点から本願発明者は、ポリマ
ーの分解及びカーボンの発生のメカニズムについて、よ
り深く研究分析を行ない、以下のような知見を得た。先
ずポリマーの油化分解であるが、これは、廃棄プラスチ
ックの固形ポリマーが溶融して液相ポリマーとなり、そ
れから液相ポリマーがさらに加熱を受けることによりポ
リマーの高次構造が壊れて低次構造に移り、この状態で
初めて分解を生じるようになり、そして分解を生じると
分解温度などに応じた種々の分子量分布を持つ生成物が
発生し、これを冷却することで一定の油質を持った回収
物が得られる、という一連の過程を経て生じる。そして
回収物の油質に最も大きく影響するのは分解生成物の軽
質油成分の2次分解反応の制御であり、したがって液相
ポリマーを含む系での制御、特に上記の2次分解の分解
反応制御が回収物の油質にとって最も重要な要素とな
る。
[0006] From such a viewpoint, the inventor of the present application has conducted deeper research and analysis on the mechanism of polymer decomposition and carbon generation, and has obtained the following findings. The first is the liquefaction of the polymer, which involves melting the solid polymer of the waste plastic into a liquid-phase polymer, and then further heating the liquid-phase polymer to break the higher-order structure of the polymer into a lower-order structure. In this state, decomposition occurs for the first time in this state, and when decomposition occurs, products with various molecular weight distributions according to the decomposition temperature etc. are generated, and by cooling this, recovery with a certain oil quality It comes through a series of processes of obtaining things. The most important factor affecting the oil quality of the recovered product is the control of the secondary cracking reaction of the light oil component of the cracked product. Control is the most important factor for recovered oil quality.

【0007】次にカーボンの発生は、分解で発生した気
化物、特に低分子化の進んだ気化物がさらに過剰の加熱
を受ける場合にその殆どが発生する。しかるに、従来の
技術は何れも気化物が過剰加熱を逃れ得ないような条件
で処理を行なっており、このことがカーボンの大量発生
の最大の原因となっている。したがって液相ポリマーか
ら生じる気化物を素早く液相ポリマーなどから分離させ
て過剰加熱に曝される状態をなくし、さらに液相ポリマ
ーにおける加熱温度の勾配をできるだけ小さくしてやる
ことが最も大事なことである。
[0007] Next, most of carbon is generated when a vapor generated by decomposition, particularly a low molecular weight vaporized material is further heated excessively. However, all of the conventional techniques carry out the treatment under such a condition that the vaporized material cannot escape the excessive heating, and this is the largest cause of the mass generation of carbon. Therefore, it is most important that the vapor generated from the liquid phase polymer is quickly separated from the liquid phase polymer or the like to eliminate the state of being exposed to excessive heating, and that the gradient of the heating temperature in the liquid phase polymer is made as small as possible.

【0008】[0008]

【発明が解決しようとする課題】本発明は、以上のよう
な知見に基づいてなされたものであり、廃棄プラスチッ
クの油化処理について、カーボンの発生を有効に防止
し、また望ましい油質の回収物を効率的に得るための分
解制御を効果的に行なえるようにすることを目的として
いる。
DISCLOSURE OF THE INVENTION The present invention has been made based on the above-mentioned findings, and effectively prevents the generation of carbon in the liquefaction of waste plastics and recovers desirable oil quality. It is an object of the present invention to effectively perform decomposition control for efficiently obtaining a product.

【0009】[0009]

【課題を解決するための手段】上記のような目的を実現
するための本発明では、廃棄プラスチックを加熱・溶融
させて液相ポリマーとし、この液相ポリマーの分解・気
化により油化物を回収する廃棄プラスチックの連続油化
方法について、一方の側の面から加熱エネルギーを与え
て加熱しつつある加熱板の他方の側の面で薄膜を形成さ
せつつ液相ポリマーの分解・気化を生じさせるようにし
ている。
According to the present invention for achieving the above objects, waste plastics are heated and melted to form a liquid phase polymer, and oily substances are recovered by decomposition and vaporization of the liquid phase polymer. Regarding the continuous plasticization method of waste plastic, the liquid phase polymer is decomposed and vaporized while forming a thin film on the other side of the heating plate being heated by applying heating energy from one side. ing.

【0010】この連続油化方法の特徴は、加熱板におけ
る二次元的広がりを有する加熱面で液相ポリマーに好ま
しくは1mm以下のような薄膜を形成させ、この薄膜化
した液相ポリマーを加熱板の一方の側の面からの加熱エ
ネルギーの供給で分解・気化させるよにしたことであ
る。このため、分解・気化を生じようとする液相ポリマ
ーが薄膜で加熱源と密着的に接することになり、その全
体を常に均一な温度に保つことができる。つまり液相ポ
リマーにおける温度勾配を実質的にそれがない程度に非
常に小さくすることができる。また液相ポリマーから生
じる気化物を素早く液相ポリマーから離脱させて気化物
が過剰加熱に曝される状態をなくしてやることができ、
カーボンの発生を有効に防止することができる。さらに
分解・気化のための液相ポリマーに対する加熱効率が格
段に高くなり、分解効率を大幅に向上させることができ
る。この結果、ポリマーの分解反応を効果的に制御する
ことが可能となり、望ましい油質の高品質な油化物を効
率的に回収することができる。また油化装置のメンテナ
ンスについての負担を大幅に軽減できるし、さらに反応
過程の監視が実質的に不要となって無人化運転を可能と
することもできる。
The feature of this continuous oiling method is that a thin film of preferably 1 mm or less is formed on the liquid-phase polymer on the heating surface of the heating plate having a two-dimensional spread, and the thinned liquid-phase polymer is heated. Is decomposed and vaporized by the supply of heating energy from one side. For this reason, the liquid-phase polymer which is going to decompose and vaporize comes into close contact with the heating source in a thin film, and the whole can always be kept at a uniform temperature. That is, the temperature gradient in the liquid-phase polymer can be made very small to the extent that it is substantially absent. In addition, vaporized substances generated from the liquid-phase polymer can be quickly released from the liquid-phase polymer to eliminate the state in which the vaporized substance is exposed to excessive heating,
The generation of carbon can be effectively prevented. Furthermore, the heating efficiency for the liquid phase polymer for decomposition and vaporization is significantly increased, and the decomposition efficiency can be greatly improved. As a result, it becomes possible to effectively control the decomposition reaction of the polymer, and it is possible to efficiently recover a high-quality oily product having a desirable oily quality. In addition, the burden on maintenance of the oiling device can be greatly reduced, and furthermore, the monitoring of the reaction process is substantially unnecessary, and unmanned operation can be performed.

【0011】上記のような連続油化方法で用いる加熱板
は様々な形状とすることができるが、代表的な形状とし
ては、円筒形状、円錐形状、逆さ円錐形状、それに平板
形状が挙げられる。円筒形状とする場合には、円筒形加
熱板の下部を液相ポリマーの溜まり中に漬けた状態と
し、この状態で円筒形加熱板を回転させることで加熱板
の加熱面に液相ポリマーの薄膜を形成させる。そして加
熱エネルギーは円筒形加熱板の内部から供給する。この
方法は、分解しきれなかった液相ポリマーの薄膜を再び
液相ポリマー溜まりに戻すという循環的な処理となるの
で、加熱板を効率的に利用でき、処理量が多い場合に特
に適する。ただこの方法では、可動構造を必要すること
から装置が複雑になる。円錐形状や逆さ円錐形状の加熱
板を用いる方法は、円筒形加熱板に比べれば効率は低く
なるものの、比較的広い加熱面を得られ、しかも可動構
造を必要としないので、装置が簡単になる。これは中程
度の処理量に適する。平板形状の加熱板を用いる方法
は、最も簡単な装置で可能であり、小規模処理に適す
る。
[0011] The heating plate used in the above continuous oiling method can have various shapes, and typical shapes include a cylindrical shape, a conical shape, an inverted conical shape, and a flat plate shape. In the case of a cylindrical shape, the lower part of the cylindrical heating plate is immersed in the pool of the liquid-phase polymer, and in this state, the thin film of the liquid-phase polymer is heated on the heating surface of the heating plate by rotating the cylindrical heating plate. Is formed. The heating energy is supplied from inside the cylindrical heating plate. This method is a cyclic process in which the liquid phase polymer thin film that has not been completely decomposed is returned to the liquid phase polymer pool again. Therefore, the heating plate can be used efficiently and is particularly suitable when the processing amount is large. However, this method requires a movable structure, which complicates the apparatus. The method using a conical or inverted conical heating plate is less efficient than a cylindrical heating plate, but can obtain a relatively large heating surface and does not require a movable structure, thus simplifying the apparatus. . This is suitable for moderate throughput. The method using a flat heating plate is possible with the simplest apparatus and is suitable for small-scale processing.

【0012】以上のように本発明にあっては、液相ポリ
マーが加熱板上に「薄膜」を形成することがもっとも重
要な要件になるが、この「薄膜」は、液相ポリマー自体
が直接的に加熱板上に薄く形成する膜を意味している。
したがって本発明における液相ポリマーの「薄膜」は、
例えば特開平8−41464号公報で知られるように、
ポリマーの加熱や分散のために粒状加熱媒体を用い、こ
の粒状加熱媒体が混入している液相ポリマーを加熱板上
で移動させるような状態とは異なるものである。
As described above, in the present invention, it is the most important requirement that the liquid phase polymer forms a “thin film” on the heating plate, but this “thin film” is directly formed by the liquid phase polymer itself. It means a film formed thinly on a heating plate.
Therefore, the "thin film" of the liquid phase polymer in the present invention is:
For example, as known in JP-A-8-41464,
This is different from a state in which a granular heating medium is used for heating and dispersing the polymer, and the liquid phase polymer mixed with the granular heating medium is moved on a heating plate.

【0013】[0013]

【実施の形態】以下、本発明の好ましい実施形態につい
て説明する。第1の実施形態では、図1及び図2に示す
ような油化用反応器を用いる。この油化用反応器は、外
筒1と円筒形加熱板2を両者の間に反応室3を形成する
ように組み合わせた構造を持つ。円筒形加熱板2は、そ
の外周に搬送羽根4を有すると共にギア5、5を有し、
このギア5、5を介して駆動源6により回転させられる
ようになっている。また円筒形加熱板2は、その内部が
熱風路7となっており、そこにバーナー8により高温の
熱風を吹き込ませることで加熱エネルギーの供給を受け
る。外筒1には受入口9が設けてあり、この受入口9か
ら廃棄プラスチックを固相ポリマーの状態又は図外の予
備処理器で溶融させた液相ポリマーにして反応室3に供
給する。反応室3に供給されたポリマーは、円筒形加熱
板2の回転により反応室内で矢印X方向に連続的に搬送
され、この搬送中に加熱されて分解・気化し、この気化
物が気化物送出口10から送り出され、図外の回収装置
で冷却されて油化物として回収される。なお液相ポリマ
ー中に含まれる非分解性の成分は、取出し口11から取
り出して固形分として回収される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. In the first embodiment, an oiling reactor as shown in FIGS. 1 and 2 is used. This oiling reactor has a structure in which an outer cylinder 1 and a cylindrical heating plate 2 are combined so as to form a reaction chamber 3 therebetween. The cylindrical heating plate 2 has conveying blades 4 on its outer periphery and gears 5 and 5,
It is designed to be rotated by a drive source 6 via the gears 5, 5. Further, the inside of the cylindrical heating plate 2 forms a hot air path 7, and the hot energy is blown into the cylindrical heating plate 2 by a burner 8 to receive heating energy. A receiving port 9 is provided in the outer cylinder 1, and waste plastic is supplied to the reaction chamber 3 from the receiving port 9 in the form of a solid polymer or a liquid polymer melted by a pretreatment device (not shown). The polymer supplied to the reaction chamber 3 is continuously conveyed in the direction of the arrow X in the reaction chamber by the rotation of the cylindrical heating plate 2, and is heated and decomposed and vaporized during the conveyance, and the vaporized substance is transported. It is sent out from the outlet 10 and is cooled by a collecting device (not shown) and collected as oil. The non-decomposable components contained in the liquid phase polymer are taken out from the outlet 11 and collected as solids.

【0014】反応室3では、図2に見られるように、そ
の底で液相ポリマーが液深の浅い液相ポリマー溜まりL
をそこに円筒形加熱板2の下部が漬かる状態で形成す
る。そして円筒形加熱板2は、その回転に伴って液相ポ
リマーを掻き上げ、その外周の加熱面2sに0.5 mm程
度の厚みの液相ポリマーの薄膜Fを形成させる。この薄
膜Fは、熱風路7からの加熱エネルギーを受けて加熱さ
れ、分解・気化する。これにより発生する気化物は、浅
い液相ポリマー溜まりLを除いて、反応室3の全体に充
満しつつ、図1の気化物送出口10から順次送り出され
る。
In the reaction chamber 3, as shown in FIG.
Is formed in a state where the lower part of the cylindrical heating plate 2 is immersed therein. Then, the cylindrical heating plate 2 scrapes up the liquid-phase polymer with its rotation, and forms a thin film F of the liquid-phase polymer having a thickness of about 0.5 mm on the outer peripheral heating surface 2s. The thin film F is heated by receiving the heating energy from the hot air passage 7 and is decomposed and vaporized. The vapor generated by this is sequentially discharged from the vapor discharge port 10 in FIG. 1 while filling the entire reaction chamber 3 except for the shallow liquid-phase polymer pool L.

【0015】第2の実施形態では図3に示すような油化
用反応器を用いる。この油化用反応器は、密閉状に形成
したタンクハウジング21の内部に緩やかな傾斜の円錐
形加熱板22を有する。円錐形加熱板22の下側には円
筒状の加熱室23が設けてあり、この加熱室23でバー
ナー24を燃焼させることで円錐形加熱板22への加熱
エネルギーが供給がなされる。タンクハウジング21に
は供給口25が設けてあり、この供給口25から円錐形
加熱板22の頂点部に液相ポリマーが太矢印のようにし
て供給され、この液相ポリマーは、図4に見られるよう
にして円錐形加熱板22の加熱面22sで例えば0.5 m
m程度の厚みの薄膜Fを形成しながら流下する。そして
この流下中に加熱されて分解・気化し、この気化物がタ
ンクハウジング21に設けてある気化物送出口26から
矢印のように送り出され、図外の回収装置で冷却されて
油化物として回収される。一方、液相ポリマー中に含ま
れる非分解性の成分は、タンクハウジング21の下方に
設けてある取出し口27から搬送用のスクリューコンベ
ア28に送り出され、固形物として回収される。
In the second embodiment, an oiling reactor as shown in FIG. 3 is used. This oiling reactor has a gently inclined conical heating plate 22 inside a tank housing 21 formed in a closed shape. A cylindrical heating chamber 23 is provided below the conical heating plate 22, and by heating a burner 24 in the heating chamber 23, heating energy is supplied to the conical heating plate 22. A supply port 25 is provided in the tank housing 21. From this supply port 25, a liquid phase polymer is supplied to the apex of the conical heating plate 22 as shown by a thick arrow, and this liquid phase polymer is seen in FIG. The heating surface 22 s of the conical heating plate 22 is, for example, 0.5 m
It flows down while forming a thin film F having a thickness of about m. Then, it is heated and decomposed and vaporized in this flow, and this vaporized substance is sent out from a vaporized substance outlet 26 provided in the tank housing 21 as shown by an arrow, and is cooled by a recovery device (not shown) and collected as oily substance. Is done. On the other hand, the non-decomposable components contained in the liquid-phase polymer are sent out from a take-out port 27 provided below the tank housing 21 to a screw conveyor 28 for conveyance, and are collected as solids.

【0016】第3の実施形態では、図5に示すような油
化用反応器を用いる。この油化用反応器は、逆円錐形加
熱板31を有し、タンクハウジング32に設けてある供
給口33から太矢印のようにして供給される液相ポリマ
ーが逆円錐形加熱板31の加熱面31sで第2の実施形
態で説明した同様な薄膜を形成しながら流下する。そし
て薄膜の液相ポリマーは、加熱室33のバーナー34が
供給する加熱エネルギーで加熱されて分解・気化し、こ
の気化物がタンクハウジング32に設けてある気化物送
出口35から送り出され、図外の回収装置で冷却されて
油化物として回収される。また逆円錐形加熱板31には
その中央部に取出し筒36が接続されており、液相ポリ
マー中に含まれる非分解性の成分や未分解ポリマーをこ
の取出し筒36から搬送用のスクリューコンベア38に
送り出すようになっている。また必要に応じてスクリュ
ーコンベア38でも加熱することで、未分解ポリマーの
分解を行なうことができるようになっている。
In the third embodiment, an oiling reactor as shown in FIG. 5 is used. The oiling reactor has an inverted conical heating plate 31, and a liquid phase polymer supplied from a supply port 33 provided in a tank housing 32 as indicated by a thick arrow heats the inverted conical heating plate 31. It flows down while forming a thin film similar to that described in the second embodiment on the surface 31s. Then, the liquid phase polymer of the thin film is heated and decomposed and vaporized by the heating energy supplied by the burner 34 of the heating chamber 33, and the vaporized substance is sent out from a vaporized substance outlet 35 provided in the tank housing 32, and is not shown. And collected as oil. A take-out cylinder 36 is connected to the center of the inverted conical heating plate 31, and a non-decomposable component or undecomposed polymer contained in the liquid phase polymer is transferred from the take-out cylinder 36 to a screw conveyor 38 for conveyance. To be sent out. The undecomposed polymer can be decomposed by heating the screw conveyor 38 as needed.

【0017】第4の実施形態では、図6に示すような油
化用反応器を用いる。この油化用反応器は、密閉状に形
成したタンクハウジング41の内部に緩やかに傾斜させ
た平板形加熱板42を有する。この平板形加熱板42の
加熱面42sには、タンクハウジング41に設けてある
供給口43から太矢印のようにして液相ポリマーが供給
される。この液相ポリマーは、第2の実施形態で説明し
た同様な薄膜を加熱面42s上で形成し、加熱室44の
バーナー45が供給する加熱エネルギーで加熱されて分
解・気化し、この気化物がタンクハウジング41に設け
てある気化物送出口45から送り出され、図外の回収装
置で冷却されて油化物として回収される。一方、液相ポ
リマー中に含まれる非分解性の成分は、タンクハウジン
グ41の下方に設けてある取出し口46から搬送用のス
クリューコンベア47に送り出され、固形物として回収
される。
In the fourth embodiment, an oiling reactor as shown in FIG. 6 is used. The oiling reactor has a flat heating plate 42 that is gently inclined inside a tank housing 41 that is formed in a closed state. The liquid-phase polymer is supplied to the heating surface 42s of the flat heating plate 42 from a supply port 43 provided in the tank housing 41 as indicated by a thick arrow. This liquid-phase polymer forms a thin film similar to that described in the second embodiment on the heating surface 42s, and is heated and decomposed and vaporized by the heating energy supplied by the burner 45 of the heating chamber 44. The gas is sent out from a vaporized material outlet 45 provided in the tank housing 41, cooled by a collecting device (not shown), and collected as oily material. On the other hand, the non-decomposable components contained in the liquid phase polymer are sent out from a take-out port 46 provided below the tank housing 41 to a screw conveyor 47 for conveyance, and are collected as solids.

【0018】図7に示すのは、第2の実施形態で用いる
図3の油化用反応器と同様なタイプの油化用反応器であ
る。この油化用反応器は、円錐形加熱板51の頂部に排
気筒52が設けてあり、この排気筒52により加熱室2
3からの高温の排気を回収できるようになっている。こ
のように円錐形加熱板51の頂部から排気を回収するこ
とで排気の圧損を小さくすることができ、排気が有する
熱エネルギー、つまり廃熱をより効率的に再利用でき
る。廃熱は、例えば油化用反応器で処理するに先立って
廃棄プラスチックを減容させる際にの加熱源などとして
用いる。なおその他の構造は図3の油化用反応器と同様
なので、共通する部分に同一の符号を付してその説明は
省略する。
FIG. 7 shows an oiling reactor of the same type as the oiling reactor of FIG. 3 used in the second embodiment. In this oiling reactor, an exhaust pipe 52 is provided at the top of a conical heating plate 51, and the exhaust pipe 52 allows the heating chamber 2 to be heated.
3. It is designed to be able to collect high-temperature exhaust gas from the fuel cell. By collecting the exhaust gas from the top of the conical heating plate 51 in this manner, the pressure loss of the exhaust gas can be reduced, and the heat energy of the exhaust gas, that is, the waste heat can be reused more efficiently. The waste heat is used, for example, as a heating source when reducing the volume of waste plastic prior to treatment in the oiling reactor. Since the other structure is the same as that of the oiling reactor shown in FIG. 3, common portions are denoted by the same reference numerals and description thereof will be omitted.

【0019】[0019]

【発明の効果】以上説明したように本発明によると、カ
ーボンの発生を有効に防止できると同時に、分解反応の
効果的な制御が可能となり、望ましい油質の高品質な油
化物を効率的に回収することができる。
As described above, according to the present invention, the generation of carbon can be effectively prevented, and at the same time, the decomposition reaction can be effectively controlled, so that a high-quality oily product having a desirable oil quality can be efficiently produced. Can be recovered.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態で用いる油化用反応器
の簡略化した断面図。
FIG. 1 is a simplified cross-sectional view of a reactor for oil conversion used in a first embodiment of the present invention.

【図2】図1中のSA−SA線に沿う断面図。FIG. 2 is a sectional view taken along the line SA-SA in FIG.

【図3】本発明の第2の実施形態で用いる油化用反応器
の簡略化した断面図。
FIG. 3 is a simplified cross-sectional view of a reactor for oil conversion used in a second embodiment of the present invention.

【図4】図3の油化用反応器における加熱板の拡大断面
図。
FIG. 4 is an enlarged cross-sectional view of a heating plate in the oil conversion reactor of FIG. 3;

【図5】本発明の第3の実施形態で用いる油化用反応器
の簡略化した断面図。
FIG. 5 is a simplified cross-sectional view of a reactor for oil conversion used in a third embodiment of the present invention.

【図6】本発明の第4の実施形態で用いる油化用反応器
の簡略化した断面図。
FIG. 6 is a simplified cross-sectional view of a reactor for oil conversion used in a fourth embodiment of the present invention.

【図7】図3の油化用反応器と同一タイプの油化用反応
器の簡略化した断面図。
FIG. 7 is a simplified cross-sectional view of an oiling reactor of the same type as the oiling reactor of FIG.

【符号の説明】[Explanation of symbols]

2,22,31,42……加熱板 F……液相ポリマーの薄膜 2,22,31,42 …… Heating plate F …… Liquid phase polymer thin film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 廃棄プラスチックを加熱・溶融させて液
相ポリマーとし、この液相ポリマーの分解・気化により
油化物を回収する廃棄プラスチックの連続油化方法にお
いて、一方の側の面から加熱エネルギーを与えて加熱し
つつある加熱板の他方の側の面で液相ポリマーに薄膜を
形成させつつ分解・気化を生じさせるようにしたことを
特徴とする廃棄プラスチックの連続油化方法。
1. A continuous plasticizer for waste plastics in which waste plastics are heated and melted to form a liquid-phase polymer, and an oil is recovered by decomposition and vaporization of the liquid-phase polymer. A method for continuously oiling waste plastics, wherein decomposition and vaporization are caused while forming a thin film on a liquid phase polymer on the other surface of the heating plate being applied and heated.
【請求項2】 加熱板として円筒形状の加熱板を用いる
請求項1に記載の連続油化方法。
2. The continuous oil-forming method according to claim 1, wherein a cylindrical heating plate is used as the heating plate.
【請求項3】 加熱板として円錐形状又は逆円錐形状の
加熱板を用いる請求項1に記載の連続油化方法。
3. The continuous oiling method according to claim 1, wherein a conical or inverted conical heating plate is used as the heating plate.
【請求項4】 加熱板として平板形状の加熱板を用いる
請求項1に記載の連続油化方法。
4. The continuous oiling method according to claim 1, wherein a flat heating plate is used as the heating plate.
JP29021296A 1996-10-31 1996-10-31 Continuous method for converting plastic waste into oil Pending JPH10130658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29021296A JPH10130658A (en) 1996-10-31 1996-10-31 Continuous method for converting plastic waste into oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29021296A JPH10130658A (en) 1996-10-31 1996-10-31 Continuous method for converting plastic waste into oil

Publications (1)

Publication Number Publication Date
JPH10130658A true JPH10130658A (en) 1998-05-19

Family

ID=17753208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29021296A Pending JPH10130658A (en) 1996-10-31 1996-10-31 Continuous method for converting plastic waste into oil

Country Status (1)

Country Link
JP (1) JPH10130658A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000158442A (en) * 1998-11-30 2000-06-13 Takeshi Kuroki Apparatus for treating waste plastic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000158442A (en) * 1998-11-30 2000-06-13 Takeshi Kuroki Apparatus for treating waste plastic

Similar Documents

Publication Publication Date Title
US4308103A (en) Apparatus for the pyrolysis of comminuted solid carbonizable materials
US6337302B1 (en) Method for producing activated carbon from carbon black
EP0747463B1 (en) Method for continuous liquefaction of waste plastics
JPS5944347B2 (en) Method and apparatus for heat treating organic carbonaceous materials under pressure
WO2021207413A1 (en) Reaction vessel for liquid phase catalytic pyrolysis of polymers
JPH10130658A (en) Continuous method for converting plastic waste into oil
JP2515870B2 (en) Process and equipment for converting flammable pollutants and wastes as clean energy and usable products
JP3889124B2 (en) Waste plastic continuous oil making equipment, waste plastic continuous oil making method
JP2001200093A (en) Waste plastic treating equipment
US7824631B2 (en) Nanocarbon generation equipment
JPS6137934A (en) Regenerating method of al from waste al can
JPH11106758A (en) Method for liquefying waste plastic
CN211497509U (en) Organic solid waste pyrolysis and in-situ modification device
JP2992486B2 (en) Waste plastic decomposition equipment
JPH06316695A (en) Method for making waste plastic into oil
JP4024406B2 (en) Waste plastic processing equipment
JP2895754B2 (en) Waste plastic processing equipment
JPH1161151A (en) Device for decomposing waste plastic
JP3655034B2 (en) Waste plastic processing method and processing equipment
JPS6129638B2 (en)
JP3367815B2 (en) Oil recovery method and system from waste plastic
JP2007154059A (en) Method and apparatus for liquefying waste plastic
JPH10183137A (en) Decomposing device for waste plastic
JP2000198988A (en) Apparatus for continuous treatment of waste plastic
JPS59136197A (en) Thermal decomposing device for activated sludge

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050223

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050301

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20050628

Free format text: JAPANESE INTERMEDIATE CODE: A02