JP3869507B2 - Method for forming optical glass element - Google Patents

Method for forming optical glass element Download PDF

Info

Publication number
JP3869507B2
JP3869507B2 JP32850496A JP32850496A JP3869507B2 JP 3869507 B2 JP3869507 B2 JP 3869507B2 JP 32850496 A JP32850496 A JP 32850496A JP 32850496 A JP32850496 A JP 32850496A JP 3869507 B2 JP3869507 B2 JP 3869507B2
Authority
JP
Japan
Prior art keywords
mold
curved surface
flat
molding
surface portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32850496A
Other languages
Japanese (ja)
Other versions
JPH10167738A (en
Inventor
美喜夫 渡辺
Original Assignee
ペンタックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ペンタックス株式会社 filed Critical ペンタックス株式会社
Priority to JP32850496A priority Critical patent/JP3869507B2/en
Publication of JPH10167738A publication Critical patent/JPH10167738A/en
Application granted granted Critical
Publication of JP3869507B2 publication Critical patent/JP3869507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses

Description

【0001】
【技術分野】
本発明は、ガラスモールド法で成形する光学ガラス素子であって、特に中心曲面部の回りに周縁平面部を有する光学ガラス素子の成形方法に関する
【0002】
【従来技術及びその問題点】
光学素子(レンズ)として、レンズ作用をする中心曲面部の回りに、レンズ保持を容易にする光軸と直交する周縁平面部を形成するタイプが知られている。このタイプの光学素子は従来、成形性に優れたプラスチックからなっており、ガラス素子を加熱軟化させて成形するガラスモールド法による成形は行なわれていなかった。従来のガラスモールド法で、中心曲面部と周縁平面部を有する光学素子を成形すると、曲面部と、曲面部と平面部の境界部分が型に沿った形状にならない。
【0003】
しかし、プラスチックレンズは、光学ガラスに比べて、耐熱性に乏しく耐用温度が低い、耐水性、耐食性はあるが有機溶剤に弱い、周囲環境の温度や湿度変化により光学性能が変化する等の欠点がある。例えば、ガラス転移点で比較すると、光学ガラスに比べ、プラスチックレンズは300℃以上も低いことから、耐熱性に欠けていることが分かる。
【0004】
【発明の目的】
本発明は、特に中心曲面部の回りに周縁平面部を有する光学素子を、光学ガラスを用いたガラスモールド法によって成形することができる成形方法を得ることを目的とする。
【0006】
【発明の概要】
本発明の成形方法は、その第一の態様によれば、少なくとも一面に、凸面からなる中心曲面部と、該中心曲面部の回りに位置する周縁平面部とを有する光学ガラス素子を成形する方法であって、モールド型は、凸面からなる中心曲面部に対応する凹面からなる曲面部成形型と、この曲面部成形型に対して相対移動可能な、周縁平面部に対応する平面部成形型とを備え、このモールド型にガラスプリフォームをセットし、加熱して軟化させるステップ;平面部成形型に成形圧力を及ぼして、ガラスプリフォームの一部を曲面部成形型内に移動させるステップ;及び平面部成形型と曲面部成形型の双方に成形圧力を及ぼして、ガラスプリフォームに曲面部成形型と平面部成形型の形状を転写するステップ;を有することを特徴としている。
【0007】
本発明の成形方法は、第二の態様によれば、少なくとも一面に、中心曲面部と、該中心曲面部の回りに位置する周縁平面部とを有する光学ガラス素子を成形する方法であって、モールド型は、中心曲面部に対応する曲面部成形型と、この曲面部成形型に対して相対移動可能な、周縁平面部に対応する平面部成形型とを備え、このモールド型にガラスプリフォームをセットし,加熱して軟化させるステップ;この曲面部成形型に成形圧力を及ぼして、ガラスプリフォームの一部を平面部成形型内に移動させるステップ;及び平面部成形型と曲面部成形型の双方に成形圧力を及ぼして、ガラスプリフォームに曲面部成形型と平面部成形型の形状を転写するステップ;を有することを特徴としている。この第二の態様は、中心曲面部が凹面でも凸面でも適用できる。
【0008】
【発明の実施の形態】
図1は、本発明による成形方法に用いるモールド型の一例を示している。この例は、簡単のため、成形するガラス光学素子の一方の面は平面で、他方の面の中心部に中心凸曲面部(球面部)、この中心凸球面の回りに、光軸と直交する周縁平面部を有する場合を想定している。図1の下方は、平面型11であり、上方に、中心曲面部を成形するための曲面部成形型12と、この曲面部成形型12の回りに相対摺動自在に位置する平面部成形型13とを有する本発明の特徴とするモールド型10が位置している。つまり、平面部成形型13には、その中心に摺動孔14が穿設されており、この摺動孔14に、曲面部成形型12が摺動自在に嵌まっている。
【0009】
平面型11、曲面部成形型12、平面部成形型13はそれぞれ、通常のガラスモールド型と同様に、母材11a、12a、13aの成形面上に、耐熱性、耐酸化性、ガラスとの離型性等を向上させる厚さ0.5μm前後の成形薄膜11b、12b、13bを付着形成してなっている。すなわち、平面型11と平面部成形型13の成形面は、この成形薄膜11bと13bによって形成される、光軸と直交する平面成形面であり、曲面部成形型12の成形面は、この成形薄膜12bによって形成される曲面(凹面)成形面である。
【0010】
母材は、例えば、超硬合金タングステンカーバイド、炭化珪素、サーメット、ジルコニア、アルミナ等からなり、この母材の成形面を超精密旋盤で所望の形状に加工した後、ダイヤモンド研磨剤等を用いて表面粗さRmax =0.02μm以下の所望の形状に研磨し、その上に成形薄膜を付着させる。成形薄膜としては、各種セラミックス、硬質カーボン薄膜、DLC薄膜、金、白金等の貴金属薄膜、これらの組み合わせ等が用いられる。
【0011】
成形されるガラス光学素子の光軸方向に相対摺動可能な曲面部成形型12と平面部成形型13は、その上端の基準平面12c、13cを一平面上に位置させたとき、その曲面成形面12bと平面成形面13bとにより、一連の成形面が形成される。この曲面部成形型12と平面部成形型13は、それぞれ、図3に示す中心プレスシリンダー21と、周縁プレスシリンダー22により、個別にプレス圧力を及ぼすことができるが、中心プレスシリンダー21の押圧平面21aは、曲面部成形型12の径より大きく形成され、曲面部成形型12だけを平面部成形型13内に押し込むことはできない。つまり、曲面部成形型12の平面部成形型13に対する下降位置は、基準平面12cが基準平面13cに一致する高さで規制される。
【0012】
上記構成の本モールド型は、平面型11の外周に、図2に示すように胴型スぺーサ16をセットして両者を固定する。モールド型10の平面部成形型13は、正しくセンター位置を出した状態で、この胴型スぺーサ16内に摺動自在に嵌められ、かつ、平面部成形型13の平面型11に対する最大接近位置が、平面部成形型13に形成したフランジ15と胴型スぺーサ16との当接によって規制される。
【0013】
次に以上のモールド型を用いた成形方法を説明する。図3に示すように、モールド型10、平面型11及び胴型スぺーサ16は、石英管23とヒーター24を有する加熱装置内にセットされ、平面型11とモールド型10の間には、予め計量したガラスプリフォーム30がセットされる。ガラスプリフォーム30は、モールド型10の曲面部成形型12と平面部成形型13に跨る大きさに成形されている。石英管23内に、窒素ガス(不活性ガス)を導入した状態で、ヒーター24によって加熱して、ガラスプリフォーム30を軟化させる。このときの加熱温度は、ガラスプリフォーム30が軟化してプレスできる温度(通常のガラスモールド法における温度;Tg(ガラス転移点)+50〜70℃)よりも、10℃程度高い温度とし、プリフォームを従来のガラスモールド法より柔らかくするのがよい。具体的には、Tg+60〜80℃程度に設定するのがよい。
【0014】
このガラスプリフォーム30の軟化状態において、まず平面部成形型13の成形面13bと曲面部成形型12の成形面12bが一連の成形面になった状態のまま、モールド型10をガラスプリフォーム30に近付け、周縁プレスシリンダー22により平面部成形型13に成形圧力を及ぼす。すると、軟化しているガラスプリフォーム30は、曲面部成形型12の曲面成形面12b内に移動する。好ましくは、ガラスプリフォーム30が曲面成形面12bに全面的に接触する迄、周縁プレスシリンダー22による成形を行なった後、中心プレスシリンダー21によって曲面部成形型12にも成形圧力を及ぼす。すると、今度は、曲面部成形型12側から平面部成形型13側へのガラスプリフォーム30の移動が生じ、さらに中心プレスシリンダー21の押圧平面21aが、曲面部成形型12の基準平面12cと平面部成形型13の基準平面13cに同時に当接した状態になり、曲面部成形型12による成形と平面部成形型13による成形とが同時に生じる。最終的には、図4に示すように、平面部成形型13のフランジ15が胴型スぺーサ16に当接し、成形が終了する。成形終了後、冷却してから成形ガラス光学素子を取り出すと、曲面成形面12bと平面成形面13bの境界部分に、ひけ等の異常のない正しい形状のガラス光学素子が得られる。
【0015】
以上の例では、ガラスプリフォーム30を最初に曲面部成形型12と平面部成形型13に跨らせてセットしたが、最初は、曲面部成形型12のみに接触するようにセットすることもできる。図5、図6は、その成形態様を示すものである。、この成形態様では、最初に周縁プレスシリンダー22により平面部成形型13をある基準位置迄下げておき、次に中心プレスシリンダー21により曲面部成形型12に成形圧力を及ぼして、平面型11の間に挟まれたガラスプリフォーム30を、曲面成形面12bに沿わせるとともに、その一部を平面部成形型13側にはみ出させて移動させる。その後、周縁プレスシリンダー22により平面部成形型13に成形圧力を及ぼすと、図3、図4の成形方法と同様に、成形することができる。
【0016】
上記実施形態では、平面部成形型13の平面成形面13bが光軸と直交するとしたが、厳密に直交しない平面である場合にも本発明は適用できる。また、曲面部成形型12の曲面成形面12bは、凹面であった(成形ガラス素子が凸面)が、逆に凸面(成形ガラス素子が凹面)である場合にも本発明は適用できる。
【0017】
図7、図8は、この成形態様を示している。曲面成形型12の曲面成形面12b’は、凸面(成形素子が凹面)であり、この他の構成は、先の実施例と同じである。この態様では、最初に中心部の曲面部成形型12によりガラスプリフォーム30を加工し(図7)、次に周縁部の平面部成形型13による加工を行なう(図8)。この態様で、図1ないし図4のように、ガラスプリフォーム30に対して、その平面部成形型13による加工を最初に及ぼすと、曲面部成形型12とプリフォーム30の間の空間が閉じられて気体の逃げ場所がなくなるので、好ましくない。
【0018】
また、以上は成形ガラス素子の一面を平面としたが、両面ともに、中心曲面部と周縁平面部を有する場合にも、本発明は適用できる。
【0019】
【発明の効果】
本発明によれば、中心曲面部と周縁平面部を有する光学ガラス素子を、正しい設定形状に成形することができる。
【図面の簡単な説明】
【図1】本発明による成形方法に用いる光学ガラス素子のモールド型の一例を示す縦断面図である。
【図2】図1のモールド型と胴型スぺーサをセットした状態の縦断面図である。
【図3】図2のモールド型を用いた成形状態を示す縦断面図である。
【図4】同異なる成形状態を示す縦断面図である。
【図5】図1ないし図4の成形態様とは異なる成形状態を示す、成形初期の縦断面図である。
【図6】同成形終期の縦断面図である。
【図7】曲面部成形型が凸面の場合の成形態様を示す、成形初期の縦断面図である。
【図8】同成形終期の縦断面図である。
[0001]
【Technical field】
The present invention relates to an optical glass element molded by a glass mold method, and more particularly to a method for molding an optical glass element having a peripheral plane portion around a central curved surface portion.
[0002]
[Prior art and its problems]
As an optical element (lens), a type is known in which a peripheral plane portion perpendicular to an optical axis that facilitates lens holding is formed around a central curved surface portion that acts as a lens. Conventionally, this type of optical element is made of a plastic having excellent moldability and has not been formed by a glass mold method in which a glass element is heated and softened. When an optical element having a central curved surface portion and a peripheral flat surface portion is formed by a conventional glass mold method, the curved surface portion and the boundary portion between the curved surface portion and the flat surface portion do not have a shape along the mold.
[0003]
However, compared to optical glass, plastic lenses have drawbacks such as poor heat resistance and low service temperature, water resistance and corrosion resistance, but weak against organic solvents, and optical performance changes due to changes in ambient temperature and humidity. is there. For example, when compared at the glass transition point, it can be seen that the plastic lens is lower in heat resistance than the optical glass by 300 ° C. or higher.
[0004]
OBJECT OF THE INVENTION
An object of the present invention is to obtain a molding method capable of molding an optical element having a peripheral plane portion around a central curved surface portion by a glass molding method using optical glass.
[0006]
SUMMARY OF THE INVENTION
According to the first aspect of the molding method of the present invention, a method of molding an optical glass element having, on at least one surface, a central curved surface portion formed of a convex surface and a peripheral flat surface portion positioned around the central curved surface portion. The mold includes a curved surface part mold corresponding to the central curved surface part including a convex surface, and a flat part mold corresponding to the peripheral flat part, which is movable relative to the curved surface part mold. And a step of setting a glass preform in the mold and heating and softening; applying a molding pressure to the flat surface mold and moving a part of the glass preform into the curved surface mold; and A step of applying molding pressure to both the flat surface portion forming die and the curved surface portion forming die to transfer the shapes of the curved surface portion forming die and the flat surface portion forming die to the glass preform.
[0007]
According to the second aspect, the molding method of the present invention is a method of molding an optical glass element having a central curved surface portion and a peripheral flat surface portion located around the central curved surface portion on at least one surface, The mold includes a curved surface part mold corresponding to the central curved surface part and a flat part mold corresponding to the peripheral plane part which can move relative to the curved surface part mold. Setting and heating and softening; applying pressure to the curved surface mold to move a part of the glass preform into the flat mold; and the flat mold and curved mold And a step of transferring the shape of the curved surface portion molding die and the flat surface portion molding die to the glass preform by applying molding pressure to both. This second aspect can be applied whether the central curved surface portion is concave or convex.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an example of a mold used in the molding method according to the present invention. In this example, for simplicity, one surface of the glass optical element to be molded is a flat surface, a central convex curved surface portion (spherical surface portion) at the center of the other surface, and orthogonal to the optical axis around the central convex spherical surface. The case where it has a peripheral plane part is assumed. The lower side of FIG. 1 is a flat die 11, and the upper side is a curved surface portion forming die 12 for forming a central curved surface portion, and a flat surface portion forming die positioned so as to be relatively slidable around the curved surface portion forming die 12. 13 is located in the mold 10 which is a feature of the present invention. That is, the flat part mold 13 is provided with a slide hole 14 at the center thereof, and the curved part mold 12 is slidably fitted into the slide hole 14.
[0009]
Each of the flat mold 11, the curved surface mold 12, and the flat mold 13 is formed of heat resistance, oxidation resistance, and glass on the molding surfaces of the base materials 11a, 12a, and 13a in the same manner as a normal glass mold. Formed thin films 11b, 12b, and 13b having a thickness of about 0.5 μm for improving the releasability are attached. That is, the molding surfaces of the planar mold 11 and the planar portion molding die 13 are planar molding surfaces formed by the molded thin films 11b and 13b and orthogonal to the optical axis, and the molding surface of the curved surface molding die 12 is the molding surface. It is a curved surface (concave surface) molding surface formed by the thin film 12b.
[0010]
The base material is made of, for example, cemented carbide tungsten carbide, silicon carbide, cermet, zirconia, alumina, etc., and after processing the molding surface of this base material into a desired shape with an ultra-precision lathe, using a diamond abrasive or the like Polishing into a desired shape having a surface roughness R max = 0.02 μm or less, and a formed thin film is adhered thereon. As the formed thin film, various ceramics, a hard carbon thin film, a DLC thin film, a noble metal thin film such as gold or platinum, a combination thereof, or the like is used.
[0011]
The curved surface mold 12 and the flat surface mold 13 which can slide relative to each other in the optical axis direction of the glass optical element to be molded have their curved surfaces formed when the upper reference planes 12c and 13c are positioned on one plane. A series of molding surfaces is formed by the surface 12b and the flat molding surface 13b. The curved surface portion forming die 12 and the flat surface portion forming die 13 can individually exert pressing pressure by the center press cylinder 21 and the peripheral press cylinder 22 shown in FIG. 21 a is formed larger than the diameter of the curved surface portion molding die 12, and only the curved surface portion molding die 12 cannot be pushed into the flat surface portion molding die 13. That is, the descending position of the curved surface portion forming mold 12 with respect to the flat surface portion forming die 13 is regulated by a height at which the reference plane 12c matches the reference plane 13c.
[0012]
In the present mold having the above-described configuration, a body-shaped spacer 16 is set on the outer periphery of the planar mold 11 as shown in FIG. The flat part molding die 13 of the mold 10 is slidably fitted into the barrel spacer 16 with the center position properly positioned, and the flat part molding die 13 is closest to the flat mold 11. The position is regulated by the contact between the flange 15 formed on the flat part forming die 13 and the trunk spacer 16.
[0013]
Next, a molding method using the above mold will be described. As shown in FIG. 3, the mold mold 10, the planar mold 11, and the body mold spacer 16 are set in a heating device having a quartz tube 23 and a heater 24, and between the planar mold 11 and the mold mold 10, A pre-weighed glass preform 30 is set. The glass preform 30 is formed in a size straddling the curved surface portion forming die 12 and the flat surface portion forming die 13 of the mold 10. In a state where nitrogen gas (inert gas) is introduced into the quartz tube 23, the glass preform 30 is softened by heating with the heater 24. The heating temperature at this time is about 10 ° C. higher than the temperature at which the glass preform 30 can be softened and pressed (temperature in a normal glass molding method; Tg (glass transition point) +50 to 70 ° C.). Should be softer than the conventional glass mold method. Specifically, it is good to set to about Tg + 60-80 degreeC.
[0014]
In the softened state of the glass preform 30, first, the mold 10 is placed in the glass preform 30 with the molding surface 13 b of the flat surface molding die 13 and the molding surface 12 b of the curved surface molding die 12 being a series of molding surfaces. Then, a molding pressure is applied to the flat part molding die 13 by the peripheral press cylinder 22. Then, the softened glass preform 30 moves into the curved surface 12b of the curved surface mold 12. Preferably, after the molding by the peripheral press cylinder 22 is performed until the glass preform 30 comes into full contact with the curved molding surface 12b, the molding pressure is also exerted on the curved surface mold 12 by the center press cylinder 21. Then, this time, the glass preform 30 moves from the curved surface portion molding die 12 side to the flat surface portion molding die 13 side, and the pressing plane 21a of the center press cylinder 21 is changed from the reference flat surface 12c of the curved surface portion molding die 12. It will be in the state contact | abutted simultaneously with the reference plane 13c of the plane part shaping | molding die 13, and shaping | molding by the curved surface part shaping | molding die 12 and shaping | molding by the plane part shaping | molding die 13 will arise simultaneously. Finally, as shown in FIG. 4, the flange 15 of the flat portion molding die 13 comes into contact with the body spacer 16 and the molding is completed. When the molded glass optical element is taken out after cooling after molding, a glass optical element having a correct shape without any abnormality such as sink marks is obtained at the boundary between the curved molded surface 12b and the flat molded surface 13b.
[0015]
In the above example, the glass preform 30 is first set across the curved surface portion forming die 12 and the flat surface portion forming die 13. However, initially, the glass preform 30 may be set so as to contact only the curved surface portion forming die 12. it can. 5 and 6 show the molding mode. In this molding mode, the flat part mold 13 is first lowered to a certain reference position by the peripheral press cylinder 22 and then the molding pressure is applied to the curved part mold 12 by the central press cylinder 21 to The glass preform 30 sandwiched between the glass preforms 30 is moved along the curved surface 12b, and a part of the glass preform 30 protrudes toward the flat portion forming die 13 side. Thereafter, when a molding pressure is applied to the flat portion molding die 13 by the peripheral press cylinder 22, molding can be performed in the same manner as in the molding method of FIGS.
[0016]
In the above embodiment, the planar molding surface 13b of the planar part molding die 13 is orthogonal to the optical axis, but the present invention can also be applied to a plane that is not strictly orthogonal. Further, the curved surface forming surface 12b of the curved surface portion forming die 12 is concave (the formed glass element is convex), but conversely, the present invention can also be applied to a case where the curved surface is a convex surface (the formed glass element is concave).
[0017]
7 and 8 show this molding mode. The curved surface 12b ′ of the curved surface mold 12 is a convex surface (the forming element is a concave surface), and other configurations are the same as in the previous embodiment. In this embodiment, the glass preform 30 is first processed with the curved surface part mold 12 at the center (FIG. 7), and then processed with the flat part mold 13 at the peripheral part (FIG. 8). In this embodiment, as shown in FIGS. 1 to 4, when the glass preform 30 is first processed by the flat portion mold 13, the space between the curved surface portion mold 12 and the preform 30 is closed. This is not preferable because there is no gas escape area.
[0018]
In the above, one surface of the molded glass element is a flat surface, but the present invention can also be applied to a case where both surfaces have a central curved surface portion and a peripheral flat surface portion.
[0019]
【The invention's effect】
According to the present invention, an optical glass element having a central curved surface portion and a peripheral flat surface portion can be formed into a correct set shape.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an example of a mold of an optical glass element used in a molding method according to the present invention.
2 is a longitudinal sectional view showing a state in which the mold die and the barrel spacer of FIG. 1 are set. FIG.
3 is a longitudinal sectional view showing a molding state using the mold of FIG. 2. FIG.
FIG. 4 is a longitudinal sectional view showing the same different molding state.
FIG. 5 is a longitudinal sectional view at the initial stage of molding showing a molding state different from the molding mode of FIGS. 1 to 4;
FIG. 6 is a longitudinal sectional view at the end of the molding.
FIG. 7 is a longitudinal sectional view at the initial stage of molding showing a molding mode when the curved surface portion molding die is a convex surface.
FIG. 8 is a longitudinal sectional view at the end of the molding.

Claims (2)

少なくとも一面に、凸面からなる中心曲面部と、該中心曲面部の回りに位置する周縁平面部とを有する光学ガラス素子を成形する方法であって、
モールド型は、凸面からなる中心曲面部に対応する凹面からなる曲面部成形型と、この曲面部成形型に対して相対移動可能な、周縁平面部に対応する平面部成形型とを備え、
モールド型にガラスプリフォームをセットし、加熱して軟化させるステップ;平面部成形型に成形圧力を及ぼして、ガラスプリフォームの一部を曲面部成形型内に移動させるステップ;及び
平面部成形型と曲面部成形型の双方に成形圧力を及ぼして、ガラスプリフォームに曲面部成形型と平面部成形型の形状を転写するステップ;
を有することを特徴とする光学ガラス素子の成形方法。
A method of forming an optical glass element having a central curved surface portion formed of a convex surface and a peripheral flat surface portion located around the central curved surface portion on at least one surface,
The mold includes a curved surface part molding die made of a concave surface corresponding to the central curved surface part made of a convex surface, and a flat surface part molding die corresponding to the peripheral plane part, which can be moved relative to the curved surface part molding die,
A step of setting a glass preform in a mold and heating and softening; a step of applying a molding pressure to the flat part mold to move a part of the glass preform into the curved part mold; and a flat part mold Applying a molding pressure to both the curved surface mold and the curved surface mold to transfer the shapes of the curved mold and the flat mold to the glass preform;
A method for forming an optical glass element, comprising:
少なくとも一面に、中心曲面部と、該中心曲面部の回りに位置する周縁平面部とを有する光学ガラス素子を成形する方法であって、
モールド型は、中心曲面部に対応する曲面部成形型と、この曲面部成形型に対して相対移動可能な、周縁平面部に対応する平面部成形型とを備え、
モールド型にガラスプリフォームをセットし、加熱して軟化させるステップ;曲面部成形型に成形圧力を及ぼして、ガラスプリフォームの一部を平面部成形型内に移動させるステップ;及び
平面部成形型と曲面部成形型の双方に成形圧力を及ぼして、ガラスプリフォームに曲面部成形型と平面部成形型の形状を転写するステップ;
を有することを特徴とする光学ガラス素子の成形方法。
A method of forming an optical glass element having a central curved surface portion and a peripheral flat surface portion around the central curved surface portion on at least one surface,
The mold includes a curved surface part mold corresponding to the central curved surface part, and a flat surface part mold corresponding to the peripheral flat part, which can move relative to the curved surface part mold,
Setting a glass preform in a mold and heating and softening; applying a molding pressure to the curved surface mold and moving a part of the glass preform into the flat mold; and a flat mold Applying a molding pressure to both the curved surface mold and the curved surface mold to transfer the shapes of the curved mold and the flat mold to the glass preform;
A method for forming an optical glass element, comprising:
JP32850496A 1996-12-09 1996-12-09 Method for forming optical glass element Expired - Fee Related JP3869507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32850496A JP3869507B2 (en) 1996-12-09 1996-12-09 Method for forming optical glass element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32850496A JP3869507B2 (en) 1996-12-09 1996-12-09 Method for forming optical glass element

Publications (2)

Publication Number Publication Date
JPH10167738A JPH10167738A (en) 1998-06-23
JP3869507B2 true JP3869507B2 (en) 2007-01-17

Family

ID=18211020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32850496A Expired - Fee Related JP3869507B2 (en) 1996-12-09 1996-12-09 Method for forming optical glass element

Country Status (1)

Country Link
JP (1) JP3869507B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004038793A1 (en) * 2004-08-09 2006-02-23 Docter Optics Gmbh Method and device for producing precision lenses
JP2006343387A (en) * 2005-06-07 2006-12-21 Konica Minolta Opto Inc Optical element and its manufacturing method
JP2007022905A (en) * 2005-06-16 2007-02-01 Sony Corp Optical element device manufacturing method, optical element device and forming apparatus

Also Published As

Publication number Publication date
JPH10167738A (en) 1998-06-23

Similar Documents

Publication Publication Date Title
JP3565784B2 (en) Glass substrate molding die and glass substrate manufacturing method
JPS60145919A (en) Press-molding of high-precision formed glass article
JP3869507B2 (en) Method for forming optical glass element
JP3266659B2 (en) Mold for molding optical element and method for molding optical element
JP2950024B2 (en) Optical glass element molding die and molded optical glass element
JP2000247653A (en) Metal mold for forming optical element and optical element
JP2501588B2 (en) Mold for press molding optical glass element and molding method thereof
JPH02102136A (en) Mold for molding optical element and production thereof
US7341442B2 (en) Mold for molding lenses
JP2501230B2 (en) Mold for molding lens
JP2005162547A (en) Optical element shaping die, optical element manufacturing apparatus and method for manufacturing optical element
JP2003063832A (en) Mold for forming optical element
JPH0451495B2 (en)
JP2001010831A (en) Molding mold for glass optical element and production of glass optical element using the same
JP3609867B2 (en) Optical element molding method and apparatus
JP4373278B2 (en) Optical element molding method
JP2001226129A (en) Forming method of optical element
JP4671725B2 (en) Manufacturing method of mold for molding
JP3068261B2 (en) Glass optical element molding method
JPH09315827A (en) Molding die for optical device
JP3938107B2 (en) Hybrid mold
JP3850062B2 (en) Optical element manufacturing method and optical element mold
JPH1044158A (en) Manufacture of glass mold for spectacles
JPH09194216A (en) Die for forming optical element
JP2520429Y2 (en) Mold for optical element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees