JP3868603B2 - Component recognition system for surface mounters - Google Patents

Component recognition system for surface mounters Download PDF

Info

Publication number
JP3868603B2
JP3868603B2 JP30390397A JP30390397A JP3868603B2 JP 3868603 B2 JP3868603 B2 JP 3868603B2 JP 30390397 A JP30390397 A JP 30390397A JP 30390397 A JP30390397 A JP 30390397A JP 3868603 B2 JP3868603 B2 JP 3868603B2
Authority
JP
Japan
Prior art keywords
light
component
prism
detection
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30390397A
Other languages
Japanese (ja)
Other versions
JPH11142116A (en
Inventor
正信 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP30390397A priority Critical patent/JP3868603B2/en
Publication of JPH11142116A publication Critical patent/JPH11142116A/en
Application granted granted Critical
Publication of JP3868603B2 publication Critical patent/JP3868603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光を照射する照射部と受光部とを有する光学的検知手段を用い、吸着用ヘッドに吸着された部品の投影の検出に基づいて部品吸着位置を検出する表面実装機の部品認識装置に関するものである。
【0002】
【従来の技術】
従来から、移動可能なヘッドユニットにノズルを有する吸着用ヘッドを搭載し、部品供給部のテープフィーダー等からIC等の小片状の電子部品を吸着して位置決めされているプリント基板上に移送し、プリント基板の所定位置に装着するようにした表面実装機は一般に知られている。
【0003】
このような表面実装機において、図6に示すように、吸着用ヘッドのノズルNに吸着された部品に対して一側方から光を照射する照射部A1と、部品を挟んで照射部A1と対向する位置で光を受光する受光部A2とからなる光学的検知手段Aをヘッドユニットに設け、この光学的検知手段Aの照射部A1と受光部A2との間におけるノズル軸線と直交する検出面(照射部A1から照射されて受光部A2に達する光が通る平面)上に位置する吸着部品の投影を検出し、それに基づいてその部品吸着位置を検出するようにした部品認識装置も知られている。
【0004】
同図に示す従来の光学的検知手段Aにおける照射部A1は、発光ダイオード(LED)等を用いた点状の光源Bと、シリンドリカルレンズC等のレンズ系とを有し、上記光源Bから放射されて広がった拡散光を上記レンズ系により上記検出面上で平行光となるように屈曲させ、この平行光線を吸着部品に向けて照射するようになっており、一方、受光部A2はCCD等を用いたラインセンサDを備え、このラインセンサDによる受光量に基づき、一定の検出ライン上で吸着部品の投影を検出するようになっている。
【0005】
【発明が解決しようとする課題】
上記のような従来の構造では、通常、受光部A2に遮光板が設けられ、この遮光板に形成されたスリットを介してラインセンサDに照射光が入射するようになっている。つまり、外乱光を遮光して、上記光源Bから照射された平行光のみをラインセンサDで受光するように構成されている。
【0006】
しかし、スリットを設けるだけでは必ずしも充分ではなく、例えば、外乱光がスリット部分で散乱してその光がラインセンサDに入射し、これにより部品の認識結果に影響を与える場合がある。そのため、部品の認識精度を高める観点からは、このような外乱光の入射をより確実に遮断することが望まれる。
【0007】
本発明は、外乱光をより確実に遮光することにより部品の認識精度を効果的に高めることができる表面実装機の部品認識方法及び同装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記目的を解決するために、本発明は、吸着用ヘッドのノズルに吸着された部品に対して一側方から光を照射する照射部と、上記部品を挟んで上記照射部と対向する位置で光を受光する受光部とからなる光学的検知手段を備え、この光学的検知手段により受光部における一定の検出ライン上での上記部品の投影を検出し、それに基づいて上記吸着ヘッドによる部品吸着位置を求めるようになっている表面実装機の部品認識装置において、上記受光部に、照射部から照射された部品投影のための特定方向の検出光のみを全反射させつつ上記検出ライン上に導く一方、上記検出光以外の光を上記検出ラインに至ることなく透過させるプリズムを設け、さらに、投影の検出の際に上記部品とプリズムとの間に位置する遮光部材を設けるとともにこの遮光部材に上記特定方向の光を通すスリットを形成したものである。
【0009】
この装置によれば、部品投影のための特定方向の検出光のみが検出ラインに至り、それ以外の光、すなわち外乱光は検出ラインに至ることなくプリズムを透過する。そのため、検出ラインへの外乱光の入射が効果的に防止される。特に、投影の検出の際に上記部品とプリズムとの間に位置する遮光部材を設けられ、この遮光部材に上記特定方向の光を通すスリットが形成されている結果、上記検出ラインでの外乱光の受光がより確実に防止されることとなる。
【0010】
この場合、上記プリズムとして、臨界角が45°未満で、かつ45°に近い値となる直角プリズムを用いるとともに、上記特定方向の光がプリズムの傾斜辺に対して垂直に入射し、順次等辺で全反射することにより180°方向変換させられた後、上記検出ラインに至るように上記プリズム及び検出ラインを配設するようにすれば、最も基本的な形態のプリズムを用いた簡単な構成で上記作用効果を得ることが可能となる。
【0012】
【発明の実施の形態】
本発明の実施の形態について図面を用いて説明する。
【0013】
図1および図2は本発明に係る表面実装機の一例を示している。同図に示すように、表面実装機(以下、実装機と略す)の基台1上には、プリント基板搬送用のコンベア2が配置され、プリント基板3が上記コンベア2上を搬送され、所定の装着作業用位置で停止されるようになっている。上記コンベア2の前後側方には、それぞれ多数列のテープフィーダ4a等からなる部品供給部4が設けられている。
【0014】
また、上記基台1の上方には、部品装着用のヘッドユニット5が装備され、このヘッドユニット5はX軸方向(コンベア2の方向)およびY軸方向(水平面上でX軸と直交する方向)に移動することができるようになっている。
【0015】
すなわち、上記基台1には、Y軸方向に延びる一対の固定レール7と、Y軸サーボモータ9により回転駆動されるボールねじ軸8とが配設され、上記固定レール7上にヘッドユニット支持部材11が配置されて、この支持部材11に設けられたナット部分12が上記ボールねじ軸8に螺合している。また、上記支持部材11には、X軸方向に延びるガイド部材13と、X軸サーボモータ15により駆動されるボールねじ軸14とが配設され、上記ガイド部材13にヘッドユニット5が移動可能に保持され、このヘッドユニット5に設けられたナット部分(図示せず)が上記ボールねじ軸14に螺合している。そして、Y軸サーボモータ9の作動によりボールねじ軸8が回転して上記支持部材11がY軸方向に移動するとともに、X軸サーボモータ15の作動によりボールねじ軸14が回転して、ヘッドユニット5が支持部材11に対してX軸方向に移動するようになっている。なお、上記Y軸サーボモータ9及びX軸サーボモータ15には、それぞれ駆動位置を検出するエンコーダ10,16が設けられている。
【0016】
また、上記ヘッドユニット5には吸着用ヘッド20が設けられている。この吸着用ヘッド20は、ヘッドユニット5のフレームに対して昇降及び回転が可能となっており、詳しく図示していないが、Z軸サーボモータ22を駆動源とする昇降駆動手段及びR軸サーボモータ24を駆動源とする回転駆動手段により駆動されるようになっている。吸着用ヘッド20の下端には部品吸着用のノズル21が設けられており、部品吸着時には図外の負圧供給手段からノズル21に負圧が供給されて、その負圧による吸引力で部品が吸着されるようになっている。
【0017】
さらにヘッドユニット5の下部には、上記各ノズル21に吸着された部品29の吸着状態を検出するための検知ユニット30(光学的検知手段)が設けられている。
【0018】
検知ユニット30は、図3及び図4に示すように、上記吸着用ヘッド20のノズル21に吸着された部品29が所定認識高さにされたときに位置する空間を挟んで相対向する照射部30aと受光部30bとを有している。
【0019】
上記照射部30aは、上記ノズル21に吸着された部品29に光を照射するもので、発光ダイオードからなる点状の光源31と、シリンドリカルレンズ32とを備えており、光源31からの光を検出面上で平行光とするように構成されている。
【0020】
一方、受光部30bは、CCDセンサ等の受光素子を線状に配列したラインセンサ34(検出ライン)とプリズム33とを有しており、照射部30aからの光をプリズム33で反射させながらラインセンサ34に入射するように構成されている。
【0021】
上記プリズム33は、最も基本的な形態であるいわゆる直角プリズムで、本願においては、臨界角が45°未満であって、45°に極力近い値のものが用いられている。プリズム33は、図4に示すように、光源31からの光、すなわち検出面上の平行光L(特定方向の光)に対して傾斜辺33aが直交し、かつ等辺33b,33cが上下に位置するように配置されており、後に詳述するように、上記平行光Lを180°方向変換させるようになっている。なお、ラインセンサ34は、その受光面がプリズム33の傾斜辺33aに対向するように配置されており、プリズム33で180°方向変換された平行光Lを受光するようになっている。
【0022】
以上のような部品認識装置を備えた実装機においては、ヘッドユニット5の吸着用ヘッド20で部品供給部から部品が吸着された後、部品認識処理として、上記検知ユニット30の照射部30aと受光部30bとの間の検出面上に部品29が位置するように吸着部品29の高さ位置が調整された状態で、照射部30aから部品29に平行光Lが照射され、受光部30bで受光量が調べられることにより部品29の投影が検出される。この投影の検出に基づいて従来から知られているような方法で部品吸着位置が調べられ、例えば、部品29が回転されつつ投影幅及び投影中心位置等が検出され、そのデータに基づいて部品吸着位置のずれが求められる。そして、部品吸着位置のずれに応じた部品装着位置の補正が行われる。
【0023】
このように検知ユニット30を用いて部品認識処理が行われる場合に、当実施形態の装置によると、上記のように照射部30aからの平行光Lをプリズム33で反射させながらラインセンサ34に導くため、ラインセンサ34への外乱光の入射が有効に防止され、これにより部品認識精度が高められる。
【0024】
この作用について図5を用いて具体的に説明すると、上記照射部30aから照射された平行光Lは、プリズム33の傾斜辺33aを透過してまず上側の等辺33bに入射する。この際、等辺33bに対する平行光Lの入射角は45°であって、プリズム33の臨界角より大きいので、平行光Lは等辺33bで全反射され、90°下方に方向変換される。そして、下側の等辺33cで同様に全反射されつつ90°方向変換された後、傾斜辺33aから出射されてラインセンサ34に至ることとなる。
【0025】
一方、平行光Lと平行でない光、例えば、平行光Lに対して上方に角度αを有する光La(つまり、斜め上方から傾斜辺33aに入射する光)は、傾斜辺33aの透過に伴い若干屈折されて上側の等辺33bに入射する。この場合、等辺33bに対する光Laの入射角は45°より大きくなるので、光Laは等辺33bで全反射されて下側の等辺33cに入射する。この際、等辺33bに対する光Laの入射角と反射角とは等しいため、等辺33cに対する光Laの入射角は45°よりも小さくなる。そのため、臨界角よりも小さい角度で等辺33cに入射する光Laは等辺33cを透過することとなる。なお、入射角が45°より小さく、かつ臨界角よりも大きい場合には、光Laは等辺33cで全反射するが、上述のように臨界角は45°未満であって、かつ45°に極めて近い値となっているので、斜め上方からの光Laの大部分は等辺33cを透過することとなりラインセンサ34には殆ど至ることがない。
【0026】
一方、平行光Lに対して下方に角度βを有する光Lb(つまり、斜め下方から傾斜辺33aに入射する光)の場合も、傾斜辺33aの透過に伴い若干屈折されつつ上側の等辺33bに入射する。しかし、この場合には、等辺33bに対する光Lbの入射角が上記光Laの場合とは逆に45°より小さくなるので、光Lbの大部分は等辺33bを透過することとなる。
【0027】
そのため、上記光La、Lb等、平行光L以外のいわゆる外乱光はラインセンサ34に至ることがなく、これによりラインセンサ34への外乱光の入射が有効に防止される。従って、遮光板に形成されたスリットを介して平行光をラインセンサで受光するようにしていた従来のこの種の装置と比較すると、外乱光の影響が極めて低く、投影検出の精度が高められる。
【0028】
ところで、上記検知ユニット30は、本発明に係る部品認識装置の一例であって、その具体的な構成は本発明の要旨を逸脱しない範囲で適宜変更可能である。
【0029】
例えば、上記検知ユニット30の構成に加え、図4中に破線で示すように遮光板35(遮光部材)を設け、これに形成されたスリット36を介して平行光Lをプリズム33に入射するようにしてもよい。このようにすれば、遮光板35で大部分の外乱光を遮光することができるため、ラインセンサ34への外乱光の入射をより効果的に防止することが可能となる。
【0030】
また、上記検知ユニット30では、プリズムとして、臨界角が45°未満であって、かつ45°に極力近い値となる直角プリズムを用いているが、プリズムの形状や臨界角はこれに限られるものではなく、外乱光の受光を有効に防止し得るように適宜選定するようにすればよい。但し、直角プリズムは、プリズムの形態としては最も基本的なものであるから、簡単、かつ安価な構成で上記の作用効果を得ることができる、という利点がある。
【0031】
【発明の効果】
以上説明したように、本発明は、光学検知手段の照射部から部品に光を照射し、その投影を受光部の検出ライン上で検出するようにした装置において、受光部にプリズムを設け、このプリズムにより部品投影のための特定方向の検出光のみを全反射させつつ上記検出ライン上に導きつつ、上記検出光以外の光を上記検出ラインに至ることなく透過させるようにしたので、検出ラインでの外乱光の受光を有効に防止することができ、部品の認識精度を高めることができる。特に、投影の検出の際に上記部品とプリズムとの間に位置する遮光部材が設けられ、この遮光部材に上記特定方向の光を通すスリットが形成されているので、上記検出ラインでの外乱光の受光がより確実に防止される。
【0032】
特に、上記プリズムとして、臨界角が45°未満で、かつ45°に近い値となる直角プリズムを用いるとともに、上記特定方向の光がプリズムの傾斜辺に対して垂直に入射し、順次等辺で全反射することにより180°方向変換させられた後、上記検出ラインに至るように上記プリズム及び検出ラインを配設するようにすれば、最も基本的な形態のプリズムを用いた簡単な構成で上記作用効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の装置が具備される実装機の一例を示す概略平面図である。
【図2】同概略正面図である。
【図3】検知ユニットの構成を示す平面模式図である。
【図4】検知ユニットの構成を示す正面模式図である。
【図5】検知ユニットの作用を説明するプリズムの模式図である。
【図6】従来の装置を示す平面模式図である。
【符号の説明】
5 ヘッドユニット
20 吸着用ヘッド
21 ノズル
29 部品
30 検知ユニット
30a 照射部
30b 受光部
31 光源
32 シリンドリカルレンズ
33 プリズム
33a 傾斜辺
33b 等辺
34 ラインセンサ
L 平行光
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a component recognition of a surface mounter that uses an optical detection means having an irradiating unit for irradiating light and a light receiving unit, and detects a component suction position based on detection of projection of a component sucked by a suction head. It relates to the device.
[0002]
[Prior art]
Conventionally, a suction head having a nozzle is mounted on a movable head unit, and a small electronic component such as an IC is sucked from a tape feeder or the like of the component supply unit and transferred onto a printed circuit board. A surface mounter that is mounted at a predetermined position on a printed circuit board is generally known.
[0003]
In such a surface mounter, as shown in FIG. 6, an irradiation unit A1 that irradiates light from one side to a component sucked by the nozzle N of the suction head, and an irradiation unit A1 that sandwiches the component. An optical detection means A comprising a light receiving part A2 that receives light at an opposing position is provided in the head unit, and a detection surface orthogonal to the nozzle axis between the irradiation part A1 and the light receiving part A2 of the optical detection means A. There is also known a component recognition device that detects a projection of a suction component located on (a plane through which light radiated from the irradiation unit A1 and reaches the light receiving unit A2) and detects the component suction position based on the projection. Yes.
[0004]
The irradiation unit A1 in the conventional optical detection means A shown in the figure has a point light source B using a light emitting diode (LED) or the like and a lens system such as a cylindrical lens C, and radiates from the light source B. The diffused light thus spread is bent by the lens system so as to become parallel light on the detection surface, and the parallel light beam is irradiated toward the suction component. On the other hand, the light receiving unit A2 is a CCD or the like. The line sensor D is used, and based on the amount of light received by the line sensor D, the projection of the suction component is detected on a fixed detection line.
[0005]
[Problems to be solved by the invention]
In the conventional structure as described above, a light shielding plate is usually provided in the light receiving portion A2, and irradiation light is incident on the line sensor D through a slit formed in the light shielding plate. That is, disturbance light is shielded and only the parallel light emitted from the light source B is received by the line sensor D.
[0006]
However, it is not always sufficient to provide the slit. For example, disturbance light may be scattered at the slit portion and the light may enter the line sensor D, thereby affecting the recognition result of the component. Therefore, from the viewpoint of improving the component recognition accuracy, it is desirable to more reliably block the incidence of such disturbance light.
[0007]
SUMMARY OF THE INVENTION An object of the present invention is to provide a component recognition method and apparatus for a surface mounter that can effectively enhance the recognition accuracy of components by more reliably blocking ambient light.
[0008]
[Means for Solving the Problems]
In order to solve the above-described object, the present invention provides an irradiation unit that emits light from one side to a component sucked by a nozzle of a suction head, and a position facing the irradiation unit across the component. An optical detection means comprising a light receiving portion for receiving light, and the optical detection means detects projection of the component on a certain detection line in the light receiving portion, and based on this, the component suction position by the suction head In the component recognizing device for a surface mounter, the light receiving unit guides only the detection light in a specific direction for component projection irradiated from the irradiation unit onto the detection line while totally reflecting the light. this together with the light other than the detection light provided a prism which transmits without leading to the detection line, further provided with a light blocking member located between said part and the prism in the detection of the projection The optical member is obtained by forming a slit through which light of the specific direction.
[0009]
According to this apparatus, only detection light in a specific direction for component projection reaches the detection line, and other light, that is, disturbance light passes through the prism without reaching the detection line. Therefore, the incidence of disturbance light on the detection line is effectively prevented. In particular, as a result of the provision of a light-shielding member positioned between the component and the prism during projection detection, and a slit through which the light in the specific direction passes through the light-shielding member, disturbance light on the detection line Is more reliably prevented.
[0010]
In this case, a right angle prism having a critical angle of less than 45 ° and a value close to 45 ° is used as the prism, and light in the specific direction is incident perpendicularly to the inclined side of the prism, and is sequentially equilateral. If the prism and the detection line are arranged so as to reach the detection line after being converted by 180 ° by total reflection, the above configuration can be achieved with a simple configuration using the prism of the most basic form. It becomes possible to obtain an effect.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
[0013]
1 and 2 show an example of a surface mounter according to the present invention. As shown in the figure, on a base 1 of a surface mounter (hereinafter abbreviated as a mounter), a printed circuit board transporting conveyor 2 is arranged, and the printed circuit board 3 is transported on the conveyor 2 to be predetermined. Is stopped at the mounting work position. On the front and rear sides of the conveyor 2, there are provided component supply sections 4 each consisting of a plurality of rows of tape feeders 4a and the like.
[0014]
Above the base 1, a component mounting head unit 5 is provided. The head unit 5 has an X-axis direction (the direction of the conveyor 2) and a Y-axis direction (a direction orthogonal to the X-axis on a horizontal plane). ) Can be moved to.
[0015]
That is, the base 1 is provided with a pair of fixed rails 7 extending in the Y-axis direction and a ball screw shaft 8 that is rotationally driven by a Y-axis servo motor 9. A member 11 is disposed, and a nut portion 12 provided on the support member 11 is screwed onto the ball screw shaft 8. The support member 11 is provided with a guide member 13 extending in the X-axis direction and a ball screw shaft 14 driven by an X-axis servo motor 15 so that the head unit 5 can move on the guide member 13. A nut portion (not shown) held by the head unit 5 is screwed onto the ball screw shaft 14. Then, the ball screw shaft 8 is rotated by the operation of the Y-axis servo motor 9 and the support member 11 is moved in the Y-axis direction, and the ball screw shaft 14 is rotated by the operation of the X-axis servo motor 15, thereby the head unit. 5 moves in the X-axis direction with respect to the support member 11. The Y-axis servo motor 9 and the X-axis servo motor 15 are provided with encoders 10 and 16 for detecting drive positions, respectively.
[0016]
The head unit 5 is provided with a suction head 20. The suction head 20 can be moved up and down and rotated with respect to the frame of the head unit 5, and although not shown in detail, a lifting drive means and a R axis servo motor using a Z-axis servo motor 22 as a drive source. It is driven by a rotational drive means having 24 as a drive source. A nozzle 21 for component suction is provided at the lower end of the suction head 20, and at the time of component suction, negative pressure is supplied from a negative pressure supply means (not shown) to the nozzle 21, and the component is attracted by the suction force of the negative pressure. It is adsorbed.
[0017]
Further, a detection unit 30 (optical detection means) for detecting the suction state of the component 29 sucked by each nozzle 21 is provided below the head unit 5.
[0018]
As shown in FIGS. 3 and 4, the detection unit 30 includes irradiation units facing each other across a space where the component 29 sucked by the nozzle 21 of the suction head 20 is at a predetermined recognition height. 30a and a light receiving portion 30b.
[0019]
The irradiation unit 30a irradiates the component 29 adsorbed by the nozzle 21 with light, and includes a point light source 31 made of a light emitting diode and a cylindrical lens 32, and detects light from the light source 31. It is comprised so that it may become parallel light on a surface.
[0020]
On the other hand, the light receiving unit 30b includes a line sensor 34 (detection line) in which light receiving elements such as CCD sensors are arranged in a line and a prism 33. The light is reflected by the prism 33 while reflecting light from the irradiation unit 30a. It is configured to enter the sensor 34.
[0021]
The prism 33 is a so-called right angle prism which is the most basic form, and in the present application, a prism having a critical angle of less than 45 ° and a value as close to 45 ° as possible is used. As shown in FIG. 4, in the prism 33, the inclined side 33a is orthogonal to the light from the light source 31, that is, the parallel light L (light in a specific direction) on the detection surface, and the equal sides 33b and 33c are positioned vertically. As described in detail later, the parallel light L is converted in the direction of 180 °. The line sensor 34 is arranged so that its light receiving surface faces the inclined side 33a of the prism 33, and receives the parallel light L that has been converted by the prism 33 by 180 °.
[0022]
In the mounting machine including the component recognition device as described above, after the component is sucked from the component supply unit by the suction head 20 of the head unit 5, the component 30 is irradiated with the irradiation unit 30a of the detection unit 30 and receives light. In a state where the height position of the suction component 29 is adjusted such that the component 29 is positioned on the detection surface between the irradiation unit 30b and the irradiation unit 30a, the component 29 is irradiated with the parallel light L and received by the light receiving unit 30b. The projection of the part 29 is detected by checking the quantity. Based on the detection of the projection, the component suction position is checked by a conventionally known method. For example, the projection width and the projection center position are detected while the component 29 is rotated, and the component suction is detected based on the data. Misalignment is required. Then, the component mounting position is corrected according to the shift of the component suction position.
[0023]
When component recognition processing is performed using the detection unit 30 as described above, according to the apparatus of this embodiment, the parallel light L from the irradiation unit 30a is guided to the line sensor 34 while being reflected by the prism 33 as described above. Therefore, the incidence of disturbance light on the line sensor 34 is effectively prevented, thereby improving the component recognition accuracy.
[0024]
This action will be specifically described with reference to FIG. 5. The parallel light L emitted from the irradiation unit 30a passes through the inclined side 33a of the prism 33 and first enters the upper equal side 33b. At this time, since the incident angle of the parallel light L with respect to the equilateral side 33b is 45 ° and is larger than the critical angle of the prism 33, the parallel light L is totally reflected by the equilateral side 33b and redirected downward by 90 °. Then, after 90 ° direction conversion while being totally reflected at the lower equal side 33c, the light is emitted from the inclined side 33a and reaches the line sensor 34.
[0025]
On the other hand, light that is not parallel to the parallel light L, for example, light La that has an angle α upward with respect to the parallel light L (that is, light that is incident on the inclined side 33a obliquely from above) is slightly transmitted along the transmission of the inclined side 33a. The light is refracted and enters the upper equal side 33b. In this case, since the incident angle of the light La with respect to the equilateral side 33b becomes larger than 45 °, the light La is totally reflected by the equilateral side 33b and enters the lower equilateral side 33c. At this time, since the incident angle of the light La with respect to the equal side 33b is equal to the reflection angle, the incident angle of the light La with respect to the equal side 33c is smaller than 45 °. Therefore, the light La incident on the equilateral 33c at an angle smaller than the critical angle is transmitted through the equilateral 33c. When the incident angle is smaller than 45 ° and larger than the critical angle, the light La is totally reflected at the equilateral side 33c. However, as described above, the critical angle is less than 45 ° and extremely high at 45 °. Since the values are close to each other, most of the light La from obliquely above passes through the equal side 33c and hardly reaches the line sensor 34.
[0026]
On the other hand, also in the case of light Lb having an angle β downward with respect to the parallel light L (that is, light incident on the inclined side 33a from an obliquely lower side), the light is refracted slightly along with the transmission of the inclined side 33a and is transmitted to the upper equal side 33b. Incident. However, in this case, since the incident angle of the light Lb with respect to the equilateral side 33b is smaller than 45 ° as opposed to the case of the light La, most of the light Lb is transmitted through the equilateral side 33b.
[0027]
For this reason, the so-called disturbance light other than the parallel light L such as the light La and Lb does not reach the line sensor 34, thereby effectively preventing the disturbance light from entering the line sensor 34. Therefore, compared with a conventional apparatus of this type in which parallel light is received by a line sensor through a slit formed in the light shielding plate, the influence of disturbance light is extremely low, and the accuracy of projection detection is improved.
[0028]
By the way, the detection unit 30 is an example of a component recognition apparatus according to the present invention, and the specific configuration thereof can be appropriately changed without departing from the gist of the present invention.
[0029]
For example, in addition to the configuration of the detection unit 30, a light shielding plate 35 (light shielding member) is provided as indicated by a broken line in FIG. 4 so that the parallel light L enters the prism 33 through a slit 36 formed in the light shielding plate 35. It may be. In this way, most of the disturbing light can be shielded by the light shielding plate 35, so that it is possible to more effectively prevent the disturbing light from entering the line sensor 34.
[0030]
In the detection unit 30, a right angle prism having a critical angle of less than 45 ° and a value as close as possible to 45 ° is used as the prism, but the prism shape and critical angle are limited to this. Instead, it may be selected as appropriate so as to effectively prevent the reception of disturbance light. However, since the right-angle prism is the most basic form of the prism, there is an advantage that the above-described effects can be obtained with a simple and inexpensive configuration.
[0031]
【The invention's effect】
As described above, according to the present invention, in an apparatus in which light is irradiated onto a component from the irradiation unit of the optical detection unit and the projection is detected on the detection line of the light receiving unit, a prism is provided in the light receiving unit. Since the prism guides only the detection light in a specific direction for component projection onto the detection line while totally reflecting it, it transmits light other than the detection light without reaching the detection line. It is possible to effectively prevent the disturbance light from being received and to improve the accuracy of component recognition. In particular, when a projection is detected, a light-shielding member is provided between the component and the prism, and a slit that allows light in the specific direction to pass is formed in the light-shielding member. Is more reliably prevented.
[0032]
In particular, as the prism, a right-angle prism having a critical angle of less than 45 ° and a value close to 45 ° is used, and light in the specific direction is incident perpendicularly to the inclined side of the prism, and all the same sides are sequentially arranged. If the prism and the detection line are arranged so as to reach the detection line after being changed in the direction of 180 ° by reflection, the above operation can be achieved with a simple configuration using the prism in the most basic form. An effect can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing an example of a mounting machine equipped with an apparatus of the present invention.
FIG. 2 is a schematic front view of the same.
FIG. 3 is a schematic plan view showing a configuration of a detection unit.
FIG. 4 is a schematic front view showing a configuration of a detection unit.
FIG. 5 is a schematic diagram of a prism for explaining the operation of a detection unit.
FIG. 6 is a schematic plan view showing a conventional apparatus.
[Explanation of symbols]
5 Head unit 20 Suction head 21 Nozzle 29 Component 30 Detection unit 30a Irradiation unit 30b Light reception unit 31 Light source 32 Cylindrical lens 33 Prism 33a Inclined side 33b Equal side 34 Line sensor L Parallel light

Claims (2)

吸着用ヘッドのノズルに吸着された部品に対して一側方から光を照射する照射部と、上記部品を挟んで上記照射部と対向する位置で光を受光する受光部とからなる光学的検知手段を備え、この光学的検知手段により受光部における一定の検出ライン上での上記部品の投影を検出し、それに基づいて上記吸着ヘッドによる部品吸着位置を求めるようになっている表面実装機の部品認識装置において、上記受光部に、照射部から照射された部品投影のための特定方向の検出光のみを全反射させつつ上記検出ライン上に導く一方、上記検出光以外の光を上記検出ラインに至ることなく透過させるプリズムを設け、さらに、投影の検出の際に上記部品とプリズムとの間に位置する遮光部材を設けるとともにこの遮光部材に上記特定方向の光を通すスリットを形成したことを特徴とする表面実装機の部品認識装置。Optical detection comprising an irradiating unit that irradiates light from one side to a component adsorbed by the nozzle of the adsorption head and a light receiving unit that receives light at a position facing the irradiating unit across the component. A component of a surface mounter that detects the projection of the component on a fixed detection line in the light receiving unit by the optical detection unit and obtains the component suction position by the suction head based on the projection In the recognizing device, the light receiving unit guides only the detection light in a specific direction for projecting the component irradiated from the irradiation unit onto the detection line while totally reflecting the light, while the light other than the detection light is directed to the detection line. a prism which transmits without leading provided, further, Sri passing the light of a specific direction on the light blocking member provided with a light shielding member positioned between the component and the prism in the detection of the projection Component recognition device of a surface mounting machine, characterized in that to form the door. 上記プリズムとして、臨界角が45°未満で、かつ45°に近い値となる直角プリズムを用いるとともに、上記特定方向の光がプリズムの傾斜辺に対して垂直に入射し、順次等辺で全反射することにより180°方向変換させられた後、上記検出ラインに至るように上記プリズム及び検出ラインを配設したことを特徴とする請求項1記載の表面実装機の部品認識装置。  As the prism, a right angle prism having a critical angle of less than 45 ° and a value close to 45 ° is used, and the light in the specific direction is incident perpendicularly to the inclined side of the prism and is sequentially totally reflected on the same side. 2. The component recognition apparatus for a surface mounter according to claim 1, wherein the prism and the detection line are arranged so as to reach the detection line after the direction is changed by 180 [deg.].
JP30390397A 1997-11-06 1997-11-06 Component recognition system for surface mounters Expired - Lifetime JP3868603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30390397A JP3868603B2 (en) 1997-11-06 1997-11-06 Component recognition system for surface mounters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30390397A JP3868603B2 (en) 1997-11-06 1997-11-06 Component recognition system for surface mounters

Publications (2)

Publication Number Publication Date
JPH11142116A JPH11142116A (en) 1999-05-28
JP3868603B2 true JP3868603B2 (en) 2007-01-17

Family

ID=17926663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30390397A Expired - Lifetime JP3868603B2 (en) 1997-11-06 1997-11-06 Component recognition system for surface mounters

Country Status (1)

Country Link
JP (1) JP3868603B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100573583B1 (en) * 1999-09-08 2006-04-24 삼성테크윈 주식회사 A device for arranging a chip mounter

Also Published As

Publication number Publication date
JPH11142116A (en) 1999-05-28

Similar Documents

Publication Publication Date Title
JP2937785B2 (en) Component state detection device for mounting machine
US8789265B2 (en) Electronic component mounting method providing a substrate standby area
KR101445674B1 (en) Component recognizing apparatus, surface mounting apparatus and component testing apparatus
KR930703586A (en) High Precision Parts Alignment Sensor System
JPH0755442A (en) Electronic device recognition unit and electronic device mounting system employing it
JP3868603B2 (en) Component recognition system for surface mounters
JPH06249629A (en) Method and device for inspecting electronic part
JPH1168395A (en) Surface mounter
JP3337924B2 (en) Component adsorption state detection device for mounting machine
JPH06211334A (en) Board detector for parts mounting device
JP2008294072A (en) Component recognizing device, surface mounting machine, and component testing apparatus
JP3417773B2 (en) Chip component position detection method
JP3266524B2 (en) Chip component position detection method and device
JP3046688B2 (en) Chip mounter
JP3417731B2 (en) Parts inspection equipment
JPH10135693A (en) Inspection device for electronic parts
JP3337753B2 (en) Lead abnormality inspection device
JP3871777B2 (en) Component recognition system for surface mounters
JP4601872B2 (en) Circuit board detection method and circuit board detection apparatus for circuit board processing machine
KR20140071265A (en) Component mounting apparatus, head and method for recognizing component attitude
JP2001211000A (en) Device for holding and mounting part and method therfor
KR20010033730A (en) Improved methods and apparatus for controlling glint in a multi-nozzle position alignment sensor
JP2924285B2 (en) How to pick up chips
JP2929800B2 (en) Stop position determination method for electronic component suction nozzle
JP2998420B2 (en) Chip observation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term