JP3871745B2 - Polyamide resin composition - Google Patents

Polyamide resin composition Download PDF

Info

Publication number
JP3871745B2
JP3871745B2 JP28643296A JP28643296A JP3871745B2 JP 3871745 B2 JP3871745 B2 JP 3871745B2 JP 28643296 A JP28643296 A JP 28643296A JP 28643296 A JP28643296 A JP 28643296A JP 3871745 B2 JP3871745 B2 JP 3871745B2
Authority
JP
Japan
Prior art keywords
component
weight
acid solution
solution viscosity
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28643296A
Other languages
Japanese (ja)
Other versions
JPH10130491A (en
Inventor
春美 渡辺
繁生 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP28643296A priority Critical patent/JP3871745B2/en
Publication of JPH10130491A publication Critical patent/JPH10130491A/en
Application granted granted Critical
Publication of JP3871745B2 publication Critical patent/JP3871745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、剛性、耐衝撃性及び表面光沢性の優れたポリアミド樹脂組成物に関するものである。さらに詳しくは、OA、家具部品、スポーツレジャー部品等に要求されている表面光沢性、実使用下における強度剛性、寸法安定性が優れ、更に、表面光沢性の優れたポリアミド樹脂組成物に関するものである。
【0002】
【従来の技術】
ポリアミド樹脂はその成形性と優れた機械的性質を有することから、特に機械部品、電機部品、自動車部品などに射出成形の形で利用されている。
特にナイロン66/6及び/又はナイロン6/66の共重合体にガラス繊維を強化したものは、成形品外観を要求される用途分野では広く用いられるようになっている。例えば、特開平1−193359号公報では特定の相対粘度を有するナイロン66とナイロン6とをブレンドしてガラス繊維と溶融混練して得られた組成物がその成形体の表面外観に優れ、耐衝撃性及び高温時剛性に優れた成形品を得ることができることを開示している。また、特開平2−265965号公報も同様に特定の溶液粘度を有する二種類のポリアミド共重合体あるいはポリアミド単独重合体を特定の割合で併用する方法が開示されている。
【0003】
しかしながら、近年、形状がより複雑で、比較的流動長の長い構造物の樹脂化が進められる状況においては、これらの方法を用いた組成物を適用した場合にも、ガラス繊維の成形品表面への浮き出しを十分には解消できず、また高温時の剛性、耐衝撃性も十分ではなかった。
【0004】
【発明が解決しようとする課題】
本発明の課題は、複雑で細かい部分を有する成形品又は大きな部品においても滑らかな表面外観の成形品を与えることができ、しかも高温時の剛性、耐衝撃性にも優れたポリアミド樹脂組成物を提供することである。
【0005】
【課題を解決するための手段】
本発明者らは、上記課題に対して鋭意検討した結果、その構成単位としてヘキサメチレンアジパミド単位を70〜95重量%含有するポリアミドに対して、特定の粘度差のある2種類の脂肪族ポリアミドを併用し、組成物の蟻酸溶液粘度が45〜75の範囲であり、かつDSCにより求めた融点と補外結晶化開始温度との差が45℃以上である場合に上記課題が解決できることを見出した。
【0006】
従来の技術では、その主たる構成比率にあるポリアミド成分の硫酸溶液粘度が併用するポリアミド成分の硫酸溶液粘度よりも高いか、ほぼ同じ場合がほとんどであり、成形品表面外観を高めるために、組成物としては比較的低い蟻酸溶液粘度を有し、結晶化温度を低くするために融点をも低下させた組成物が多く提案されている。本発明のように、該組成物の蟻酸溶液粘度が45〜75の範囲であり、かつDSCにより求めた融点と補外結晶化開始温度との差が45℃以上である組成物を用いることにより、複雑で細かい部分を有する成形品又は大きな部品においても滑らかな表面外観の成形品を与えることができ、しかも高温時の剛性、及び耐衝撃性にも優れた成形品が得られることは、同業者においても容易に類推することのできなかったことである。
【0007】
すなわち、本発明は、少なくとも50重量%以上のヘキサメチレンアジパミド単位とε−カプロラクタム由来の単位とから構成される脂肪族ポリアミド成分を50〜80重量%、及び繊維状強化剤(D)を20〜50重量物であって、該脂肪族ポリアミド成分が、下記の(A)、(B)、及び(C)成分からなり、最終組成物に対する重量百分率として、(A)成分が25〜40重量%、(B)成分が20〜30重量%、及び(C)成分が5〜10重量%の範囲にあり、かつ(A)成分の25℃における硫酸溶液粘度(η r a と(B)成分の25℃における硫酸溶液粘度(η r b との比(η r b /(η r a 、及び(A)成分の25℃における硫酸溶液粘度(η r a と(C)成分の25℃における硫酸溶液粘度(η r c との比(η r c /(η r a が共に1.1〜2.0の範囲であり、該組成物の蟻酸溶液粘度が45〜75の範囲であり、且つ、DSCにより求めた融点(Tm)と補外結晶化%含有するポリアミド樹脂組成開始温度(Tc)との差(Tm−Tc)が45℃以上であることを特徴とするポリアミド樹脂組成物である。
(A)その構成単位としてヘキサメチレンアジパミド単位を70〜95重量%含有するポリアミド
(B)ポリカプラミド
(C)ポリヘキサメチレンアジパミド以下、本発明を詳細に説明する。
以下、本発明を詳細に説明する。
【0008】
本発明の樹脂組成物の(A)成分を構成するポリアミドは、ヘキサメチレンジアミンとアジピン酸とを重合してなるヘキサメチレンアジパミド単位を70〜95重量%含有してなるコポリマーである。このヘキサメチレンアジパミド単位以外の構成単位としては、ε−カプロラクタム、ω−ラウロラクタム又はヘキサメチレンジアミンとセバシン酸、ヘキサメチレンジアミンとドデカン酸との塩から形成されるものなどがあるが、好ましくはε−カプロラクタムである。
【0009】
この(A)成分の25℃における硫酸溶液粘度(以下、ηrと称する)は、JIS K6810に準して測定した値であり、その範囲としては2.0〜2.9の範囲、好ましくは2.2〜2.7である。このηrが2.0未満の場合には成形体の機械的性質、特に耐衝撃特性が低下する。ηrが2.9を超える場合には組成物の流動性が低下し、成形体表面の外観が不良となる。
【0010】
本発明の樹脂組成物の(B)成分を構成するポリカプラミドは、ε−カプロラクタムを重合してなるホモポリマー及びεーカプロラクタム単位を90重量%以上含有するコポリマーである。特にε−カプロラクタムを重合してなるホモポリマーが好ましい。εーカプロラクタム単位以外の構成単位としては、ω−ラウロラクタム又はヘキサメチレンジアミンとアジピン酸の塩から形成されるものを例示することができる。
【0011】
かかる(B)成分を構成するポリカプラミドの硫酸溶液粘度(ηr)は、3.0〜4.0の範囲であり、好ましくは3.1〜3.8の範囲である。ηrが3.0未満の場合には、成形体の機械的性質、特に耐衝撃性の改善効果が十分でなく、またηrが4.0を超える場合には組成物の流動性が低下し、成形体の表面外観が不良となり、好ましくない。
【0012】
また、本発明の樹脂組成物の(C)成分を構成するポリヘキサメチレンアジパミドは、ヘキサメチレンジアミンとアジピン酸とを重合してなる重合体であり、いわゆるナイロン66である。その製造方法としては、アジピン酸とヘキサメチレンジアミンの塩から溶融重合法、固相重合法、塊状重合法、溶液重合法、またはこれらを組み合わせた方法等、種々の重縮合を行うことができる方法が利用できる。また、アジピン酸クロライドとヘキサメチレンジアミンから溶液重合、界面重合等の方法によっても得ることができる。これらの中で、溶融重合もしくは溶融重合と固相重合の組み合わせによる方法が経済的にも好ましい。
【0013】
かかる(C)成分を構成するポリヘキサメチレンアジパミドの硫酸溶液粘度(ηr)としては、3.0〜4.0の範囲であり、好ましくは3.1〜3.8の範囲である。ηrが3.0未満の場合には、成形体の機械的性質、特に耐衝撃性の改善効果が十分でなく、またηrが4.0を超える場合には組成物の流動性が低下し、成形体の表面外観が不良となり、好ましくない。
【0014】
さらに、本発明においてポリアミド(A)成分の25℃における硫酸溶液粘度(ηr)a とポリカプラミド(B)成分の25℃における硫酸溶液粘度(ηr)b との比(ηr)b /(ηr)a 、及びポリアミド(A)成分の25℃における硫酸溶液粘度(ηr)a とポリヘキサメチレンアジパミド(C)成分の25℃における硫酸溶液粘度(ηr)c との比(ηr)c /(ηr)a が共に1.1〜2.0の範囲にあることが必要である。好ましくは、1.2から1.6の範囲である。その比が1.1未満の場合には、耐衝撃性の改良が不十分であり、またその比が2.0を超える場合には成形品表面外観が低下し好ましくない。
【0015】
本発明に用いる繊維状強化剤(D)成分としては、特に制限がなく、各種のものを用いることができるが、代表的なものとして、ガラス繊維、炭素繊維、金属繊維、セラミック繊維などが挙げられる。特に、コストと物性の関係からガラス繊維が好ましい。使用できるガラス繊維としては、通常熱可塑性樹脂の強化剤用のものを使うことができる。長さには制限ないが、0.1〜6mmのチョップドストランドが好ましく、繊維径は6〜23μmのものが本発明に用いられる。また、その表面には、通常公知のシラン系カップリング剤を付着させたものを用いることが更に好ましい。
【0016】
このシランカップリング剤としては、例えばγ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、ビニルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシランなどが利用できる。
本発明のポリアミド樹脂組成物は、その構成単位としてヘキサメチレンアジパミド単位を少なくとも50重量%含有する該ヘキサメチレンアジパミド単位とε−カプロラクタム由来の単位とから構成される脂肪族ポリアミド成分を50〜80重量%含む必要があり、好ましくは55〜70重量%である。この範囲外では、成形品外観、高温時の剛性、及び耐衝撃性のすべてに優れたバランスを有する成形品が得られない。
【0017】
また、本発明のポリアミド樹脂組成物は、45〜75の範囲の蟻酸溶液粘度をもつことが必要であり、好ましくは48〜70である。本発明で用いる蟻酸溶液粘度は、ASTM D789に従い測定した値である。この蟻酸溶液粘度が45未満では十分な耐衝撃性が得られず、また、75を超える場合には良好な成形品表面外観が得られない。
【0018】
また、本発明のポリアミド樹脂組成物は、DSCにより求めた融点と補外結晶化開始温度との差が45℃以上が必要であり、好ましくは48℃以上である。このDSCにより求めた融点及び補外結晶化開始温度は、JIS K7121に従い、300℃にて5分間保持した後、降温速度及び昇温速度が20℃/分の条件にて測定し、得られる値であり、本発明における融点とはそのピーク温度を意味するものである。又、ピークが複数存在する場合にはその最大ピークを示す温度をもって融点とする。このDSCにより求めた融点と補外結晶化開始温度との差が45℃未満の場合には剛性、特に熱時剛性又は成形品の表面外観が低下し、本発明のように剛性、耐衝撃性及び成形品表面外観のバランスに優れた成形品は得られない。すなわち、DSCにより求めた融点と補外結晶化開始温度との差が45℃以上、より具体的には融点が240℃以上であり、補外結晶化温度が195℃以下である脂肪族ポリアミド樹脂組成物が、本発明により初めて見出されたのである。
【0019】
さらに、本発明を得るためには、(A)、(B)、(C)、及び(D)の脂肪族ポリアミド成分の構成比率として、(A)成分が25〜40重量%、(B)成分が20〜30重量%、(C)成分が5〜10重量%、及び(D)成分が20〜50重量%の範囲が必要であり、好ましくは(A)成分が28〜38重量%、(B)成分が23〜28重量%、(C)成分が5〜12重量%、及び(D)成分が25〜45重量%の範囲である。
【0020】
(A)成分が25重量%未満の場合、及び/又は(B)成分が20重量部未満の場合には良好な成形品表面外観が得られない。また、(A)成分が40重量%を超える場合には耐衝撃性、特に吸水時の耐衝撃性に劣る。(B)成分が30重量%を超える場合には吸水性が増大し、吸水時の剛性低下が著しくなる。さらに、(C)成分が5重量%未満の場合には高温時の剛性、耐衝撃性の改善効果が十分でなく、15重量%を超える場合には高温時の剛性、耐衝撃性は改善されるものの、良好な成形品外観が得られず、好ましくない。また、(D)成分の構成比率が20重量%未満では剛性、耐熱性が十分でなく、50重量%を超える場合には、剛性、耐熱性は向上するものの、成形品の成形表面外観、成形収縮率の異方性及びそりが増大し、好ましくない。
【0021】
本発明のポリアミド樹脂組成物を製造するには、上記の(A)〜(D)成分、及び必要に応じて用いられる各種の添加剤を混合し、混練すればよい。しかし、その際得られるポリアミド樹脂組成物のDSCにより求めた融点と補外結晶化温度との関係が本発明に記載に範囲であることが重要である。各成分の混合方法としては通常用いられる混合機、例えばヘンシェルミキサー、タンブラー、リボンブレンダー等で混合が行われる。
【0022】
また、その混練方法としては混練時の比エネルギーが0.35以上、好ましくは0.38以上の条件にて混練できるように、スクリューデザイン、樹脂温度、スクリュー回転数、及び吐出量等を適宜選択して実施してよい。ここで用いる比エネルギーとは混練時の消費動力(kw)を単位時間当たりの吐出量(kg/hr)で除したものである。混練機としては、一般に単軸又は2軸の押出機が用いられる。例えば、単軸押出機により、上記本発明の樹脂組成物からなるペレットが製造され、このペレットを圧縮成形、射出成形、押出成形等により任意の形状に成形して所望の樹脂製品とすることができる。
【0023】
射出成形条件としては特に限定はないが、成形温度が250℃〜310℃の範囲、金型温度が40℃〜120℃の範囲で成形する方法が例示できる。
さらに、本発明の樹脂組成物を得るための混合順序は特に制限はないが、下記の▲1▼〜▲4▼の方法が採られる。
▲1▼(A)と(B)と(C)とを溶融混練後、(D)を混練する方法
▲2▼予め(A)と(C)と(D)とを溶融混練後、(B)を混練する方法
また、全部を溶融混練せずに、いわゆるペレットブレンドとしては、
▲3▼(A)と(D)の一部とを混練したものと、(B)と(C)と(D)の一部とを混練したものを、ペレットブレンドして加工に供する方法
▲4▼(A)と(C)と(D)の一部とを混練したものと、(B)と(D)の一部とを混練したものとを、ペレットブレンドして加工に供する方法
などの方法を採用することができる。通常、▲1▼及び▲2▼の方法を用いると本発明の効果がさらに顕著になり好ましい。
【0024】
本発明のポリアミド樹脂組成物は、上記(A)〜(D)成分を主成分とするものであるが、さらに必要に応じて、一般の高分子加工分野で用いられる各種添加剤を適宜配合することができる。添加剤の例としては、難燃剤、潤滑剤、可塑剤、着色剤、酸化防止剤、紫外線吸収剤、核剤、安定剤等が挙げられる。
ヒンダードフェノール系安定剤としては、例えばトリエチレングリコール−ビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)〕プロピオネート、ペンタエルスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、N,N’−ビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル〕ヒドラジン、2,2’−オギザミドビス−エチル(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、トリス〔β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル−オキシエチル〕イソシアヌレート、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)1,2,3,4−ブタンテトラカルボキシレート、4,4’−ブチリデン−ビス−(3−メチル−6−t−ブチルフェノール)などが挙げられる。
【0025】
リン系安定剤としては、例えばビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイト、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリトール−ジ−ホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビフェニレンホスファイト等が挙げられる。
【0026】
銅化合物としては、例えば塩化銅、臭化銅、ヨウ化銅、リン酸銅、銅アンモニウム錯体、ステアリン酸銅、モンタン酸銅、アジピン酸銅、イソフタル酸銅、テレフタル酸銅、安息香酸銅、ピロリン酸銅、酢酸銅、アンモニア銅等が挙げられる。好ましくは、臭化銅、ヨウ化銅、酢酸銅等である。
【0027】
【発明の実施の形態】
以下、実施例により本発明を更に詳細に説明するが、本発明はその要旨を超えないかぎり以下の実施例に何ら限定されるものではない。
まず、本発明の実施例に用いた原料を以下に示す。
(A)ポリアミド
a1:製造例1に従って製造したポリアミド
a2:製造例2に従って製造したポリアミド
〔製造例1〕
アジピン酸とヘキサメチレンジアミンの等モル塩2.3kgとε−カプロラクタム0.25kg及び純水2.5kgを5リットルのオートクレーブの中に仕込みよく攪拌した。充分N2 置換した後、攪拌しながら温度を室温から220℃まで約1時間かけて昇温した。この際、オートクレーブ内の水蒸気による自然圧で内圧は18kg/cm2 −Gになるが、18kg/cm2 −G以上の圧力にならないよう水を反応系外に除去しながらさらに加熱を続けた。さらに2時間後内温が260℃に到達したら加熱を止め、オートクレーブの排出バルブを閉止し、約8時間かけて室温まで冷却した。冷却後オートクレーブを開け、約2kgのポリマーを取り出し粉砕した。得られた粉砕ポリマーを、10リットルのエバポレーターに入れN2 気流下、200℃で10時間固相重合した。固相重合によって得られた重合物はヘキサメチレンアジパミド単位を90.2重量%含み、硫酸溶液粘度は2.8であった。
【0028】
〔製造例2〕
アジピン酸とヘキサメチレンジアミンの等モル塩の配合量を2.2kgに、ε−カプロラクタムの配合量を0.4kgに変更した以外は製造例1と同様にして重合した。得られた重合物はヘキサメチレンアジパミド単位を86.7重量%含み、硫酸溶液粘度は2.3であった。
【0029】
(B)ポリカプラミド
b1:ナイロン6 硫酸溶液粘度 3.2
宇部興産(株)製 商品名 1022A
b2:ナイロン6 硫酸溶液粘度 2.3
宇部興産(株)製 商品名 1013A
(C)ポリヘキサメチレンアジパミド
c1:ポリアミド66;硫酸溶液粘度3.7
旭化成工業(株)製 商品名 レオナ1500
c2:ポリアミド66;硫酸溶液粘度2.5
旭化成工業(株)製 商品名 レオナ1200S
(D)ガラス繊維
d1:旭ファイバーグラス(株)社製 商品名 CS03JA416
d2:日本電気硝子(株)社製 商品名 EPG170
また、実施例、比較例中の評価は次の方法で行った。
【0030】
(1)硫酸溶液粘度
JIS K6810に従って、1gのポリマーを98%濃度の硫酸100ミリリットルに溶解し、25℃で測定を行う。
(2)成型品表面外観
東芝機械(株)製IS−150E射出成形機を用いて、スクリュー回転数150rpm、樹脂温度290℃、射出圧力を変更して種々の充填時間にて、66mm×90mm、厚さ3mmの平板を成形し、HORIBA製グロスチェッカーIG−320を用いて60度グロスを測定した(光沢)。
【0031】
(3)機械的物性1
東芝機械(株)製IS−50EP射出成形機を用いて、スクリュー回転数200rpm、樹脂温度290℃の成形条件にて、厚さ3mmのASTMタイプ1を成形し、ASTM D638、D790、D256に従って引張強度、引張伸び、曲げ強度、曲げ弾性率、Izod衝撃強さ(ノッチ無し:単位はkg−cm/cm)の測定を行った。
【0032】
(4)機械的物性2
(3)と同様にして厚さ3mmのASTMタイプ1を成形し、その水分率が1.5重量%になるように調湿した後、ASTM D256に従い、Izod衝撃強さ(ノッチ無し:単位はkg−cm/cm:吸水時)の測定を行った。
(5)DSC特性(融点〔Tm〕、補外結晶化温度〔Tc〕)
JIS K7121に従い、試料8mgを精秤し、パーキンエルマー社製DSC7を用いて、300℃にて5分間保持した後、降温速度20℃/分の条件にて50℃まで降温し、補外結晶開始温度(℃)を測定し、ついで昇温速度20℃/分の条件にてそのピーク温度を測定して融点とした。又、ピークが複数存在する場合にはその最大ピークを示す温度をもって融点とした。
【0033】
(6)熱変形温度
東芝機械(株)製IS−50EP射出成形機を用いて、スクリュー回転数200rpm、樹脂温度290℃の成形条件にて、厚さ6mmの試験片を成形し、ASTM D648に従って熱変形温度(℃)を測定した。
【0034】
【実施例1】
ポリアミド(A)としてa1を33重量部、ポリカプラミド(B)としてb1を27重量部、ポリヘキサメチレンアジパミド(C)としてc1を7重量部、及びガラス繊維を33重量部をタンブラーにて混合した後、日本鋼業(株)製70mmφ単軸押出機(設定温度280℃、スクリュー回転数300rpm)にフィードホッパーより供給し、紡口より押し出された溶融混練物をストランド状で冷却し、ペレタイズしてポリアミド樹脂組成物を得た。その際の比エネルギーは0.39(KwH/kg)であった。得られた組成物を上記の方法にて評価した。その組成を表1に、又その評価結果を表3に示す。
【0035】
【比較例1】
成分(C)を用いずにポリアミド成分(A)を40重量%に変更した以外は、実施例1と同様の方法にて組成物を得た。得られた組成物を用いて実施例1と同様の方法にて評価し、その組成を表1に、又その評価結果を表4に示す。
【0036】
【実施例2〜4】
各成分の割合を表1のように変更した以外は実施例1と同様にして組成物を得た。実施例1と同様にして評価し、その結果を表3に示す。
【0037】
【実施例5〜7】
それぞれの成分を、実施例5ではポリアミド(A)をa2に変更し、実施例6ではポリカプラミド(B)をb2に変更した以外は実施例1と同様にして組成物を得た。また、実施例7ではガラス繊維(D)をd2に変更し以外は実施例4と同様にして組成物を得た。その組成を表1に、又その評価結果を表4に示す。
【0038】
【比較例2】
ポリアミド(A)としてa3(レオナ1300S(商品名 旭化成(株)社製硫酸溶液粘度2.8))を40重量部、ポリカプラミド(B)としてb1を27重量部、及びガラス繊維(D)を33重量部をタンブラーにて混合した後、実施例1と同様に溶融混練し、紡口より押し出された溶融混練物をストランド状で冷却し、ペレタイズしてポリアミド樹脂組成物を得た。得られた組成物を上記の方法にて評価した。その組成を表2に、又その評価結果を表5に示す。
【0039】
【比較例3〜8】
各成分を表2に示すように、比較例3では(C)成分をc2に変更し、比較例4では(B)成分を用いず、(A)成分を60重量%に変更した。また、比較例5では(C)成分の配合割合を20重量%に変更し、比較例6では(B)成分を40重量%に変更、比較例7及び比較例8ではそれぞれ(D)成分を55重量%及び15重量%に変更した以外は実施例1と同様にして組成物を得た。その組成を表2に、又その評価結果を表5〜6に示す。
【0040】
【表1】

Figure 0003871745
【0041】
【表2】
Figure 0003871745
【0042】
【表3】
Figure 0003871745
【0043】
【表4】
Figure 0003871745
【0044】
【表5】
Figure 0003871745
【0045】
【表6】
Figure 0003871745
【0046】
【発明の効果】
本発明によれば、複雑で細かい部分を有する成形品又は大きな部品においても滑らかな表面外観の成形品を与えることができ、しかも高温時の剛性、及び耐衝撃性にも優れた成形品が得られる。従って、OA、家具部品やスポーツレジャー部品等幅広い用途に利用できる材料を提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyamide resin composition having excellent rigidity, impact resistance and surface gloss. More specifically, the present invention relates to a polyamide resin composition having excellent surface gloss required for OA, furniture parts, sports / leisure parts, strength rigidity under actual use, dimensional stability, and excellent surface gloss. is there.
[0002]
[Prior art]
Polyamide resins are used in the form of injection molding especially for mechanical parts, electrical parts, automobile parts and the like because of their moldability and excellent mechanical properties.
In particular, nylon 66/6 and / or nylon 6/66 copolymers reinforced with glass fibers are widely used in application fields that require the appearance of molded articles. For example, in Japanese Patent Application Laid-Open No. 1-193359, a composition obtained by blending nylon 66 and nylon 6 having a specific relative viscosity and melt-kneading with glass fiber is excellent in the surface appearance of the molded article, and has impact resistance. It is disclosed that it is possible to obtain a molded article having excellent properties and rigidity at high temperature. Similarly, JP-A-2-265965 discloses a method in which two kinds of polyamide copolymers or polyamide homopolymers having specific solution viscosities are used in a specific ratio.
[0003]
However, in recent years, in the situation where a resin having a structure having a more complicated shape and a relatively long flow length is being promoted, even when a composition using these methods is applied, the surface of the molded article of glass fiber can be obtained. It was not possible to sufficiently eliminate the embossing, and the rigidity and impact resistance at high temperatures were not sufficient.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a polyamide resin composition which can give a molded product having a smooth surface appearance even in a molded product having a complicated and fine part or a large part, and also excellent in rigidity and impact resistance at high temperatures. Is to provide.
[0005]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the inventors of the present invention have two types of aliphatic groups having specific viscosity differences with respect to polyamides containing 70 to 95% by weight of hexamethylene adipamide units as structural units. The above problem can be solved when polyamide is used in combination, the formic acid solution viscosity of the composition is in the range of 45 to 75, and the difference between the melting point obtained by DSC and the extrapolation crystallization start temperature is 45 ° C or higher. I found it.
[0006]
In the prior art, the viscosity of the sulfuric acid solution of the polyamide component in the main component ratio is higher than or substantially the same as the sulfuric acid solution viscosity of the polyamide component used together. For example, many compositions having a relatively low formic acid solution viscosity and a reduced melting point in order to lower the crystallization temperature have been proposed. By using a composition in which the formic acid solution viscosity of the composition is in the range of 45 to 75 and the difference between the melting point determined by DSC and the extrapolation crystallization start temperature is 45 ° C. or more as in the present invention. It is possible to give a molded product having a smooth surface appearance even in a molded product having complicated and fine parts or a large part, and also having a high temperature rigidity and impact resistance. This was something that could not be easily guessed even by contractors.
[0007]
That is, the present invention comprises 50 to 80% by weight of an aliphatic polyamide component composed of at least 50% by weight of hexamethylene adipamide units and ε-caprolactam-derived units, and a fibrous reinforcing agent (D). It is 20-50 weight thing, Comprising: This aliphatic polyamide component consists of following (A), (B), and (C) component, (A) component is 25-40 as a weight percentage with respect to a final composition. % By weight, (B) component in the range of 20-30% by weight, and (C) component in the range of 5-10% by weight, and (A) component sulfuric acid solution viscosity (η r ) a at 25 ° C. a and (B ) Component sulfuric acid solution viscosity (η r ) b at 25 ° C. r ) b / (η r ) a , and component (A) sulfuric acid solution viscosity at 25 ° C. (η r ) a and (C) the ratio of the sulfuric acid solution viscosity (eta r) c at 25 ° C. of component r) c / eta r) in the range of a both 1.1 to 2.0, formic acid solution viscosity of the composition is in the range of 45 to 75, and a melting point as determined by DSC (Tm) and extrapolated crystallization% Ru polyamide resin composition der, wherein the difference between the polyamide resin composition starting temperature containing (Tc) (Tm-Tc) is 45 ° C. or higher.
(A) Polyamide containing 70 to 95% by weight of hexamethylene adipamide unit as its structural unit (B) Polycapramide (C) Polyhexamethylene adipamide Hereinafter, the present invention will be described in detail.
Hereinafter, the present invention will be described in detail.
[0008]
The polyamide constituting the component (A) of the resin composition of the present invention is a copolymer containing 70 to 95% by weight of hexamethylene adipamide units obtained by polymerizing hexamethylenediamine and adipic acid. Examples of the structural unit other than the hexamethylene adipamide unit include ε-caprolactam, ω-laurolactam, or those formed from a salt of hexamethylenediamine and sebacic acid, hexamethylenediamine and dodecanoic acid, and the like. Is ε-caprolactam.
[0009]
The sulfuric acid solution viscosity at 25 ° C. (hereinafter referred to as ηr) of the component (A) is a value measured according to JIS K6810, and the range is 2.0 to 2.9, preferably 2 2 to 2.7. When this ηr is less than 2.0, the mechanical properties, particularly impact resistance, of the molded product is deteriorated. When ηr exceeds 2.9, the fluidity of the composition decreases and the appearance of the surface of the molded article becomes poor.
[0010]
The polycapramide constituting the component (B) of the resin composition of the present invention is a homopolymer obtained by polymerizing ε-caprolactam and a copolymer containing 90% by weight or more of ε-caprolactam units. In particular, a homopolymer obtained by polymerizing ε-caprolactam is preferable. Examples of the structural unit other than the ε-caprolactam unit include those formed from ω-laurolactam or hexamethylenediamine and a salt of adipic acid.
[0011]
The sulfuric acid solution viscosity (ηr) of the polycapramide constituting the component (B) is in the range of 3.0 to 4.0, preferably in the range of 3.1 to 3.8. When ηr is less than 3.0, the effect of improving the mechanical properties, particularly impact resistance, of the molded product is not sufficient, and when ηr exceeds 4.0, the fluidity of the composition decreases, The surface appearance of the molded product becomes poor, which is not preferable.
[0012]
The polyhexamethylene adipamide constituting the component (C) of the resin composition of the present invention is a polymer obtained by polymerizing hexamethylene diamine and adipic acid, and is so-called nylon 66. As its production method, various polycondensation methods such as a melt polymerization method, a solid phase polymerization method, a bulk polymerization method, a solution polymerization method, or a combination of these from a salt of adipic acid and hexamethylenediamine can be performed. Is available. It can also be obtained from adipic acid chloride and hexamethylenediamine by methods such as solution polymerization and interfacial polymerization. Among these, melt polymerization or a method using a combination of melt polymerization and solid phase polymerization is economically preferable.
[0013]
The sulfuric acid solution viscosity (ηr) of polyhexamethylene adipamide constituting the component (C) is in the range of 3.0 to 4.0, preferably in the range of 3.1 to 3.8. When ηr is less than 3.0, the effect of improving the mechanical properties, particularly impact resistance, of the molded product is not sufficient, and when ηr exceeds 4.0, the fluidity of the composition decreases, The surface appearance of the molded product becomes poor, which is not preferable.
[0014]
Further, in the present invention, the ratio (ηr) b / (ηr) a of the sulfuric acid solution viscosity (ηr) a of the polyamide (A) component at 25 ° C to the sulfuric acid solution viscosity (ηr) b of the polycapramide (B) component at 25 ° C. And the ratio (ηr) c / (ηr) of the sulfuric acid solution viscosity (ηr) a at 25 ° C. of the polyamide (A) component and the sulfuric acid solution viscosity (ηr) c at 25 ° C of the polyhexamethylene adipamide (C) component ) A must both be in the range of 1.1 to 2.0. Preferably, it is in the range of 1.2 to 1.6. When the ratio is less than 1.1, the impact resistance is not improved sufficiently. When the ratio exceeds 2.0, the surface appearance of the molded product is deteriorated, which is not preferable.
[0015]
There is no restriction | limiting in particular as a fibrous reinforcement (D) component used for this invention, Although various things can be used, A glass fiber, carbon fiber, a metal fiber, a ceramic fiber etc. are mentioned as a typical thing. It is done. In particular, glass fiber is preferable from the relationship between cost and physical properties. As glass fiber which can be used, the thing for the reinforcement agent of a thermoplastic resin can be used normally. The length is not limited, but a chopped strand of 0.1 to 6 mm is preferable, and a fiber diameter of 6 to 23 μm is used in the present invention. Further, it is more preferable to use a surface to which a generally known silane coupling agent is attached.
[0016]
Examples of the silane coupling agent include γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, vinyltriethoxysilane, and γ-glycid. For example, xylpropyltrimethoxysilane can be used.
The polyamide resin composition of the present invention comprises an aliphatic polyamide component composed of the hexamethylene adipamide unit containing at least 50% by weight of a hexamethylene adipamide unit as a structural unit and a unit derived from ε-caprolactam. It is necessary to contain 50 to 80% by weight, preferably 55 to 70% by weight. Outside this range, it is impossible to obtain a molded product having an excellent balance of appearance of molded product, rigidity at high temperature, and impact resistance.
[0017]
In addition, the polyamide resin composition of the present invention needs to have a formic acid solution viscosity in the range of 45 to 75, preferably 48 to 70. The formic acid solution viscosity used in the present invention is a value measured according to ASTM D789. When the formic acid solution viscosity is less than 45, sufficient impact resistance cannot be obtained, and when it exceeds 75, a good molded product surface appearance cannot be obtained.
[0018]
In addition, the polyamide resin composition of the present invention requires a difference between the melting point determined by DSC and the extrapolation crystallization start temperature of 45 ° C. or more, preferably 48 ° C. or more. The melting point and extrapolation crystallization start temperature obtained by this DSC are values obtained by measuring the temperature drop rate and the temperature rise rate at 20 ° C./min after holding at 300 ° C. for 5 minutes in accordance with JIS K7121. The melting point in the present invention means its peak temperature. When there are a plurality of peaks, the melting point is the temperature at which the maximum peak is shown. When the difference between the melting point obtained by DSC and the extrapolation crystallization start temperature is less than 45 ° C., the rigidity, particularly the thermal rigidity or the surface appearance of the molded product is deteriorated, and the rigidity and impact resistance are reduced as in the present invention. In addition, a molded product having an excellent balance of the molded product surface appearance cannot be obtained. That is, an aliphatic polyamide resin having a difference between a melting point obtained by DSC and an extrapolation crystallization start temperature of 45 ° C. or more, more specifically, a melting point of 240 ° C. or more and an extrapolation crystallization temperature of 195 ° C. or less. A composition was first discovered according to the present invention.
[0019]
Furthermore, in order to obtain the present invention, the constituent ratio of the aliphatic polyamide components (A), (B), (C), and (D) is 25 to 40% by weight of (A) component, (B) The component needs to be in the range of 20 to 30% by weight, the component (C) is 5 to 10% by weight, and the component (D) is 20 to 50% by weight, preferably the component (A) is 28 to 38% by weight, (B) A component is 23 to 28 weight%, (C) component is 5 to 12 weight%, and (D) component is 25 to 45 weight%.
[0020]
When the component (A) is less than 25% by weight and / or when the component (B) is less than 20 parts by weight, a good molded product surface appearance cannot be obtained. Moreover, when (A) component exceeds 40 weight%, it is inferior to impact resistance, especially the impact resistance at the time of water absorption. When the component (B) exceeds 30% by weight, the water absorption increases, and the rigidity at the time of water absorption decreases significantly. Furthermore, when the component (C) is less than 5% by weight, the effect of improving the rigidity and impact resistance at high temperature is not sufficient, and when it exceeds 15% by weight, the rigidity and impact resistance at high temperature are improved. However, it is not preferable because a good molded product appearance cannot be obtained. Further, when the component ratio of the component (D) is less than 20% by weight, the rigidity and heat resistance are not sufficient. When it exceeds 50% by weight, the rigidity and heat resistance are improved, but the molded surface appearance of the molded product, molding The anisotropy and warpage of the shrinkage rate increase, which is not preferable.
[0021]
In order to produce the polyamide resin composition of the present invention, the above components (A) to (D) and various additives used as necessary may be mixed and kneaded. However, it is important that the relationship between the melting point obtained by DSC of the polyamide resin composition obtained at that time and the extrapolation crystallization temperature is within the range described in the present invention. As a mixing method of each component, mixing is performed by a commonly used mixer such as a Henschel mixer, a tumbler, a ribbon blender, or the like.
[0022]
As the kneading method, the screw design, the resin temperature, the screw rotation speed, the discharge amount, etc. are appropriately selected so that the specific energy at the time of kneading is 0.35 or more, preferably 0.38 or more. And may be implemented. The specific energy used here is obtained by dividing the power consumption (kw) during kneading by the discharge rate (kg / hr) per unit time. As the kneader, a single-screw or twin-screw extruder is generally used. For example, a pellet made of the resin composition of the present invention is produced by a single-screw extruder, and the pellet is molded into an arbitrary shape by compression molding, injection molding, extrusion molding, or the like to obtain a desired resin product. it can.
[0023]
The injection molding conditions are not particularly limited, and examples thereof include a molding method in which the molding temperature is in the range of 250 ° C. to 310 ° C. and the mold temperature is in the range of 40 ° C. to 120 ° C.
Furthermore, the mixing order for obtaining the resin composition of the present invention is not particularly limited, but the following methods (1) to (4) are employed.
(1) A method in which (A), (B) and (C) are melt-kneaded and then (D) is kneaded (2) (A), (C) and (D) are previously melt-kneaded and (B ) And the so-called pellet blend without melt-kneading the whole,
(3) A method in which a mixture of (A) and a part of (D) and a mixture of (B), (C) and (D) are pellet-blended and used for processing. 4 ▼ A method in which a mixture of (A), (C) and a part of (D) and a mixture of (B) and (D) are pellet-blended and used for processing, etc. This method can be adopted. Usually, it is preferable to use the methods (1) and (2) because the effect of the present invention becomes more remarkable.
[0024]
The polyamide resin composition of the present invention is mainly composed of the above components (A) to (D), and if necessary, various additives used in general polymer processing fields are appropriately blended. be able to. Examples of additives include flame retardants, lubricants, plasticizers, colorants, antioxidants, ultraviolet absorbers, nucleating agents, stabilizers, and the like.
Examples of the hindered phenol stabilizer include triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl)] propionate, pentaerythrityl-tetrakis [3- (3,5- Di-t-butyl-4-hydroxyphenyl) propionate], N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine, 2,2′-ogizamide bis- Ethyl (3,5-di-t-butyl-4-hydroxyphenyl) propionate, tris [β- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl-oxyethyl] isocyanurate, tetrakis (2, 2,6,6-tetramethyl-4-piperidyl) 1,2,3,4-butanetetracarboxylate, 4,4′- Chiriden - bis - (3-methyl -6-t-butylphenol) and the like.
[0025]
Examples of phosphorus stabilizers include bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol-di-phosphite and bis (2,4-di-t-butylphenyl) pentaerythritol-di. -Phosphite, tris (2,4-di-t-butylphenyl) phosphite, tetrakis (2,4-di-t-butylphenyl) -4,4'-biphenylene phosphite and the like.
[0026]
Examples of the copper compound include copper chloride, copper bromide, copper iodide, copper phosphate, copper ammonium complex, copper stearate, copper montanate, copper adipate, copper isophthalate, copper terephthalate, copper benzoate, and pyrroline. Examples include copper acid, copper acetate, and copper ammonia. Preferred are copper bromide, copper iodide, copper acetate and the like.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example at all unless the summary is exceeded.
First, the raw material used for the Example of this invention is shown below.
(A) Polyamide a1: Polyamide a2 produced according to Production Example 1 Polyamide produced according to Production Example 2 [Production Example 1]
2.3 kg of equimolar salt of adipic acid and hexamethylenediamine, 0.25 kg of ε-caprolactam and 2.5 kg of pure water were placed in a 5 liter autoclave and stirred well. After sufficient N 2 substitution, the temperature was raised from room temperature to 220 ° C. over about 1 hour with stirring. Under the present circumstances, although the internal pressure became 18 kg / cm < 2 > -G by the natural pressure by the water vapor | steam in an autoclave, it continued further heating, removing water out of a reaction system so that it might not become a pressure beyond 18 kg / cm < 2 > -G. When the internal temperature reached 260 ° C. after 2 hours, the heating was stopped, the autoclave discharge valve was closed, and the system was cooled to room temperature over about 8 hours. After cooling, the autoclave was opened, and about 2 kg of polymer was taken out and ground. The obtained pulverized polymer was placed in a 10 liter evaporator and subjected to solid state polymerization at 200 ° C. for 10 hours under a N 2 stream. The polymer obtained by solid phase polymerization contained 90.2% by weight of hexamethylene adipamide units, and the sulfuric acid solution viscosity was 2.8.
[0028]
[Production Example 2]
Polymerization was conducted in the same manner as in Production Example 1 except that the amount of equimolar salt of adipic acid and hexamethylenediamine was changed to 2.2 kg and the amount of ε-caprolactam was changed to 0.4 kg. The polymer obtained had 86.7% by weight of hexamethylene adipamide units, and the sulfuric acid solution viscosity was 2.3.
[0029]
(B) Polycapramide b1: Nylon 6 Sulfuric acid solution viscosity 3.2
Product name 1022A manufactured by Ube Industries, Ltd.
b2: Nylon 6 sulfuric acid solution viscosity 2.3
Product name 1013A manufactured by Ube Industries, Ltd.
(C) polyhexamethylene adipamide c1: polyamide 66; sulfuric acid solution viscosity 3.7
Product name Leona 1500 manufactured by Asahi Kasei Corporation
c2: Polyamide 66; sulfuric acid solution viscosity 2.5
Product name Leona 1200S manufactured by Asahi Kasei Corporation
(D) Glass fiber d1: Asahi Fiber Glass Co., Ltd. product name CS03JA416
d2: Product name EPG170 manufactured by Nippon Electric Glass Co., Ltd.
Moreover, the evaluation in an Example and a comparative example was performed with the following method.
[0030]
(1) Viscosity of sulfuric acid solution According to JIS K6810, 1 g of a polymer is dissolved in 100 ml of 98% sulfuric acid and measured at 25 ° C.
(2) Surface appearance of molded product Using a IS-150E injection molding machine manufactured by Toshiba Machine Co., Ltd., screw rotation speed 150 rpm, resin temperature 290 ° C., changing injection pressure, various filling times, 66 mm × 90 mm, A flat plate having a thickness of 3 mm was formed, and 60-degree gloss was measured using a HORIBA gloss checker IG-320 (gloss).
[0031]
(3) Mechanical properties 1
Using an IS-50EP injection molding machine manufactured by Toshiba Machine Co., Ltd., a 3 mm thick ASTM type 1 was molded under molding conditions of a screw speed of 200 rpm and a resin temperature of 290 ° C., and tensioned according to ASTM D638, D790, and D256 Strength, tensile elongation, bending strength, flexural modulus, and Izod impact strength (no notch: unit is kg-cm / cm) were measured.
[0032]
(4) Mechanical properties 2
After forming ASTM type 1 having a thickness of 3 mm in the same manner as (3) and adjusting the moisture content to 1.5 wt%, according to ASTM D256, Izod impact strength (no notch: unit is (kg-cm / cm: at the time of water absorption) was measured.
(5) DSC characteristics (melting point [Tm], extrapolation crystallization temperature [Tc])
In accordance with JIS K7121, 8 mg of sample was precisely weighed and held at 300 ° C for 5 minutes using DSC7 manufactured by PerkinElmer Co., Ltd., then cooled to 50 ° C at a temperature drop rate of 20 ° C / min, and extrapolated crystals started The temperature (° C.) was measured, and then the peak temperature was measured at a temperature rising rate of 20 ° C./min to obtain the melting point. When a plurality of peaks exist, the temperature showing the maximum peak was taken as the melting point.
[0033]
(6) Thermal deformation temperature Using a IS-50EP injection molding machine manufactured by Toshiba Machine Co., Ltd., a test piece having a thickness of 6 mm was molded under molding conditions of a screw rotational speed of 200 rpm and a resin temperature of 290 ° C., and in accordance with ASTM D648. The heat distortion temperature (° C.) was measured.
[0034]
[Example 1]
33 parts by weight of a1 as polyamide (A), 27 parts by weight of b1 as polycapramide (B), 7 parts by weight of c1 as polyhexamethylene adipamide (C), and 33 parts by weight of glass fiber are mixed in a tumbler. After that, it was supplied from a feed hopper to a 70 mmφ single-screw extruder (set temperature: 280 ° C., screw rotation speed: 300 rpm) manufactured by Nippon Steel Industry Co., Ltd., and the melt-kneaded product extruded from the spinning nozzle was cooled in a strand shape and pelletized. Thus, a polyamide resin composition was obtained. The specific energy at that time was 0.39 (KwH / kg). The obtained composition was evaluated by the above method. The composition is shown in Table 1, and the evaluation results are shown in Table 3.
[0035]
[Comparative Example 1]
A composition was obtained in the same manner as in Example 1 except that the polyamide component (A) was changed to 40% by weight without using the component (C). Using the obtained composition, it evaluated by the method similar to Example 1, the composition is shown in Table 1, and the evaluation result is shown in Table 4.
[0036]
[Examples 2 to 4]
A composition was obtained in the same manner as in Example 1 except that the ratio of each component was changed as shown in Table 1. Evaluation was conducted in the same manner as in Example 1, and the results are shown in Table 3.
[0037]
Examples 5 to 7
A composition was obtained in the same manner as in Example 1 except that polyamide (A) was changed to a2 in Example 5 and polycoupleramide (B) was changed to b2 in Example 6. In Example 7, a composition was obtained in the same manner as in Example 4 except that the glass fiber (D) was changed to d2. The composition is shown in Table 1, and the evaluation results are shown in Table 4.
[0038]
[Comparative Example 2]
40 parts by weight of a3 (Leona 1300S (trade name: Asahi Kasei Co., Ltd., sulfuric acid solution viscosity 2.8)) as polyamide (A), 27 parts by weight of b1 as polycoupleramide (B), and 33 of glass fiber (D) After mixing parts by weight with a tumbler, the mixture was melt-kneaded in the same manner as in Example 1, and the melt-kneaded product extruded from the spinning nozzle was cooled in a strand shape and pelletized to obtain a polyamide resin composition. The obtained composition was evaluated by the above method. The composition is shown in Table 2, and the evaluation results are shown in Table 5.
[0039]
[Comparative Examples 3 to 8]
As shown in Table 2, the component (C) was changed to c2 in Comparative Example 3, the component (B) was not used in Comparative Example 4, and the component (A) was changed to 60% by weight. In Comparative Example 5, the blending ratio of the component (C) is changed to 20% by weight, in Comparative Example 6, the component (B) is changed to 40% by weight, and in Comparative Example 7 and Comparative Example 8, the component (D) is changed. A composition was obtained in the same manner as in Example 1 except that the content was changed to 55% by weight and 15% by weight. The composition is shown in Table 2, and the evaluation results are shown in Tables 5-6.
[0040]
[Table 1]
Figure 0003871745
[0041]
[Table 2]
Figure 0003871745
[0042]
[Table 3]
Figure 0003871745
[0043]
[Table 4]
Figure 0003871745
[0044]
[Table 5]
Figure 0003871745
[0045]
[Table 6]
Figure 0003871745
[0046]
【The invention's effect】
According to the present invention, a molded product having a smooth surface appearance can be provided even for a molded product having complicated and fine parts or a large part, and a molded product having excellent rigidity at high temperature and impact resistance can be obtained. It is done. Therefore, materials that can be used for a wide range of applications such as OA, furniture parts, and sports / leisure parts can be provided.

Claims (1)

少なくとも50重量%以上のヘキサメチレンアジパミド単位とε−カプロラクタム由来の単位とから構成される脂肪族ポリアミド成分を50〜80重量%、及び繊維状強化剤(D)を20〜50重量%含有するポリアミド樹脂組成物であって、該脂肪族ポリアミド成分が、下記の(A)、(B)、及び(C)成分からなり、最終組成物に対する重量百分率として、(A)成分が25〜40重量%、(B)成分が20〜30重量%、及び(C)成分が5〜10重量%の範囲にあり、かつ(A)成分の25℃における硫酸溶液粘度(η r a と(B)成分の25℃における硫酸溶液粘度(η r b との比(η r b /(η r a 、及び(A)成分の25℃における硫酸溶液粘度(η r a と(C)成分の25℃における硫酸溶液粘度(η r c との比(η r c /(η r a が共に1.1〜2.0の範囲であり、該組成物の蟻酸溶液粘度が45〜75の範囲であり、且つ、DSCにより求めた融点(Tm)と補外結晶化開始温度(Tc)との差(Tm−Tc)が45℃以上であることを特徴とするポリアミド樹脂組成物。
(A)その構成単位としてヘキサメチレンアジパミド単位を70〜95重量%含有するポリアミド
(B)ポリカプラミド
(C)ポリヘキサメチレンアジパミド
50 to 80% by weight of an aliphatic polyamide component composed of at least 50% by weight of hexamethylene adipamide units and units derived from ε-caprolactam, and 20 to 50% by weight of fibrous reinforcing agent (D) The aliphatic polyamide component is composed of the following components (A), (B), and (C), and the weight percentage with respect to the final composition is (A) component of 25 to 40: % By weight, (B) component in the range of 20-30% by weight, and (C) component in the range of 5-10% by weight, and (A) component sulfuric acid solution viscosity (η r ) a at 25 ° C. a and (B ) Component sulfuric acid solution viscosity (η r ) b at 25 ° C. r ) b / (η r ) a , and component (A) sulfuric acid solution viscosity at 25 ° C. (η r ) a and (C) Ratio of component to sulfuric acid solution viscosity (η r ) c at 25 ° C. r ) c / (η r ) a are both in the range of 1.1 to 2.0, the formic acid solution viscosity of the composition is in the range of 45 to 75, and the melting point (Tm) determined by DSC A polyamide resin composition having a difference (Tm-Tc) from an extrapolation crystallization start temperature (Tc) of 45 ° C. or more.
(A) Polyamide containing 70 to 95% by weight of hexamethylene adipamide unit as its structural unit
(B) Polycapramide
(C) Polyhexamethylene adipamide
JP28643296A 1996-10-29 1996-10-29 Polyamide resin composition Expired - Lifetime JP3871745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28643296A JP3871745B2 (en) 1996-10-29 1996-10-29 Polyamide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28643296A JP3871745B2 (en) 1996-10-29 1996-10-29 Polyamide resin composition

Publications (2)

Publication Number Publication Date
JPH10130491A JPH10130491A (en) 1998-05-19
JP3871745B2 true JP3871745B2 (en) 2007-01-24

Family

ID=17704317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28643296A Expired - Lifetime JP3871745B2 (en) 1996-10-29 1996-10-29 Polyamide resin composition

Country Status (1)

Country Link
JP (1) JP3871745B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160094724A (en) 2015-02-02 2016-08-10 현대자동차주식회사 Carbon fiber reinforced thermoplastic resin composition and molded article using the same
KR101816434B1 (en) 2016-09-06 2018-01-08 현대자동차주식회사 Carbon fiber reinforced thermoplastic resin composition for foam molding and molded article using the same

Also Published As

Publication number Publication date
JPH10130491A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
US4702859A (en) Electrically conductive polyamide resin composition
JP3169951B2 (en) High strength polyamide resin composition and method for producing the same
US4874817A (en) Compositions of imidized acrylic polymers and polyamides
EP3209713A1 (en) Reinforced polymer molding composition
US4980407A (en) Polyamide resin composition
EP2042556A1 (en) Polyamide composition
JP3530536B2 (en) Glass fiber reinforced polyamide resin composition and molding method thereof
JP3464242B2 (en) Method for producing reinforced polyamide resin composition
JP3871745B2 (en) Polyamide resin composition
JPH0447711B2 (en)
JP4236063B2 (en) Polyamide resin composition and injection molded article
JP3456501B2 (en) Polyamide resin composition
JPH02140265A (en) Reinforced nylon resin composition
JP3155648B2 (en) Polyamide resin composition
JP4140995B2 (en) Polyamide resin composition
JPH10120900A (en) Polyamide resin composition and molded product thereof
JPH10147710A (en) Polyamide resin composition, production thereof and automobile parts produced therefrom
JP3106658B2 (en) Method for producing polyamide resin
JPH0645751B2 (en) Polyamide resin composition
JP2000053861A (en) Black-colored reinforced polyamide resin composition
JPH02167366A (en) Polyamide resin composition
JPH11241020A (en) Heat-resistant resin composition
JPS6215247A (en) Thermoplastic resin composition
JP2744667B2 (en) Resin composition
JPS582345A (en) Reinforced polyamide resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060628

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

EXPY Cancellation because of completion of term