JP2000327830A - Horizontal drum rotary waste plastic thermal decomposition furnace and thermal decomposition method - Google Patents

Horizontal drum rotary waste plastic thermal decomposition furnace and thermal decomposition method

Info

Publication number
JP2000327830A
JP2000327830A JP2000055166A JP2000055166A JP2000327830A JP 2000327830 A JP2000327830 A JP 2000327830A JP 2000055166 A JP2000055166 A JP 2000055166A JP 2000055166 A JP2000055166 A JP 2000055166A JP 2000327830 A JP2000327830 A JP 2000327830A
Authority
JP
Japan
Prior art keywords
cylinder
waste plastic
waste
thermal decomposition
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000055166A
Other languages
Japanese (ja)
Other versions
JP3872247B2 (en
Inventor
Shunsaku Hayashida
俊作 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAGAMI SENPAKU KIKI SERVICE KK
Original Assignee
YAGAMI SENPAKU KIKI SERVICE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAGAMI SENPAKU KIKI SERVICE KK filed Critical YAGAMI SENPAKU KIKI SERVICE KK
Priority to JP2000055166A priority Critical patent/JP3872247B2/en
Publication of JP2000327830A publication Critical patent/JP2000327830A/en
Application granted granted Critical
Publication of JP3872247B2 publication Critical patent/JP3872247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To thermally decompose waste plastics having poor heat conduction (particularly, a waste FRP) at a thermally decomposable low constant temperature with reduced degradation of non-decomposed components (glass fibers and the like) and thermally decomposed products to effect separation and fractional distillation and to recycle the resulting products. SOLUTION: Waste plastic fragments are placed in a horizontal cylinder 2 and while controlling the rotation of the cylinder, the waste plastic fragments are vibrated by utilizing the variation of centrifugal force and gravity per each rotation (e.g. the waste FRP fragments rotating at 60 revolutions per minute with a rotational radius of 25 cm being repeatedly in the gravity-free state in the upper part and susceptible to twice the gravity in the lower part), and heated gas 11 having reached the thermal decomposition temperature is injected from a hollow shaft 1 of the cylinder 2 to increase the heat conduction with the waste plastic fragments, and thermal decomposition is carried out at a possible lowest temperature by adjusting the type, the chemical properties, the temperature and the amount to be injected of the heated gas, and non-decomposed components (glass fibers and the like) and gasified components and the like 11a are subject to separation and fractional distillation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複合材廃プラスチ
ック(以下、廃プラスチックと略記する)のリサイクル
において、熱伝導の悪い廃プラスチックの熱分解炉及び
その熱分解方法に属するものである。特に、本発明は現
在問題となっている廃FRPの廃棄について、リサイク
ルすることが要求されており、この分野について活用で
きるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pyrolysis furnace for waste plastics having poor heat conduction and a method for pyrolyzing waste plastics in recycling composite waste plastics (hereinafter abbreviated as waste plastics). In particular, the present invention is required to recycle waste FRP, which is currently a problem, and can be used in this field.

【0002】[0002]

【従来の技術】従来、廃プラスチックを熱分解するロー
タリーキルン炉などが知られており、ロータリーキルン
炉などを用いて廃プラスチックの熱分解が行われてい
る。
2. Description of the Related Art Conventionally, a rotary kiln furnace for thermally decomposing waste plastics and the like are known, and waste plastics are thermally decomposed using a rotary kiln furnace and the like.

【0003】[0003]

【発明が解決しようとする課題】しかし、廃プラスチッ
クを熱分解するロータリーキルン炉などで熱分解する場
合、廃プラスチックを構成するガラス繊維等の非分解成
分の残さ心材自身が回転することにより、綿状に膨張し
炉内を閉塞し炉の能力を低下させていた。また、残さ心
材は綿状に膨張して取り出されるため、再利用する場合
には、整形する必要があって、再利用の障害となってい
た。更に、炉内温度が不均一なため、高温で処理せざる
をえず残さ心材の強度が劣化し再利用の妨げになってい
た。
However, when the waste plastic is pyrolyzed in a rotary kiln furnace or the like that pyrolyzes the waste plastic, the residual core material of the non-decomposed components such as glass fiber constituting the waste plastic is rotated, and thus the cotton is formed. And the inside of the furnace was closed, reducing the capacity of the furnace. Also, since the residual core material is swollen and taken out in a cotton-like manner, it must be shaped when reused, which is an obstacle to reuse. Further, since the temperature in the furnace is not uniform, it has to be processed at a high temperature, and the strength of the remaining core material is deteriorated, which hinders reuse.

【0004】本発明は、上記のような課題に鑑み、その
課題を解決すべく創案されたものであって、その目的と
するところは、廃プラスチックの熱分解において、非分
解成分(残さ心材)をほぼそのままの形で取り出し、再
利用しやすい状態で分離し、また、熱伝導の悪い廃プラ
スチックを出来るだけ熱分解温度に近い温度で熱分解
し、残さ心材の強度が劣化するのを防ぐとともに熱分解
生成物の性状を安定させ、熱分解生成物のガス化成分を
それぞれの凝縮温度で冷却分留し、熱分解生成物の液状
成分と共に再生利用する横置円筒回転式廃プラスチック
の熱分解炉及び熱分解方法を提供することにある。
The present invention has been made in view of the above problems, and has been made in order to solve the problems. An object of the present invention is to provide non-decomposed components (residual core material) in the thermal decomposition of waste plastics. Take it out as it is, separate it in a state that is easy to reuse, and also decompose waste plastic with poor heat conduction at a temperature as close to the pyrolysis temperature as possible to prevent the strength of the residual core material from deteriorating. Thermal decomposition of horizontal cylindrical rotary waste plastic that stabilizes the properties of the pyrolysis products, cools and fractionates the gasification components of the pyrolysis products at their respective condensation temperatures, and recycles them together with the liquid components of the pyrolysis products An object of the present invention is to provide a furnace and a pyrolysis method.

【0005】[0005]

【課題を解決するための手段】以上の目的を達成するた
めに、請求項1に係る横置円筒回転式廃プラスチックの
熱分解炉は、外周に孔の開いた横長の中空軸と、同軸に
配され外周に孔の開いた一端側が開閉可能で他端が閉塞
された円筒と、上記円筒を内包し一部に熱分解生成物や
加熱ガスを排出する開口部を有し一端が開閉可能な炉
と、上記中空軸に連結する加熱ガス供給源と、上記中空
軸及び上記円筒とを回転させる動力源と、から構成され
る手段よりなるものである。
In order to achieve the above object, a horizontal cylindrical rotary waste plastic pyrolysis furnace according to claim 1 is coaxial with a horizontally long hollow shaft having a hole in the outer periphery. A cylinder arranged at one end with a hole on the outer periphery is openable and closable, and the other end is closed, and an opening portion that contains the cylinder and partially discharges a pyrolysis product or a heated gas is openable at one end. It comprises a furnace, a heating gas supply source connected to the hollow shaft, and a power source for rotating the hollow shaft and the cylinder.

【0006】また、請求項2に係る横置円筒回転式廃プ
ラスチックの熱分解炉は、側周面に通気孔を有し横長の
中空軸と、同軸に外装され側周面に通気孔を有し両端が
密閉され内部に適当量の廃プラスチック片が充填され一
部が開閉可能な円筒と、上記中空軸及び円筒が内部に横
置され一部に熱分解生成物や加熱ガスを排出する開口部
を有し一部が開閉可能な炉と、上記中空軸を介して円筒
内部に連通する加熱ガス供給源と、上記中空軸及び上記
円筒とを水平軸回りに回転させる動力源と、から構成さ
れる手段よりなるものである。
[0008] According to a second aspect of the present invention, there is provided a horizontal cylindrical rotary type waste plastic pyrolysis furnace having a vent hole on a side peripheral surface and a horizontally long hollow shaft, which is coaxially provided with a vent hole on a side peripheral surface. A cylinder which is closed at both ends and is filled with an appropriate amount of waste plastic pieces and is partially openable and closable, and an opening through which the hollow shaft and the cylinder are horizontally disposed to partially discharge a pyrolysis product or a heated gas A furnace that has a part and can be partially opened and closed, a heating gas supply source that communicates with the inside of the cylinder via the hollow shaft, and a power source that rotates the hollow shaft and the cylinder around a horizontal axis. It consists of means to be done.

【0007】また、請求項9に係る横置円筒回転式廃プ
ラスチックの熱分解方法は、上記円筒に廃プラスチック
片を詰め、加熱ガスを供給しながら回転させ遠心力と重
力との変動を利用して、上記廃プラスチック片と上記加
熱ガスとの熱伝達を向上させ、熱分解生成物の性状を安
定させて取り出すようにした手段よりなるものである。
According to a ninth aspect of the present invention, there is provided a method for thermally decomposing a waste plastic in a horizontal cylinder, wherein the waste plastic is packed in the cylinder, and the waste plastic is rotated while supplying a heating gas to thereby utilize the fluctuation of centrifugal force and gravity. Means for improving the heat transfer between the waste plastic pieces and the heating gas to stabilize the properties of the pyrolysis products and take them out.

【0008】また、請求項11に係る横置円筒回転式廃
プラスチックの熱分解方法は、炉に内包された回転容器
に廃プラスチック片を充填し水平方向を軸芯として上記
廃プラスチック片が自由落下しないように回転調整し、
遠心力と重力の変動を利用して振動させ、加熱ガスや熱
分解生成物などの熱媒体との熱伝達を向上させて熱分解
する手段よりなるものである。
Further, in the method for pyrolyzing waste plastic rotating in a horizontal cylinder according to claim 11, a waste container is filled with a waste plastic piece in a rotary container contained in a furnace, and the waste plastic piece falls freely around a horizontal axis. Adjust the rotation so that it does not
It comprises means for vibrating by utilizing the fluctuations of centrifugal force and gravity to improve heat transfer with a heating medium such as a heating gas or a pyrolysis product to perform pyrolysis.

【0009】また、請求項15に係る横置円筒回転式廃
プラスチックの熱分解方法は、炉内に横置された回転容
器に廃プラスチック片を適当量充填して水平軸回りに回
転させながら加熱ガスを供給すると共に、回転初期にお
いては回転容器を低速で回転して同容器内の上記廃プラ
スチック片を自由落下させて加熱ガスを同容器内の廃プ
ラスチック片全体に均等に浸透させ、熱分解温度に達し
た後は廃プラスチック片が自由落下しないように回転容
器の回転を高めてその遠心力で廃プラスチック片を回転
容器の内周面に張り付けて廃プラスチック片が自転する
のを防ぐと共に、遠心力と重力の変動を利用して回転容
器の内周面に張り付けた廃プラスチック片を内部振動さ
せ、加熱ガスや熱分解生成物などの熱媒体との熱伝達を
向上させて熱分解する手段よりなるものである。
According to a fifteenth aspect of the present invention, there is provided a method for thermally decomposing waste plastic in a horizontal cylinder, wherein a rotating container placed horizontally in a furnace is filled with an appropriate amount of waste plastic pieces and heated while rotating about a horizontal axis. At the same time as supplying gas, the rotating container is rotated at a low speed in the initial stage of rotation, and the waste plastic pieces in the container are allowed to fall freely to allow the heated gas to permeate the entire waste plastic pieces in the container evenly, and pyrolysis is performed. After reaching the temperature, increase the rotation of the rotating container so that the waste plastic pieces do not fall freely, and attach the waste plastic pieces to the inner peripheral surface of the rotating container by the centrifugal force to prevent the waste plastic pieces from rotating on their own, Using the fluctuation of centrifugal force and gravity, the waste plastic piece attached to the inner peripheral surface of the rotating container is internally vibrated to improve the heat transfer with the heating medium such as heating gas and pyrolysis products and pyrolysis It is made of than that means.

【0010】即ち、本発明は、外周に孔の開いた横長の
中空軸と、同軸に配され外周に孔が開き一端側が開閉可
能で他端側が閉塞された円筒と、上記円筒を内包し上記
円筒を出し入れする開閉部を有しかつ一部に加熱ガスと
熱分解生成物を排出する開口部を設けた炉と、上記中空
軸に連結する加熱ガス供給源と、上記中空軸及び上記円
筒とを回転させる動力源と、から構成される横置円筒回
転式廃プラスチックの熱分解炉及び熱分解方法で、廃プ
ラスチック特に廃FRPを再生利用するに適するもので
ある。
That is, the present invention provides a horizontally long hollow shaft having a hole in the outer periphery, a cylinder coaxially arranged, having a hole in the outer periphery, one end of which can be opened and closed, and the other end closed, and the above-mentioned cylinder being enclosed therein. A furnace having an opening and closing part for taking in and out the cylinder, and a furnace provided with an opening partly for discharging the heating gas and the pyrolysis products, a heating gas supply source connected to the hollow shaft, the hollow shaft and the cylinder; And a power source for rotating the waste plastic, and a pyrolysis furnace and a pyrolysis method for a horizontal cylindrical rotary waste plastic, which is suitable for recycling waste plastic, particularly waste FRP.

【0011】この様に構成された熱分解炉において、円
筒の開閉可能側を開き廃プラスチック片を充填した後閉
塞し、炉の開閉部を密閉し、中空軸及び円筒を動力源に
よって回転させ、遠心力と重力との変化を廃プラスチッ
ク片に与えながら加熱ガス供給源から熱分解温度に達し
た加熱ガスを中空軸に連続供給する。加熱ガスは、中空
軸の孔を介して円筒の中心部から円周方向への流れを作
り廃プラスチック片をい加熱して熱分解し、円筒外周の
孔を介して炉の開口部より排出する。このようにして、
廃プラスチック片を非分解成分(残さ心材)及び熱分解
生成物であるガス化成分や液状成分などに分離する。
In the thus constructed pyrolysis furnace, the openable and closable side of the cylinder is opened and filled with waste plastic pieces, then closed, the opening and closing part of the furnace is closed, and the hollow shaft and the cylinder are rotated by a power source. While applying the change of centrifugal force and gravity to the waste plastic piece, the heating gas which has reached the thermal decomposition temperature is continuously supplied from the heating gas supply source to the hollow shaft. The heating gas generates a flow from the center of the cylinder in the circumferential direction through the hole in the hollow shaft, heats the waste plastic pieces, thermally decomposes them, and discharges them from the opening of the furnace through the holes in the outer periphery of the cylinder. . In this way,
The waste plastic pieces are separated into non-decomposed components (residual core material) and gasification components and liquid components which are pyrolysis products.

【0012】同時に、円筒の回転数を調整して遠心力を
重力以上に廃プラスチック片へ作用させ、重力による落
下を防止することによって、残さ心材をほぼそのままの
形状で分離する。また、円筒を回転させることにより遠
心力と重力との変動及び廃プラスチック片の弾力とを相
乗させて振動させ、加熱ガスを廃プラスチック片間にま
んべんなく浸透させて熱伝達を向上させ、廃プラスチッ
ク片の温度むらを少なくして、熱分解可能な出来るだけ
低い温度で効率良く熱分解する。
At the same time, the revolving speed of the cylinder is adjusted to apply centrifugal force to the waste plastic pieces more than the gravitational force, thereby preventing falling by gravity and separating the residual core material in almost the same shape. In addition, by rotating the cylinder, the fluctuation of the centrifugal force and the gravity and the elasticity of the waste plastic piece are synergistically oscillated, and the heating gas is evenly penetrated between the waste plastic pieces to improve the heat transfer, thereby improving the waste plastic piece. , And thermally decomposes efficiently at the lowest possible temperature.

【0013】そして、加熱ガスや熱分解生成物は、円筒
外周部の孔から炉内に排出され、炉の一部の開口部から
排出される。炉の一部にある開口部にパイプを設け、熱
分解生成物の液状成分を分離し、熱分解生成物のガス化
成分と加熱ガスとを冷却装置に送気して、ガス化成分を
それぞれの凝縮温度で冷却分留し、再生利用するもので
ある。一方、非分解成分(残さ心材)は、炉の開閉部を
開き、円筒の開閉可能部を開き、円筒外に取り出し再利
用する。
[0013] The heating gas and the pyrolysis products are discharged into the furnace through holes in the outer peripheral portion of the cylinder, and are discharged through some openings of the furnace. A pipe is provided at an opening in a part of the furnace to separate a liquid component of a pyrolysis product, and a gasification component and a heating gas of the pyrolysis product are sent to a cooling device to separate the gasification component. It is cooled and fractionated at the condensation temperature and recycled. On the other hand, the non-decomposed component (residual core material) is opened and closed in the furnace, the openable portion of the cylinder is opened, taken out of the cylinder and reused.

【0014】また、円筒の外周に案内羽根を設けること
で、円筒の外周孔から排出される熱分解生成物は強制的
な流れを作られ炉内を回転するので、炉と円筒との熱交
換ができ、炉と円筒との温度を均一化して、熱分解生成
物の回収を効率よくする。更に、円筒内に複数の仕切り
板を等間隔で放射状に設けることにより、円筒を補強
し、円筒内に廃プラスチック片を均等に充填でき、回転
起動時の偏りを制限できる。その結果、廃プラスチック
片に当たる加熱ガスが均一になり廃プラスチック片の熱
分解をさらに効率的にするものである。
Further, by providing guide vanes on the outer periphery of the cylinder, the pyrolysis products discharged from the outer peripheral hole of the cylinder are forced to flow and rotate in the furnace, so that heat exchange between the furnace and the cylinder is performed. And the temperature between the furnace and the cylinder is made uniform, so that the pyrolysis products can be efficiently collected. Furthermore, by arranging a plurality of partition plates in the cylinder radially at equal intervals, the cylinder can be reinforced, the cylinder can be uniformly filled with waste plastic pieces, and the bias during rotation start can be limited. As a result, the heating gas applied to the waste plastic pieces is made uniform, and the thermal decomposition of the waste plastic pieces is made more efficient.

【0015】円筒の内側に適宜な周波数の電磁波を照射
することにより加熱ガスや熱分解生成物を振動させ熱エ
ネルギーを発生させて、廃プラスチック片を加熱し熱分
解させることが可能となる。
By irradiating the inside of the cylinder with an electromagnetic wave of an appropriate frequency, the heating gas or the pyrolysis product is vibrated to generate thermal energy, and the waste plastic piece can be heated and pyrolyzed.

【0016】また、円筒の内側に適宜な位置に適宜な弾
力のバネを設けることにより廃プラスチック片の振動を
強制することができ、円筒内の部位による熱分解の不均
一を修整することができる。更に、円筒の毎分回転数を
大きくして廃プラスチック片の毎分内部振動回数を増や
して熱分解をさらに効率的にするものである。
Further, by providing a spring having an appropriate elasticity at an appropriate position inside the cylinder, it is possible to forcibly vibrate the waste plastic piece, and it is possible to correct the non-uniformity of the thermal decomposition due to the portion in the cylinder. . Further, the number of revolutions per minute of the cylinder is increased to increase the number of internal vibrations per minute of the waste plastic piece, thereby making the thermal decomposition more efficient.

【0017】また、廃プラスチック片の熱分解に必要な
熱量を、加熱ガスの温度と流量とを加減することによっ
て、熱分解の分解速度を調整することが出来る。
Further, the amount of heat required for the thermal decomposition of the waste plastic pieces can be adjusted by adjusting the temperature and the flow rate of the heating gas, whereby the decomposition rate of the thermal decomposition can be adjusted.

【0018】また、廃プラスチック片の熱分解生成物に
有害物質が生成される可能性のある場合などに、加熱ガ
スの種類や化学的性状を変えて供給し、熱分解生成物の
性状を調整することが可能となる。
Further, when harmful substances may be generated in the thermal decomposition product of the waste plastic pieces, the type and chemical properties of the heating gas are changed and supplied to adjust the properties of the thermal decomposition product. It is possible to do.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は、本発明の実施の形態−1
の横断面図である。図1において、1は外周に複数個の
孔1aが開いた円筒形状の中空軸で、中空軸1の外周側
には外周に複数個の孔2aが開いた回転容器としての円
筒2が取付けられている。同円筒2は中空軸1と同心軸
に配されている。この中空軸1及び円筒2は水平軸回り
に回転するように取付けられている。また、同円筒2の
一端の前板2bは取り外し可能である。2cは円筒2の
他端に固定された後板である。3は円筒2を内包する炉
で、3aは炉3の前壁で密閉ハッチ機構になっており、
図中矢印の方向に摺動するものである。また、3bは炉
3の後壁であり、同後壁3bには加熱ガス供給源4に連
通する加熱ガス供給パイプ5が設けられており、炉3の
一部に円筒2の孔2aから排出される熱分解生成物と加
熱ガスとを排出する排出口3cが設けられている。な
お、加熱ガス供給パイプ5は中空回転軸6を介して中空
軸1の中空部に連通している。7は前壁3aを貫通する
回転軸で回転用動力8に連結している。9は円筒2と回
転駆動軸10との間に設けられた脱着軸受である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows Embodiment 1 of the present invention.
FIG. In FIG. 1, reference numeral 1 denotes a cylindrical hollow shaft having a plurality of holes 1a formed on the outer periphery, and a cylinder 2 as a rotating container having a plurality of holes 2a formed on the outer periphery is attached to the outer periphery of the hollow shaft 1. ing. The cylinder 2 is arranged concentrically with the hollow shaft 1. The hollow shaft 1 and the cylinder 2 are mounted so as to rotate around a horizontal axis. The front plate 2b at one end of the cylinder 2 is removable. 2c is a rear plate fixed to the other end of the cylinder 2. 3 is a furnace containing the cylinder 2, 3a is a closed hatch mechanism at the front wall of the furnace 3,
It slides in the direction of the arrow in the figure. Reference numeral 3b denotes a rear wall of the furnace 3, and a heating gas supply pipe 5 communicating with a heating gas supply source 4 is provided on the rear wall 3b, and a part of the furnace 3 is discharged from a hole 2a of the cylinder 2. An outlet 3c for discharging the pyrolysis products to be heated and the heated gas is provided. The heating gas supply pipe 5 communicates with the hollow portion of the hollow shaft 1 via the hollow rotary shaft 6. Reference numeral 7 denotes a rotating shaft that penetrates the front wall 3a and is connected to a rotating power 8. Reference numeral 9 denotes a detachable bearing provided between the cylinder 2 and the rotary drive shaft 10.

【0020】この様に構成された実施の形態において、
ハッチ機構の前壁3a、脱着軸受9を取り外して円筒2
を炉3外に取り出す。取り出された円筒2の前板2bを
取り除き廃FRP片を適当量充填して前板2bを閉め
る。ついで、この円筒2を炉3内に入れ、脱着軸受9を
炉3内にはめ込み、ついで前壁3aをはめ込んで炉3を
密閉する。
In the embodiment configured as described above,
Remove the front wall 3a of the hatch mechanism and the detachable bearing 9 to remove the cylinder 2
Is taken out of the furnace 3. The front plate 2b of the cylinder 2 taken out is removed, and a waste FRP piece is filled in an appropriate amount, and the front plate 2b is closed. Next, the cylinder 2 is placed in the furnace 3, the detachable bearing 9 is fitted in the furnace 3, and then the front wall 3a is fitted, and the furnace 3 is sealed.

【0021】次に、加熱ガス供給源4から供給される加
熱ガス11を加熱ガス供給パイプ5、中空回転軸6を介
して中空軸1内に供給する。中空軸1内に供給された加
熱ガス11は中空軸1の孔1aから円筒2に入り円筒2
内の廃FRP片を加熱しながら円筒2内にある空気等を
円筒2の孔2aを介して炉3の排出口3cから排出す
る。円筒2内の空気等が排出されると、回転用動力8を
駆動して遠心力と重力との変化を廃FRP片にあたえな
がら加熱ガス供給源4から熱分解温度に達した加熱ガス
11を中空軸1に連続供給する。加熱ガス11は中空軸
1の孔1aから円筒2の中心部、そして中心部から円周
方向への流れを作り円筒2内の温度を均一化して加熱ガ
ス11で廃FRP片を熱分解する。こうして非分解成分
(残さ心材)及び熱分解生成物であるガス化成分や液状
成分などに分離する。
Next, the heating gas 11 supplied from the heating gas supply source 4 is supplied into the hollow shaft 1 via the heating gas supply pipe 5 and the hollow rotary shaft 6. The heating gas 11 supplied into the hollow shaft 1 enters the cylinder 2 through the hole 1 a of the hollow shaft 1 and
While heating the waste FRP pieces inside, the air and the like in the cylinder 2 are discharged from the discharge port 3c of the furnace 3 through the hole 2a of the cylinder 2. When the air or the like in the cylinder 2 is exhausted, the rotating power 8 is driven to change the centrifugal force and gravity to the waste FRP piece and the heated gas 11 that has reached the thermal decomposition temperature from the heated gas supply source 4 is discharged. It is continuously supplied to the hollow shaft 1. The heating gas 11 flows from the hole 1a of the hollow shaft 1 to the center of the cylinder 2 and from the center to the circumferential direction to make the temperature inside the cylinder 2 uniform, and the waste gas FRP is thermally decomposed by the heating gas 11. In this way, it is separated into a non-decomposed component (residual core material) and a gasified component or a liquid component which is a thermal decomposition product.

【0022】この場合、回転用動力8の操作によって廃
FRP片への回転数を調整し遠心力を重力以上に作用さ
せ、重力による落下を防止することによって、廃FRP
片の残さ心材をほぼそのまま再利用しやすい形状で分離
させる。また、廃FRP片への回転数を回転用動力8の
操作によって調整し、遠心力と重力との変動及び廃FR
P片の弾力を相乗させて振動させ(例えば、回転半径2
5センチメートルで毎分60回転させる廃FRP片は、
毎回ほぼ無重力と2倍の重力を受けることになる。)、
加熱ガス11を廃FRP片間にまんべんなく浸透させ
る。その結果、熱伝達が向上し廃FRP片を効率良く熱
分解することが出来る。一方、ガス化成分等11aは円
筒2外周部の孔2aから炉3内に排出し、炉3の排出口
3cから排出される。なお、このガス化成分等11aに
は加熱ガス11と熱分解生成物とが含まれており、また
この熱分解生成物は液状成分とガス化成分とが含まれて
いる。
In this case, the rotation speed of the waste FRP piece is adjusted by manipulating the rotating power 8 to apply centrifugal force more than gravity to prevent the waste FRP piece from falling due to gravity.
A piece of the residual core material is separated into a shape that can be easily reused as it is. In addition, the number of rotations of the waste FRP piece is adjusted by operating the rotation power 8, and the fluctuation of the centrifugal force and gravity and the waste FR
Vibration is performed by synergistically synthesizing the elasticity of the P piece (for example, a turning radius of 2).
The waste FRP pieces that make 60 revolutions per minute at 5 centimeters
Every time, it is almost gravityless and twice as gravitational. ),
The heating gas 11 is allowed to permeate evenly between the waste FRP pieces. As a result, heat transfer is improved, and waste FRP pieces can be thermally decomposed efficiently. On the other hand, the gasification component 11a is discharged into the furnace 3 through the hole 2a on the outer peripheral portion of the cylinder 2, and is discharged from the discharge port 3c of the furnace 3. The gasification component 11a contains the heating gas 11 and a pyrolysis product, and the pyrolysis product contains a liquid component and a gasification component.

【0023】一方、円筒2内に残るガラス繊維等の非分
解成分(残さ心材)は、再び前壁3a及び脱着軸受9を
取り除き、円筒2を炉3外に取り出し前板2bを取り外
して円筒2内の非分解成分(残さ心材)をほぼそのまま
の形状でかつ強度の劣化を少なくして取り出す。この取
り出された非分解成分(残さ心材)すなわちガラス繊維
等はFRPの心材として再利用される。また、セメント
等に混入して、引っ張り強度の強いコンクリートを得る
こと等により再利用される。円筒2内から非分解成分
(残さ心材)を取り出したら、再び上記の作業を繰り返
す。
On the other hand, non-decomposed components (residual core material) such as glass fibers remaining in the cylinder 2 are removed again by removing the front wall 3a and the detachable bearing 9, take the cylinder 2 out of the furnace 3, remove the front plate 2b, and remove the cylinder 2 The non-decomposed components (residual core material) are taken out in substantially the same shape and with less deterioration in strength. The extracted non-decomposed component (residual core material), that is, glass fiber or the like is reused as a core material of FRP. Also, it is reused by being mixed with cement or the like to obtain concrete having high tensile strength. After the non-decomposed components (residual core material) are taken out of the cylinder 2, the above operation is repeated again.

【0024】次に本発明の実施の形態−2乃至実施の形
態−4を、図2及び図3を用いて説明する。図2は実施
の形態−2乃至実施の形態−4の横断面図、図3はその
III−III矢視断面図である。なお、図2及び図3中の
符合が図1の符合と同一のものは、均等物なので説明を
省略する。図2及び図3において、水平軸回りに回転す
る回転容器としての円筒2の外周側には、円筒2と同心
軸に外筒2Aが設けられている。9aは外筒2Aの内側
と回転駆動軸10との間に設けられた脱着軸受である。
12aは円筒2と外筒2Aとの間を通過するガス化成分
等11aを誘導する誘導管で、同誘導管12aは炉3の
排出口3cを貫通する。13は誘導管12aの途中に設
けられた液状成分等の貯留槽、12bは貯留槽13から
一次冷却分留装置14への誘導管で、同一次冷却分留装
置14は誘導管12bを流れるガス化成分等11bを冷
却し分留されたものを貯留する一次冷却分留装置、15
は一次冷却分留装置14の後流側に設けられ一次冷却分
留装置14から誘導管12cを流れるガス化成分等11
cを冷却し分留されたものを貯留する二次冷却分留装置
である。なお、12dは二次冷却分留装置15からのガ
ス化成分等11dを流す誘導管で、同誘導管12dは循
環ポンプ16の吸入側に連結されガス化成分等11eを
流す誘導管12eに連通している。また、17はガス化
成分等11eの排気管で誘導管12eに分岐して設けら
れている。17aは同排気管17に介装された排気バル
ブで、循環ポンプ16の吐出側のガス化成分等11eを
流す誘導管12eに連結している。18は流量調整バル
ブで排気管17の分岐点よりも後流側に介装され、19
は流量調整バルブ18の後流側に誘導管12fに分岐し
て設けられた給気管で、同給気管19には給気バルブ1
9aが介装されている。誘導管12fは加熱ガス11の
ガス加熱管5aに連結されている。また、20は燃焼室
で、20aは燃焼室上床、20bは燃焼室上床20aに
設けられた複数の燃焼ガス排出口、21は燃焼室20に
設置された燃焼装置である。22は燃焼室上床20aと
外筒2Aとの間に設けられた加熱室である。この加熱室
22には炉3を貫通したガス加熱管5aが燃焼ガス排出
口20bの上部に配設されており、同ガス加熱管5aは
上方に曲げられ加熱ガス供給パイプ5に連通している。
Next, Embodiments 2 to 4 of the present invention will be described with reference to FIGS. FIG. 2 is a cross-sectional view of Embodiments 2 to 4, and FIG.
It is III-III arrow sectional drawing. 2 and 3 are the same as those in FIG. 1 and are not described here. In FIGS. 2 and 3, an outer cylinder 2 </ b> A is provided concentrically with the cylinder 2 on the outer peripheral side of the cylinder 2 as a rotating container that rotates around a horizontal axis. Reference numeral 9a denotes a detachable bearing provided between the inside of the outer cylinder 2A and the rotary drive shaft 10.
Reference numeral 12a denotes an induction pipe for guiding gasification components 11a and the like passing between the cylinder 2 and the outer cylinder 2A, and the induction pipe 12a passes through the discharge port 3c of the furnace 3. 13 is a storage tank for liquid components and the like provided in the middle of the guide pipe 12a, 12b is a guide pipe from the storage tank 13 to the primary cooling fractionating apparatus 14, and the same primary cooling fractionating apparatus 14 is a gas flowing through the guiding pipe 12b. Primary cooling fractionation device for cooling the fractionated components 11b and storing fractionated components, 15
Is a gasification component or the like 11 provided on the downstream side of the primary cooling fractionating device 14 and flowing from the primary cooling fractionating device 14 through the guide pipe 12c.
This is a secondary cooling fractionating device that cools and stores fractionated c. Reference numeral 12d denotes an induction pipe through which gaseous components and the like 11d from the secondary cooling fractionator 15 flow. The induction pipe 12d is connected to the suction side of the circulation pump 16 and communicates with an induction pipe 12e through which the gasification components and the like 11e flow. are doing. Reference numeral 17 denotes an exhaust pipe for the gasification component 11e, which is provided to branch off to the guide pipe 12e. Reference numeral 17a denotes an exhaust valve interposed in the exhaust pipe 17, which is connected to a guide pipe 12e through which gaseous components 11e on the discharge side of the circulation pump 16 flow. Reference numeral 18 denotes a flow control valve which is interposed downstream of the branch point of the exhaust pipe 17 and
An air supply pipe is provided on the downstream side of the flow control valve 18 and is branched from the guide pipe 12f.
9a is interposed. The guide tube 12f is connected to the gas heating tube 5a of the heating gas 11. Reference numeral 20 denotes a combustion chamber, reference numeral 20a denotes a combustion chamber upper floor, reference numeral 20b denotes a plurality of combustion gas discharge ports provided on the combustion chamber upper floor 20a, and reference numeral 21 denotes a combustion device provided in the combustion chamber 20. Reference numeral 22 denotes a heating chamber provided between the combustion chamber upper floor 20a and the outer cylinder 2A. In the heating chamber 22, a gas heating pipe 5a penetrating the furnace 3 is disposed above the combustion gas outlet 20b, and the gas heating pipe 5a is bent upward and communicates with the heating gas supply pipe 5. .

【0025】この様に構成された実施の形態において、
上記実施の形態−1で示した要領で、廃FRP片の熱処
理を加熱ガス11に水蒸気を用いて熱分解を行なう。先
ず、廃FRP片を円筒2内に充填しハッチ機構3Aで密
閉し流量調整バルブ18を閉、排気バルブ17aを開と
し、給気管19から水蒸気を加熱ガスの循環系内に充填
しながら円筒2を回転用動力8で回転起動する。また、
燃焼装置21を起動し燃料に着火して燃焼室20内で燃
焼を開始する。次に、空気が排気管17から排気された
ら、給気管19からの水蒸気の供給を止め、循環ポンプ
16を起動し、流量調整バルブ18と排気バルブ17a
との開度を調整して、加熱ガス11循環系内の圧力と流
量とを調整する。また、燃焼装置21の調整によって加
熱室22内のガス加熱管5aに当たる燃焼ガス排出口2
0bから噴出する燃焼ガスの温度と噴出量とを調整す
る。この様にして、加熱ガス11の温度をコントロール
して熱処理を開始する。
In the embodiment configured as described above,
In the manner described in the first embodiment, the waste FRP piece is thermally decomposed by using steam as the heating gas 11 for the heat treatment. First, the waste FRP piece is filled in the cylinder 2, closed by the hatch mechanism 3 A, the flow control valve 18 is closed, the exhaust valve 17 a is opened, and the cylinder 2 is filled with steam from the air supply pipe 19 into the circulation system of the heating gas. Is rotated by the rotation power 8. Also,
The combustion device 21 is activated, ignites the fuel, and starts combustion in the combustion chamber 20. Next, when the air is exhausted from the exhaust pipe 17, the supply of steam from the air supply pipe 19 is stopped, the circulation pump 16 is started, and the flow control valve 18 and the exhaust valve 17a are started.
To adjust the pressure and flow rate in the heating gas 11 circulation system. In addition, by adjusting the combustion device 21, the combustion gas discharge port 2 hitting the gas heating pipe 5 a in the heating chamber 22 is formed.
The temperature and amount of the combustion gas ejected from 0b are adjusted. In this way, the heat treatment is started by controlling the temperature of the heating gas 11.

【0026】この熱分解によって廃FRP片のガス化成
分等11aは、円筒2外周の孔2aから排出され円筒2
と外筒2Aとの空間路を通って誘導管12aに導かれ、
液状成分は液体貯留槽13で分離される。そして、誘導
管12bのガス化成分等11bは一次冷却分留装置14
で冷却され、ガス化成分等11bが190℃程度に冷却
されるとフタル酸等が分留される。ついで、一次冷却分
留装置14で分留されないガス化成分等11cは誘導管
12cを介し、二次冷却分留装置15に導かれる。ここ
でガス化成分等11cが140℃程度に冷却されるとス
チレン等が分留される。更に、二次冷却分留装置15で
分留されないガス化成分等11dは誘導管12dに導か
れて循環ポンプ16で加圧される。そして、誘導管12
eに導かれたガス化成分等11eの圧力を排気バルブ1
7aの開度で調整する。一方、再循環するガス化成分等
11eは流量調整バルブ18の開度で流量調整して、再
び水蒸気(加熱ガス11)と未留ガス(冷却分留されな
かったガス化成分を以後未留ガスと言う。)とを加熱ガ
ス11fとしてガス加熱管5aへ誘導し、熱処理が終了
するまで加熱ガス11として再送気する。
The gasification component 11a of the waste FRP piece is discharged from the hole 2a on the outer periphery of the cylinder 2 by the thermal decomposition,
Is guided to the guide tube 12a through the space path between the outer tube 2A and
The liquid component is separated in the liquid storage tank 13. The gasification component 11b of the guide pipe 12b is supplied to the primary cooling fractionator 14
When the gasified component 11b is cooled to about 190 ° C., phthalic acid and the like are fractionated. Next, the gasification components 11c that are not fractionated by the primary cooling fractionating device 14 are led to the secondary cooling fractionating device 15 via the guide pipe 12c. Here, when the gasification component 11c is cooled to about 140 ° C., styrene and the like are fractionated. Further, the gasification components 11d and the like which are not fractionated by the secondary cooling fractionator 15 are led to the guide pipe 12d and pressurized by the circulation pump 16. And the guide tube 12
The pressure of gaseous components 11e led to e is exhaust valve 1
Adjust with the opening of 7a. On the other hand, the recirculated gasification components 11e are flow-adjusted by the opening of the flow control valve 18, and the steam (heated gas 11) and the undistilled gas (gasification components not cooled and fractionated again) Is introduced into the gas heating pipe 5a as the heating gas 11f, and is re-supplied as the heating gas 11 until the heat treatment is completed.

【0027】ついで、熱処理が終了したら燃焼装置21
を止め加熱ガス11の温度を下げながら流量調整バルブ
18を閉める。そして、給気管19から水蒸気を供給し
ながら水蒸気と未留ガスとを排気管17から放出して円
筒2内に新しい水蒸気を充填する。次に、給気管19か
ら水蒸気の供給を止め、循環ポンプ16を止め、回転用
動力8を停止して円筒2の回転を止める。更に、炉3の
冷却と共に給気管19から円筒2内を空気と置換してハ
ッチ機構3Aを開放する。この場合、未留ガス放出が環
境上問題であれば、図示省略のガス処理装置で水蒸気と
未留ガスとを分離貯留し、本実施の形態の再操作時の加
熱ガスの加熱熱源として燃焼させる。
Then, when the heat treatment is completed, the combustion device 21
Is stopped, and the flow control valve 18 is closed while lowering the temperature of the heating gas 11. Then, while supplying the steam from the air supply pipe 19, the steam and the undistilled gas are discharged from the exhaust pipe 17 to fill the cylinder 2 with new steam. Next, the supply of steam from the air supply pipe 19 is stopped, the circulating pump 16 is stopped, the power for rotation 8 is stopped, and the rotation of the cylinder 2 is stopped. Further, with the cooling of the furnace 3, the inside of the cylinder 2 is replaced with air from the air supply pipe 19 to open the hatch mechanism 3A. In this case, if unretained gas release is an environmental problem, the steam and the unreacted gas are separated and stored in a gas treatment device (not shown) and burned as a heating heat source of the heated gas at the time of re-operation in the present embodiment. .

【0028】本発明の実施の形態−3について説明す
る。図3において、23a、23b、23c、・・・は
円筒2の外周面にその円周方向に適宜な間隔で設けられ
た複数個の案内羽根である。円周方向に適宜な間隔で設
けられた各案内羽根23a、23b、23c、・・・
は、円筒2の軸方向に延設されている。この案内羽根2
3a、23b、23c、・・・によって、円筒2Aの孔
2aから放出されたガス化成分等11aは強制的な流れ
を作られながら外筒2A内を回転するので外筒2Aと円
筒2との熱交換ができ、外筒2A内の温度を均一化す
る。その結果、廃FRP片の熱分解効率を高くすること
が出来る。
Embodiment 3 of the present invention will be described. In FIG. 3, 23a, 23b, 23c,... Are a plurality of guide blades provided on the outer peripheral surface of the cylinder 2 at appropriate intervals in the circumferential direction. Each guide blade 23a, 23b, 23c,... Provided at appropriate intervals in the circumferential direction.
Extend in the axial direction of the cylinder 2. This guide blade 2
3a, 23b, 23c,..., The gasified component 11a released from the hole 2a of the cylinder 2A rotates inside the outer cylinder 2A while creating a forced flow. Heat can be exchanged, and the temperature inside the outer cylinder 2A is made uniform. As a result, the thermal decomposition efficiency of the waste FRP piece can be increased.

【0029】本発明の実施の形態−4について説明す
る。図3において、24a、24b、24c、・・・は
円筒2の内側に軸方向に複数個の放射状に設けられた仕
切板である。この仕切板24a、24b、24c、・・
・によって円筒2は補強され、複数個の隔室25a、2
5b、25c、・・・に分割されるので廃FRP片を均
等に充填でき、回転起動時の偏りを制限できる。また、
廃FRP片に当たる加熱ガス11の温度むらが少なくな
り廃FRP片の再利用をさらに効率的にするものであ
る。なお、25a、25b、25c、・・・間の加熱ガ
ス11の交流を良くするために、仕切板24a、24
b、24c、・・・に複数の孔を設けても良い。
Embodiment 4 of the present invention will be described. In FIG. 3, reference numerals 24a, 24b, 24c,... Denote a plurality of radially provided partition plates inside the cylinder 2 in the axial direction. The partition plates 24a, 24b, 24c,.
The cylinder 2 is reinforced by a plurality of compartments 25a, 2
Since it is divided into 5b, 25c,..., The waste FRP pieces can be filled evenly, and the bias at the time of starting rotation can be limited. Also,
The temperature unevenness of the heated gas 11 hitting the waste FRP piece is reduced, and the reuse of the waste FRP piece is made more efficient. In addition, in order to improve the exchange of the heating gas 11 between 25a, 25b, 25c,.
A plurality of holes may be provided in b, 24c, ....

【0030】ついで、本発明の実施の形態−5及び実施
の形態−6を図4及び図5用いて説明する。図4は、実
施の形態−5及び実施の形態−6の横断面図である。図
5は、そのV−V矢視断面図である。図4及び図5中の
符合が、図1乃至図3の符合と同一なものは、均等物な
ので説明を省略する。26は一次冷却分留装置の噴霧ノ
ズルである。27は二次冷却分留装置の噴霧ノズルであ
る。28は二次冷却分留装置15からのガス化成分等1
1dを流す誘導管12dの後流側に設けられた気液分離
器及びガス化成分等11dの凝縮器(以後、気液分離器
と略記する。)である、28aは気液分離器28内の凝
縮器でガス化成分等11dの熱交換装置であり、28b
はガス化成分等11dの液化した飽和液である。更に、
12gは気液分離器28で分離されたガス化成分等11
gの誘導管で循環ポンプ16の吸入側に連結している。
12hは循環ポンプ16で加圧されたガス化成分等11
hの誘導管で循環ポンプ16の吐出側に連結されてい
る。29は誘導管12hに分岐し、排気バルブ17aを
介装した排気管17と連結した未留ガスと加熱ガスとの
主凝縮器である。
Next, a fifth embodiment and a sixth embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a cross-sectional view of Embodiment-5 and Embodiment-6. FIG. 5 is a sectional view taken along the line VV. 4 and 5 are the same as those in FIGS. 1 to 3 and are not described here. 26 is a spray nozzle of the primary cooling fractionator. 27 is a spray nozzle of the secondary cooling fractionating apparatus. 28 is a gasification component etc. 1 from the secondary cooling fractionating apparatus 15
A gas-liquid separator and a condenser (hereinafter abbreviated as a gas-liquid separator) for the gas-liquid component and the like 11 d provided on the downstream side of the guide pipe 12 d for flowing 1 d. Is a heat exchange device for 11d of gasification components etc.
Is a liquefied saturated liquid of the gasification component 11d. Furthermore,
12 g is the gasification component etc. separated by the gas-liquid separator 28.
g is connected to the suction side of the circulating pump 16 by an induction pipe.
12h is a gasification component or the like pressurized by the circulation pump 16
h is connected to the discharge side of the circulation pump 16 by a guide pipe. Reference numeral 29 denotes a main condenser of the undistilled gas and the heated gas which is branched to the guide pipe 12h and connected to the exhaust pipe 17 having the exhaust valve 17a interposed.

【0031】この様に構成された実施の形態において、
上記実施の形態−2で示した要領で、一次冷却分留装置
の噴霧ノズル26から噴出量を調整した噴霧水(水の蒸
発の潜熱と熱分解ガスの凝縮の潜熱との熱交換をさせ
る。)をガス化成分等11bに直接噴霧して冷却分留す
る。また、誘導管12cを介し二次冷却分留装置15に
導かれたガス化成分等11cは、二次冷却分留装置の噴
霧ノズル27から同様に噴霧水を直接噴霧して冷却分留
する。更に、二次冷却分留装置15で分留されないガス
化成分等11dは誘導管12dを介し気液分離器28で
ガス化成分等11gと液状成分とに再度分離される。ま
た、噴霧され蒸発した水蒸気は気液分離器28内に設置
された熱交換装置28aで冷却され飽和水28bとして
回収し、再度噴霧水として利用しながら気液分離器28
内に一定量貯留(飽和液は圧力が低下すると蒸発して器
内の圧力を安定させる。)する。更に、ガス化成分等1
1gは誘導管12gに導かれて循環ポンプ16で加圧さ
れ、誘導管12hに導かれたガス化成分等11hの圧力
を排気バルブ17aの開度で調整し、排気管17から排
気させる。このガス化成分等11hの一部は適宜主凝縮
器29で凝縮分離する。一方、誘導管12iの再循環す
るガス化成分等11iは流量調整バルブ18の開度で流
量を調整して、再び加熱ガス(水蒸気と未留ガス)11
iとしてガス加熱管5aへ誘導されて再送気させる。
In the embodiment configured as described above,
In the manner described in the second embodiment, heat is exchanged between the spray water (the latent heat of evaporation of water and the latent heat of condensation of the pyrolysis gas) whose spray amount is adjusted from the spray nozzle 26 of the primary cooling fractionator. ) Is directly sprayed onto the gasification component 11b and cooled and fractionated. Similarly, the gasification component 11c guided to the secondary cooling fractionating device 15 via the guide pipe 12c is directly sprayed with the spray water from the spray nozzle 27 of the secondary cooling fractionating device and cooled and fractionated. Further, the gasified component 11d that is not fractionated by the secondary cooling fractionator 15 is separated again into 11g of the gasified component and the liquid component by the gas-liquid separator 28 via the guide pipe 12d. Further, the sprayed and evaporated water vapor is cooled by a heat exchange device 28a installed in the gas-liquid separator 28, collected as saturated water 28b, and reused as spray water while the gas-liquid separator 28
(Saturated liquid evaporates when the pressure drops and stabilizes the pressure in the vessel.) Furthermore, gasification components etc.
1 g is guided to the guide pipe 12 g and pressurized by the circulation pump 16. The pressure of the gasification component 11 h guided to the guide pipe 12 h is adjusted by the opening of the exhaust valve 17 a and exhausted from the exhaust pipe 17. A part of the gasification component 11h is appropriately condensed and separated in the main condenser 29. On the other hand, the recirculated gasification components 11i and the like 11i of the guide pipe 12i adjust the flow rate by the opening degree of the flow rate control valve 18 and re-heat gas (steam and undistilled gas) 11i.
As i, it is guided to the gas heating pipe 5a and is re-supplied.

【0032】熱処理が終了したら、流量調整バルブ18
を閉め、給気管19から新しい水蒸気を供給し、新しく
供給した水蒸気を含むガス化成分等11gを循環ポンプ
16を用いて、ガス化成分等11hを排気管17を介し
て主凝縮器29に注入し、水蒸気を液化して未留ガスを
分離する。このようにして未留ガスも分離貯留して、加
熱源として再利用する。
When the heat treatment is completed, the flow control valve 18
Is closed, new steam is supplied from the air supply pipe 19, and 11 g of the gasification component containing the newly supplied steam is injected into the main condenser 29 through the exhaust pipe 17 using the circulation pump 16. Then, the steam is liquefied to separate the undistilled gas. In this way, the unreacted gas is also separated and stored, and is reused as a heating source.

【0033】本発明の実施の形態−6について説明す
る。図4及び図5において、30は複数個の空気噴出孔
30aを有する空気供給管で、同空気供給管30は加熱
室22内でガス加熱管5aの下方に設けられており、一
部が加熱室22を貫通し炉3外で空気供給装置31に連
結されている。また、円筒2の内側に電磁波を照射する
電磁波照射装置32が中空軸1の外周面にその円周方向
に適宜の間隔で複数設けられている。更に、円筒2の内
周面の全域には均等間隔で複数のバネ33が設けられて
いる。バネ33には例えば板バネが使用されている。
The sixth embodiment of the present invention will be described. 4 and 5, reference numeral 30 denotes an air supply pipe having a plurality of air ejection holes 30a. The air supply pipe 30 is provided below the gas heating pipe 5a in the heating chamber 22, and is partially heated. It is connected to an air supply device 31 outside the furnace 3 through the chamber 22. A plurality of electromagnetic wave irradiation devices 32 for irradiating the inside of the cylinder 2 with electromagnetic waves are provided on the outer peripheral surface of the hollow shaft 1 at appropriate intervals in the circumferential direction. Further, a plurality of springs 33 are provided at equal intervals over the entire inner peripheral surface of the cylinder 2. As the spring 33, for example, a leaf spring is used.

【0034】このような構成において、加熱ガス11の
温度をコントロールするため、燃焼ガスにより加熱され
ているガス加熱管5aに、空気供給装置31から供給さ
れた空気を空気供給管30の空気噴出孔30aから噴出
させて当て、空気噴出孔30aから噴出される空気の量
を調節することによって、より高度にガス加熱管5a内
の加熱ガス11の温度をコントロールすることが出来
る。このように、加熱ガス11の温度や流量を調節する
ことによって、加熱ガス11が廃FRP片に与える熱量
を調節でき、熱分解ガス化反応速度を調整することが可
能となる。また、廃FRP片の熱分解生成物に有害物質
が生成される可能性のある場合には加熱ガス11の種類
や化学的性状を変えることによって、熱分解生成物の分
解生成段階での性状を調整し無害化することが出来る。
In such a configuration, in order to control the temperature of the heating gas 11, air supplied from the air supply device 31 is supplied to the gas heating pipe 5a heated by the combustion gas. The temperature of the heating gas 11 in the gas heating pipe 5a can be controlled at a higher level by adjusting the amount of air ejected from the air ejection holes 30a by ejecting the air from the air ejection holes 30a. Thus, by adjusting the temperature and the flow rate of the heating gas 11, the amount of heat that the heating gas 11 gives to the waste FRP pieces can be adjusted, and the rate of the pyrolysis gasification reaction can be adjusted. In the case where a harmful substance may be generated in the thermal decomposition product of the waste FRP piece, by changing the type and chemical properties of the heating gas 11, the properties of the thermal decomposition product in the decomposition generation stage are changed. It can be adjusted and made harmless.

【0035】更に、電磁波照射装置32から照射される
電磁波によって円筒2の内側の廃FRP片は加熱される
ため、熱分解を早めることができる。また、バネ33は
遠心力と重力との変動によって微小振動してバネ33に
張り付いた廃FRP片を微小振動させて熱分解を早める
ことができる。
Further, since the waste FRP piece inside the cylinder 2 is heated by the electromagnetic wave irradiated from the electromagnetic wave irradiation device 32, the thermal decomposition can be accelerated. Further, the spring 33 minutely vibrates due to the change of the centrifugal force and the gravity, and minutely vibrates the waste FRP piece stuck to the spring 33 to accelerate the thermal decomposition.

【0036】〔実施の形態の効果〕 1)横置円筒2の回転数を調整し、廃FRP片に遠心力
を与え、一回転毎の(遠心力+重力)と(遠心力−重
力)との変動により振動させ、廃FRP片間に加熱ガス
11を均等に浸透させるので、廃FRP片の熱分解を効
率良く行なうことができる。 2)廃FRP片の熱分解に必要な熱量を加熱ガス11の
温度と流量とを調整することによって廃FRP片の熱分
解の分解速度を調整できる。 3)廃FRP片の熱分解が低温一定温度で処理できるた
め、熱分解生成物の成分が安定していて再生利用が容易
になる。 4)円筒2の回転により廃FRP片の非分解成分のガラ
ス繊維が膨張せず、低温処理のため強度の劣化が少なく
再利用することが容易になる。 5)廃FRP片のガス化成分等を冷却分留し、廃FRP
片の熱分解用加熱ガス11の加熱用熱源として未留ガス
やスチレン等は再利用できるので、リサイクル効率が良
い。 6)廃FRP片の熱分解生成物を分離分留し、加熱ガス
等の凝縮分離により加熱処理がほぼ閉鎖された循環系内
で処理され、更に加熱ガス11の種類や化学的性状を変
えて熱分解するため有害物質を外部に排出することがな
い。 7)円筒2の回転により廃FRP片を振動させるため、
振動装置が単純で騒音が少ない。また、回転運動のため
動力消費を少なくすることができる。 8)円筒2に案内羽根23a、23b、23c、・・・
により廃FRP片のガス化成分等11aの流れを強制す
ることができ、外筒2A内の温度を均一化して廃FRP
片の熱分解効率を高くすることができる。 9)円筒2内に隔室25a、25b、25c、・・・を
設けたことにより廃FRP片を均等に充填することがで
き、円筒2を補強でき、回転起動時の偏りを制限でき
る。また、廃FRP片の温度むらをなくし均一に廃FR
P片を熱分解できる。 10)加熱ガス11に水蒸気を用いてガス化成分等11
b、11cを分留する冷却方法に、水を直接噴霧して熱
交換させることによって熱交換効率を良くすることがで
きる。また、冷却分留装置14及び二次冷却分留装置1
5を単純化でき、熱交換の速度が早く、噴霧量の調整に
よって廃FRP片のガス化成分の分留温度のコントロー
ルが容易になる。 11)炉3内に燃焼室20を設け、炉3が外筒2Aを内
包することにより外筒2Aを外側から加熱保温ができ
る。また、未留ガス等不要残さ物を燃焼室20で高温焼
却して完全燃焼させ、加熱ガス11の加熱源として利用
することができる。 12)気液分離器28を設けることにより循環ポンプ1
6に液状成分(水など)の流入を制限でき、また気液分
離器28内に飽和水28bなど飽和状態の液体が存在す
ることによって系内の圧力変動を緩和することができ
る。
[Effects of the Embodiment] 1) The number of rotations of the horizontal cylinder 2 is adjusted to give a centrifugal force to the waste FRP piece, and (centrifugal force + gravity) and (centrifugal force-gravity) for each rotation. Is vibrated by the fluctuation of the waste FRP pieces, and the heating gas 11 is made to uniformly penetrate between the waste FRP pieces, so that the thermal decomposition of the waste FRP pieces can be performed efficiently. 2) The amount of heat required for the thermal decomposition of the waste FRP pieces can be adjusted by adjusting the temperature and the flow rate of the heating gas 11 to adjust the decomposition rate of the thermal decomposition of the waste FRP pieces. 3) Since the thermal decomposition of the waste FRP pieces can be processed at a low temperature and a constant temperature, the components of the thermal decomposition products are stable and the recycling becomes easy. 4) The glass fiber as a non-decomposed component of the waste FRP piece does not expand due to the rotation of the cylinder 2, and the low temperature treatment reduces the strength deterioration and facilitates reuse. 5) The gasified components of the waste FRP pieces are cooled and fractionated, and the waste FRP
Since the undistilled gas and styrene can be reused as a heat source for heating the heating gas 11 for thermal decomposition of the pieces, the recycling efficiency is high. 6) The thermal decomposition products of the waste FRP pieces are separated and fractionated, and are condensed and separated by a heating gas or the like, which is then processed in a substantially closed circulation system, and further by changing the type or chemical properties of the heating gas 11. No harmful substances are emitted outside due to thermal decomposition. 7) In order to vibrate the waste FRP piece by rotation of the cylinder 2,
Simple vibration device and low noise. In addition, power consumption can be reduced due to the rotational movement. 8) Guide vanes 23a, 23b, 23c,.
By this, the flow of the gasified components 11a of the waste FRP pieces can be forced, and the temperature inside the outer cylinder 2A is made uniform to reduce the waste FRP.
The thermal decomposition efficiency of the pieces can be increased. 9) By providing the compartments 25a, 25b, 25c,... In the cylinder 2, the waste FRP pieces can be evenly filled, the cylinder 2 can be reinforced, and the bias at the time of starting rotation can be limited. In addition, uniformity of waste FR
P pieces can be thermally decomposed. 10) Gasification components 11 using steam as the heating gas 11
The heat exchange efficiency can be improved by directly spraying water and performing heat exchange on the cooling method for fractionating b and 11c. In addition, the cooling fractionating device 14 and the secondary cooling fractionating device 1
5 can be simplified, the rate of heat exchange is high, and the control of the fractionation temperature of the gasified components of the waste FRP pieces is facilitated by adjusting the spray amount. 11) The combustion chamber 20 is provided in the furnace 3, and the furnace 3 includes the outer cylinder 2A, so that the outer cylinder 2A can be heated and kept warm from the outside. Further, unnecessary residues such as undistilled gas can be incinerated at a high temperature in the combustion chamber 20 and completely burned, and can be used as a heating source of the heating gas 11. 12) By providing the gas-liquid separator 28, the circulation pump 1
6, the inflow of liquid components (such as water) can be limited, and the presence of a saturated liquid such as saturated water 28b in the gas-liquid separator 28 can alleviate pressure fluctuations in the system.

【0037】[0037]

【発明の効果】1)横置円筒の回転数を調整し廃プラス
チック片に遠心力を与え、一回転毎の(遠心力+重力)
と(遠心力−重力)との変動により振動させ、廃プラス
チック片に加熱ガスを均等に浸透させることにより熱伝
達が向上し、廃プラスチック片の熱分解可能な低温の一
定温度で効率良く熱分解させることができる。 2)廃プラスチック片の熱分解に必要な熱量を、加熱ガ
スの温度と流量とを加減することによって熱分解の分解
速度を調整することが出来る。 3)廃プラスチック片の熱分解生成物に有害物質が生成
される可能性のある場合などに、加熱ガスの種類や化学
的性状を変えて供給し、熱分解生成物の性状を調整し無
害化することが可能となる。 4)廃プラスチック片の熱分解が一定温度で処理できる
ため、熱分解生成物の成分が安定していて、液状成分や
ガス化成分が冷却分留された物質の再生利用が容易にな
る。 5)円筒の回転数調整により、廃プラスチック片の非分
解成分のガラス繊維等が膨張せず、低温処理のため強度
の劣化が少なく再利用することが容易になる。 6)廃プラスチック片の熱分解生成物を分離分留、加熱
ガス等の凝縮分離により加熱処理がほぼ閉鎖された循環
系内で処理されるため有害物質を排出することがない。 7)円筒の回転により廃プラスチック片を振動させるた
め、振動装置が単純で騒音が少ない。また、回転運動の
ため動力消費を少なくすることができる。 8)円筒に案内羽根をつけることにより廃プラスチック
片の熱分解生成物の流れを強制することができ、回転系
内の温度を均一化して廃プラスチック片の熱分解効率を
高くすることができる。 9)円筒内に隔室を設けたことにより廃プラスチック片
を均等に充填することができ、円筒を補強し、回転起動
時の偏りを制限できる。また、廃プラスチック片の温度
むらをなくし、均一に廃プラスチック片を熱分解でき
る。 10)円筒の内側に電磁波を照射する電磁波照射装置を
設けたことにより廃プラスチック片の熱分解を早めるこ
とができる。 11)円筒の内周面に適宜な間隔でバネを設けたことに
より、バネは遠心力と重力との変動によって微小振動し
てバネに張り付いた廃プラスチック片を微小振動させて
熱分解を早めることができる。 12)加熱ガスに水蒸気等不活性なガスを用いることに
より、熱分解生成物の酸化や燃焼及び爆発を防止するこ
とができる。 13)ほぼ大気圧の下で加熱処理できるため装置の構造
が簡単で製造コストを低減できる。 以上述べたような、本発明によって廃プラスチック片を
効率良く加熱処理することができる。また、本発明によ
って得られた処理物を効率良く再生利用することが出来
る。
1) The rotation speed of the horizontal cylinder is adjusted to apply a centrifugal force to the waste plastic pieces, and the centrifugal force + gravity per rotation
Vibration caused by the fluctuation of (centrifugal force-gravity), heat gas is evenly penetrated into waste plastic pieces to improve heat transfer, and efficiently decompose waste plastic pieces at a constant low temperature that can be thermally decomposed Can be done. 2) The rate of thermal decomposition can be adjusted by adjusting the amount of heat required for the thermal decomposition of the waste plastic pieces by adjusting the temperature and the flow rate of the heating gas. 3) When harmful substances may be generated in the thermal decomposition products of waste plastic pieces, supply by changing the type and chemical properties of the heating gas, and adjust the properties of the thermal decomposition products to make them harmless. It is possible to do. 4) Since the thermal decomposition of the waste plastic pieces can be processed at a constant temperature, the components of the thermal decomposition products are stable, and the recycling of the substances obtained by cooling and fractionating the liquid components and gasification components becomes easy. 5) By adjusting the rotation speed of the cylinder, the non-decomposed components of the waste plastic pieces, such as glass fiber, do not expand, and the low-temperature treatment reduces deterioration in strength and facilitates reuse. 6) Since the thermal decomposition products of the waste plastic pieces are separated and fractionated, and condensed and separated by a heating gas or the like, the heat treatment is performed in a substantially closed circulation system, so that harmful substances are not discharged. 7) Since the waste plastic piece is vibrated by the rotation of the cylinder, the vibration device is simple and the noise is small. In addition, power consumption can be reduced due to the rotational movement. 8) By attaching the guide blade to the cylinder, the flow of the thermal decomposition product of the waste plastic piece can be forced, and the temperature in the rotating system can be made uniform to increase the thermal decomposition efficiency of the waste plastic piece. 9) By providing the compartment in the cylinder, the waste plastic pieces can be evenly filled, the cylinder can be reinforced, and the bias at the time of starting rotation can be limited. Further, the temperature of the waste plastic pieces can be eliminated, and the waste plastic pieces can be thermally decomposed uniformly. 10) By providing an electromagnetic wave irradiation device for irradiating electromagnetic waves inside the cylinder, the thermal decomposition of the waste plastic pieces can be accelerated. 11) By providing springs at appropriate intervals on the inner peripheral surface of the cylinder, the springs vibrate minutely due to fluctuations in centrifugal force and gravity, and minutely vibrate the waste plastic pieces stuck to the springs to accelerate thermal decomposition. be able to. 12) By using an inert gas such as water vapor as the heating gas, it is possible to prevent oxidation, combustion and explosion of the thermal decomposition product. 13) Since the heat treatment can be performed under substantially atmospheric pressure, the structure of the apparatus is simple and the manufacturing cost can be reduced. As described above, waste plastic pieces can be efficiently heat-treated by the present invention. Further, the processed product obtained by the present invention can be efficiently recycled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態−1の横断面図である。FIG. 1 is a transverse sectional view of Embodiment 1 of the present invention.

【図2】本発明の実施の形態−2乃至実施の形態−4の
横断面図である。
FIG. 2 is a cross-sectional view of Embodiments 2 to 4 of the present invention.

【図3】図2の III−III 矢視断面図である。FIG. 3 is a sectional view taken along the line III-III in FIG. 2;

【図4】本発明の実施の形態−5及び実施の形態−6の
横断面図である。
FIG. 4 is a cross-sectional view of Embodiment-5 and Embodiment-6 of the present invention.

【図5】図4のV−V矢視断面図である。FIG. 5 is a sectional view taken along the line VV of FIG. 4;

【符号の説明】[Explanation of symbols]

1:中空軸、1a:孔 2:円筒、2A:外筒 2a:孔、2b:前板、2c:後板 3:炉、3a:前壁、3b:後壁、3c:排出口 3A:ハッチ機構 4:加熱ガス供給源 5:加熱ガス供給パイプ、5a:ガス加熱管 6:中空回転軸 7:回転軸 8:回転用動力 9、9a:脱着軸受 10:回転駆動軸 11:加熱ガス 11a、11b、11c、11d、11e、11f、1
1g、11h、11i:ガス化成分等 12a、12b、12c、12d、12e、12f、1
2g、12h、12i:誘導管 13:貯留槽 14:一次冷却分留装置 15:二次冷却分留装置 16:循環ポンプ 17:排気管、17a:排気バルブ 18:流量調整バルブ 19:給気管、19a:給気バルブ 20:燃焼室、20a:燃焼室上床、20b:燃焼ガス
排出口 21:燃焼装置 22:加熱室 23a、23b、23c:案内羽根 24a、24b、24c:仕切板 25a、25b、25c:隔室 26:一次冷却分留装置の噴霧ノズル 27:二次冷却分留装置の噴霧ノズル 28:気液分離器、28a:熱交換装置、28b:飽和
液 29:主凝縮器 30:空気供給管、30a:空気噴出孔 31:空気供給装置 32:電磁波照射装置 33:バネ
1: hollow shaft, 1a: hole 2: cylinder, 2A: outer cylinder 2a: hole, 2b: front plate, 2c: rear plate 3: furnace, 3a: front wall, 3b: rear wall, 3c: outlet 3A: hatch Mechanism 4: Heating gas supply source 5: Heating gas supply pipe, 5a: Gas heating tube 6: Hollow rotating shaft 7: Rotating shaft 8: Power for rotation 9, 9a: Detachable bearing 10: Rotating drive shaft 11: Heating gas 11a, 11b, 11c, 11d, 11e, 11f, 1
1g, 11h, 11i: gasification components, etc. 12a, 12b, 12c, 12d, 12e, 12f, 1
2g, 12h, 12i: guide tube 13: storage tank 14: primary cooling fractionator 15: secondary cooling fractionator 16: circulation pump 17: exhaust pipe, 17a: exhaust valve 18: flow control valve 19: air supply pipe, 19a: Air supply valve 20: Combustion chamber, 20a: Combustion chamber upper floor, 20b: Combustion gas outlet 21: Combustion device 22: Heating chamber 23a, 23b, 23c: Guide vane 24a, 24b, 24c: Partition plate 25a, 25b, 25c: Separator 26: Spray nozzle of primary cooling fractionator 27: Spray nozzle of secondary cooling fractionator 28: Gas-liquid separator, 28a: Heat exchanger, 28b: Saturated liquid 29: Main condenser 30: Air Supply pipe, 30a: Air ejection hole 31: Air supply device 32: Electromagnetic wave irradiation device 33: Spring

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 外周に孔の開いた横長の中空軸と、同軸
に配され外周に孔の開いた一端側が開閉可能で他端が閉
塞された円筒と、上記円筒を内包し一部に熱分解生成物
や加熱ガスを排出する開口部を有し一端が開閉可能な炉
と、上記中空軸に連結する加熱ガス供給源と、上記中空
軸及び上記円筒とを回転させる動力源と、から構成され
ることを特徴とする横置円筒回転式廃プラスチックの熱
分解炉。
1. A horizontally long hollow shaft having a hole in the outer periphery, a cylinder coaxially arranged and having a hole opened in the outer periphery, one end of which can be opened and closed, and the other end of which is closed. A furnace having an opening for discharging decomposition products and a heated gas and having an openable / closable end, a heated gas supply source connected to the hollow shaft, and a power source for rotating the hollow shaft and the cylinder. A pyrolysis furnace for waste plastics with horizontal cylinder rotation.
【請求項2】 側周面に通気孔を有し横長の中空軸と、
同軸に外装され側周面に通気孔を有し両端が密閉され内
部に適当量の廃プラスチック片が充填され一部が開閉可
能な円筒と、上記中空軸及び円筒が内部に横置され一部
に熱分解生成物や加熱ガスを排出する開口部を有し一部
が開閉可能な炉と、上記中空軸を介して円筒内部に連通
する加熱ガス供給源と、上記中空軸及び上記円筒とを水
平軸回りに回転させる動力源と、から構成されることを
特徴とする横置円筒回転式廃プラスチックの熱分解炉。
2. A horizontally long hollow shaft having a ventilation hole on a side peripheral surface,
A cylinder that is coaxially exterior, has ventilation holes on the side peripheral surface, is closed at both ends, is filled with an appropriate amount of waste plastic pieces inside, and is partially openable and closable, and the hollow shaft and cylinder are placed horizontally inside and partially A furnace which has an opening for discharging a pyrolysis product or a heated gas and which can be partially opened and closed, a heating gas supply source communicating with the inside of the cylinder through the hollow shaft, and the hollow shaft and the cylinder A horizontal cylindrical rotary waste plastic pyrolysis furnace, comprising: a power source rotating around a horizontal axis.
【請求項3】 上記開口部にパイプを設け、上記パイプ
が冷却装置を通過する請求項1又は請求項2記載の横置
円筒回転式廃プラスチックの熱分解炉。
3. The pyrolysis furnace for waste plastics according to claim 1, wherein a pipe is provided in the opening, and the pipe passes through a cooling device.
【請求項4】 上記円筒の外周に適宜の隙間をあけて外
筒を設けると共に、上記円筒外周面にその円周方向に適
宜な間隔で複数個の案内羽根を設けた請求項1又は請求
項2記載の横置円筒回転式廃プラスチックの熱分解炉。
4. The cylinder according to claim 1, wherein an outer cylinder is provided on the outer periphery of the cylinder with an appropriate gap, and a plurality of guide vanes are provided on the outer peripheral surface of the cylinder at appropriate intervals in the circumferential direction. 2. A pyrolysis furnace for waste plastics with horizontal cylinder rotation according to item 2.
【請求項5】 上記円筒の内側に、軸方向に複数個の仕
切板を放射状に設けた請求項1又は請求項2記載の横置
円筒回転式廃プラスチックの熱分解炉。
5. The thermal decomposition furnace for waste plastics according to claim 1, wherein a plurality of partition plates are provided radially inside the cylinder in the axial direction.
【請求項6】 上記円筒の内側に電磁波を照射する電磁
波照射装置を設けた請求項1又は請求項2記載の横置円
筒回転式廃プラスチックの熱分解炉。
6. The pyrolysis furnace of a horizontal cylindrical rotary waste plastic according to claim 1, further comprising an electromagnetic wave irradiation device for irradiating the inside of said cylinder with an electromagnetic wave.
【請求項7】 上記円筒の内周面に適宜な間隔でバネを
設けた請求項1又は請求項2記載の横置円筒回転式廃プ
ラスチックの熱分解炉。
7. The horizontal plastic waste rotary plastic pyrolysis furnace according to claim 1, wherein springs are provided at appropriate intervals on the inner peripheral surface of said cylinder.
【請求項8】 上記冷却装置の冷却分留に加熱ガスの液
状体を熱分解生成物のガス化成分に直接噴霧する噴霧ノ
ズルを設けた請求項3記載の横置円筒回転式廃プラスチ
ックの熱分解炉。
8. The heat of a horizontal cylindrical rotary plastic waste according to claim 3, wherein a spray nozzle for directly spraying a liquid material of a heating gas onto a gasification component of a pyrolysis product is provided in the cooling fractionation of the cooling device. Decomposition furnace.
【請求項9】 上記円筒に廃プラスチック片を詰め、加
熱ガスを供給しながら回転させ遠心力と重力との変動を
利用して、上記廃プラスチック片と上記加熱ガスとの熱
伝達を向上させ、熱分解生成物の性状を安定させて取り
出すようにしたことを特徴とする横置円筒回転式廃プラ
スチックの熱分解方法。
9. Filling the cylinder with waste plastic pieces, rotating the cylinder while supplying heating gas, and utilizing the fluctuation of centrifugal force and gravity to improve heat transfer between the waste plastic pieces and the heating gas; A method for thermally decomposing horizontal cylindrical rotary waste plastic, characterized in that the properties of the pyrolysis product are stably taken out.
【請求項10】 上記円筒の回転数を調整して、上記廃
プラスチック片に働く遠心力を重力よりも大きくするこ
とにより、熱分解の残さ心材をほぼそのままの形で取り
出すようにした請求項9記載の横置円筒回転式廃プラス
チックの熱分解方法。
10. The method according to claim 9, wherein the centrifugal force acting on the waste plastic pieces is made larger than gravity by adjusting the rotation speed of the cylinder, so that the core material remaining after the thermal decomposition is taken out almost as it is. A method for thermally decomposing horizontal cylindrical rotary waste plastic according to the above.
【請求項11】 炉に内包された回転容器に廃プラスチ
ック片を充填し水平方向を軸芯として上記廃プラスチッ
ク片が自由落下しないように回転調整し、遠心力と重力
の変動を利用して振動させ、加熱ガスや熱分解生成物な
どの熱媒体との熱伝達を向上させて熱分解することを特
徴とする横置円筒回転式廃プラスチックの熱分解方法。
11. A rotating container contained in a furnace is filled with waste plastic pieces, and the rotation is adjusted so that the waste plastic pieces do not fall freely around the horizontal direction as an axis, and vibration is applied by utilizing the fluctuation of centrifugal force and gravity. A method for thermally decomposing horizontal cylinder-rotating waste plastic, wherein heat is transferred to a heating medium such as a heated gas or a pyrolysis product to improve the heat transfer.
【請求項12】 上記回転容器の回転数を調整して、上
記廃プラスチック片に働く遠心力を重力よりも大きくす
ることにより、熱分解の残さ心材をほぼそのままの形で
取り出すようにした請求項11記載の横置円筒回転式廃
プラスチックの熱分解方法。
12. The method according to claim 1, wherein the rotational speed of the rotary container is adjusted so that the centrifugal force acting on the waste plastic pieces is greater than the gravity, so that the core material remaining after pyrolysis is taken out almost as it is. 12. The method for thermally decomposing a horizontal cylindrical rotary waste plastic according to 11.
【請求項13】 上記加熱ガスの温度と上記加熱ガスの
供給量とを調整して上記廃プラスチック片の熱分解の速
度を調整する請求項9又は請求項11記載の横置円筒回
転式廃プラスチックの熱分解方法。
13. The horizontal cylindrical waste plastic according to claim 9, wherein the temperature of the heating gas and the supply amount of the heating gas are adjusted to adjust the rate of thermal decomposition of the waste plastic pieces. Thermal decomposition method.
【請求項14】 上記加熱ガスの種類や化学的性状を変
えて供給し、熱分解で発生する分解生成物の性状を調整
する請求項9又は請求項11記載の横置円筒回転式廃プ
ラスチックの熱分解方法。
14. The horizontal cylindrical rotating plastic waste according to claim 9 or 11, wherein the heating gas is supplied by changing the kind or chemical properties thereof to adjust properties of a decomposition product generated by thermal decomposition. Pyrolysis method.
【請求項15】 炉内に横置された回転容器に廃プラス
チック片を適当量充填して水平軸回りに回転させながら
加熱ガスを供給すると共に、回転初期においては回転容
器を低速で回転して同容器内の上記廃プラスチック片を
自由落下させて加熱ガスを同容器内の廃プラスチック片
全体に均等に浸透させ、熱分解温度に達した後は廃プラ
スチック片が自由落下しないように回転容器の回転を高
めてその遠心力で廃プラスチック片を回転容器の内周面
に張り付けて廃プラスチック片が自転するのを防ぐと共
に、遠心力と重力の変動を利用して回転容器の内周面に
張り付けた廃プラスチック片を内部振動させ、加熱ガス
や熱分解生成物などの熱媒体との熱伝達を向上させて熱
分解することを特徴とする横置円筒回転式廃プラスチッ
クの熱分解方法。
15. A rotating container placed laterally in a furnace is filled with an appropriate amount of waste plastic pieces and heated gas is supplied while rotating around a horizontal axis. In the initial stage of rotation, the rotating container is rotated at a low speed. The waste plastic pieces in the container are allowed to fall freely, and the heated gas is evenly penetrated throughout the waste plastic pieces in the container. By increasing the rotation and attaching the waste plastic pieces to the inner peripheral surface of the rotating container by the centrifugal force to prevent the waste plastic pieces from rotating, the centrifugal force and the change in gravity are used to attach the waste plastic pieces to the inner peripheral surface of the rotating container. A method for thermally decomposing a horizontal cylindrical rotary plastic, wherein a waste plastic piece is internally vibrated to improve heat transfer with a heating medium such as a heating gas or a thermal decomposition product to perform thermal decomposition.
【請求項16】 上記廃プラスチック片の熱分解生成物
を炉外に取り出し再生利用物として分離分留する請求項
11又は請求項15記載の横置円筒回転式廃プラスチッ
クの熱分解方法。
16. The thermal decomposition method of a horizontal cylindrical rotary plastic waste according to claim 11, wherein the thermal decomposition product of the waste plastic piece is taken out of the furnace and separated and fractionated as a recycled product.
JP2000055166A 1999-03-12 2000-03-01 Pyrolysis method of horizontal cylindrical rotary waste FRP Expired - Fee Related JP3872247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000055166A JP3872247B2 (en) 1999-03-12 2000-03-01 Pyrolysis method of horizontal cylindrical rotary waste FRP

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10991999 1999-03-12
JP11-109919 1999-03-12
JP2000055166A JP3872247B2 (en) 1999-03-12 2000-03-01 Pyrolysis method of horizontal cylindrical rotary waste FRP

Publications (2)

Publication Number Publication Date
JP2000327830A true JP2000327830A (en) 2000-11-28
JP3872247B2 JP3872247B2 (en) 2007-01-24

Family

ID=26449627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000055166A Expired - Fee Related JP3872247B2 (en) 1999-03-12 2000-03-01 Pyrolysis method of horizontal cylindrical rotary waste FRP

Country Status (1)

Country Link
JP (1) JP3872247B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001054A (en) * 2001-06-21 2003-01-07 Mitsubishi Heavy Ind Ltd Apparatus for removing so3 component in exhaust gas
WO2015087415A1 (en) * 2013-12-11 2015-06-18 孝 大野 Manufacturing apparatus and manufacturing method for resin composite material
JP2016521295A (en) * 2013-03-28 2016-07-21 イーエルジー カーボン ファイバー インターナショナル ゲーエムベーハー Pyrolysis system and method for recovering carbon fiber from carbon fiber-containing resin
CN110142107A (en) * 2019-05-21 2019-08-20 西华大学 A kind of bilayer ball grinder
CN112403690A (en) * 2019-08-22 2021-02-26 晨光生物科技集团股份有限公司 Explosion-proof horizontal centrifuge
CN114014382A (en) * 2021-10-29 2022-02-08 蜂巢能源科技有限公司 Method for preparing anode material by adopting supergravity sintering device, anode material and lithium ion battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001054A (en) * 2001-06-21 2003-01-07 Mitsubishi Heavy Ind Ltd Apparatus for removing so3 component in exhaust gas
JP2016521295A (en) * 2013-03-28 2016-07-21 イーエルジー カーボン ファイバー インターナショナル ゲーエムベーハー Pyrolysis system and method for recovering carbon fiber from carbon fiber-containing resin
WO2015087415A1 (en) * 2013-12-11 2015-06-18 孝 大野 Manufacturing apparatus and manufacturing method for resin composite material
CN110142107A (en) * 2019-05-21 2019-08-20 西华大学 A kind of bilayer ball grinder
CN110142107B (en) * 2019-05-21 2024-03-29 西华大学 Double-deck ball-milling jar
CN112403690A (en) * 2019-08-22 2021-02-26 晨光生物科技集团股份有限公司 Explosion-proof horizontal centrifuge
CN114014382A (en) * 2021-10-29 2022-02-08 蜂巢能源科技有限公司 Method for preparing anode material by adopting supergravity sintering device, anode material and lithium ion battery

Also Published As

Publication number Publication date
JP3872247B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
US20070101912A1 (en) Carbonization apparatus for producing activated carbon
PL205037B1 (en) Treatment of municipal solid waste
JP2000327830A (en) Horizontal drum rotary waste plastic thermal decomposition furnace and thermal decomposition method
WO2007007068A1 (en) Vessel, heating apparatus and method of heating a feedstock
CA3150399A1 (en) Thin-film treatment apparatus
JP6801270B2 (en) Sludge carbonization equipment
JP2013154316A (en) Fermentation treatment method of organic waste and apparatus that executes the method
JP7175005B2 (en) Oil sludge treatment device and its treatment method
KR20000070052A (en) Plastic waste decomposing apparatus
KR102547205B1 (en) Transfer equipment for Ultrasonic pyrolysis of Polymer waste
JPH11300322A (en) Treatment of organic waste and device therefor
JP6729906B1 (en) Heat treatment equipment
JP2002001279A (en) Drying and fermentation apparatus
JP2003010825A (en) Method for removing harmful material and equipment therefor
JP2005255841A (en) Thermal decomposition apparatus
JPS60130678A (en) Pyrolysis/dry distillation column
JP2005126454A (en) Plastic treatment apparatus
JP2003148868A (en) Continuous waste disposal device
KR100495318B1 (en) Apparatus for removing volatility organic compound
JP2006007082A (en) Recycling system of organic waste
JP2005007213A (en) Solvent recovering apparatus
JPH101681A (en) Thermal decomposition treatment of waste material
KR100239145B1 (en) An apparatus for ferilizing garbage
JP3718743B2 (en) Thermal decomposition equipment for dioxin in ash
WO2020136824A1 (en) Treatment device for palm oil mill residue, and treatment method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees