JP3869552B2 - Sintering raw material charging equipment - Google Patents

Sintering raw material charging equipment Download PDF

Info

Publication number
JP3869552B2
JP3869552B2 JP08798498A JP8798498A JP3869552B2 JP 3869552 B2 JP3869552 B2 JP 3869552B2 JP 08798498 A JP08798498 A JP 08798498A JP 8798498 A JP8798498 A JP 8798498A JP 3869552 B2 JP3869552 B2 JP 3869552B2
Authority
JP
Japan
Prior art keywords
raw material
sintering
fine
chute
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08798498A
Other languages
Japanese (ja)
Other versions
JPH11264670A (en
Inventor
徹三 芳我
昭義 大塩
大介 柴田
洋之 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08798498A priority Critical patent/JP3869552B2/en
Publication of JPH11264670A publication Critical patent/JPH11264670A/en
Application granted granted Critical
Publication of JP3869552B2 publication Critical patent/JP3869552B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は焼結パレット上へ焼結原料を偏析装入するための装入装置に関するものである。
【0002】
【従来の技術】
DL型焼結機においては、無端鎖状の焼結パレットに原料装入装置によって焼結原料を装入し、この装入された焼結原料層の表面を点火炉で着火すると共にウインドボックスを介して排風機によって焼結原料層の上方部の空気を吸引することにより、焼結パレットの移動に伴い焼結原料中に配合されたコークスが燃焼し、順次、焼結原料の焼結がおこなわれ、排鉱部で焼結パレットより排出される。
この原料装入装置にて焼結パレット上に装入された焼結原料の上層部は、保熱効果が少なく、急冷等により脆弱な焼結鉱となるため、下層部に比し燃料分(カーボン)が多く、かつ粒度が小さくなるように偏析装入することが焼結鉱の品質及び生産性を向上させるのに効果的であることは周知である。
従来より、図5に示すように、原料装入装置7bは、装入シュート4bを設け、この装入シュート4bの下端より落下する焼結原料11に向かって気体を吹き付けて粗粒と細粒に分離する気体吹き付けノズル10を装入シュート4bの下方に設けて構成し、これにより装入シュート4bより落下する焼結原料11に気体を吹き付けて焼結原料11を粒度偏析させている。
また、焼結パレット6の上層に装入する細粒焼結原料の量を増加するために、気体の吹き付け量を増加すればよいが、装入シュート4b下端より落下する焼結原料11全体に一様に気体を吹き付けており、気体によって飛ばされた焼結原料11は、なんの障壁もなく自由に移動できるため、上層の細粒化が進むと同時に下層の粗粒化も進み、層全体が偏析する。
このため、図6、図7に示すように、気体の吹き付け量を過度に増加(0、120、240m3 /分)すると、上層への熱源偏析は促進される反面、下層の熱源(カーボン)が不足する。この下層の熱源が不足すると焼結鉱の焼成不足が生じ、歩留、強度を低下させてしまうため、下層においても燃焼に必要な一定量以上のカーボンを確保する必要がある。
気体の吹き付け量増加は一定の効果はあるものの、その吹き付け量の増加には限界があり、上層原料の細粒量を充分増加するまでには至らずに、焼結後の焼結鉱の歩留、強度向上を十分に図っているとは言い難いものであった。
【0003】
【発明が解決しようとする課題】
本発明は、簡単な設備構成により焼結パレット上に装入した焼結原料の上層部の細粒焼結原料量をさらに増加させることにより焼結鉱の歩留、強度を向上させる焼結原料の装入装置を提供することを課題とするものである。
【0004】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたものであり、その手段1は、下端に切り出しフィーダーを設けた焼結原料を貯槽したホッパーと、前記切り出しフィーダーから供給される前記焼結原料の供給位置下流側に開口部を設けた装入シュートと、該装入シュートの開口部から落下せずに、該装入シュート上を滑降した粗粒焼結原料を焼結パレット上に装入し、前記開口部を通過して落下した微・細粒焼結原料を前記焼結パレット上の粗粒焼結原料の表層上に装入する焼結原料の装入装置において、前記開口部より上流側の装入シュートの上面延長線が前記開口部より下流側の装入シュートの上面より高くなるように段差を設けると共に前記開口部の上方に、該開口部上を滑降する前記焼結原料に向かって気体を吹き付け、前記微・細粒焼結原料を前記開口部から下方に落下させる気体吹き付けノズルを設けた焼結原料の装入装置である。
また、上記手段において更に、手段2の焼結原料の装入装置は、前記装入シュートの開口部から前記焼結パレット上の前記粗粒焼結原料の表層上に落下中の前記微・細粒焼結原料に気体を吹き付けて微粒と細粒に分離する気体吹き付けノズルを前記下流側の装入シュートの下部に設け、その分離した細粒焼結原料を前記焼結パレット上の粗粒焼結原料の表層上に装入し、その上層に前記分離した微粒焼結原料を装入するものである。
手段1において更に、手段3の焼結原料の装入装置は、前記開口部の下方に下部シュートを配設したものである。
手段3において更に、手段4の焼結原料の装入装置は、前記下部シュートの下端より落下する前記微・細粒焼結原料に気体を吹き付けて微粒と細粒に分離する気体吹き付けノズルを前記下流側の装入シュートの下部に設け、この分離した細粒焼結原料を前記焼結パレット上の前記粗粒焼結原料の表層上に装入し、その上層に前記分離した微粒焼結原料を装入するものである。
また、上記手段のいずれか一において更に、手段5の焼結原料の装入装置は、前記上流側の装入シュートの上面延長線と前記下流側の装入シュートの上面との段差を5〜100mmとするものである。
図8に示すように、装入シュート4下端より滑降した焼結原料11に向かって気体吹き付けノズル10より気体を吹き付けた場合、焼結原料11は通常表1に示すような粒度分布を有していることから質量の軽い微・細粒焼結原料12は、最も気体による分級作用を受け易く、容易に焼結原料11の流束より分離され、吹き付けた気体の進行方向に沿って吹き飛ばされる。また、質量の重い中粒焼結原料13及び粗粒焼結原料14は、吹き付け気体の影響の受け方が小さく、その偏流は小さいが確実に装入シュート側へ曲げられる。
【0005】
【表1】

Figure 0003869552
【0006】
本発明者はこの点に着目し、微・細粒焼結原料12を開口部3を通過させて落下させるために、図9に示すように開口部3より上流側の装入シュートである上流側シュート4Uのシュート上面の延長線が開口部3より下流側の装入シュートである下流側シュート4Lのシュート上面より高くなるように段差Y(=5〜100mm)を設けて設置した結果、この下流側シュート4Lに焼結原料11の流れ方向(X)から少し下向きに曲げられて飛ばされている中粒焼結原料13、粗粒焼結原料14を乗せることが可能となり、微・細粒焼結原料12を下方に分級することが可能となった。
一方、図10に示すように、単に、装入シュートに開口部3cを設け、装入シュート上を滑降する焼結原料11に向かって気体吹き付けノズル10から気体を吹き付けた(上流側シュート4cUと下流側シュート4cLに段差がない)場合は、吹き付けた気体により装入シュートの開口部3c上を滑降する焼結原料11の流束が下方へ押されて曲がるために、焼結原料流束の一部が開口部3cの下流側シュート4cLの端部に衝突し、中粒焼結原料13、粗粒焼結原料14の一部が前記微・細粒焼結原料12に伴って開口部3cを通過して落下する。
このように(図9に示すように)、下流側シュート4Lを上流側シュート4Uより段差Yを設けて下方に位置させておけば、上記のように焼結原料流束中の中粒焼結原料13、粗粒焼結原料14が開口部3を通過するのを抑制して、下流側シュート4L上を介して焼結パレット6上へ装入されて焼結原料下層8Lを形成する(図1参照)事が可能となるため、気体吹き付けノズル10からの気体の吹き付けにより図11、図12に示すように焼結パレット6上の焼結原料上層8Uの細粒化及びカーボン(熱源)の増加を図る事ができると共に下層部の微・細粒焼結原料量、カーボン量の低減を緩和出来る。
また、前記段差を5〜100mmとしたのは、該段差が5mm未満であると、吹き付け気体により装入シュート側へ曲げられた焼結原料の流束の全量を前記の様に下流側シュートへ乗せることができなくなり、中粒焼結原料及び粗粒焼結原料の一部が開口部を通過して落下してしまうからであり、一方、段差が100mmをえると、上流側シュートより滑降する焼結原料が、下流側シュートの中間部に落下するため、下流側シュート上での焼結原料の滑降距離が短くなり、下流側シュート上での焼結原料の偏析が不十分になってしまうためである。
【0007】
【発明の実施の形態】
次に本発明の各請求項に対応した実施の形態について説明する。
(第1の実施の形態)
請求項1に対応する第1の実施の形態を、図1にて説明する。
図1は、切り出しフィーダー2の下方に装入シュート4(幅:5000mm)を設け、切り出しフィーダー2から落下供給されるシュート4上の焼結原料11の供給位置9の下流側に開口部3(開口サイズ=幅:5000mm、長:50〜300mm)を設け、開口部3より上流側の装入シュートである上流側シュート4U のシュート面に対して直角方向に5〜100mmの段差Yを設けて開口部3より下流側の装入シュートである下流側シュート4L を設置し、上流側シュート4U 上を滑降して開口部3上に達した焼結原料11に向かって気体を吹き付ける気体吹き付けノズル10(風量:50〜300m3 /分)を該開口部3の上方に設けた焼結原料の装入装置7Aを示している。
表1に示す粒度分布を有する焼結原料11をホッパーの一例である給鉱ホッパー1内より給鉱ホッパー1の下端にある切り出しフィーダー2で切り出して上流側シュート4U へ供給する。この焼結原料11は、開口部3上に達した際に気体吹き付けノズル10によって気体を吹き付けられる。そして、焼結原料11中の中粒焼結原料(2〜0.5mm)13及び粗粒焼結原料(+5〜2mm)14は開口部3より落下せずに下流側シュート4L に乗り、該下流側シュート4L 上を滑降して焼結パレット6へ層厚450〜600mm程度に装入される。
一方、微・細粒焼結原料(−0.5mm)12は、開口部3の上方で気体の進行方向に沿って飛ばされるため、開口部3を通過して落下し、焼結パレット6上の中粒焼結原料13、粗粒焼結原料14の表層上へ層厚10〜50mm程度に装入される。その結果、焼結パレット6上の焼結原料層8の全層厚は460〜650mm程度となる。
【0008】
(第2の実施の形態)
請求項2に対応した第2の実施の形態を、図2にて説明する。
図2は、切り出しフィーダー2の下方に装入シュート4(幅:5000mm)を設け、切り出しフィーダー2から落下供給される上流側シュート4U 上の焼結原料11の供給位置9の下方に開口部3(開口サイズ=幅:5000mm、長:50〜300mm)を設け、上流側シュート4U の上面に対して直角方向に5〜100mmの段差Yを設けて下流側シュート4L を設置し、上流側シュート4U 上を滑降して開口部3上に達した焼結原料11に向かって気体を吹き付ける気体吹き付けノズル10(風量:50〜300m3 /分)を該開口部3の上方に設け、更に、開口部3を通過して落下する微・細粒焼結原料12に気体を吹き付ける気体吹き付けノズルの一例である下部ノズル10L (風量:20〜200m3 /分)を下流側シュート4L 下部に設けた焼結原料の装入装置7Bを示している。
表1に示す粒度分布を有する焼結原料11を給鉱ホッパー1内より切り出しフィーダー2で切り出し、上流側シュート4U へ供給する。焼結原料11は、開口部3上に達した際に気体吹き付けノズル10によって気体を吹き付けられ、中粒焼結原料(2〜0.5mm)13、及び粗粒焼結原料(+5〜2mm)14は、開口部3より落下せずに下流側シュート4L の上部に乗り、下流側シュート4L 上を滑降して焼結パレット6へ層厚450〜600mm程度に装入される。
一方、微・細粒焼結原料(−0.5mm)12は、開口部3上で気体の進行方向に沿って飛ばされるため、開口部3を通過して落下し、落下中に下部ノズル10L により気体を吹き付けられ、微粒と細粒に分離されて焼結パレット6上の中粒焼結原料13、粗粒焼結原料14の表層上へ層厚10〜50mm程度に装入される。その結果、焼結パレット6上の焼結原料層8の全層厚は460〜650mm程度となる。
【0009】
(第3の実施の形態)
請求項3に対応した第3の実施の形態を、図3にて説明する。
図3は、上流側シュート4U と下流側シュート4L の間の開口部3の下方部に下側シュート5L (幅:5000mm)を配設した焼結原料の装入装置7Cを示している。
給鉱ホッパー1内の表1に示す粒度分布を有する焼結原料11を切り出しフィーダー2により切り出し、上流側シュート4U へ供給する。そして、該上流側シュート4U を滑降した焼結原料11は、開口部3上に達した際に気体吹き付けノズル10によって気体を吹き付けられ、中粒焼結原料(2〜0.5mm)13及び粗粒焼結原料(+5〜2mm)14は、開口部3より落下せずに下流側シュート4L の上部に乗り、下流側シュート4L 上を滑降して焼結パレット6へ層厚450〜600mm程度に装入される。
一方、微・細粒焼結原料(−0.5mm)12は、開口部3上で気体の進行方向に沿って飛ばされるため、開口部3を通過して落下し、下側シュート5L にて受けられ、再び、下側シュート5L 上を滑降して焼結パレット6上の中粒焼結原料13、粗粒焼結原料14の表層上へ層厚10〜50mm程度に装入される。その結果、焼結原料層8の全層厚は460〜650mm程度となる。
【0010】
(第4の実施の形態)
請求項4に対応した第4の実施の形態を、図4にて説明する。
図4は、上流側シュート4U と下流側シュート4L の開口部3の下方部に下側シュート5L (幅:5000mm)を配設した焼結原料の装入装置7Dを示している。
表1に示す粒度分布を有する焼結原料11を給鉱ホッパー1内から切り出しフィーダー2で切り出し、上流側シュート4U へ供給する。そして、この上流側シュート4U を通過した焼結原料11は、開口部3上に達した際に気体吹き付けノズル10によって気体を吹き付けられ、中粒焼結原料(2〜0.5mm)13及び粗粒焼結原料(+5〜2mm)14は、開口部3より落下せずに下流側シュート4L の上部に乗り、下流側シュート4L 上を滑降して焼結パレット6へ層厚450〜600mm程度に装入される。
一方、微・細粒焼結原料(−0.5mm)12は、開口部3上で気体の進行方向に沿って飛ばされるため、開口部3を通過して落下して、下側シュート5L にて受けられ、再び、該下側シュート5L の下端より落下する際に、下部ノズル10L にて気体を吹き付けられて微粒と細粒に分級されて焼結パレット6上の中粒焼結原料13、粗粒焼結原料14の表層上へ層厚10〜50mm程度に装入される。その結果、焼結パレット6上の焼結原料層8の全層厚は460〜650mm程度となる。
【0011】
【実施例】
本発明の実施例を表1、表2を参照して説明する。
表2中、Aは請求項1の実施例、Bは請求項2の実施例、Cは請求項3の実施例、Dは請求項4の実施例で、E、Fは請求項5の比較例であり、Gは従来例である。
【0012】
【表2】
Figure 0003869552
【0013】
また、DL型焼結機の焼結パレット上に焼結原料を層厚が550mmとなるように、表1に示す粒度分布を有する焼結原料を装入したものである。
更に、各例は寸法が5000mm(幅)×150mm(長さ)の開口部3を有する装入シュート4を用いたものである。
実施例A〜Dにおいて使用した焼結原料の装入装置は図1〜図4に示すものであり、これにより焼結パレット上の焼結原料上層部に装入される微・細粒焼結原料及びコークスを偏析して(多量に)装入することが出来、良好な歩留、強度の焼結鉱を得ることが出来た。
比較例E、Fは上流側シュート4U と下流側シュート4L の段差Yが請求項5の範囲を外れた例であり、比較例Eでは、焼結パレット上の焼結原料上層部に中粒焼結原料、粗粒焼結原料が微・細粒焼結原料に混入して装入され、比較例Fでは、下流側シュート4L 上での焼結原料の滑降距離が短くなる為、実施例Aに比較して焼結鉱の歩留、強度が若干低下した。
また、従来例は図5の焼結原料の装入装置を用いた例であり、本発明の実施例、比較例に比して焼結歩留、焼結鉱の強度のいずれも悪いものであった。
【0014】
【発明の効果】
以上説明したように請求項1〜5載の焼結原料の装入装置においては、焼結原料に気体を吹き付けて、微・細粒焼結原料を開口部より落下させることにより、焼結パレット上の焼結原料上層部の微・細粒焼結原料量の増加を図ることが可能となり、焼結鉱の強度、歩留の向上が可能となり、この分野における効果は大きい。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る焼結原料の装入装置の説明図である。
【図2】本発明の第2の実施の形態に係る焼結原料の装入装置の説明図である。
【図3】本発明の第3の実施の形態に係る焼結原料の装入装置の説明図である。
【図4】本発明の第4の実施の形態に係る焼結原料の装入装置の説明図である。
【図5】従来技術の説明図である。
【図6】層厚方向の細粒焼結原料の偏析状態の説明図である。
【図7】層厚方向のカーボンの偏析状態の説明図である。
【図8】細粒、中粒、粗粒焼結原料の飛散状態の説明図である。
【図9】上下に段差を設けた装入シュートの説明図である。
【図10】上下に段差を設けない装入シュートの説明図である。
【図11】層厚方向の細粒焼結原料の偏析状態の説明図である。
【図12】層厚方向のカーボンの偏析状態の説明図である。
【符の説明】
1 給鉱ホッパー 2 切り出しフィーダー
3 開口部 4 装入シュート
U 上流側シュート 4L 下流側シュート
L 下側シュート 6 焼結パレット
7A〜7D 焼結原料の装入装置 8 焼結原料層
U 上層 8L 下層
9 供給位置 10 気体吹き付けノズル
10L 下部ノズル 11 焼結原料
12 微・細粒焼結原料 13 中粒焼結原料
14 粗粒焼結原料[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a charging device for segregating and charging a sintering raw material onto a sintering pallet.
[0002]
[Prior art]
In the DL-type sintering machine, a sintering raw material is charged into an endless chain-shaped sintering pallet by a raw material charging device, and the surface of the charged sintering raw material layer is ignited in an ignition furnace and a wind box is mounted. By sucking the air in the upper part of the sintering raw material layer through the exhaust fan, the coke blended in the sintering raw material is combusted with the movement of the sintering pallet, and the sintering raw material is sequentially sintered. And discharged from the sintering pallet at the mining section.
The upper layer portion of the sintered raw material charged on the sintering pallet with this raw material charging device has a small heat retention effect and becomes a fragile sintered ore by rapid cooling or the like. It is well known that the segregation and charging so that the amount of carbon) is large and the particle size is small is effective in improving the quality and productivity of the sintered ore.
Conventionally, as shown in FIG. 5, the raw material charging device 7 b is provided with a charging chute 4 b and blows gas toward the sintered raw material 11 falling from the lower end of the charging chute 4 b to make coarse and fine particles. The gas spray nozzle 10 is provided below the charging chute 4b so that gas is blown onto the sintered raw material 11 falling from the charging chute 4b to segregate the sintered raw material 11 in particle size.
Further, in order to increase the amount of the fine-grain sintered raw material charged into the upper layer of the sintering pallet 6, the amount of gas spraying may be increased, but the entire sintered raw material 11 falling from the lower end of the charging chute 4b is applied. Since the gas is uniformly blown and the sintering raw material 11 blown off by the gas can move freely without any barrier, the upper layer becomes finer and the lower layer becomes coarser. Segregates.
For this reason, as shown in FIG. 6 and FIG. 7, when the amount of gas spray is excessively increased (0, 120, 240 m 3 / min), the heat source segregation to the upper layer is promoted, but the lower layer heat source (carbon). Is lacking. If this lower layer heat source is insufficient, firing of the sintered ore will be insufficient and yield and strength will be reduced. Therefore, it is necessary to secure a certain amount of carbon necessary for combustion also in the lower layer.
Although the increase in the amount of gas spray has a certain effect, there is a limit to the increase in the amount of spray, and the amount of fine particles in the upper layer raw material cannot be increased sufficiently. It was difficult to say that the retention and strength were sufficiently improved.
[0003]
[Problems to be solved by the invention]
The present invention provides a sintered raw material that improves the yield and strength of sintered ore by further increasing the amount of fine-grained sintered raw material in the upper layer portion of the sintered raw material charged on the sintering pallet with a simple equipment configuration. It is an object of the present invention to provide a charging device.
[0004]
[Means for Solving the Problems]
The present invention has been made in order to solve the above-mentioned problems. The means 1 includes a hopper in which a sintered raw material provided with a cut-out feeder at the lower end is stored, and the sintered raw material supplied from the cut-out feeder. A charging chute provided with an opening on the downstream side of the supply position and a coarse sintered material sliding down on the charging chute without dropping from the opening of the charging chute are charged onto a sintering pallet. In the apparatus for charging sintered raw material, the fine and fine-grained sintered raw material dropped through the opening is placed on the surface of the coarse-grained sintered raw material on the sintering pallet, upstream of the opening. A step is provided so that the upper surface extension line of the charging chute on the side is higher than the upper surface of the charging chute on the downstream side of the opening, and the sintering raw material that slides down on the opening above the opening. Blowing gas toward the fine and fine particles The sintering raw material from said opening a charging device of a sintered material provided with a gas blowing nozzle for dropping down.
Further, in the above means, the sintering raw material charging device of the means 2 may be arranged such that the fine and fine particles falling on the surface of the coarse sintered raw material on the sintering pallet from the opening portion of the charging chute. A gas spray nozzle is provided at the lower part of the downstream charging chute to spray a gas onto the grain sintered raw material to separate it into fine and fine grains, and the separated fine grain sintered raw material is subjected to coarse grain firing on the sintering pallet. It is charged on the surface layer of the binding raw material, and the separated fine sintered raw material is charged in the upper layer.
Further, in the means 1, the charging apparatus for the sintering raw material of the means 3 is such that a lower chute is disposed below the opening.
Further, in the means 3, the charging apparatus for the sintering raw material of the means 4 includes a gas spray nozzle for blowing a gas to the fine / fine-grained sintered raw material falling from the lower end of the lower chute to separate the fine and fine-grained raw materials. Provided in the lower part of the charging chute on the downstream side, the separated fine sintered raw material is charged on the surface layer of the coarse sintered raw material on the sintering pallet, and the separated fine sintered raw material is placed on the upper layer. Is to be inserted.
Further, in any one of the above means, the charging apparatus for the sintering raw material of means 5 may further increase a step between the upper surface extension line of the upstream charging chute and the upper surface of the downstream charging chute by 5 to 5. 100 mm.
As shown in FIG. 8, when gas is blown from the gas blowing nozzle 10 toward the sintered raw material 11 sliding down from the lower end of the charging chute 4, the sintered raw material 11 usually has a particle size distribution as shown in Table 1. Therefore, the fine / fine-grained sintered raw material 12 having a light mass is most easily subjected to the classification action by gas, and is easily separated from the flux of the sintered raw material 11 and blown off along the traveling direction of the sprayed gas. . Further, the medium-sized sintered raw material 13 and the coarse-grained sintered raw material 14 having a large mass are less affected by the blowing gas, and the deviation is small, but they are reliably bent toward the charging chute.
[0005]
[Table 1]
Figure 0003869552
[0006]
The inventor pays attention to this point, and in order to drop the fine / fine-grained sintered raw material 12 through the opening 3, as shown in FIG. 9, the upstream is a charging chute upstream of the opening 3. As a result of installing the step Y (= 5 to 100 mm) so that the extension line of the chute upper surface of the side chute 4 U is higher than the chute upper surface of the downstream chute 4 L which is the charging chute downstream from the opening 3. the downstream chute 4 L in the flow direction of the sintered material 11 (X) are blown bent slightly downwards from Chutsubu sintered material 13, it is possible to put coarse sintered material 14, fine -It became possible to classify the fine grain sintered raw material 12 downward.
On the other hand, as shown in FIG. 10, an opening 3c is simply provided in the charging chute, and gas is blown from the gas blowing nozzle 10 toward the sintered raw material 11 that slides down on the charging chute (upstream chute 4c U And the downstream chute 4c L are not stepped), the flow of the sintering raw material 11 that slides down on the opening 3c of the charging chute is pushed downward and bent by the blown gas. A part of the bundle collides with the end of the downstream chute 4c L of the opening 3c, and a part of the medium grain sintered raw material 13 and the coarse grain sintered raw material 14 are accompanied by the fine / fine grain sintered raw material 12. It falls through the opening 3c.
In this way (as shown in FIG. 9), if the downstream chute 4 L is positioned below the upstream chute 4 U with a step Y, the intermediate particles in the sintering raw material flux as described above The sintered raw material 13 and the coarse-grained sintered raw material 14 are suppressed from passing through the opening 3 and charged onto the sintering pallet 6 via the downstream chute 4 L so that the sintered raw material lower layer 8 L Since it is possible to form (see FIG. 1), it is possible to finely sinter the sintering raw material upper layer 8 U on the sintering pallet 6 as shown in FIGS. 11 and 12 by blowing the gas from the gas blowing nozzle 10. It is possible to increase the carbon (heat source) and reduce the amount of fine and fine sintered raw materials and carbon in the lower layer.
The step is set to 5 to 100 mm. If the step is less than 5 mm, the total amount of the flux of the sintered raw material bent toward the charging chute by the blowing gas is transferred to the downstream chute as described above. no longer be able to put a portion of the medium grain sintered material and coarse sintered material is because would fall through the opening, whereas, when the step is obtaining ultra the 100 mm, downhill the upstream chute Since the sintering raw material falls to the middle part of the downstream chute, the sliding distance of the sintering raw material on the downstream chute is shortened, and the segregation of the sintering raw material on the downstream chute becomes insufficient. It is because it ends.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments corresponding to the claims of the present invention will be described.
(First embodiment)
A first embodiment corresponding to claim 1 will be described with reference to FIG.
In FIG. 1, a charging chute 4 (width: 5000 mm) is provided below the cutting feeder 2, and an opening 3 (on the downstream side of the supply position 9 of the sintering raw material 11 on the chute 4 that is dropped and supplied from the cutting feeder 2 ( (Opening size = width: 5000 mm, length: 50 to 300 mm), and a step Y of 5 to 100 mm is provided in a direction perpendicular to the chute surface of the upstream chute 4 U that is the charging chute upstream of the opening 3. A downstream chute 4 L which is a charging chute downstream from the opening 3 is installed, and a gas blows down on the upstream chute 4 U and blows a gas toward the sintering raw material 11 reaching the opening 3. 7A shows a charging apparatus 7A for a sintered raw material in which a spray nozzle 10 (air volume: 50 to 300 m 3 / min) is provided above the opening 3.
The sintered material 11 having a particle size distribution shown in Table 1 were cut off with a cut-out feeder 2 with from Kyuko hopper within 1 as an example of the hopper at the lower end of Kyuko hopper 1 is supplied to the upstream side chute 4 U. When the sintering material 11 reaches the opening 3, the gas is sprayed by the gas spray nozzle 10. And the medium grain raw material (2-0.5 mm) 13 and the coarse grain raw material (+5 to 2 mm) 14 in the sintered raw material 11 ride on the downstream chute 4 L without falling from the opening 3, It slides down on the downstream chute 4 L and is loaded into the sintering pallet 6 with a layer thickness of about 450 to 600 mm.
On the other hand, since the fine / fine-grained sintering raw material (−0.5 mm) 12 is blown along the gas traveling direction above the opening 3, it falls through the opening 3 and falls on the sintering pallet 6. The middle-sized sintered raw material 13 and the coarse-grained sintered raw material 14 are charged to a surface thickness of about 10 to 50 mm. As a result, the total thickness of the sintering raw material layer 8 on the sintering pallet 6 is about 460 to 650 mm.
[0008]
(Second Embodiment)
A second embodiment corresponding to claim 2 will be described with reference to FIG.
2, the charging chutes 4 downward (width: 5000 mm) cut feeder 2 is provided, opening below the supply position 9 of the sintered material 11 on the upstream side chute 4 U is dropped and supplied from the cutout feeder 2 3 (opening size = width: 5000 mm, length: 50 to 300 mm), a step Y of 5 to 100 mm is provided in a direction perpendicular to the upper surface of the upstream chute 4 U , and the downstream chute 4 L is installed upstream. A gas blowing nozzle 10 (air volume: 50 to 300 m 3 / min) for blowing gas toward the sintering raw material 11 that has descended on the side chute 4 U and reached the opening 3 is provided above the opening 3. Furthermore, a lower nozzle 10 L (air volume: 20 to 200 m 3 / min), which is an example of a gas blowing nozzle that blows gas onto the fine / fine-grained sintered raw material 12 falling through the opening 3, is connected to the downstream chute 4 L. The charging apparatus 7B of the sintering raw material provided in the lower part is shown.
The sintered material 11 having a particle size distribution shown in Table 1 from Kyuko hopper within 1 cut by cutting out feeder 2, and supplies to the upstream chute 4 U. When the sintering raw material 11 reaches the opening 3, the gas is sprayed by the gas spray nozzle 10, and the medium grain sintering raw material (2 to 0.5 mm) 13 and the coarse grain sintering raw material (+5 to 2 mm). 14 falls on the upper part of the downstream chute 4 L without falling from the opening 3, slides down on the downstream chute 4 L , and is inserted into the sintered pallet 6 with a layer thickness of about 450 to 600 mm.
On the other hand, since the fine / fine-grained sintered raw material (−0.5 mm) 12 is blown along the gas traveling direction on the opening 3, it falls through the opening 3 and falls into the lower nozzle 10. The gas is blown by L , separated into fine particles and fine particles, and charged to the surface layer of the medium-grain sintered raw material 13 and the coarse-grain sintered raw material 14 on the sintering pallet 6 with a layer thickness of about 10 to 50 mm. As a result, the total thickness of the sintering raw material layer 8 on the sintering pallet 6 is about 460 to 650 mm.
[0009]
(Third embodiment)
A third embodiment corresponding to claim 3 will be described with reference to FIG.
FIG. 3 shows a charging apparatus 7C for sintering raw material in which a lower chute 5 L (width: 5000 mm) is disposed below the opening 3 between the upstream chute 4 U and the downstream chute 4 L. Yes.
Excised by a feeder 2 cut out sintering material 11 having a particle size distribution shown in Table 1 Kyuko hopper 1, and supplies to the upstream chute 4 U. Then, the sintering raw material 11 sliding down the upstream chute 4 U is blown with gas by the gas blowing nozzle 10 when reaching the opening 3, and the medium grain sintering raw material (2 to 0.5 mm) 13 and coarse sintered material (+ 5~2mm) 14 rides on top of the downstream chute 4 L without falling down from the opening 3, the layer thickness and downhill downstream chute 4 above L to sintering pallet 6 450 It is charged to about 600mm.
On the other hand, since the fine / fine-grained sintered raw material (−0.5 mm) 12 is blown along the gas traveling direction on the opening 3, it falls through the opening 3 and falls to the lower chute 5 L. received Te, is charged again, the thickness of about 10~50mm the grain sintered material 13, the surface layer on the coarse sintered material 14 in the on the lower chute 5 L over and downhill sintering pallet 6 . As a result, the total thickness of the sintered raw material layer 8 is about 460 to 650 mm.
[0010]
(Fourth embodiment)
A fourth embodiment corresponding to claim 4 will be described with reference to FIG.
FIG. 4 shows a charging apparatus 7D for a sintering raw material in which a lower chute 5 L (width: 5000 mm) is disposed below the opening 3 of the upstream chute 4 U and the downstream chute 4 L.
The sintered material 11 having a particle size distribution shown in Table 1 was excised with feeder 2 cut from Kyuko hopper inside 1, supplied to the upstream chute 4 U. The sintered material 11 having passed through the upstream chute 4 U is blown gas by a gas blowing nozzle 10 when it reaches the upper opening 3, medium grain sintered material (2~0.5mm) 13 and coarse sintered material (+ 5~2mm) 14 rides on top of the downstream chute 4 L without falling down from the opening 3, the layer thickness and downhill downstream chute 4 above L to sintering pallet 6 450 It is charged to about 600mm.
On the other hand, since the fine / fine-grained sintered raw material (−0.5 mm) 12 is blown along the gas traveling direction on the opening 3, it falls through the opening 3 and falls to the lower chute 5 L. received at, again, when dropped from the lower end of said lower chute 5 L, particle sintering among of blown gas at the lower nozzle 10 L are classified into fine and fine on sintering pallet 6 The raw material 13 and the coarse-grained sintered raw material 14 are charged to a surface thickness of about 10 to 50 mm. As a result, the total thickness of the sintering raw material layer 8 on the sintering pallet 6 is about 460 to 650 mm.
[0011]
【Example】
Examples of the present invention will be described with reference to Tables 1 and 2.
In Table 2, A is an embodiment of claim 1, B is an embodiment of claim 2, C is an embodiment of claim 3, D is an embodiment of claim 4, and E and F are comparisons of claim 5. It is an example and G is a conventional example.
[0012]
[Table 2]
Figure 0003869552
[0013]
Moreover, the sintering raw material which has a particle size distribution shown in Table 1 is inserted so that the layer thickness of the sintering raw material may be 550 mm on the sintering pallet of the DL type sintering machine.
Further, each example uses a charging chute 4 having an opening 3 having a dimension of 5000 mm (width) × 150 mm (length).
The sintering raw material charging apparatus used in Examples A to D is as shown in FIGS. 1 to 4, whereby fine and fine-grain sintering is inserted into the upper layer of the sintering raw material on the sintering pallet. The raw material and coke could be segregated and charged in large quantities, and a sintered ore with good yield and strength could be obtained.
Comparative Examples E and F are examples in which the step Y between the upstream chute 4 U and the downstream chute 4 L is out of the range of claim 5. Grain sintering raw material and coarse grain sintering raw material are mixed and charged into the fine and fine grain sintering raw material. In Comparative Example F, the sliding distance of the sintering raw material on the downstream chute 4 L is shortened. Compared to Example A, the yield and strength of the sintered ore were slightly reduced.
Further, the conventional example is an example using the charging apparatus for the sintered raw material of FIG. 5, and both the sintering yield and the strength of the sintered ore are worse than those of the examples and comparative examples of the present invention. there were.
[0014]
【The invention's effect】
As described above, in the apparatus for charging a sintered material according to claims 1 to 5, a sintering pallet is formed by blowing a gas to the sintered material and dropping the fine and fine-grained sintered material from the opening. It is possible to increase the amount of fine and fine-grained sintered raw material in the upper layer of the above sintered raw material, and it is possible to improve the strength and yield of the sintered ore, which has a great effect in this field.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a charging apparatus for a sintering raw material according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram of a sintering raw material charging apparatus according to a second embodiment of the present invention.
FIG. 3 is an explanatory view of a sintering raw material charging apparatus according to a third embodiment of the present invention.
FIG. 4 is an explanatory diagram of a sintering raw material charging apparatus according to a fourth embodiment of the present invention.
FIG. 5 is an explanatory diagram of a prior art.
FIG. 6 is an explanatory diagram of a segregation state of a fine-grain sintered raw material in a layer thickness direction.
FIG. 7 is an explanatory diagram of the segregation state of carbon in the layer thickness direction.
FIG. 8 is an explanatory diagram of the scattering state of fine, medium, and coarse sintered raw materials.
FIG. 9 is an explanatory view of a charging chute provided with a step on the top and bottom.
FIG. 10 is an explanatory diagram of a charging chute that does not have a step difference in the vertical direction.
FIG. 11 is an explanatory diagram of a segregation state of a fine-grain sintered raw material in a layer thickness direction.
FIG. 12 is an explanatory diagram of the segregation state of carbon in the layer thickness direction.
[Description of marks Nos.]
DESCRIPTION OF SYMBOLS 1 Feeding hopper 2 Cutting feeder 3 Opening part 4 Charging chute 4 U upstream chute 4 L downstream chute 5 L lower chute 6 Sintering pallets 7A-7D Charging raw material charging device 8 Sintering raw material layer 8 U Upper layer 8 L lower layer 9 Supply position 10 Gas spray nozzle 10 L Lower nozzle 11 Sintering raw material 12 Fine / fine grain sintering raw material 13 Medium grain sintering raw material 14 Coarse grain sintering raw material

Claims (5)

下端に切り出しフィーダーを設けた焼結原料を貯槽したホッパーと、前記切り出しフィーダーから供給される前記焼結原料の供給位置下流側に開口部を設けた装入シュートと、該装入シュートの開口部から落下せずに、該装入シュート上を滑降した粗粒焼結原料を焼結パレット上に装入し、前記開口部を通過して落下した微・細粒焼結原料を前記焼結パレット上の粗粒焼結原料の表層上に装入する焼結原料の装入装置において、前記開口部より上流側の装入シュートの上面延長線が前記開口部より下流側の装入シュートの上面より高くなるように段差を設けると共に前記開口部の上方に、該開口部上を滑降する前記焼結原料に向かって気体を吹き付け、前記微・細粒焼結原料を前記開口部から下方に落下させる気体吹き付けノズルを設けたことを特徴とする焼結原料の装入装置。A hopper storing a sintered raw material provided with a cutting feeder at the lower end, a charging chute provided with an opening on the downstream side of the supply position of the sintering raw material supplied from the cutting feeder, and an opening of the charging chute The coarse-grained sintered raw material sliding down on the charging chute without dropping from the charging pallet is charged onto the sintering pallet, and the fine and fine-grained sintered raw material falling through the opening is transferred to the sintering pallet. In the charging apparatus for the sintering raw material charged on the surface layer of the above coarse-grained sintering raw material, the upper surface extension line of the charging chute upstream from the opening is the upper surface of the charging chute downstream from the opening A step is provided so as to be higher, and a gas is blown above the opening toward the sintering raw material that slides down the opening, and the fine and fine-grained sintering raw material falls downward from the opening. A gas spray nozzle is installed. The charging device sintering material characterized by. 前記装入シュートの開口部から前記焼結パレット上の前記粗粒焼結原料の表層上に落下中の前記微・細粒焼結原料に気体を吹き付けて微粒と細粒に分離する気体吹き付けノズルを前記下流側の装入シュートの下部に設け、その分離した細粒焼結原料を前記焼結パレット上の粗粒焼結原料の表層上に装入し、その上層に前記分離した微粒焼結原料を装入することを特徴とする請求項1記載の焼結原料の装入装置。A gas spray nozzle that blows gas from the opening of the charging chute onto the surface of the coarse-grained sintered raw material on the sintering pallet to separate the fine and fine-grained raw material into fine and fine particles At the bottom of the charging chute on the downstream side, and the separated fine sintered raw material is charged on the surface of the coarse sintered raw material on the sintering pallet, and the separated fine sintered material is placed on the upper layer. The raw material charging apparatus according to claim 1, wherein the raw material is charged. 前記開口部の下方に下部シュートを配設したことを特徴とする請求項1記載の焼結原料の装入装置。The apparatus for charging a sintering raw material according to claim 1, wherein a lower chute is disposed below the opening. 前記下部シュートの下端より落下する前記微・細粒焼結原料に気体を吹き付けて微粒と細粒に分離する気体吹き付けノズルを前記下流側の装入シュートの下部に設け、この分離した細粒焼結原料を前記焼結パレット上の前記粗粒焼結原料の表層上に装入し、その上層に前記分離した微粒焼結原料を装入することを特徴とする請求項3記載の焼結原料の装入装置。A gas blowing nozzle is provided at the lower part of the downstream charging chute to blow the gas onto the fine / fine-grained sintering raw material falling from the lower end of the lower chute to separate the fine-grained raw material. 4. The sintering raw material according to claim 3, wherein the sintering raw material is charged on a surface layer of the coarse-grained sintering raw material on the sintering pallet, and the separated fine-sintering raw material is charged in the upper layer. Charging device. 前記上流側の装入シュートの上面延長線と前記下流側の装入シュートの上面との段差を5〜100mmとすることを特徴とする請求項1〜4のいずれか1項に記載の焼結原料の装入装置。The step according to any one of claims 1 to 4, wherein a step between the upper surface extension line of the upstream charging chute and the upper surface of the downstream charging chute is 5 to 100 mm. Raw material charging equipment.
JP08798498A 1998-03-16 1998-03-16 Sintering raw material charging equipment Expired - Lifetime JP3869552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08798498A JP3869552B2 (en) 1998-03-16 1998-03-16 Sintering raw material charging equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08798498A JP3869552B2 (en) 1998-03-16 1998-03-16 Sintering raw material charging equipment

Publications (2)

Publication Number Publication Date
JPH11264670A JPH11264670A (en) 1999-09-28
JP3869552B2 true JP3869552B2 (en) 2007-01-17

Family

ID=13930092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08798498A Expired - Lifetime JP3869552B2 (en) 1998-03-16 1998-03-16 Sintering raw material charging equipment

Country Status (1)

Country Link
JP (1) JP3869552B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020046070A (en) * 2000-12-12 2002-06-20 이구택 Sinter machine charging material segregation improve apparatus and the improve method by using wind force
KR20040042543A (en) * 2002-11-14 2004-05-20 주식회사 포스코 Sinter machine charging apparatus for charging heat source
JP4593177B2 (en) * 2004-06-09 2010-12-08 新日本製鐵株式会社 Sintering raw material charging equipment
BRPI0505675B1 (en) * 2005-09-08 2014-04-01 Jfe Steel Corp Method for producing a sintered agglomerate for iron production.
KR101365526B1 (en) * 2011-12-26 2014-02-21 (주)포스코 Method and apparatus for charging sintering machine with raw material
JP2015183287A (en) * 2014-03-26 2015-10-22 新日鐵住金株式会社 Method of manufacturing sintered ore
JP6364940B2 (en) * 2014-05-08 2018-08-01 新日鐵住金株式会社 Method of charging raw materials for sintering

Also Published As

Publication number Publication date
JPH11264670A (en) 1999-09-28

Similar Documents

Publication Publication Date Title
JP5408179B2 (en) Raw material charging equipment for sintering machine
JP3869552B2 (en) Sintering raw material charging equipment
JP3902332B2 (en) Sintering raw material charging equipment
JP3950244B2 (en) Sintering raw material charging control method
JP3706468B2 (en) Method and apparatus for charging sintered raw material
KR100833004B1 (en) An apparatus for screening hearth layer and materials of sintering machine
JP2018536837A (en) Raw material charging apparatus and method
JPH07110194A (en) Charging unit for sintering raw material
JP2608425B2 (en) Loading method of sintering raw material
KR20020046070A (en) Sinter machine charging material segregation improve apparatus and the improve method by using wind force
KR102470480B1 (en) Charging Apparatus for raw material and method thereof
JP5338308B2 (en) Raw material charging method to blast furnace
JP2000256758A (en) Method for charging sintering raw material
JP5338310B2 (en) Raw material charging method to blast furnace
KR920006706Y1 (en) Apparatus for charging the materials for sintering
CN112797795B (en) Charging device and method
KR100936872B1 (en) A hopper dispersible the blast furnace return fine for the sintering process
JP3758386B2 (en) Raw material charging method to sintering pallet
KR102251033B1 (en) Charging Apparatus for raw material and method thereof
JP2001279337A (en) Device for charging sintering raw material
JP7339516B2 (en) Method for producing sintered ore
JP2005281810A (en) Method and apparatus for feeding sintered ore to moving trough type cooling machine
JPH0816250B2 (en) Sintering raw material charging method and charging device
JP3536681B2 (en) Sinter production method
KR101977356B1 (en) Charging apparatus for raw material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term