WO2020136824A1 - Treatment device for palm oil mill residue, and treatment method therefor - Google Patents

Treatment device for palm oil mill residue, and treatment method therefor Download PDF

Info

Publication number
WO2020136824A1
WO2020136824A1 PCT/JP2018/048231 JP2018048231W WO2020136824A1 WO 2020136824 A1 WO2020136824 A1 WO 2020136824A1 JP 2018048231 W JP2018048231 W JP 2018048231W WO 2020136824 A1 WO2020136824 A1 WO 2020136824A1
Authority
WO
WIPO (PCT)
Prior art keywords
palm oil
residue
reduced pressure
heat source
palm
Prior art date
Application number
PCT/JP2018/048231
Other languages
French (fr)
Japanese (ja)
Inventor
眞一 下瀬
Original Assignee
株式会社下瀬微生物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社下瀬微生物研究所 filed Critical 株式会社下瀬微生物研究所
Priority to PCT/JP2018/048231 priority Critical patent/WO2020136824A1/en
Priority to PCT/JP2019/034140 priority patent/WO2020137003A1/en
Publication of WO2020136824A1 publication Critical patent/WO2020136824A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless

Definitions

  • the present invention relates to a treatment device for a residue produced in a palm oil factory and a treatment method thereof.
  • incinerating or purifying a large amount of residue has a problem in terms of processing cost.
  • empty fruit bunch and mesocarp fiber had an environmental problem because they started to crumble when they were piled up in large amounts as compost, and they also had a bad odor.
  • the applicant of the present application efficiently stores organic waste in a closed container such as a tank and stirs it while heating it to a predetermined temperature range under reduced pressure, as described in Patent Document 1, for example.
  • a patent application has been filed for a reduced pressure fermentation dryer capable of promoting the fermentation of organic substances by removing water and drying, and adding predetermined microorganisms to the organic waste treated in this way.
  • the present invention has been made in consideration of the above-mentioned circumstances, and an object thereof is to effectively decompose organic matter contained in a residue produced in a palm oil factory with microorganisms to promote fermentation. Another object of the present invention is to provide a processing apparatus and a processing method for using the dried material as fuel.
  • the present invention has the following means for solving the above-mentioned problems. That is, the present invention stores the residue generated in the palm oil factory in a closed container and stirs it under reduced pressure while heating it to a predetermined temperature range, and decomposes and reduces organic components of organic matter by utilizing microorganisms. It is characterized by comprising a vacuum fermentation dryer for obtaining a dried product contained therein, and a heat source device which is arranged at a subsequent stage of the vacuum fermentation dryer and which burns the dried product to generate a heat source.
  • the processing cost of the palm oil factory residue can be significantly reduced.
  • it is possible to generate a heat source with a heat source device by using the dried product obtained by the reduced pressure fermentation dryer as a fuel it is possible to effectively reduce the amount of waste generated by effectively utilizing the dried product, while reducing the amount of steam and the like. It is possible to generate a heat source.
  • the palm oil factory residue contains at least one of empty fruit bunch, mesocarp fiber and palm palm shell. Furthermore, the palm oil factory residue preferably contains sludge and sludge in addition to the empty fruit bunch and the like.
  • the vacuum fruit fermentation dryer can be used to reliably ferment empty fruit bunches, mesocarp fibers or palm palm shells, and all of the palm oil factory residue (empty bunches, mesocarp fibers). , Palm palm shells and sludge and sludge) are treated with a vacuum fermentation dryer, which has the advantage of producing almost no waste.
  • a part of the heat source generated by the heat source device is preferably used at least in the reduced pressure fermentation dryer.
  • a dedicated steam boiler or the like provided in the vacuum fermentation dryer is not required, the facility configuration is simple, and running costs can be suppressed.
  • the present invention it is preferable to include a generator that is connected to the heat source device and receives a part of the generated heat source to generate electricity. With this configuration, it is possible to convert the generated heat source into electricity.
  • the electricity obtained by the generator is preferably used in the reduced pressure fermentation dryer. According to this configuration, a part of the electric power consumed by the reduced pressure fermentation dryer can be covered by the power generation of the generator, and the running cost can be suppressed.
  • the present invention stores the residue produced in the palm oil factory in a closed container and stirs it under reduced pressure while heating it to a predetermined temperature range, and decomposes and reduces organic components of organic matter by utilizing microorganisms.
  • a reduced pressure fermentation drying step for obtaining a dried product contained, and a heat source generation step for burning the dried product obtained in the reduced pressure fermentation drying step to generate a heat source, and a palm oil factory residue Since it is a treatment method, the same effect as that of the treatment device for the palm oil plant residue can be expected.
  • the palm oil factory residue treatment apparatus and the method for treating the same according to the present invention it is possible to significantly reduce the processing cost of the palm oil factory residue. Further, by effectively utilizing the dried product discharged from the reduced pressure fermentation dryer, it is possible to generate a heat source with almost no waste generated.
  • FIG. 1 is a diagram schematically showing an oil production process in a palm oil factory and a palm oil factory residue treatment system according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a schematic configuration of a reduced pressure fermentation dryer provided in the processing system.
  • FIG. 3 is a figure which shows schematic structure of the biomass boiler with which the same processing apparatus is equipped.
  • FIG. 1 is a diagram schematically showing an oil production process in a palm oil factory and a palm oil factory residue treatment system according to an embodiment of the present invention.
  • A is an oil refining process of palm oil in the palm oil factory, and a palm oil factory residue B is generated as a waste by this oil refining process.
  • C is the palm oil residue treatment system of the present embodiment for treating the palm oil factory residue B.
  • palm oil refining process A will be described.
  • palm palm fruits FFB: Fresh Fruit Bunch
  • FFB Fresh Fruit Bunch
  • step 91 the harvested palm palm fruits are steamed and then defruited by a stripper to remove fruit 92 and empty fruit. It separates into a fruit bunch (EFB: Empty Fruit Bunch) 93. Empty fruit bunch EFB93 becomes the palm oil factory residue B.
  • step 94 the separated fruit 92 is squeezed by a squeezing machine to obtain juice, and crude oil 95, that is, crude palm oil is extracted from this juice.
  • the pressing residue 96 is separated from the fruit 92.
  • step 97 the extracted crude palm oil is refined (refined) by a refiner including a centrifuge, a vacuum dryer, etc. to become palm oil (CPO: Crude Palm Oil) 98.
  • a refiner including a centrifuge, a vacuum dryer, etc.
  • palm oil CPO: Crude Palm Oil
  • sludge POME: Palm Oil Mill Effluent
  • the refined palm oil (CPO) 98 is a raw material for detergents such as soap and cosmetics.
  • the pressing residue 96 separated in the step 96 is passed through the wind separation tube in step 100, and is separated into seeds (seed or endosperm) and mesocarp fiber in step 101, and seeds 102 are
  • the mesocarp fiber (MF) 103 is separated from the mesocarp fiber (MF) 103, and the mesocarp fiber (MF) 103 is a palm oil factory residue B.
  • step 104 the separated seeds are dried and then coarsely crushed using a coarse crusher to be separated into a core 105 and a palm kernel shell (PKS) 106.
  • Palm palm shell PKS is Palm Oil Factory Residue B.
  • the separated core 105 is subjected to an oil extraction process in step 107 to extract palm kernel oil 108, and a residue (squeezed residue) 106 other than the palm kernel oil 108 becomes a palm oil factory residue B.
  • the extracted palm kernel oil 108 is used for food, or for frying oil, spray oil, or the like.
  • the resulting plant residue B per day is the empty fruit cluster EFB. 240 tons, mesocarp fiber MF 130 tons, palm palm shell PKS etc.
  • palm palm shell and core squeeze residue 70 tons
  • sludge and sludge POME 700 tons residue B as a whole 1140 tons.
  • residue B residue B as a whole 1140 tons.
  • the amount of palm FFB fruit FFB harvested and the amount of factory residue B such as empty fruit bunch EFB generated are examples and are not particularly limited.
  • the residue B generated in the palm oil factory that is, empty fruit bunch EFB, mesocarp fiber MF, palm palm shell PKS, etc., and sludge and sludge POME are all objects to be treated in the palm oil residue treatment system C. Becomes Specifically, all of the residue B produced in the palm oil factory is introduced into the inlet 30a (see FIG. 2) of the reduced pressure fermentation dryer 3.
  • the reduced-pressure fermentation dryer 3 is a known one as described in, for example, Patent Document 1 and the like, while stirring the residue B to be treated under reduced pressure while heating it to a predetermined temperature range, and utilizing microorganisms. Then, the organic component of the residue B is decomposed to obtain a dried product having a reduced volume.
  • the reduced-pressure fermentation dryer 3 is, as schematically shown in FIG. 2, a substantially cylindrical shape that is hermetically formed so as to keep the inside at atmospheric pressure or below, as a closed container for containing the introduced factory residue B.
  • a tank (pressure resistant tank) 30 is provided.
  • a heating jacket 31 is provided on the peripheral wall of the tank 30, and heating steam is supplied from the biomass boiler 7 to the heating jacket 31.
  • the temperature of the steam supplied from the biomass boiler 7 is preferably about 140°C, for example.
  • a stirring shaft 32 extending in the longitudinal direction (left and right direction in FIG. 2) is provided inside the tank 30 so as to be surrounded by the heating jacket 31.
  • the stirring shaft 32 is rotated at a predetermined rotation speed by the electric motor 32a.
  • the agitation shaft 32 is provided with a plurality of agitation plates 32b spaced apart from each other in the axial direction.
  • the agitation plates 32b agitate the factory residue B and perform fermentation drying treatment from the factory residue B.
  • the dried product is sent in the longitudinal direction of the tank 30.
  • An input port 30a for the residue B generated in the palm oil factory is provided on the upper side of the longitudinal side of the tank 30, and the residue B input from the input port 30a is heated by the heating jacket 31. Meanwhile, the stirring shaft 32 is rotated to stir. Then, after a lapse of a predetermined time, the processed dried product is discharged from a discharge port 30b provided in the lower portion of the tank 30.
  • a hydraulic motor may be used instead of the electric motor 32a.
  • a guide part 30c for guiding the vapor generated from the heated residue B to the condensing part 33 is provided on the upper part of the tank 30.
  • two guide portions 30c are provided, and each guide portion 30c is arranged at a predetermined distance in the longitudinal direction of the tank 30.
  • a plurality of cooling pipes 33b supported by a pair of heads 33a are provided inside the condensing part 33 supported by the communication passage 34 via the guide part 30c.
  • the cooling pipes 33b and the cooling tower 33b are provided.
  • a cooling water passage 80 is provided between the cooling water passage 80 and the cooling water passage 8.
  • the condensing part 33 extends parallel to the longitudinal direction of the tank 30 and is arranged on the rear side of the guide part 30c.
  • the cooling water that has flowed through the cooling pipe 33b in the condensing unit 33 and has increased in temperature due to heat exchange with the high-temperature steam flows through the cooling water passage 80 as schematically indicated by an arrow in FIG. 8 into the water receiving tank 81.
  • the cooling tower 8 is provided with a pump 82 for pumping the cooling water from the water receiving tank 81 and a nozzle 83 for injecting the pumped cooling water.
  • the cooling water jetted from the nozzle 83 receives the air blown from the fan 85 while flowing down the lower part 84, the temperature of the cooling water decreases, and the cooling water flows into the water receiving tank 81 again.
  • the cooling water cooled by the cooling tower 8 is sent by the cooling water pump 86, sent to the condensing unit 33 by the cooling water path 80, and flows through the plurality of cooling pipes 33b again. Then, after the temperature rises due to the heat exchange with the steam generated inside the tank 30 as described above, it flows through the cooling water path 80 again and flows into the water receiving tank 81 of the cooling tower 8. That is, the cooling water circulates in the cooling water passage 80 between the condenser 33 and the cooling tower 8.
  • condensed water obtained by condensing the steam generated from the heated residue B in the condensing unit 33 is also injected.
  • condensed water generated by exchanging heat with high-temperature steam is collected below the condenser 33.
  • a vacuum pump 36 is connected to the condensing unit 33 via a communication passage 35 to reduce the pressure in the tank 30. That is, by the operation of the vacuum pump 36, the air and the condensed water are sucked out from the condenser 33 through the communication passage 35, and the air and the steam in the tank 30 are further sucked through the communication passage 34 and the guide portion 30c. .. In this way, the condensed water is sucked from the condenser 33 to the vacuum pump 36, and is guided from the vacuum pump 36 to the water receiving tank 81 of the cooling tower 8 by the water guiding pipe.
  • An open/close valve 30d is provided in the communication passage 34 so that air or the like is not sucked from the inside thereof when the reduced pressure fermentation dryer 3 is stopped.
  • an atmosphere opening valve that opens the inside of the tank 30 to the atmosphere is arranged near the vacuum pump 36.
  • the condensed water guided to the water receiving tank 81 of the cooling tower 8 mixes with the cooling water, is pumped up by the pumping pump 82 as described above, is jetted from the nozzle 83, and is then cooled while flowing down the lower stream portion 84. ..
  • the condensed water contains the same microorganisms as those added to the residue B in the tank 30, and the odorous components contained in the condensed water are decomposed. It does not diverge into.
  • the residue B contained in the tank 30 is stirred by the rotation of the stirring shaft 32 while being heated by the heating steam supplied to the heating jacket 31. It Then, the residue B contained in the tank 30 is effectively heated by being heated from the outside by the heating jacket 31 surrounding the inside of the tank 30 and being heated from the inside by the stirring shaft 32 and the like. The residue B is stirred by the stirring shaft 32.
  • the pressure is reduced by the operation of the vacuum pump 36, the boiling point is lowered in the tank 30, the evaporation of water is accelerated, and the water is evaporated in a temperature range in which the decomposition of the organic component of the residue B is promoted by the microorganisms. To do.
  • one step (1 cycle) is preferably, for example, 24 hours.
  • the residue B is charged over 30 minutes and the residue B is removed over 23 hours.
  • a drying step of drying the residue B is provided, and the dried material (water content of about 10%) is discharged over 30 minutes.
  • the pressure inside the tank 30 is reduced to -0.06 to -0.07 MPa (gauge pressure; hereinafter, gauge pressure is omitted)
  • the water temperature in the tank 30 is maintained at 76 to 69°C (saturated steam temperature). It As a result, fermentation, decomposition and drying of the residue B are promoted by the microorganisms described below.
  • a microorganism to be added to the residue B in the tank 30 when performing such a drying treatment as described in, for example, Patent Document 2, a plurality of types of indigenous bacteria are used as a base, and Cultured complex effective microorganism groups are preferred, and the common name is SHIMOSE 1/2/3 group, which is the center of the colony.
  • SHIMOSE 1 was sent to FERM BP-7504 (Ministry of Economy, Trade and Industry, National Institute of Advanced Industrial Science and Technology, Institute of Biotechnology and Industrial Technology, Patent Microorganism Depositary Center (1-3, East 1-3, Tsukuba, Ibaraki, Japan) on March 14, 2003. Internationally deposited).
  • SHIMOSE 2 is a microorganism belonging to FERM BP-7505 (an international deposit similar to SHIMOSE 1) and Pichiafarinosa, which is resistant to salt, and SHIMOSE 3 is called FERM BP-7506 (SHIMOSE 1). It is a microorganism belonging to Staphylococcus).
  • the residue B empty fruit bunch EFB, mesocarp fiber MF, palm palm shell PKS, etc., and sludge and sludge POME
  • the residue B is charged into the charging port 30 a of the tank 30 of the reduced pressure fermentation dryer 3.
  • the inside of the tank 30 is closed under atmospheric pressure.
  • the atmosphere opening valve provided near the vacuum pump 36 is closed to close the inside of the tank 30. Then, the inside of the tank 30 is heated under reduced pressure, and the organic component of the residue B contained therein is fermented and dried. That is, heating steam is supplied from the biomass boiler 7 to be described later to heat the inside of the tank 30.
  • the stirring shaft 32 is rotated at a predetermined rotation speed (for example, about 8 rpm), and the inside of the tank 30 is depressurized by the operation of the vacuum pump 36.
  • a predetermined rotation speed for example, about 8 rpm
  • the rotation speed (8 rpm) of the stirring shaft 32 is an example, and may be another value as long as the organic component of the organic matter can be decomposed.
  • the dried product after the reduced pressure fermentation drying process by the reduced pressure fermentation dryer 3 is discharged from the discharge port 30b at the bottom of the tank 30 of the reduced pressure fermentation dryer 3.
  • the dry matter having a predetermined water content (for example, about 10%) discharged from the discharge port 30b is about 1140 tons per day of the total amount of the factory residue B input to the vacuum fermentation dryer 3 per day. It is 280 tons.
  • the amount of the obtained dried product is an example, and the entire amount of the factory residue B fed into the vacuum fermentation dryer 3 per day is defined as a dried product having a predetermined water content (for example, about 10%).
  • the number of installed bases of the reduced pressure fermentation dryer 3 may be appropriately selected so as to ensure discharge.
  • the dried product obtained by the reduced pressure fermentation dryer 3 is separated by a separator 39 into a suitable product suitable for the fuel used in the biomass boiler 7 and an unsuitable product other than the suitable one.
  • This compatible product is a small particle of a predetermined size or less among the obtained dried products, and since the small particle is fermented to homogenize the particle size, particle shape and components, The thermal energy generated during combustion is stable. Therefore, the small particles are supplied to the biomass boiler 7 as the biomass fuel 40.
  • unsuitable materials large particles exceeding a predetermined size
  • this fertilizer contains a large amount of potassium (K) and is treated locally as a high-quality fertilizer.
  • the evaporated water content is, for example, 970 tons with respect to the total amount of the factory residue B (1140 tons) per day that is input.
  • the amount of evaporated water is also an example.
  • the biomass boiler 7 burns small particles in the dried material having a predetermined water content (about 10%) obtained by the vacuum fermentation dryer 3 to generate high temperature steam. Therefore, in this biomass boiler 7, a small-sized material in the dried material obtained in the reduced pressure fermentation drying step by the reduced pressure fermentation dryer 3 is burned as a biomass fuel to perform a heat source generation step of generating steam (heat source).
  • the biomass boiler 7 includes a biomass burner 71 capable of efficiently burning dry matter (small particles) and a heat medium such as water, which is heated by combustion heat of the biomass burner 71. And a steam generator 72 for generating steam.
  • the heating steam generated in the steam generator 72 is supplied to the reduced pressure fermentation dryer 3 (the heating jacket 31 of the tank 30 and the like).
  • the biomass burner 71 uses, as fuel, a hopper 73 into which small particles of the dried material obtained by the reduced pressure fermentation dryer 3 are put, and a dried material (small particles) dropped from the hopper 73.
  • a screw feeder 74 which is driven by an electric motor 74a, a primary combustion furnace 75 which thermally decomposes the small particles thus sent to generate a combustible gas, and a secondary combustion furnace which completely burns the combustible gas.
  • 76 a screw feeder 74 which is driven by an electric motor 74a, a primary combustion furnace 75 which thermally decomposes the small particles thus sent to generate a combustible gas, and a secondary combustion furnace which completely burns the combustible gas.
  • the screw feeder 74 is housed in a cylindrical chamber 74b, and a hopper 73 is connected above the rear end side (right side in FIG. 3).
  • a rotary valve 73a is provided below the hopper 73.
  • the front end portion (the left end portion in FIG. 3) of the screw feeder 74 faces the opening at the upstream end (the right end in FIG. 3) of the cylindrical primary combustion furnace 75 so that the small particles and the like are supplied thereto. Has become.
  • an electric heating type ignition plug 75a is provided facing the opening at the upstream end of the primary combustion furnace 75 so that the small particles in the primary combustion furnace 75 are ignited when the operation of the biomass burner 71 is started. It has become. Small particles are supplied to the primary combustion furnace 75 from the screw feeder 74, and the air pushed by the fan 77 flows into the chamber 74b to combust the small particles.
  • the air also flows into the primary combustion furnace 75 through the plurality of holes provided in the peripheral wall thereof, but the amount of these air is small. Since the amount of the substance becomes insufficient with respect to the amount of the substance, in the primary combustion furnace 75, a part of the small grain is burned, while the rest is thermally decomposed at a high temperature to generate a combustible gas. The combustible gas thus generated combusts and flows out toward the secondary combustion furnace 76 on the downstream side.
  • a tapered nozzle portion 75b is provided so as to project into the secondary combustion furnace 76, and from this, the secondary combustion furnace 76 is provided.
  • Combustible gas is blown into the interior while burning.
  • the high temperature combustible gas blown in this way mixes with the secondary air sucked from the air suction passage 76b and burns in the burner portion 76a provided in the secondary combustion furnace 76, and this flame burns the combustion chamber on the downstream side. It comes out to 76c.
  • This flame entrains the air in the combustion chamber 76c and burns so that the unburned components are almost eliminated, and the high-temperature combustion gas (burned gas) generated thereby passes through the steam generating section 72 and the downstream side thereof. After passing through the exhaust pipe 78, a dust collector (not shown), etc., it is released into the atmosphere. Since the combustible gas generated from the small particles is burned in this way, the exhaust gas contains few harmful substances and can be cleaned by a general dust collector.
  • the steam generating section 72 has a general configuration, and a detailed description thereof will be omitted, but in a spiral shape (or in a zigzag manner in the combustion chamber 76c) so as to surround the combustion chamber 76c of the secondary combustion furnace 76 in which flame blows out.
  • the pipe 72a is provided, and the steam or water flowing through the pipe 72a is heated by the flame or combustion gas in the combustion chamber 76c to generate high-temperature steam.
  • a part of the generated steam 79 is supplied to the reduced pressure fermentation dryer 3 through the pipe 72 a and the steam path 70 to heat the tank 30 of the reduced pressure fermentation dryer 3.
  • the jacket 31 is circulated to heat the inside of the tank 30.
  • the small particles of the dried material obtained by the reduced pressure fermentation dryer 3 can be used as the biomass fuel 40, the heating steam 79 required in the reduced pressure fermentation dryer 3 can be generated, and thus the palm oil of the present invention can be used. It is possible to reduce the running cost of the entire residue treatment system.
  • the rest of the steam 79 generated in the biomass boiler 7 is supplied to the steam turbine generator 9 via the pipe 72a and another steam passage 87.
  • the steam turbine generator (generator) 9 has a steam turbine inside, and flows high-temperature and high-pressure steam 79 from the biomass boiler 7 toward the impeller of the steam turbine through the steam passage 87. Generates electric power by rotating the steam turbine at high speed. This generated electric power is supplied to the reduced pressure fermentation dryer 3 via an electric cable 88, as shown in FIG. Therefore, the electric power generated by the steam turbine generator 9 can be used as a part of the electric power used in the reduced pressure fermentation dryer 3, and the running cost of the entire palm oil residue treatment system C can be further reduced. Is. In addition, surplus electric power other than the electric power used for the power used in the reduced pressure fermentation dryer 3 is supplied to other devices, and if there is still surplus electric power, it is possible to sell the electric power to an electric power company.
  • all of the residue B at the palm oil factory can be fermented by the reduced pressure fermentation dryer 3 and processed into a greatly reduced volume dried product. Moreover, since this dried product is burned as the biomass fuel in the biomass boiler 7, almost no industrial waste is generated, and the processing cost thereof is reduced.
  • the residue B at the palm oil factory all of the empty fruit bunch EFB, Chinese fruit peel fiber MF, palm palm shell PKS, etc., sludge and sludge POME are put into the vacuum fermentation dryer 3.
  • the present invention is not limited to this, but the present invention is not limited to this, and a part of the factory residue B, for example, empty fruit bun EFB only, or empty fruit bun EFB and two of sludge and sludge POME, and further empty fruit.
  • the reduced pressure fermentation dryer 3 may be a combination of the three groups such as the bunch EFB, the mesocarp fiber MF, and the palm palm shell PKS, and other combinations.
  • the steam generated by the biomass boiler 7 is used to drive the steam turbine generator 9, and the generated power is used as a part of the power used in the reduced pressure fermentation dryer 3 to reduce the running cost. If there is surplus power, it is possible to sell it to a power company.
  • the present invention can be used for a treatment apparatus for palm oil factory residue and a treatment method therefor.

Abstract

This treatment device for palm oil mill residue is provided with: a reduced-pressure fermentation dryer 3 in which palm oil mill residue is accommodated in a closed container 30 and stirred while being heated to a predetermined temperature range under decompression, and in which microbes are used to break down organic components of the organic matter to obtain a reduced-volume dried product; and a heat source apparatus 7 for combusting the dried product obtained at the reduced-pressure fermentation dryer 3 to generate a heat source. As such, fermentation of the organic matter contained in the palm oil mill residue can be accelerated, and further, the dried product thereof can used as fuel.

Description

パームオイル工場残渣物の処理装置及びその処理方法Palm oil factory residue treatment apparatus and method thereof
 本発明は、パームオイル工場で生じた残渣物の処理装置及びその処理方法に関するものである。 The present invention relates to a treatment device for a residue produced in a palm oil factory and a treatment method thereof.
 従来、パーム椰子の果実からパームオイルを製油するパームオイル工場において、その製油工程では、残渣物として、空果房や、中果皮繊維、パーム椰子殻、更には製油工程での遠心分離等によって汚泥やスラジが生じる。これらの残渣物は、空果房やパーム椰子殻にあっては乾燥した後に焼却し、中果皮繊維にあっては堆肥して肥料や動物の飼料として再利用し、汚泥やスラジにあっては浄化処理した後に河川に流すなどを行っている。 Conventionally, in a palm oil factory that produces palm oil from the fruits of palm palm, in the oil production process, empty fruit clusters, mesocarp fibers, palm palm shells, and sludge due to centrifugal separation in the oil production process are used. And sludge occur. In the case of empty fruit bunches and palm palm shells, these residues are dried and then incinerated, and for mesocarp fibers, they are composted and reused as fertilizers and animal feed, and in sludge and sludge. After purification treatment, it is discharged into rivers.
 しかしながら、多量の残渣物を焼却処理したり浄化処理することは、処理コストの面で問題がある。また、空果房や中果皮繊維では、堆肥として大量に積み上げると崩れだしたり、さらに悪臭などで環境上の問題があった。 However, incinerating or purifying a large amount of residue has a problem in terms of processing cost. In addition, empty fruit bunch and mesocarp fiber had an environmental problem because they started to crumble when they were piled up in large amounts as compost, and they also had a bad odor.
 本願出願人は、先に、例えば特許文献1に記載するように、有機性廃棄物をタンクなどの密閉容器に収容し、減圧下において所定の温度範囲に加熱しながら撹拌することによって、効率的に水分を除去し乾燥させるとともに、こうして処理する有機性廃棄物に所定の微生物を添加し、有機物の発酵を促進させることができる減圧発酵乾燥機を特許出願している。 The applicant of the present application efficiently stores organic waste in a closed container such as a tank and stirs it while heating it to a predetermined temperature range under reduced pressure, as described in Patent Document 1, for example. A patent application has been filed for a reduced pressure fermentation dryer capable of promoting the fermentation of organic substances by removing water and drying, and adding predetermined microorganisms to the organic waste treated in this way.
特開2007-319738号公報JP, 2007-319738, A 特許第4153685号公報Japanese Patent No. 4153685
 本発明は、上述したような実情を考慮してなされたものであって、その目的は、パームオイル工場で生じた残渣物に含まれる有機物を微生物によって効果的に分解させて、発酵を促進し、更に、その乾燥物を燃料として利用する処理装置及びその処理方法を提供することにある。 The present invention has been made in consideration of the above-mentioned circumstances, and an object thereof is to effectively decompose organic matter contained in a residue produced in a palm oil factory with microorganisms to promote fermentation. Another object of the present invention is to provide a processing apparatus and a processing method for using the dried material as fuel.
 本発明は、上述の課題を解決するための手段を以下のように構成している。すなわち、本発明は、パームオイル工場で生じた残渣物を密閉容器に収容し、減圧下において所定の温度範囲に加熱しながら撹拌するとともに、微生物を利用して有機物の有機成分を分解させ、減容した乾燥物を得る減圧発酵乾燥機と、前記減圧発酵乾燥機の後段に配置され、得られた乾燥物を燃焼させて熱源を生成する熱源機器と、を備えたことを特徴とする。 The present invention has the following means for solving the above-mentioned problems. That is, the present invention stores the residue generated in the palm oil factory in a closed container and stirs it under reduced pressure while heating it to a predetermined temperature range, and decomposes and reduces organic components of organic matter by utilizing microorganisms. It is characterized by comprising a vacuum fermentation dryer for obtaining a dried product contained therein, and a heat source device which is arranged at a subsequent stage of the vacuum fermentation dryer and which burns the dried product to generate a heat source.
 本発明によれば、減圧発酵乾燥機によりパームオイル工場残渣物を効果的に発酵させて減容できるので、パームオイル工場残渣物の処理コストの大幅な削減が可能である。また、減圧発酵乾燥機で得られた乾燥物を燃料として熱源機器で熱源を生成することが可能であるので、その乾燥物の有効利用により廃棄物の発生量を少なく抑制しつつ、蒸気などの熱源を生成することが可能である。 According to the present invention, since the palm oil factory residue can be effectively fermented and reduced in volume by the vacuum fermentation dryer, the processing cost of the palm oil factory residue can be significantly reduced. In addition, since it is possible to generate a heat source with a heat source device by using the dried product obtained by the reduced pressure fermentation dryer as a fuel, it is possible to effectively reduce the amount of waste generated by effectively utilizing the dried product, while reducing the amount of steam and the like. It is possible to generate a heat source.
 本発明において、前記パームオイル工場残渣物には、空果房、中果皮繊維及びパーム椰子殻の少なくとも1つが含まれることが好ましい。更には、パームオイル工場残渣物には、前記空果房等に加えて、汚泥とスラジが含まれることが好ましい。この構成によれば、減圧発酵乾燥機によって、空果房、中果皮繊維又はパーム椰子殻を確実に発酵させることができ、また、そのパームオイル工場残渣物の全て(空果房、中果皮繊維、パーム椰子殻及び汚泥とスラジ)を減圧発酵乾燥機によって処理すると、廃棄物をほとんど発生させることがない利点が得られる。 In the present invention, it is preferable that the palm oil factory residue contains at least one of empty fruit bunch, mesocarp fiber and palm palm shell. Furthermore, the palm oil factory residue preferably contains sludge and sludge in addition to the empty fruit bunch and the like. According to this configuration, the vacuum fruit fermentation dryer can be used to reliably ferment empty fruit bunches, mesocarp fibers or palm palm shells, and all of the palm oil factory residue (empty bunches, mesocarp fibers). , Palm palm shells and sludge and sludge) are treated with a vacuum fermentation dryer, which has the advantage of producing almost no waste.
 本発明において、前記熱源機器により生成された熱源の一部は、少なくとも前記減圧発酵乾燥機で利用されることが好ましい。この構成によれば、減圧発酵乾燥機に設ける例えば専用の蒸気ボイラーなどが不要となり、設備構成が簡単でランニングコストを抑えることができる。 In the present invention, a part of the heat source generated by the heat source device is preferably used at least in the reduced pressure fermentation dryer. According to this configuration, for example, a dedicated steam boiler or the like provided in the vacuum fermentation dryer is not required, the facility configuration is simple, and running costs can be suppressed.
 本発明において、前記熱源機器に接続され、生成された熱源の一部を受けて発電する発電機を備えることが好ましい。この構成によれば、生成された熱源を電気に変換することが可能である。 In the present invention, it is preferable to include a generator that is connected to the heat source device and receives a part of the generated heat source to generate electricity. With this configuration, it is possible to convert the generated heat source into electricity.
 本発明において、前記発電機により得られた電気は、前記減圧発酵乾燥機で利用されることが好ましい。この構成によれば、減圧発酵乾燥機で消費する電力の一部を発電機の発電で賄うことができ、ランニングコストを抑えることが可能である。 In the present invention, the electricity obtained by the generator is preferably used in the reduced pressure fermentation dryer. According to this configuration, a part of the electric power consumed by the reduced pressure fermentation dryer can be covered by the power generation of the generator, and the running cost can be suppressed.
 また、本発明は、パームオイル工場で生じた残渣物を密閉容器に収容し、減圧下において所定の温度範囲に加熱しながら撹拌するとともに、微生物を利用して有機物の有機成分を分解させ、減容した乾燥物を得る減圧発酵乾燥工程と、前記減圧発酵乾燥工程で得られた乾燥物を燃焼させて熱源を生成する熱源生成工程と、を備えたことを特徴とするパームオイル工場残渣物の処理方法であり、前記パームオイル工場残渣物の処理装置と同じ効果を期待することができる。 Further, the present invention stores the residue produced in the palm oil factory in a closed container and stirs it under reduced pressure while heating it to a predetermined temperature range, and decomposes and reduces organic components of organic matter by utilizing microorganisms. A reduced pressure fermentation drying step for obtaining a dried product contained, and a heat source generation step for burning the dried product obtained in the reduced pressure fermentation drying step to generate a heat source, and a palm oil factory residue Since it is a treatment method, the same effect as that of the treatment device for the palm oil plant residue can be expected.
 本発明に係るパームオイル工場残渣物の処理装置及びその処理方法によれば、パームオイル工場残渣物の処理コストの大幅な削減が可能である。また、減圧発酵乾燥機より排出される乾燥物を有効に活用することにより、廃棄物をほとんど発生させることなく、熱源を生成することが可能である。 According to the palm oil factory residue treatment apparatus and the method for treating the same according to the present invention, it is possible to significantly reduce the processing cost of the palm oil factory residue. Further, by effectively utilizing the dried product discharged from the reduced pressure fermentation dryer, it is possible to generate a heat source with almost no waste generated.
図1は、パームオイル工場での製油工程と本発明の実施形態に係るパームオイル工場残渣物の処理システムとを模式的に示す図である。FIG. 1 is a diagram schematically showing an oil production process in a palm oil factory and a palm oil factory residue treatment system according to an embodiment of the present invention. 図2は、同処理システムに備える減圧発酵乾燥機の概略構成を模式的に示す図である。FIG. 2 is a diagram schematically showing a schematic configuration of a reduced pressure fermentation dryer provided in the processing system. 図3は、同処理装置に備えるバイオマスボイラーの概略構成を示す図である。FIG. 3: is a figure which shows schematic structure of the biomass boiler with which the same processing apparatus is equipped.
 以下、本発明の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、パームオイル工場での製油工程と本発明の実施形態に係るパームオイル工場残渣物の処理システムとを模式的に示す図である。 FIG. 1 is a diagram schematically showing an oil production process in a palm oil factory and a palm oil factory residue treatment system according to an embodiment of the present invention.
 図1において、Aはパームオイル工場内でのパームオイルの製油工程であり、この製油工程によってパームオイル工場残渣物Bが廃棄物として発生する。Cは、前記パームオイル工場残渣物Bを処理する本実施形態のパームオイル残渣物処理システムである。 In FIG. 1, A is an oil refining process of palm oil in the palm oil factory, and a palm oil factory residue B is generated as a waste by this oil refining process. C is the palm oil residue treatment system of the present embodiment for treating the palm oil factory residue B.
 先ず、パームオイルの製油工程Aについて説明する。この製油工程Aでは、工程90において、パーム椰子の果実(FFB:Fresh Fruit Bunch)を収穫し、工程91において、収穫したパーム椰子の果実を蒸煮処理した後、ストリッパーによって脱果して、果実92と空果房(EFB:Empty Fruit Bunch)93とに分離する。空果房EFB93は、パームオイル工場残渣物Bとなる。 First, palm oil refining process A will be described. In this oil refining step A, palm palm fruits (FFB: Fresh Fruit Bunch) are harvested in step 90, and in step 91, the harvested palm palm fruits are steamed and then defruited by a stripper to remove fruit 92 and empty fruit. It separates into a fruit bunch (EFB: Empty Fruit Bunch) 93. Empty fruit bunch EFB93 becomes the palm oil factory residue B.
 分離された果実92は、工程94において、圧搾機によって圧搾処理されて、搾汁が得られ、この搾汁から、原油95、すなわち粗パーム油が抽出される。前記工程94での圧搾処理によって、果実92から圧搾残渣96が分離される。 In step 94, the separated fruit 92 is squeezed by a squeezing machine to obtain juice, and crude oil 95, that is, crude palm oil is extracted from this juice. By the pressing process in the step 94, the pressing residue 96 is separated from the fruit 92.
 前記抽出された粗パームオイルは、工程97において、遠心分離機、真空乾燥機などを含む精製機によって精製(製油)されて、パームオイル(CPO:Crude Palm Oil)98となる。前記工程97での遠心分離処理によって、パームオイル製油工程排液としての汚泥とスラジ(POME:Palm Oil Mill Effluent)99が、粗パームオイルから分離されて、パームオイル工場残渣物Bとなる。精製されたパームオイル(CPO)98は、例えば、石鹸などの洗剤や化粧品の原料となる。 In step 97, the extracted crude palm oil is refined (refined) by a refiner including a centrifuge, a vacuum dryer, etc. to become palm oil (CPO: Crude Palm Oil) 98. By the centrifugal separation process in the step 97, sludge (POME: Palm Oil Mill Effluent) 99 as a waste oil of the palm oil refinery process is separated from the crude palm oil to be a palm oil factory residue B. The refined palm oil (CPO) 98 is a raw material for detergents such as soap and cosmetics.
 前記工程96において分離された圧搾残渣96は、工程100において風選分離管の管中を通過させて、工程101において種(種子又は胚乳)と中果皮繊維とに分離処理されて、種102は中果皮繊維(MF:Mesocarp Fiber)103と分離され、中果皮繊維(MF)103はパームオイル工場残渣物Bである。 The pressing residue 96 separated in the step 96 is passed through the wind separation tube in step 100, and is separated into seeds (seed or endosperm) and mesocarp fiber in step 101, and seeds 102 are The mesocarp fiber (MF) 103 is separated from the mesocarp fiber (MF) 103, and the mesocarp fiber (MF) 103 is a palm oil factory residue B.
 一方、前記分離された種は、工程104において、乾燥された後に粗砕機を用いて粗砕処理されて、核105と、パーム椰子殻(PKS:Palm Kernel Shell)106とに分離される。パーム椰子殻PKSはパームオイル工場残渣物Bである。 On the other hand, in step 104, the separated seeds are dried and then coarsely crushed using a coarse crusher to be separated into a core 105 and a palm kernel shell (PKS) 106. Palm palm shell PKS is Palm Oil Factory Residue B.
 前記分離された核105は、工程107においてオイル抽出処理されて、パーム核油108が抽出されると共に、パーム核油108以外の残渣(絞り渣)106は、パームオイル工場残渣物Bとなる。抽出されたパーム核油108は、食用に使用、又は揚げオイルやスプレーオイル等に利用される。
 ここで、パームオイル工場において、パームオイルCPO及びパーム核油の製油に際して収穫するパーム椰子の果実FFBを、例えば1日当たり1000トンとすると、生じる1日当たりの工場残渣物Bは、空果房EFBが240トン、 中果皮繊維MFが130トン、パーム椰子殻PKS等(パーム椰子殻と核の絞り渣)が70トン、 汚泥とスラジPOMEが700トンであり、残渣物B全体として1140トンである。尚、パーム椰子の果実FFBの収穫量や、空果房EFB等の工場残渣物Bの発生量は、例示であり、特に限定されない。
The separated core 105 is subjected to an oil extraction process in step 107 to extract palm kernel oil 108, and a residue (squeezed residue) 106 other than the palm kernel oil 108 becomes a palm oil factory residue B. The extracted palm kernel oil 108 is used for food, or for frying oil, spray oil, or the like.
Here, in a palm oil plant, when the palm FUB fruit FFB harvested at the time of producing palm oil CPO and palm kernel oil is, for example, 1000 tons per day, the resulting plant residue B per day is the empty fruit cluster EFB. 240 tons, mesocarp fiber MF 130 tons, palm palm shell PKS etc. (palm palm shell and core squeeze residue) 70 tons, sludge and sludge POME 700 tons, and residue B as a whole 1140 tons. The amount of palm FFB fruit FFB harvested and the amount of factory residue B such as empty fruit bunch EFB generated are examples and are not particularly limited.
 前記パームオイル工場にて生じた残渣物B、すなわち、空果房EFB、中果皮繊維MF、パーム椰子殻PKS等、及び汚泥とスラジPOMEは、全て、パームオイル残渣物処理システムCでの処理対象となる。具体的には、前記パームオイル工場にて生じた残渣物Bの全ては、減圧発酵乾燥機3の投入口30a(図2参照)に投入されるようになっている。 The residue B generated in the palm oil factory, that is, empty fruit bunch EFB, mesocarp fiber MF, palm palm shell PKS, etc., and sludge and sludge POME are all objects to be treated in the palm oil residue treatment system C. Becomes Specifically, all of the residue B produced in the palm oil factory is introduced into the inlet 30a (see FIG. 2) of the reduced pressure fermentation dryer 3.
 減圧発酵乾燥機3は、例えば特許文献1などに記載されているように公知のものであり、処理対象の残渣物Bを減圧下において所定の温度範囲に加熱しながら撹拌するとともに、微生物を利用して残渣物Bの有機成分を分解させ、減容した乾燥物を得るものである。 The reduced-pressure fermentation dryer 3 is a known one as described in, for example, Patent Document 1 and the like, while stirring the residue B to be treated under reduced pressure while heating it to a predetermined temperature range, and utilizing microorganisms. Then, the organic component of the residue B is decomposed to obtain a dried product having a reduced volume.
 減圧発酵乾燥機3は、図2に模式的に示すように、投入される工場残渣物Bを収容する密閉容器として、内部を大気圧以下に保持するように気密に形成された略円筒状のタンク(耐圧タンク)30を備えている。このタンク30の周壁部には、加熱ジャケット31が設けられ、バイオマスボイラー7から加熱用蒸気が加熱ジャケット31に供給されるようになっている。尚、バイオマスボイラー7から供給される蒸気の温度は、例えば140℃程度が好ましい。 The reduced-pressure fermentation dryer 3 is, as schematically shown in FIG. 2, a substantially cylindrical shape that is hermetically formed so as to keep the inside at atmospheric pressure or below, as a closed container for containing the introduced factory residue B. A tank (pressure resistant tank) 30 is provided. A heating jacket 31 is provided on the peripheral wall of the tank 30, and heating steam is supplied from the biomass boiler 7 to the heating jacket 31. The temperature of the steam supplied from the biomass boiler 7 is preferably about 140°C, for example.
 また、加熱ジャケット31に取り囲まれるようにして、タンク30の内部にはその長手方向(図2の左右方向)に延びる撹拌シャフト32が設けられている。撹拌シャフト32は、電動モーター32aによって所定の回転速度で回転される。撹拌シャフト32には、その軸方向に離間して複数の撹拌板32bが設けられており、これら撹拌板32bによって、工場残渣物Bが撹拌されるとともに、この工場残渣物Bから発酵乾燥処理された乾燥物がタンク30の長手方向に送られるようになっている。 Also, a stirring shaft 32 extending in the longitudinal direction (left and right direction in FIG. 2) is provided inside the tank 30 so as to be surrounded by the heating jacket 31. The stirring shaft 32 is rotated at a predetermined rotation speed by the electric motor 32a. The agitation shaft 32 is provided with a plurality of agitation plates 32b spaced apart from each other in the axial direction. The agitation plates 32b agitate the factory residue B and perform fermentation drying treatment from the factory residue B. The dried product is sent in the longitudinal direction of the tank 30.
 タンク30の長手方向側部の上側には、パームオイル工場で生じた残渣物Bの投入口30aが設けられており、この投入口30aから投入された残渣物Bが、加熱ジャケット31によって加熱されながら、撹拌シャフト32の回転によって撹拌される。そして、所定時間経過した後、処理後の乾燥物がタンク30の下部に設けられた排出口30bから排出される。尚、電動モーター32aの代わりに、油圧モーターを用いてもよい。 An input port 30a for the residue B generated in the palm oil factory is provided on the upper side of the longitudinal side of the tank 30, and the residue B input from the input port 30a is heated by the heating jacket 31. Meanwhile, the stirring shaft 32 is rotated to stir. Then, after a lapse of a predetermined time, the processed dried product is discharged from a discharge port 30b provided in the lower portion of the tank 30. A hydraulic motor may be used instead of the electric motor 32a.
 タンク30の上部には、加熱された残渣物Bから発生する蒸気を凝縮部33へ案内する案内部30cが突設されている。本実施形態では、案内部30cが2つ設けられており、各案内部30cは、タンク30の長手方向に所定距離離れて配置されている。前記案内部30cを介して連通路34に支持された凝縮部33の内部には、一対のヘッド33aによって支持された複数の冷却管33bが備えられており、これら複数の冷却管33bと、クーリングタワー8との間には、冷却水経路80が設けられている。本実施形態では、凝縮部33は、タンク30の長手方向に沿って平行に延びており、案内部30cの後方側に配置されている。 A guide part 30c for guiding the vapor generated from the heated residue B to the condensing part 33 is provided on the upper part of the tank 30. In the present embodiment, two guide portions 30c are provided, and each guide portion 30c is arranged at a predetermined distance in the longitudinal direction of the tank 30. A plurality of cooling pipes 33b supported by a pair of heads 33a are provided inside the condensing part 33 supported by the communication passage 34 via the guide part 30c. The cooling pipes 33b and the cooling tower 33b are provided. A cooling water passage 80 is provided between the cooling water passage 80 and the cooling water passage 8. In the present embodiment, the condensing part 33 extends parallel to the longitudinal direction of the tank 30 and is arranged on the rear side of the guide part 30c.
 そして、凝縮部33において冷却管33b内を流通し、高温の蒸気との熱交換によって温度が上昇した冷却水は、図2に模式的に矢印で示すように冷却水経路80を流通してクーリングタワー8の受水槽81に流入する。クーリングタワー8には、その受水槽81から冷却水を汲み上げる汲み上げポンプ82と、汲み上げた冷却水を噴射するノズル83とが設けられている。このノズル83から噴射された冷却水は、流下部84を流下する間にファン85からの送風を受けて温度が低下し、再び受水槽81に流入するようになっている。 Then, the cooling water that has flowed through the cooling pipe 33b in the condensing unit 33 and has increased in temperature due to heat exchange with the high-temperature steam flows through the cooling water passage 80 as schematically indicated by an arrow in FIG. 8 into the water receiving tank 81. The cooling tower 8 is provided with a pump 82 for pumping the cooling water from the water receiving tank 81 and a nozzle 83 for injecting the pumped cooling water. The cooling water jetted from the nozzle 83 receives the air blown from the fan 85 while flowing down the lower part 84, the temperature of the cooling water decreases, and the cooling water flows into the water receiving tank 81 again.
 クーリングタワー8で冷却された冷却水は、冷却水ポンプ86によって送水され、冷却水経路80によって凝縮部33に送られて、再び複数の冷却管33b内を流通する。そして、上述のようにタンク30の内部で発生した蒸気との熱交換によって温度が上昇した後に、再び冷却水経路80を流通して、クーリングタワー8の受水槽81に流入する。つまり、冷却水は凝縮部33とクーリングタワー8との間の冷却水経路80を循環する。 The cooling water cooled by the cooling tower 8 is sent by the cooling water pump 86, sent to the condensing unit 33 by the cooling water path 80, and flows through the plurality of cooling pipes 33b again. Then, after the temperature rises due to the heat exchange with the steam generated inside the tank 30 as described above, it flows through the cooling water path 80 again and flows into the water receiving tank 81 of the cooling tower 8. That is, the cooling water circulates in the cooling water passage 80 between the condenser 33 and the cooling tower 8.
 上述のように循環する冷却水の他に、クーリングタワー8では、加熱された残渣物Bから発生する蒸気が凝縮部33において凝縮した凝縮水も注水される。尚、図示しないが、凝縮部33の下方に、高温の蒸気と熱交換することによって生成した凝縮水が集められるようになっている。 In addition to the cooling water that circulates as described above, in the cooling tower 8, condensed water obtained by condensing the steam generated from the heated residue B in the condensing unit 33 is also injected. Although not shown, condensed water generated by exchanging heat with high-temperature steam is collected below the condenser 33.
 更に、前記凝縮部33には、連通路35を介して真空ポンプ36が接続され、タンク30内を減圧するようになっている。すなわち、真空ポンプ36の作動によって、連通路35を介して凝縮部33から空気及び凝縮水が吸い出され、更に連通路34及び案内部30cを介してタンク30内の空気及び蒸気が吸い出される。こうして、凝縮部33からは凝縮水が真空ポンプ36に吸い出され、この真空ポンプ36から導水管によって、クーリングタワー8の受水槽81に導かれる。尚、前記連通路34には、開閉バルブ30dが設けられており、減圧発酵乾燥機3を停止している際には、その内部から空気などが吸引されないようにしている。また、前記真空ポンプ36の近傍には、図示しないが、タンク30内を大気に開放する大気開放バルブが配置されている。 Further, a vacuum pump 36 is connected to the condensing unit 33 via a communication passage 35 to reduce the pressure in the tank 30. That is, by the operation of the vacuum pump 36, the air and the condensed water are sucked out from the condenser 33 through the communication passage 35, and the air and the steam in the tank 30 are further sucked through the communication passage 34 and the guide portion 30c. .. In this way, the condensed water is sucked from the condenser 33 to the vacuum pump 36, and is guided from the vacuum pump 36 to the water receiving tank 81 of the cooling tower 8 by the water guiding pipe. An open/close valve 30d is provided in the communication passage 34 so that air or the like is not sucked from the inside thereof when the reduced pressure fermentation dryer 3 is stopped. Although not shown, an atmosphere opening valve that opens the inside of the tank 30 to the atmosphere is arranged near the vacuum pump 36.
 こうしてクーリングタワー8の受水槽81に導かれた凝縮水は、冷却水と混ざり合って上述のように汲み上げポンプ82に汲み上げられ、ノズル83から噴射された後に、流下部84を流下しながら冷却される。尚、凝縮水には、タンク30内の残渣物Bに添加されたものと同じ微生物が含まれており、この凝縮水に含まれる臭気成分等が分解されているので、臭気はタンク30の外部へ発散しないようになっている。 In this way, the condensed water guided to the water receiving tank 81 of the cooling tower 8 mixes with the cooling water, is pumped up by the pumping pump 82 as described above, is jetted from the nozzle 83, and is then cooled while flowing down the lower stream portion 84. .. The condensed water contains the same microorganisms as those added to the residue B in the tank 30, and the odorous components contained in the condensed water are decomposed. It does not diverge into.
 前記構成の減圧発酵乾燥機3の作動について説明すると、タンク30内に収容された残渣物Bは、加熱ジャケット31に供給される加熱用蒸気によって加熱されながら、撹拌シャフト32の回転に伴い撹拌される。そして、タンク30内を取り囲む加熱ジャケット31による外側からの加熱と、撹拌シャフト32などによる内側からの加熱とを受けて、タンク30内に収容された残渣物Bが効果的に昇温されるとともに、撹拌シャフト32によって残渣物Bが撹拌される。加えて、真空ポンプ36の作動によって減圧されているため、タンク30内では沸点が低下し、水分の蒸発が早まり、微生物によって残渣物Bの有機成分の分解が促進される温度領域で水分が蒸発する。 Explaining the operation of the reduced pressure fermentation dryer 3 having the above structure, the residue B contained in the tank 30 is stirred by the rotation of the stirring shaft 32 while being heated by the heating steam supplied to the heating jacket 31. It Then, the residue B contained in the tank 30 is effectively heated by being heated from the outside by the heating jacket 31 surrounding the inside of the tank 30 and being heated from the inside by the stirring shaft 32 and the like. The residue B is stirred by the stirring shaft 32. In addition, since the pressure is reduced by the operation of the vacuum pump 36, the boiling point is lowered in the tank 30, the evaporation of water is accelerated, and the water is evaporated in a temperature range in which the decomposition of the organic component of the residue B is promoted by the microorganisms. To do.
 尚、減圧発酵乾燥機3による減圧発酵乾燥工程では1工程(1サイクル)が、例えば24時間であることが好ましく、先ず30分かけて残渣物Bが投入され、23時間かけて残渣物Bの有機成分を分解させる発酵工程と同時に、残渣物Bを乾燥させる乾燥工程とを設け、更に30分かけて乾燥物(含水率10%程度)を排出している。その間、タンク30内を-0.06~-0.07MPa(ゲージ圧;以下、ゲージ圧は省略する)に減圧すると、タンク30内の水分温度は76~69℃(飽和蒸気温度)に維持される。その結果、残渣物Bは、後述する微生物によって、発酵、分解及び乾燥が促進される。そして、そのような乾燥処理を行う際に、タンク30内の残渣物Bに添加する微生物としては、例えば特許文献2に記載されているように、複数種類の土着菌をベースとし、これを予め培養した複合有効微生物群が好ましく、通称、SHIMOSE 1/2/3群がコロニーの中心になる。 In the vacuum fermentation and drying process using the vacuum fermentation dryer 3, one step (1 cycle) is preferably, for example, 24 hours. First, the residue B is charged over 30 minutes and the residue B is removed over 23 hours. At the same time as the fermentation step of decomposing the organic component, a drying step of drying the residue B is provided, and the dried material (water content of about 10%) is discharged over 30 minutes. Meanwhile, if the pressure inside the tank 30 is reduced to -0.06 to -0.07 MPa (gauge pressure; hereinafter, gauge pressure is omitted), the water temperature in the tank 30 is maintained at 76 to 69°C (saturated steam temperature). It As a result, fermentation, decomposition and drying of the residue B are promoted by the microorganisms described below. Then, as a microorganism to be added to the residue B in the tank 30 when performing such a drying treatment, as described in, for example, Patent Document 2, a plurality of types of indigenous bacteria are used as a base, and Cultured complex effective microorganism groups are preferred, and the common name is SHIMOSE 1/2/3 group, which is the center of the colony.
 尚、SHIMOSE 1は、FERM BP-7504(経済産業省産業技術総合研究所生命工学工業技術研究所特許微生物寄託センター(日本国茨城県つくば市東1丁目1-3)に、2003年3月14日に国際寄託されたもの)である。また、SHIMOSE 2は、FERM BP-7505(SHIMOSE 1と同様に国際寄託されたもの)、塩に耐性を有するピチアファリノサ(Pichiafarinosa)に属する微生物であり、SHIMOSE 3は、FERM BP-7506(SHIMOSE 1と同様に国際寄託されたもの)、スタフィロコッカス(Staphylococcus)に属する微生物である。 SHIMOSE 1 was sent to FERM BP-7504 (Ministry of Economy, Trade and Industry, National Institute of Advanced Industrial Science and Technology, Institute of Biotechnology and Industrial Technology, Patent Microorganism Depositary Center (1-3, East 1-3, Tsukuba, Ibaraki, Japan) on March 14, 2003. Internationally deposited). SHIMOSE 2 is a microorganism belonging to FERM BP-7505 (an international deposit similar to SHIMOSE 1) and Pichiafarinosa, which is resistant to salt, and SHIMOSE 3 is called FERM BP-7506 (SHIMOSE 1). It is a microorganism belonging to Staphylococcus).
 ここで、前記減圧発酵乾燥機3による有機物の減圧発酵乾燥処理の手順について説明する。先ず、残渣物B(空果房EFB、中果皮繊維MF、パーム椰子殻PKS等、及び汚泥とスラジPOMEの全て)を減圧発酵乾燥機3のタンク30の投入口30aに投入する。そして、タンク30内を大気圧状態で密閉する。 Here, the procedure of the vacuum fermentation drying process of organic substances by the vacuum fermentation dryer 3 will be described. First, the residue B (empty fruit bunch EFB, mesocarp fiber MF, palm palm shell PKS, etc., and sludge and sludge POME) is charged into the charging port 30 a of the tank 30 of the reduced pressure fermentation dryer 3. Then, the inside of the tank 30 is closed under atmospheric pressure.
 その後、タンク30内の残渣物Bに所定の微生物を添加した後に、真空ポンプ36近傍に設けた大気開放バルブを閉じてタンク30内を密閉する。そして、タンク30内を減圧下で加熱し、その内部に収容した残渣物Bの有機成分を発酵乾燥させる。すなわち、後述するバイオマスボイラー7から加熱用蒸気を供給し、タンク30内を加熱する。 After that, after adding a predetermined microorganism to the residue B in the tank 30, the atmosphere opening valve provided near the vacuum pump 36 is closed to close the inside of the tank 30. Then, the inside of the tank 30 is heated under reduced pressure, and the organic component of the residue B contained therein is fermented and dried. That is, heating steam is supplied from the biomass boiler 7 to be described later to heat the inside of the tank 30.
 そうして、加熱用蒸気によってタンク30内を加熱するとともに、撹拌シャフト32を所定の回転速度(例えば、8rpm程度)で回転させ、更に、真空ポンプ36の作動によってタンク30内を減圧し、これにより、タンク30内の温度が微生物の活動至適環境となり、微生物による有機物の有機成分の分解が好適に促進される。尚、撹拌シャフト32の回転速度(8rpm)は一例であって、有機物の有機成分の分解が可能であれば他の値であってもよい。 Then, the inside of the tank 30 is heated by the heating steam, the stirring shaft 32 is rotated at a predetermined rotation speed (for example, about 8 rpm), and the inside of the tank 30 is depressurized by the operation of the vacuum pump 36. As a result, the temperature in the tank 30 becomes an environment in which the activity of the microorganisms is optimal, and the decomposition of organic components of organic substances by the microorganisms is suitably promoted. The rotation speed (8 rpm) of the stirring shaft 32 is an example, and may be another value as long as the organic component of the organic matter can be decomposed.
 このようにしてタンク30内の温度及び圧力を維持しつつ、所定の時間が経過した場合、真空ポンプ36及びバイオマスボイラー7からの加熱用蒸気の供給を停止し、大気開放バルブを開放して大気圧状態とする。一方、撹拌シャフト32を逆回転させ、タンク30の排出口30bの蓋を開いて、タンク30から所定含水率(例えば10%程度)の乾燥物を排出する。このとき、タンク30から排出される乾燥物は減容されている。 In this way, while maintaining the temperature and pressure in the tank 30, when the predetermined time has elapsed, the supply of heating steam from the vacuum pump 36 and the biomass boiler 7 is stopped, and the atmosphere opening valve is opened to a large level. Set to atmospheric pressure. On the other hand, the stirring shaft 32 is rotated in the reverse direction, the lid of the discharge port 30b of the tank 30 is opened, and the dried material having a predetermined water content (for example, about 10%) is discharged from the tank 30. At this time, the dry matter discharged from the tank 30 is reduced in volume.
 以上のように、減圧発酵乾燥機3によって減圧発酵乾燥処理された処理後の乾燥物は、減圧発酵乾燥機3のタンク30下部の排出口30bから排出される。この排出口30bから排出される所定含水率(例えば10%程度)の乾燥物は、減圧発酵乾燥機3に投入された1日当たりの工場残渣物Bの全体量1140トンに対して、1日当たり約280トンである。尚、この得られる乾燥物の量は、例示であって、減圧発酵乾燥機3に投入される1日当たりの工場残渣物Bの全体量を、所定含水率(例えば10%程度)の乾燥物として確実に排出し得るように、減圧発酵乾燥機3の設置基数を適宜選択すれば良い。 As described above, the dried product after the reduced pressure fermentation drying process by the reduced pressure fermentation dryer 3 is discharged from the discharge port 30b at the bottom of the tank 30 of the reduced pressure fermentation dryer 3. The dry matter having a predetermined water content (for example, about 10%) discharged from the discharge port 30b is about 1140 tons per day of the total amount of the factory residue B input to the vacuum fermentation dryer 3 per day. It is 280 tons. The amount of the obtained dried product is an example, and the entire amount of the factory residue B fed into the vacuum fermentation dryer 3 per day is defined as a dried product having a predetermined water content (for example, about 10%). The number of installed bases of the reduced pressure fermentation dryer 3 may be appropriately selected so as to ensure discharge.
 前記減圧発酵乾燥機3によって得られた乾燥物は、図1に示したように、分別機39によって、バイオマスボイラー7に使用する燃料に適した適合物と、それ以外の不適物との分別される。この適合物は、得られた乾燥物のうち、所定大きさ以下の小粒物であり、この小粒物は発酵が進んで粒度、粒形や成分が均質化されているので、バイオマスボイラー7での燃焼時に発生する熱エネルギーが安定している。従って、この小粒物が、バイオマス燃料40として、バイオマスボイラー7に供給される。一方、不適物(所定大きさを越える大粒物)は、減圧発酵乾燥機3に再投入して、発酵を更に促進させ、小粒物として成形して、排出口30bから排出し直すか、又は肥料や動物の飼料とされる。特に、肥料として利用する際には、この肥料にはカリウム(K)が多く含まれており、高品質の肥料として現地では取り扱われている。 As shown in FIG. 1, the dried product obtained by the reduced pressure fermentation dryer 3 is separated by a separator 39 into a suitable product suitable for the fuel used in the biomass boiler 7 and an unsuitable product other than the suitable one. It This compatible product is a small particle of a predetermined size or less among the obtained dried products, and since the small particle is fermented to homogenize the particle size, particle shape and components, The thermal energy generated during combustion is stable. Therefore, the small particles are supplied to the biomass boiler 7 as the biomass fuel 40. On the other hand, unsuitable materials (large particles exceeding a predetermined size) are re-introduced into the vacuum fermentation dryer 3 to further accelerate the fermentation, molded into small particles, and discharged again from the discharge port 30b, or fertilizer. And used as animal feed. In particular, when it is used as a fertilizer, this fertilizer contains a large amount of potassium (K) and is treated locally as a high-quality fertilizer.
 前記減圧発酵乾燥機3に投入された工場残渣物Bのうち、この残渣物Bに含まれるほとんどの水分(得られた乾燥物に含まれる水分以外の水分)は、図1に示したように、減圧発酵乾燥機3のタンク30内で蒸発し、排水量は全く無くなる。この蒸発水分は、前記投入される1日当たりの工場残渣物Bの全体量(1140トン)に対して、例えば970トンである。尚、この蒸発水分の量も例示である。 Most of the water contained in this residue B (water other than the water contained in the obtained dried product) of the factory residue B fed into the reduced pressure fermentation dryer 3 is as shown in FIG. Evaporates in the tank 30 of the reduced pressure fermentation dryer 3, and the amount of waste water is completely eliminated. The evaporated water content is, for example, 970 tons with respect to the total amount of the factory residue B (1140 tons) per day that is input. The amount of evaporated water is also an example.
 前記バイオマスボイラー7は、減圧発酵乾燥機3によって得られた所定含水率(10%程度)の乾燥物のうち小粒物を燃焼させて、高温の蒸気を発生させる。従って、このバイオマスボイラー7では、前記減圧発酵乾燥機3による減圧発酵乾燥工程で得られた乾燥物のうち小粒物をバイオマス燃料として燃焼させて、蒸気(熱源)を生成する熱源生成工程を行う。 The biomass boiler 7 burns small particles in the dried material having a predetermined water content (about 10%) obtained by the vacuum fermentation dryer 3 to generate high temperature steam. Therefore, in this biomass boiler 7, a small-sized material in the dried material obtained in the reduced pressure fermentation drying step by the reduced pressure fermentation dryer 3 is burned as a biomass fuel to perform a heat source generation step of generating steam (heat source).
 -バイオマスボイラー-
 前記バイオマスボイラー7は、図3に模式的に示すように、乾燥物(小粒物)を効率良く燃焼させることができるバイオマスバーナ71と、その燃焼熱によって水などの熱媒体を加熱し、高温の蒸気を発生させる蒸気発生部72とを備えている。この蒸気発生部72において発生した加熱用蒸気は、減圧発酵乾燥機3(タンク30の加熱ジャケット31など)に供給される。
-Biomass boiler-
As schematically shown in FIG. 3, the biomass boiler 7 includes a biomass burner 71 capable of efficiently burning dry matter (small particles) and a heat medium such as water, which is heated by combustion heat of the biomass burner 71. And a steam generator 72 for generating steam. The heating steam generated in the steam generator 72 is supplied to the reduced pressure fermentation dryer 3 (the heating jacket 31 of the tank 30 and the like).
 一例として前記バイオマスバーナ71は、燃料として、前記減圧発酵乾燥機3によって得られた乾燥物のうち小粒物が投入されるホッパー73と、このホッパー73から投下されてくる乾燥物(小粒物)を送り出す、電動モーター74aによって駆動されるスクリューフィーダー74と、こうして送られてきた小粒物を熱分解して、可燃ガスを発生させる1次燃焼炉75と、この可燃ガスを完全燃焼させる2次燃焼炉76と、を備えている。 As an example, the biomass burner 71 uses, as fuel, a hopper 73 into which small particles of the dried material obtained by the reduced pressure fermentation dryer 3 are put, and a dried material (small particles) dropped from the hopper 73. A screw feeder 74 which is driven by an electric motor 74a, a primary combustion furnace 75 which thermally decomposes the small particles thus sent to generate a combustible gas, and a secondary combustion furnace which completely burns the combustible gas. And 76.
 前記スクリューフィーダー74は、円筒状のチャンバ74b内に収容され、その後端側(図3の右側)の上方にホッパー73が接続されている。また、ホッパー73の下部にはロータリバルブ73aが設けられている。一方、スクリューフィーダー74の前端部(図3の左端部)は、円筒状の1次燃焼炉75の上流端(図3の右端)の開口に臨んで、ここに小粒物などを供給するようになっている。 The screw feeder 74 is housed in a cylindrical chamber 74b, and a hopper 73 is connected above the rear end side (right side in FIG. 3). A rotary valve 73a is provided below the hopper 73. On the other hand, the front end portion (the left end portion in FIG. 3) of the screw feeder 74 faces the opening at the upstream end (the right end in FIG. 3) of the cylindrical primary combustion furnace 75 so that the small particles and the like are supplied thereto. Has become.
 また、前記1次燃焼炉75の上流端の開口に臨んで電熱式の点火栓75aも設けられ、バイオマスバーナ71の運転を開始するときに、1次燃焼炉75内の小粒物に点火するようになっている。このような1次燃焼炉75には、スクリューフィーダー74から小粒物が供給されるとともに、そのチャンバ74b内にファン77によって押し込まれた空気が流入し、小粒物を燃焼させる。 Further, an electric heating type ignition plug 75a is provided facing the opening at the upstream end of the primary combustion furnace 75 so that the small particles in the primary combustion furnace 75 are ignited when the operation of the biomass burner 71 is started. It has become. Small particles are supplied to the primary combustion furnace 75 from the screw feeder 74, and the air pushed by the fan 77 flows into the chamber 74b to combust the small particles.
 そうして上流端の開口から空気が流入する他に、1次燃焼炉75内にはその周壁に設けられた複数の穴からも空気が流入するようになるが、これらの空気の量が小粒物の量に対して不足気味になることから、1次燃焼炉75においては小粒物の一部が燃焼する一方、その残部が高温下で熱分解されて可燃ガスを発生する。こうして発生した可燃ガスが燃焼しながら下流側の2次燃焼炉76に向かって流出する。 Then, in addition to the air flowing in from the opening at the upstream end, the air also flows into the primary combustion furnace 75 through the plurality of holes provided in the peripheral wall thereof, but the amount of these air is small. Since the amount of the substance becomes insufficient with respect to the amount of the substance, in the primary combustion furnace 75, a part of the small grain is burned, while the rest is thermally decomposed at a high temperature to generate a combustible gas. The combustible gas thus generated combusts and flows out toward the secondary combustion furnace 76 on the downstream side.
 すなわち、1次燃焼炉75の下流端(図3の左端)には、2次燃焼炉76内に突出するように先窄まりのノズル部75bが設けられており、ここから2次燃焼炉76内に可燃ガスが燃焼しながら吹き込まれる。こうして吹き込まれる高温の可燃ガスが、2次燃焼炉76内に設けられたバーナ部76aにおいて、空気吸入路76bから吸入される2次空気と混ざり合って燃焼し、この火炎が下流側の燃焼室76cに吹き出すようになる。 That is, at the downstream end of the primary combustion furnace 75 (the left end in FIG. 3), a tapered nozzle portion 75b is provided so as to project into the secondary combustion furnace 76, and from this, the secondary combustion furnace 76 is provided. Combustible gas is blown into the interior while burning. The high temperature combustible gas blown in this way mixes with the secondary air sucked from the air suction passage 76b and burns in the burner portion 76a provided in the secondary combustion furnace 76, and this flame burns the combustion chamber on the downstream side. It comes out to 76c.
 この火炎は燃焼室76c内の空気を巻き込んで、未燃分がほぼなくなるように燃焼し、これにより発生した高温の燃焼ガス(既燃ガス)が蒸気発生部72を通過して、その下流側の排気管78や集塵装置(図示せず)などを通過した後に、大気中に放出されるようになる。このように小粒物から発生した可燃ガスを燃焼させるようにしているので、排気中は有害物質が少なく、一般的な集塵装置によって清浄化が可能になる。 This flame entrains the air in the combustion chamber 76c and burns so that the unburned components are almost eliminated, and the high-temperature combustion gas (burned gas) generated thereby passes through the steam generating section 72 and the downstream side thereof. After passing through the exhaust pipe 78, a dust collector (not shown), etc., it is released into the atmosphere. Since the combustible gas generated from the small particles is burned in this way, the exhaust gas contains few harmful substances and can be cleaned by a general dust collector.
 前記の蒸気発生部72については一般的な構成であり、詳しい説明は省略するが、火炎の吹き出す2次燃焼炉76の燃焼室76cを取り囲むよう螺旋状に(又は燃焼室76c内でジグザグに)配管72aが設けられており、その内部を流通する蒸気又は水が燃焼室76cの火炎や燃焼ガスによって加熱されて、高温の蒸気が発生する。図1に示したように、この発生した蒸気79は、その一部が前記配管72a及び蒸気経路70を介して 減圧発酵乾燥機3に供給されて、その減圧発酵乾燥機3のタンク30の加熱ジャケット31を流通し、タンク30内を加熱する。従って、減圧発酵乾燥機3で得られた乾燥物のうち小粒物をバイオマス燃料40として利用して、減圧発酵乾燥機3内で必要な加熱用蒸気79を生成することができるので、本パームオイル残渣物処理システム全体でのランニングコストを低減させることが可能である。 The steam generating section 72 has a general configuration, and a detailed description thereof will be omitted, but in a spiral shape (or in a zigzag manner in the combustion chamber 76c) so as to surround the combustion chamber 76c of the secondary combustion furnace 76 in which flame blows out. The pipe 72a is provided, and the steam or water flowing through the pipe 72a is heated by the flame or combustion gas in the combustion chamber 76c to generate high-temperature steam. As shown in FIG. 1, a part of the generated steam 79 is supplied to the reduced pressure fermentation dryer 3 through the pipe 72 a and the steam path 70 to heat the tank 30 of the reduced pressure fermentation dryer 3. The jacket 31 is circulated to heat the inside of the tank 30. Therefore, since the small particles of the dried material obtained by the reduced pressure fermentation dryer 3 can be used as the biomass fuel 40, the heating steam 79 required in the reduced pressure fermentation dryer 3 can be generated, and thus the palm oil of the present invention can be used. It is possible to reduce the running cost of the entire residue treatment system.
 また、前記バイオマスボイラー7で発生させた蒸気79の残りは、前記配管72a及び他の蒸気通路87を介して、蒸気タービン発電機9に供給される。 The rest of the steam 79 generated in the biomass boiler 7 is supplied to the steam turbine generator 9 via the pipe 72a and another steam passage 87.
 蒸気タービン発電機(発電機)9は、図示しないが、内部に蒸気タービンを有し、この蒸気タービンの羽根車に向けて前記バイオマスボイラー7から蒸気通路87を経た高温高圧の蒸気79を流すことによって、蒸気タービンを高速回転させて、発電する。この発電された電力は、図1に示すように、電気ケーブル88を介して、減圧発酵乾燥機3に供給される。従って、前記蒸気タービン発電機9で発電した電力を前記減圧発酵乾燥機3での使用電力の一部に利用でき、本パームオイル残渣物処理システムC全体でのランニングコストの一層の低減化が可能である。また、減圧発酵乾燥機3での使用電力に利用した電力以外の余剰電力は、その他の機器に供給され、更にまだ余剰電力があれば電力会社に売電することも可能である。 Although not shown, the steam turbine generator (generator) 9 has a steam turbine inside, and flows high-temperature and high-pressure steam 79 from the biomass boiler 7 toward the impeller of the steam turbine through the steam passage 87. Generates electric power by rotating the steam turbine at high speed. This generated electric power is supplied to the reduced pressure fermentation dryer 3 via an electric cable 88, as shown in FIG. Therefore, the electric power generated by the steam turbine generator 9 can be used as a part of the electric power used in the reduced pressure fermentation dryer 3, and the running cost of the entire palm oil residue treatment system C can be further reduced. Is. In addition, surplus electric power other than the electric power used for the power used in the reduced pressure fermentation dryer 3 is supplied to other devices, and if there is still surplus electric power, it is possible to sell the electric power to an electric power company.
 以上のように、本実施形態では、減圧発酵乾燥機3によって、パームオイル工場での残渣物Bの全てを発酵させて、大きく減容された乾燥物に処理可能である。しかも、この乾燥物は、バイオマス燃料としてバイオマスボイラー7で燃焼されるので、ほとんど産業廃棄物を発生せず、その処理費用は少なくなる。 As described above, in the present embodiment, all of the residue B at the palm oil factory can be fermented by the reduced pressure fermentation dryer 3 and processed into a greatly reduced volume dried product. Moreover, since this dried product is burned as the biomass fuel in the biomass boiler 7, almost no industrial waste is generated, and the processing cost thereof is reduced.
 尚、本実施形態では、パームオイル工場での残渣物Bとして、空果房EFB、 中果皮繊維MF、パーム椰子殻PKS等、及び汚泥とスラジPOMEの全てを、減圧発酵乾燥機3に投入し、処理対象としたが、本発明はこれに限定されず、工場残渣物Bの一部、例えば、空果房EFBのみ、又は空果房EFB及び汚泥とスラジPOMEの二者、更には空果房EFBと中果皮繊維MFとパーム椰子殻PKS等の三者、その他の組合せを減圧発酵乾燥機3の処理対象としても良い。 In the present embodiment, as the residue B at the palm oil factory, all of the empty fruit bunch EFB, Chinese fruit peel fiber MF, palm palm shell PKS, etc., sludge and sludge POME are put into the vacuum fermentation dryer 3. The present invention is not limited to this, but the present invention is not limited to this, and a part of the factory residue B, for example, empty fruit bun EFB only, or empty fruit bun EFB and two of sludge and sludge POME, and further empty fruit. The reduced pressure fermentation dryer 3 may be a combination of the three groups such as the bunch EFB, the mesocarp fiber MF, and the palm palm shell PKS, and other combinations.
 更に、減圧発酵乾燥機3から排出された乾燥物のほとんど(小粒物)をバイオマス燃料40としてバイオマスボイラー7で利用して、減圧発酵乾燥機3のタンク30の加熱用熱源として蒸気79を生成することができるので、廃棄物をほとんど発生させることなく、熱源(蒸気)を生成することが可能である。 Furthermore, most of the dried material (small particles) discharged from the reduced pressure fermentation dryer 3 is used as the biomass fuel 40 in the biomass boiler 7, and steam 79 is generated as a heat source for heating the tank 30 of the reduced pressure fermentation dryer 3. Therefore, it is possible to generate a heat source (steam) with almost no waste.
 加えて、バイオマスボイラー7で発生させた蒸気を使用して蒸気タービン発電機9を駆動し、発電した電力を減圧発酵乾燥機3での使用電力の一部に利用して、ランニングコストの低減化を図ることが可能であり、また余剰電力があれば電力会社に売電することも可能である。 In addition, the steam generated by the biomass boiler 7 is used to drive the steam turbine generator 9, and the generated power is used as a part of the power used in the reduced pressure fermentation dryer 3 to reduce the running cost. If there is surplus power, it is possible to sell it to a power company.
 今回、開示した実施形態は全ての点で例示であって、限定的な解釈の根拠となるものではない。本発明の技術的範囲は、前記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本発明の技術的範囲には、特許請求の範囲と均等の意味範囲内での全ての変更が含まれる。 The embodiment disclosed this time is an example in all respects, and is not a basis for a limited interpretation. The technical scope of the present invention should not be construed only by the embodiments described above, but should be defined based on the claims. Further, the technical scope of the present invention includes all modifications within the meaning equivalent to the scope of the claims.
 本発明は、パームオイル工場残渣物の処理装置及びその処理方法に利用することができる。 The present invention can be used for a treatment apparatus for palm oil factory residue and a treatment method therefor.
 A  パームオイル工場内でのパームオイルの製油工程
 B  パームオイル工場残渣物
 C  パームオイル残渣物処理システム
 3  減圧発酵乾燥機
 30 タンク(密閉容器)
 7  バイオマスボイラー(熱源機器)
 9  蒸気タービン発電機(発電機)
 93  空果房(EFB)
 99  汚泥とスラジ(POME)
 103 中果皮繊維(MF)
 106 パーム椰子殻(PKS)等
A Palm oil refining process in palm oil factory B Palm oil factory residue C Palm oil residue processing system 3 Vacuum fermentation dryer 30 Tank (closed container)
7 Biomass boiler (heat source equipment)
9 Steam turbine generator (generator)
93 Empty Fruit Bunch (EFB)
99 Sludge and sludge (POME)
103 Mesocarp fiber (MF)
106 Palm palm shell (PKS), etc.

Claims (7)

  1.  パームオイル工場で生じた残渣物を密閉容器に収容し、減圧下において所定の温度範囲に加熱しながら撹拌するとともに、微生物を利用して有機物の有機成分を分解させ、減容した乾燥物を得る減圧発酵乾燥機と、
     前記減圧発酵乾燥機の後段に配置され、得られた乾燥物を燃焼させて熱源を生成する熱源機器と、を備えた
     ことを特徴とするパームオイル工場残渣物の処理装置。
    The residue produced at the palm oil factory is placed in a closed container and stirred under reduced pressure while heating to a specified temperature range, while using microorganisms to decompose the organic components of organic matter to obtain a reduced volume dried product. A vacuum fermentation dryer,
    A heat source device that is disposed in a subsequent stage of the reduced pressure fermentation dryer and that burns the obtained dried material to generate a heat source.
  2.  請求項1に記載のパームオイル工場残渣物の処理装置において、
     前記パームオイル工場残渣物には、空果房、中果皮繊維及びパーム椰子殻の少なくとも1つが含まれる
     ことを特徴とするパームオイル工場残渣物の処理装置。
    The palm oil factory residue treatment apparatus according to claim 1,
    The palm oil factory residue comprises at least one of empty fruit bunch, mesocarp fiber and palm palm shell.
  3.  請求項2に記載のパームオイル工場残渣物の処理装置において、
     前記パームオイル工場残渣物には、更に、汚泥とスラジが含まれる
     ことを特徴とするパームオイル工場残渣物の処理装置。
    The apparatus for treating the residue of a palm oil factory according to claim 2,
    The palm oil plant residue treatment equipment further comprises sludge and sludge.
  4.  請求項1に記載のパームオイル工場残渣物の処理装置において、
     前記熱源機器により生成された熱源の一部は、前記減圧発酵乾燥機で利用される
     ことを特徴とするパームオイル工場残渣物の処理装置。
    The palm oil factory residue treatment apparatus according to claim 1,
    Part of the heat source generated by the heat source device is used in the reduced pressure fermentation dryer, and the palm oil factory residue treatment apparatus is characterized.
  5.  請求項1に記載のパームオイル工場残渣物の処理装置において、
     前記熱源機器に接続され、生成された熱源の一部を受けて発電する発電機を備えた
     ことを特徴とするパームオイル工場残渣物の処理装置。
    The palm oil factory residue treatment apparatus according to claim 1,
    A palm oil plant residue treatment apparatus, comprising a generator connected to the heat source device and receiving a part of the generated heat source to generate electricity.
  6.  請求項5に記載のパームオイル工場残渣物の処理装置において、
     前記発電機により得られた電気は、前記減圧発酵乾燥機で利用される
     ことを特徴とするパームオイル工場残渣物の処理装置。
    The apparatus for treating the residue of a palm oil factory according to claim 5,
    Electricity obtained by the generator is used in the reduced pressure fermentation dryer, wherein the palm oil factory residue treatment apparatus is characterized.
  7.  パームオイル工場で生じた残渣物を密閉容器に収容し、減圧下において所定の温度範囲に加熱しながら撹拌するとともに、微生物を利用して有機物の有機成分を分解させ、減容した乾燥物を得る減圧発酵乾燥工程と、
     前記減圧発酵乾燥工程で得られた乾燥物を燃焼させて熱源を生成する熱源生成工程と、を備えた
     ことを特徴とするパームオイル工場残渣物の処理方法。
    The residue produced at the palm oil factory is placed in a closed container and stirred under reduced pressure while heating to a specified temperature range, while using microorganisms to decompose the organic components of organic matter to obtain a reduced volume dried product. A reduced pressure fermentation drying step,
    A heat source generation step of burning the dried material obtained in the reduced pressure fermentation drying step to generate a heat source.
PCT/JP2018/048231 2018-12-27 2018-12-27 Treatment device for palm oil mill residue, and treatment method therefor WO2020136824A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/048231 WO2020136824A1 (en) 2018-12-27 2018-12-27 Treatment device for palm oil mill residue, and treatment method therefor
PCT/JP2019/034140 WO2020137003A1 (en) 2018-12-27 2019-08-30 Treatment device for palm oil mill residue, and treatment method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/048231 WO2020136824A1 (en) 2018-12-27 2018-12-27 Treatment device for palm oil mill residue, and treatment method therefor

Publications (1)

Publication Number Publication Date
WO2020136824A1 true WO2020136824A1 (en) 2020-07-02

Family

ID=71126407

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/048231 WO2020136824A1 (en) 2018-12-27 2018-12-27 Treatment device for palm oil mill residue, and treatment method therefor
PCT/JP2019/034140 WO2020137003A1 (en) 2018-12-27 2019-08-30 Treatment device for palm oil mill residue, and treatment method therefor

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034140 WO2020137003A1 (en) 2018-12-27 2019-08-30 Treatment device for palm oil mill residue, and treatment method therefor

Country Status (1)

Country Link
WO (2) WO2020136824A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174412A (en) * 2000-12-08 2002-06-21 Takuma Co Ltd Method of incinerating organic waste
JP2008132408A (en) * 2006-11-27 2008-06-12 Miike Iron Works Co Ltd Plant and method for solidifying urban refuse
JP2009183830A (en) * 2008-02-05 2009-08-20 Takahashi Kikan:Kk System for treating waste
JP2010229415A (en) * 2007-01-16 2010-10-14 Miike Iron Works Co Ltd Solid fuel using organic waste and method for production thereof
EP2546352A1 (en) * 2011-07-15 2013-01-16 Neste Oil Oyj Process for producing lipids from palm oil production residues
WO2017014028A1 (en) * 2015-07-23 2017-01-26 太平洋セメント株式会社 Method for producing biomass fuel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174412A (en) * 2000-12-08 2002-06-21 Takuma Co Ltd Method of incinerating organic waste
JP2008132408A (en) * 2006-11-27 2008-06-12 Miike Iron Works Co Ltd Plant and method for solidifying urban refuse
JP2010229415A (en) * 2007-01-16 2010-10-14 Miike Iron Works Co Ltd Solid fuel using organic waste and method for production thereof
JP2009183830A (en) * 2008-02-05 2009-08-20 Takahashi Kikan:Kk System for treating waste
EP2546352A1 (en) * 2011-07-15 2013-01-16 Neste Oil Oyj Process for producing lipids from palm oil production residues
WO2017014028A1 (en) * 2015-07-23 2017-01-26 太平洋セメント株式会社 Method for producing biomass fuel

Also Published As

Publication number Publication date
WO2020137003A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
KR101137758B1 (en) Bio-oil extraction device
CN111094522B (en) Fuel manufacturing device and method for biomass burner
AU2007280222B2 (en) Recycling of waste material
JPWO2005063923A1 (en) Carbonization equipment for activated carbon production
KR20120117774A (en) Device and method for creating a fine-grained fuel from solid or paste-like raw energy materials by means of torrefaction and crushing
KR102235558B1 (en) Hybrid recycling system for fuelizion and ferment of organic substance
US2148981A (en) Method of and apparatus for disposing of sewage waste and the like
RU2447045C1 (en) Method and unit for poultry manure processing
KR20040041598A (en) Method for processing waste products and corresponding processing plant
KR102452517B1 (en) Biogas production system using mixture of dry feed and anaerobic digestate
JP5196484B2 (en) Raw fuel manufacturing equipment for cement manufacturing, cement manufacturing factory, and method for converting to cement raw fuel
JP7175005B2 (en) Oil sludge treatment device and its treatment method
KR102261308B1 (en) Bio-oil extraction device
WO2020136824A1 (en) Treatment device for palm oil mill residue, and treatment method therefor
WO2020066044A1 (en) Burner fuel production apparatus and production method
KR102307107B1 (en) Dry-Processing Apparatus of Livestock Manure
KR101934764B1 (en) High-speed sludge drying apparatus
EP1775336A2 (en) Method and apparatus for converting organic materials into gas and charcoal
JP7260154B2 (en) Boiler device and organic waste treatment device equipped with the same
US2777288A (en) Process and apparatus for the generation of mechanical energy from solid fuels having a high water content
JP7246707B2 (en) Combustion furnace fuel manufacturing device and manufacturing method
WO2020027132A1 (en) Device and method for treating digested liquid from methane fermentation of organic material
JP2017177008A (en) Dry methane fermentation method and dry methane fermentation device
JP3132816U (en) Garbage disposal equipment
WO2021260758A1 (en) Apparatus and method for producing fuel for burning furnace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18944933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP