JP3870371B2 - Floating structure - Google Patents

Floating structure Download PDF

Info

Publication number
JP3870371B2
JP3870371B2 JP2002067958A JP2002067958A JP3870371B2 JP 3870371 B2 JP3870371 B2 JP 3870371B2 JP 2002067958 A JP2002067958 A JP 2002067958A JP 2002067958 A JP2002067958 A JP 2002067958A JP 3870371 B2 JP3870371 B2 JP 3870371B2
Authority
JP
Japan
Prior art keywords
water
seismic isolation
isolation structure
pool
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002067958A
Other languages
Japanese (ja)
Other versions
JP2003268788A (en
Inventor
巧 大山
紀治 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2002067958A priority Critical patent/JP3870371B2/en
Publication of JP2003268788A publication Critical patent/JP2003268788A/en
Application granted granted Critical
Publication of JP3870371B2 publication Critical patent/JP3870371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)
  • Bridges Or Land Bridges (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は浮体式免震構造に係り、地下水の流入出が可能なプールに函体基礎を浮かせ、周囲地盤との絶縁を図った浮体式免震構造に関する。
【0002】
【従来の技術】
建物基礎に組み込まれる免震構造の概念として、地盤からの入力地震力を構造物に伝えないようにした絶縁方式の免震構造が提案されている。この絶縁方式の免震構造の一例として、構造物本体あるいは基礎部分を開放液面を有する流体内に浮かべる浮体式免震構造によって免震効果を得る方法がある。この種の浮体式免震構造では、特に水平方向入力地震波に対して高い免震効果を期待できる。図7は浮体式免震構造50の一例のモデル図を示している。同図に示したように、この浮体式免震構造50は水密構造の函体51を水等の液体52で満たされたプール(水槽)53に浸漬して浮かせた状態にある。
【0003】
また、函体51は、風などによる長周期の水平力に対して過度の変位が生じるのを規制してその位置を保持するために、公知のゴム製等のフェンダー54を介して周辺地盤の係留柱55に弾性支持されている。このような係留は、函体51の質量に比べて十分に柔らかいものとすることにより(質量に比べて係留のバネ定数が小さい)、固有周期を地震の周期帯域よりもかなり長周期に設定できるため、地震力による函体51の応答変位は極めて小さくなる。
【0004】
図8は、この浮体式免震構造50を、連続橋60の橋脚基礎に適用した例を示した縦断面図である。同図に示したように、例えば橋脚基礎位置に所定規模のプール53が構築されている。このプール53内に水等の液体52を所定深さまで満たし、そのプール53内にフーチングの役割を果たす函体基礎51を浸漬させている。このような構成の橋梁基礎構造とすることにより連続橋の基礎構造にも免震構造を適用することが期待されている。
【0005】
【発明が解決しようとする課題】
ところが、上述した浮体式免震構造において、プールを構成する容器構造は、常時においては函体を浮かせた状態で底面に作用する水圧に抵抗できる底版厚を有し、さらに地震時にひび割れによる漏水が生じないように確実な水密性を有する強固な耐震構造に設計する必要がある。また、プールに満たされた水等は、経時的に蒸発することが考えられる。その場合、プール内での水位を保持するために、水位観測手段やポンプ施設等の附属施設を備える必要がある。
【0006】
このように、従来の浮体式免震構造では、免震構造部分を支持するプールを強固な耐震構造としたり、水回り設備を備えなければならず、建設コストが高くなってしまう。また水回り設備を定期的に運転させる必要があり、高いランニングコストやメンテナンスコストが見込まれる。
【0007】
また、図8に示した連続橋60の橋脚基礎の場合、各函体基礎50上に立設された橋脚61の上部における沓座高さを一致させる必要がある。このための対策として図示したようにプール53間に連通管62を配管し、各プール53内の水面制御を行う必要があり、付帯の運転設備を必要とする。
【0008】
そこで、本発明の目的は上述した従来の技術が有する問題点を解消し、安価に構築できるプールで構成され、メンテナンス設備もほとんど必要としない浮体式免震構造を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明は高地下水位地盤を掘り込んで通水性壁体を設け、周囲地盤帯水層の地下水と連通する地下水を貯水したプール内に前記地下水の水位の変動に追従して昇降可能な形式で周囲地盤の一部に係留された函体基礎を浸漬して浮かせたことを特徴とする。
【0010】
前記函体基礎は、弾性変形可能な係留部材を介して前記プールの周囲地盤の一部に係留されるようにすることが好ましい。
【0011】
前記通水性壁体は、複数の開口が形成されたプレキャストコンクリート矢板としたり、内部に高空隙率で充填材が満たされたスクリーン部材とすることが好ましい。
【0012】
【発明の実施の形態】
以下、本発明の浮体式免震構造の一実施の形態について、添付図面を参照して説明する。図1は浮体式免震構造10の概念を示したモデル図である。この浮体式免震構造10のモデルでは、函体部分のみを示しているが、この函体部分をフーチングに相当する基礎部分(以下、函体基礎と呼ぶ。)として用い、橋脚等の構造物の一部とすることを想定している。図2は、連続橋1の橋脚基礎2のフーチング3として以下の函体基礎11を用い、各橋脚基礎2において浮体式免震構造10を適用した例を示している。
【0013】
図1,図2に示したように、本発明の函体基礎11は、図7に示した従来の浮体式免震構造10と同様の構成からなる。本実施の形態では、内部の鋼製フレーム(図示せず)が外殻鋼板で覆われた高剛性を有する函体で構成されている。鋼製フレームは形鋼あるいは鉄骨コンクリート等の合成構造からなる骨組ラーメン構造やセル構造からなる。外殻鋼板は水密性を保持するように互いに接合され、鋼製フレームに取り付けられている。函体基礎11としては立設される橋脚、上部工荷重及び浮かせた状態での外水圧を想定した設計がなされている。また、函体基礎11の高さは、函体基礎11自重及び函体基礎11が鉛直荷重を受けた状態でプール(後述)に浸漬させ、浮かせた状態で浮体の安定が確保できる乾舷が確保できる高さを持ち、プールの水深も函体基礎11の喫水を考慮して設計されている。函体基礎11は所定の浮力が確保できれば鉄筋コンクリート、鉄骨鉄筋コンクリート、フェロセメント等の合成構造体として構築することができる。
【0014】
さらに本発明では、函体基礎11を浸漬させるプール13を構成するように底版15と壁体16とからなる容器構造14を通水性構造で構成している。ここで、通水性構造とは同図に示したように、地表面近くに地下水自由水面が位置するような高地下水位地盤において、周囲地盤の地下水位の変動に応じてプール13の水位が完全追従する十分な通水性を有する構造をさし、容器構造内の水位と周囲地盤の地下水位との水位差はほとんど生じない。
【0015】
なお、図1の地盤モデルにおいて、帯水層が、プール13を構成する容器構造14の底版15より深い位置まで達している場合、底版15も通水構造とすることでプール13内の周囲地盤との間の水の出入りをさらに促進できるので、周囲地盤の地下水位とプール13内の水位との水位差を確実に解消できる。
【0016】
また、プール13部分としての地下空間を確保するために、容器構造14の壁体16は背面地盤の土水圧に抵抗する山留め機能を備える必要がある。そのため通水性を有し、所定の剛性を備えた壁体構造が採用されている。本実施の形態では、通水性壁体として図3に示したプレキャストコンクリート矢板16が用いられている。このプレキャストコンクリート矢板16の表面には多数の円孔17が縦横に所定間隔をあけて形成され、壁体内外の地下水の通水性が確保されているので、背面地盤の水圧に抵抗でき、通水性が確保されていない従来工法に比べて剛性が低くて済む。なお、円孔17は、背面地盤の土粒子が通過しないように、フィルター機能を具備している。
【0017】
図4は、比較的自立性の高い砂礫層において、通水性能を重視した壁体としてスクリーン部材20を用いた変形例を示している。同図に示した変形例では掘削壁面に沿って所定の剛性を有する篭状の鋼製枠体21を設置し、その中に所定粒径以上の粗骨材22を充填材として充填し、高空隙を確保して所定の通水性が得られるようになっている。なお、充填材としては、所定径の樹脂部材等の人工材料からなるもの使用してもよい。また、付加的なメンテナンス装置として充填材間の目詰まり改善のためにブロア管23を所定深さまで設置し、目詰まりを防止することも好ましい。
【0018】
また、函体基礎11の規模によっては、親杭横矢板等の通水性土留め壁を本設構造として用いることもできる。この場合、横矢板等には耐久性を考慮してプレキャストコンクリート板等を用いることが好ましい。
【0019】
さらに、壁体として透水性コンクリート壁を適用することもあり、この場合必要に応じて目詰まり防止のために前述のブロア管を設けることができる。
【0020】
以上に述べた函体基礎11は、常時において、地下水位の変化に完全追従して上下に昇降する。このため、函体基礎11の滑らかな昇降を実現できるような係留方式を設ける必要がある。この係留装置は、水平方向に柔らかいバネ効果を持つため、水平動の固有周期は地震波に比べて非常に長くなる。したがって、地震力に対しては函体はほとんど振動することはない。しかし、風のように長周期の成分を含む外力が作用する場合には、函体はゆっくりと水平に動こうとする。このときの函体基礎11の水平動を規定変位量内に制限する必要がある。そこで函体基礎11をプール13内に確実に保持するための係留部材30が設けられている(図1)。本実施の形態では、図5に示したように、プール13の縁の地盤に立設された支持柱31に対して弾性変形可能なフェンダー32を係留部材として、その函体基礎11の位置が保持されている。この種のフェンダー32としては公知の各種形状の合成ゴム防舷材等を用いることができる。また、図6に示したように、断面外形が曲線形状をなす合成ゴム加工部材を地盤側と函体基礎11側とに掛け渡すように取り付け、固定する構造のフェンダー33を用いてもよい。このフェンダー33は、函体基礎11の外周全部を囲むように取り付けてもよいし、函体基礎11の偏心を生じないような位置に、部分的に取り付けてもよい。
【0021】
上述のプール13は水面が気中に露出した構造になっているが、水の蒸発が著しい場合には、必要に応じてプール13水面に蒸発防止膜を設置することが好ましい。蒸発防止膜としては浮力と水密性を有する合成繊維シート、合成ゴムシートが好適である。函体基礎11と通水性壁体との間の水面にシートを浮かせることで水面を完全に覆って水位変化に完全追従することが好ましい。
【0022】
【発明の効果】
以上に述べたように、上部構造物の荷重を負担する函体基礎を、周囲地盤からの地下水が通水性壁体を介して流入出可能な通水性を有する容器構造からなるプール内に浸漬させて浮かせたことにより、函体基礎に簡単な構造で効果的な免震効果を期待することができる。
【図面の簡単な説明】
【図1】本発明による浮体式免震構造の一実施の形態を示した部分断面図。
【図2】図1の浮体式免震構造を連続橋梁の橋脚に適用した一例を示した縦断面図。
【図3】プレキャストコンクリート製通水性壁体の例を示した部分斜視図。
【図4】充填材で満たされたスクリーン部材の通水性壁体の例を示した部分斜視図。
【図5】係留部材の一実施の形態を示した部分断面図。
【図6】係留部材の変形例を示した部分断面図。
【図7】従来の浮体式免震構造の一例を示した部分断面図。
【図8】図7の浮体式免震構造を連続橋梁の橋脚に適用した一例を示した縦断面図。
【符号の説明】
10 浮体式免震構造
11 函体基礎
13 プール
14 容器構造
16 通水性壁体
20 スクリーン部材
30 係留部材
32 フェンダー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a floating body type seismic isolation structure, and more particularly to a floating body type base isolation structure in which a box foundation is floated in a pool capable of flowing in and out of groundwater and is insulated from surrounding ground.
[0002]
[Prior art]
As a concept of the seismic isolation structure built into the building foundation, an isolation type seismic isolation structure has been proposed in which the input seismic force from the ground is not transmitted to the structure. As an example of this insulation type seismic isolation structure, there is a method of obtaining a seismic isolation effect by a floating type seismic isolation structure in which a structure body or a base portion is floated in a fluid having an open liquid surface. This type of floating seismic isolation structure can be expected to have a high seismic isolation effect especially for horizontal input seismic waves. FIG. 7 shows a model diagram of an example of the floating body type seismic isolation structure 50. As shown in the figure, the floating type seismic isolation structure 50 is in a state where a watertight box 51 is immersed and floated in a pool (water tank) 53 filled with a liquid 52 such as water.
[0003]
In addition, the box 51 restricts the occurrence of excessive displacement with respect to a long-period horizontal force caused by wind or the like, and maintains its position through a known fender 54 made of rubber or the like. The mooring column 55 is elastically supported. Such mooring is sufficiently softer than the mass of the box 51 (the mooring spring constant is smaller than the mass), so that the natural period can be set to a period considerably longer than the seismic period band. Therefore, the response displacement of the box 51 due to the seismic force is extremely small.
[0004]
FIG. 8 is a longitudinal sectional view showing an example in which the floating body type seismic isolation structure 50 is applied to the pier foundation of the continuous bridge 60. As shown in the figure, for example, a pool 53 of a predetermined scale is constructed at a pier foundation position. The pool 53 is filled with a liquid 52 such as water to a predetermined depth, and a box base 51 serving as a footing is immersed in the pool 53. By adopting such a bridge foundation structure, it is expected that the seismic isolation structure will be applied to the foundation structure of continuous bridges.
[0005]
[Problems to be solved by the invention]
However, in the above-mentioned floating body type seismic isolation structure, the container structure constituting the pool has a bottom slab thickness that can resist the water pressure acting on the bottom surface in a state where the box is floated at all times. It is necessary to design a strong seismic structure with certain water tightness so that it does not occur. Moreover, it is considered that water filled in the pool evaporates with time. In that case, in order to maintain the water level in the pool, it is necessary to provide ancillary facilities such as water level observation means and pump facilities.
[0006]
Thus, in the conventional floating body type seismic isolation structure, the pool that supports the seismic isolation structure portion must be made a strong earthquake resistant structure or provided with watering equipment, which increases the construction cost. Moreover, it is necessary to operate the water supply equipment regularly, and high running costs and maintenance costs are expected.
[0007]
Further, in the case of the pier foundation of the continuous bridge 60 shown in FIG. 8, it is necessary to match the height of the saddle at the upper part of the pier 61 erected on each box foundation 50. As a countermeasure for this, it is necessary to connect the communication pipe 62 between the pools 53 as shown in the figure, and to control the water level in each pool 53, and an accompanying operation facility is required.
[0008]
Therefore, an object of the present invention is to solve the problems of the conventional techniques described above, and to provide a floating type seismic isolation structure that is configured with a pool that can be constructed at low cost and that requires almost no maintenance equipment.
[0009]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention provides a water-permeable wall body by digging a high groundwater level ground, and changes the groundwater level in a pool storing groundwater communicating with the groundwater in the surrounding groundwater aquifer. It is characterized in that the box foundation moored to a part of the surrounding ground is dipped and floated in a form that can be lifted up and down.
[0010]
It is preferable that the box foundation is moored to a part of the surrounding ground of the pool via an elastically deformable mooring member.
[0011]
The water-permeable wall body is preferably a precast concrete sheet pile in which a plurality of openings are formed or a screen member filled with a filler with a high porosity.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a floating body type seismic isolation structure of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a model diagram showing the concept of the floating body type seismic isolation structure 10. In the model of the floating body type seismic isolation structure 10, only the box part is shown, but this box part is used as a foundation part corresponding to footing (hereinafter referred to as a box foundation) and a structure such as a pier. Is assumed to be part of FIG. 2 shows an example in which the following box foundation 11 is used as the footing 3 of the pier foundation 2 of the continuous bridge 1, and the floating seismic isolation structure 10 is applied to each pier foundation 2.
[0013]
As shown in FIGS. 1 and 2, the box base 11 of the present invention has the same configuration as that of the conventional floating type seismic isolation structure 10 shown in FIG. In the present embodiment, an internal steel frame (not shown) is composed of a highly rigid box covered with a shell steel plate. The steel frame is composed of a framed ramen structure or a cell structure composed of a composite structure such as a shape steel or steel concrete. The outer shell steel plates are joined to each other so as to maintain watertightness, and are attached to a steel frame. The box foundation 11 is designed assuming a standing pier, an upper work load, and an external water pressure in a floating state. Moreover, the height of the box foundation 11 is determined to be a freezer that can ensure stability of the floating body when the box foundation 11 is immersed in a pool (described later) while the box foundation 11 is subjected to its own weight and the box foundation 11 is subjected to a vertical load. It has a height that can be secured, and the depth of the pool is designed in consideration of the draft of the box foundation 11. The box foundation 11 can be constructed as a composite structure such as reinforced concrete, steel reinforced concrete, ferrocement or the like if a predetermined buoyancy can be ensured.
[0014]
Furthermore, in this invention, the container structure 14 which consists of the baseplate 15 and the wall body 16 is comprised by the water-permeable structure so that the pool 13 in which the box foundation 11 is immersed may be comprised. Here, as shown in the figure, the water-permeable structure is such that, in a high groundwater level ground where the groundwater free water surface is located near the ground surface, the water level of the pool 13 is completely changed according to the fluctuation of the groundwater level of the surrounding ground. A structure with sufficient water permeability to follow, and there is almost no difference in water level between the water level in the container structure and the groundwater level of the surrounding ground.
[0015]
In the ground model of FIG. 1, when the aquifer reaches a position deeper than the bottom plate 15 of the container structure 14 constituting the pool 13, the bottom plate 15 also has a water flow structure so that the surrounding ground in the pool 13 is obtained. The water level difference between the ground water level in the surrounding ground and the water level in the pool 13 can be reliably eliminated.
[0016]
Moreover, in order to ensure the underground space as a pool 13 part, the wall body 16 of the container structure 14 needs to be provided with the mountain retaining function which resists the soil water pressure of a back ground. Therefore, a wall structure having water permeability and a predetermined rigidity is adopted. In the present embodiment, the precast concrete sheet pile 16 shown in FIG. 3 is used as the water-permeable wall body. A large number of circular holes 17 are formed on the surface of the precast concrete sheet pile 16 at predetermined intervals in the vertical and horizontal directions, and the water permeability of the ground water inside and outside the wall is ensured, so that the water pressure of the back ground can be resisted. Compared with the conventional construction method in which is not secured, rigidity is low. The circular hole 17 has a filter function so that soil particles on the back ground do not pass.
[0017]
FIG. 4 shows a modification in which the screen member 20 is used as a wall body that places importance on water flow performance in a gravel layer with relatively high self-supporting properties. In the modification shown in the figure, a saddle-shaped steel frame body 21 having a predetermined rigidity is installed along the excavation wall surface, and a coarse aggregate 22 having a predetermined particle diameter or more is filled therein as a filler. A predetermined air permeability can be obtained by securing a gap. In addition, as a filler, you may use what consists of artificial materials, such as a resin member of a predetermined diameter. As an additional maintenance device, it is also preferable to prevent the clogging by installing the blower tube 23 to a predetermined depth in order to improve clogging between the fillers.
[0018]
Moreover, depending on the scale of the box foundation 11, a water-permeable earth retaining wall such as a parent pile sheet pile can be used as the main structure. In this case, it is preferable to use a precast concrete plate or the like in consideration of durability for the lateral sheet pile or the like.
[0019]
Further, a permeable concrete wall may be applied as the wall body, and in this case, the above-described blower pipe can be provided as necessary to prevent clogging.
[0020]
The box foundation 11 described above moves up and down completely following the change in the groundwater level at all times. For this reason, it is necessary to provide a mooring system that can realize smooth raising and lowering of the box foundation 11. Since this mooring device has a soft spring effect in the horizontal direction, the natural period of horizontal movement is much longer than that of seismic waves. Therefore, the box hardly vibrates against the seismic force. However, when an external force containing a long-cycle component acts like wind, the box tries to move slowly and horizontally. It is necessary to limit the horizontal movement of the box foundation 11 at this time within a specified displacement amount. Therefore, a mooring member 30 for securely holding the box foundation 11 in the pool 13 is provided (FIG. 1). In the present embodiment, as shown in FIG. 5, the fender 32 that can be elastically deformed with respect to the support column 31 standing on the ground of the pool 13 is used as a mooring member, and the position of the box base 11 is determined. Is retained. As this type of fender 32, synthetic rubber fenders having various known shapes can be used. In addition, as shown in FIG. 6, a fender 33 having a structure in which a synthetic rubber processing member having a curved cross-sectional outer shape is attached and fixed so as to span between the ground side and the box base 11 side may be used. The fender 33 may be attached so as to surround the entire outer periphery of the box foundation 11 or may be partially attached at a position where no eccentricity of the box foundation 11 occurs.
[0021]
Although the above-described pool 13 has a structure in which the water surface is exposed to the air, if the evaporation of water is significant, it is preferable to install an evaporation preventing film on the water surface of the pool 13 as necessary. As the evaporation preventing film, a synthetic fiber sheet and a synthetic rubber sheet having buoyancy and water tightness are suitable. It is preferable to completely follow the water level change by completely covering the water surface by floating the sheet on the water surface between the box body 11 and the water-permeable wall.
[0022]
【The invention's effect】
As described above, the box foundation that bears the load of the superstructure is immersed in a pool that has a water-permeable container structure that allows groundwater from the surrounding ground to flow in and out through the water-permeable wall. As a result, it is possible to expect an effective seismic isolation effect with a simple structure on the box foundation.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing an embodiment of a floating type seismic isolation structure according to the present invention.
FIG. 2 is a longitudinal sectional view showing an example in which the floating seismic isolation structure of FIG. 1 is applied to a pier of a continuous bridge.
FIG. 3 is a partial perspective view showing an example of a precast concrete water-permeable wall body.
FIG. 4 is a partial perspective view showing an example of a water-permeable wall body of a screen member filled with a filler.
FIG. 5 is a partial cross-sectional view showing an embodiment of a mooring member.
FIG. 6 is a partial cross-sectional view showing a modified example of a mooring member.
FIG. 7 is a partial cross-sectional view showing an example of a conventional floating body type seismic isolation structure.
FIG. 8 is a longitudinal sectional view showing an example in which the floating seismic isolation structure of FIG. 7 is applied to a pier of a continuous bridge.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Floating type seismic isolation structure 11 Box base 13 Pool 14 Container structure 16 Water permeability wall 20 Screen member 30 Mooring member 32 Fender

Claims (4)

高地下水位地盤を掘り込んで通水性壁体を設け、周囲地盤の地下水と連通する地下水を貯水したプール内に前記地下水の水位の変動に追従して昇降可能に周囲地盤の一部に係留された函体基礎を浸漬して浮かせたことを特徴とする浮体式免震構造。High groundwater level ground is dug to establish a water-permeable wall body, and it is moored to a part of the surrounding ground so that it can move up and down following the fluctuation of the groundwater level in a pool that stores groundwater communicating with the groundwater of the surrounding ground. Floating type seismic isolation structure, characterized by immersing and lifting the box foundation. 前記函体基礎は、弾性変形可能な係留部材を介して前記プールの周囲地盤の一部に係留されたことを特徴とする請求項1記載の浮体式免震構造。The floating body type seismic isolation structure according to claim 1, wherein the box base is moored to a part of the ground surrounding the pool via an elastically deformable mooring member. 前記通水性壁体は、複数の開口が形成されたプレキャストコンクリート矢板であることを特徴とする請求項1記載の浮体式免震構造。2. The floating type seismic isolation structure according to claim 1, wherein the water-permeable wall body is a precast concrete sheet pile in which a plurality of openings are formed. 前記通水性壁体は、内部に高空隙率で充填材が満たされたスクリーン部材であることを特徴とする請求項1記載の浮体式免震構造。2. The floating body seismic isolation structure according to claim 1, wherein the water-permeable wall body is a screen member filled with a filler with a high porosity.
JP2002067958A 2002-03-13 2002-03-13 Floating structure Expired - Fee Related JP3870371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002067958A JP3870371B2 (en) 2002-03-13 2002-03-13 Floating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002067958A JP3870371B2 (en) 2002-03-13 2002-03-13 Floating structure

Publications (2)

Publication Number Publication Date
JP2003268788A JP2003268788A (en) 2003-09-25
JP3870371B2 true JP3870371B2 (en) 2007-01-17

Family

ID=29199173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002067958A Expired - Fee Related JP3870371B2 (en) 2002-03-13 2002-03-13 Floating structure

Country Status (1)

Country Link
JP (1) JP3870371B2 (en)

Also Published As

Publication number Publication date
JP2003268788A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
US10081960B2 (en) Methods and apparatus of building construction resisting earthquake and flood damage
JP4210312B2 (en) Building
US10711478B2 (en) Self adjusting floating environment (SAFE) system for earthquake and flood protection
KR101495997B1 (en) Upright type rainwater storaging structure and Rainwater storaging facility having the structure and Method for building the facility
JP3603193B2 (en) How to build an underwater foundation
JP3870371B2 (en) Floating structure
US5938374A (en) Soft landing structure and method setting the same
JPH06146305A (en) Underwater foundation and installation method thereof
JP4958064B2 (en) Seismic reinforcement structure of quay
JP6105044B2 (en) Partially floating offshore platform for offshore wind power, bridges and offshore structures, and construction method
CN115581212A (en) Offshore aquaculture system and design method thereof
JP3075179B2 (en) Bridge pier foundation structure and its construction method
JP2003020611A (en) Float foundation structure
KR20190013222A (en) Curved permeability type eroision control dam and method for constructing the same
JPH08113959A (en) Reinforcing structure of supporting ground of structure
JP3713981B2 (en) Construction method for underwater foundation
JPH01219207A (en) Spud type maritime structure
JPH0485410A (en) Offshore structure and method for installing the same
JP2016089505A (en) Foundation structure for built structure
JP2506050B2 (en) Construction method of asphalt mastic layer
JP2023056088A (en) Base isolation building
JPS63118421A (en) Building structure using bluoyancy of ground-water for bearing
JPS5848428B2 (en) How to construct a permanent underground oil tank
JPH02112527A (en) Technique of preventing floating of underground construction in liquescent sand bed
JPH09302688A (en) Construction method for bottom plate of underground tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees