JP3864600B2 - Method for producing high Mn non-magnetic steel sheet for cryogenic use - Google Patents

Method for producing high Mn non-magnetic steel sheet for cryogenic use Download PDF

Info

Publication number
JP3864600B2
JP3864600B2 JP01791299A JP1791299A JP3864600B2 JP 3864600 B2 JP3864600 B2 JP 3864600B2 JP 01791299 A JP01791299 A JP 01791299A JP 1791299 A JP1791299 A JP 1791299A JP 3864600 B2 JP3864600 B2 JP 3864600B2
Authority
JP
Japan
Prior art keywords
hot
rolled
cold
rolling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01791299A
Other languages
Japanese (ja)
Other versions
JP2000212646A (en
Inventor
延行 森戸
清彦 野原
克浩 小堀
氏祐 西池
孝子 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP01791299A priority Critical patent/JP3864600B2/en
Priority to EP00101428A priority patent/EP1024204A3/en
Publication of JP2000212646A publication Critical patent/JP2000212646A/en
Priority to US10/013,532 priority patent/US6761780B2/en
Application granted granted Critical
Publication of JP3864600B2 publication Critical patent/JP3864600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing

Description

【0001】
【発明の属する技術分野】
本発明は、極低温用構造材料に係り、とくに超電導磁石などを構成するために必要な、極低温で使用される非磁性構造材料に関する。本発明でいう鋼板には、鋼板、鋼帯を含むものとする。
【0002】
【従来の技術】
核融合発電や素粒子加速器、超電導力貯蔵などの各種の超電導利用技術において、強力な磁界を発生させるために大容量の電流を流す必要から超電導磁石が用いられている。このような超電導磁石内には強大な電磁力が誘起され、しかも通常液体ヘリウムにより2〜4Kの極低温に冷却されることから、超電導磁石を支持する構造材料には極低温下で強大な電磁力に耐えることができる強度が要求される。しかも、均一で安定な強磁界分布をできるだけ広範囲に発生させることが基本的な目的であるから、構造材料による磁界への影響は限りなく小さくすることが肝要となる。したがって、磁界との相互作用を起こさない非磁性材料であることが必須条件である。
【0003】
以上の観点から、超電導磁石の内部や周辺に用いる構造材料には、極低温での高い機械的性質と極めて低い透磁率を具備することが求められ、さらに複合構造物である超電導磁石を強固に保持するために熱変形への配慮が必要となる。また、超電導磁石を製作するに際し、構造材料には、打ち抜き性や穴明き性などの機械加工性や溶接性に優れ、さらに多数枚の積層に必要な表面平坦度や嵌合性などに優れていることも要求される。
【0004】
従来、超電導磁石の支持構造材料として検討されていた素材としては、オースナイト系ステンレス鋼、高Mn鋼、アルミニウム合金、チタン合金、さらに繊維強化プラスチックなどがある。超電導磁石の支持構造材料に要求される強度、透磁率および熱膨張率は、製作する超電導磁石の設計磁界の強さや目的とする磁場の分布の均一性などによって異なってくるが、極低温での強度が高く、透磁率および熱膨張率が小さいことが材料選択のうえで重要となる。
【0005】
繊維強化プラスチックは、非磁性であり、比重が小さくて取り扱いやすく、オーステナイト系ステンレス鋼に比較して低熱膨張係数を有するが、単位断面積当たりの強度が低い。また、チタン合金は、比重が小さく、強度が高く高比強度を有しているが、低温での靱性が低く、コストが高いという問題がある。
アルミニウム合金は、軽量で、比強度が高く透磁性も極めて低いことから、極低温での多くの用途に用いられているが、大型粒子加速器におけるように設計磁界を高くした場合には強度が不足し、溶接性にも問題がある。
【0006】
一般のオーステナイト系ステンレス鋼は、低温での強度と靱性が不十分であるため、窒素を添加し、低炭素含有量としたステンレス鋼が開発されている。しかし、このステンレス鋼は、オーステナイト相の安定性が不十分であるため、低温での変形によってオーステナイト相の一部が強磁性体のマルテンサイト相に変態する。このため、靱性の低下を招くとともに、極低温での透磁率が十分には低くならないという問題があった。
【0007】
その後、さらにNi含有量を高めたオーステナイト系ステンレス鋼が開発されたが、極低温用構造材料としてはコストの高いことと熱膨張係数の大きいことに問題があった。
このような問題に対し、特公昭59−11661 号公報や特公平5-18887 号公報には、比較的安価な高Mn非磁性鋼やその製造方法が提案されている。しかし、特公昭59−11661 号公報に記載された高Mn非磁性鋼は、極低温での透磁率が高く、大型粒子加速器用としては問題があった。また、特公平5-18887 号公報に記載された技術では、長時間の時効処理を必要とし、生産性が低下するという問題があった。
【0008】
【発明が解決しようとする課題】
さらに超電導磁石では、導体コイルである超電導線の固定部材として、カラーと呼ばれれる非磁性体が必要であり、このカラーは多数枚の非磁性鋼板を積層することによって形成される。そして、このカラーも極低温に冷却され、超電導磁石として大電流を流したときに生ずる強力な電磁力に耐えるためにも、適度な機械的強度が必要である。しかしながら、素材の非磁性鋼板の強度があまりに高すぎたり、残留応力が過剰である場合には、非磁性鋼板をカラーの所定形状に打抜く際に、打抜き金型の寿命を短縮させたり、打抜き後に反りが生じたりする。
【0009】
超電導磁石では、ファインブランキングとして精密な打抜きによってカラーを製作することが多い。このような観点から、設計磁界の強さと分布などを考慮してカラーに用いられる素材の機械的強度を決定している。このため、素材の非磁性鋼板の強度を設計で要求される所望の強度に容易に調整できる非磁性鋼板の製造方法が求められていた。
【0010】
本発明は、上記した従来技術の問題を有利に解決し、大型粒子加速器用に好適な、極低温での降伏応力(耐力)が高く、かつ極低温での透磁率が低い高Mn非磁性鋼板を、工業的に安定して生産性高く製造できる極低温用高Mn非磁性鋼板の製造方法を提案することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するために、大型粒子加速器用の超電導磁石に使用する支持構造部材に必要な特性を調査するとともに、高Mn非磁性鋼の極低温における透磁率や、降伏応力におよぼす要因について鋭意研究した。その結果、高Mn非磁性鋼の極低温における透磁率は、Mn増量によってオーステナイト相をより一層安定化させることにより、低くすることが可能となるという知見を得た。また、高Mn非磁性鋼の極低温における降伏応力は、中間焼鈍後に鋼板を調質圧延することにより、容易に900MPa以上に調整できるという知見を得た。
【0012】
本発明は、上記した知見に基づいて構成されたものである。
すなわち、本発明は、量%で、C:0.05〜0.15%、Mn:26.0〜30.0%、Cr:5.0 〜10.0%、N:0.05〜0.15%、あるいはさらにCa:0.02%以下を含有し、残部 Fe および不可避的不純物からなる鋼素材を加熱し、熱間圧延により熱延鋼板とするに際し、前記熱間圧延の圧延開始温度を1050〜1200℃、圧延終了温度を700 〜1000℃とすることを特徴とする極低温用高Mn非磁性熱延鋼板の製造方法であり、また本発明では、前記鋼素材を、量%で、C:0.05〜0.15%、Mn:26.0〜30.0%、Cr:5.0 〜10.0%、Ni:0.50〜5.0 %、N:0.05〜0.15%、あるいはさらにCa:0.02%以下を含有し、残部 Fe および不可避的不純物からなる鋼素材とするのが好ましい。
【0013】
また、本発明は、量%で、C:0.05〜0.15%、Mn:26.0〜30.0%、Cr:5.0 〜10.0%、N:0.05〜0.15%、あるいはさらにCa:0.02%以下を含有し、残部 Fe および不可避的不純物からなる鋼素材に、熱間圧延を施し熱延板とし、該熱延板に熱延板焼鈍を施したのち冷間圧延を施し冷延板とし、ついで該冷延板に冷延板焼鈍を施す高Mn非磁性鋼板の製造方法において、前記熱間圧延の圧延開始温度を1050〜1200℃、圧延終了温度を700 〜1000℃とし、さらに前記冷延板焼鈍が、焼鈍温度を1050〜1200℃とすることを特徴とする極低温用高Mn非磁性冷延鋼板の製造方法であり、また本発明では、前記鋼素材を、量%で、C:0.05〜0.15%、Mn:26.0〜30.0%、Cr:5.0 〜10.0%、Ni:0.50〜5.0 %、N:0.05〜0.15%、あるいはさらにCa:0.02%以下を含有し、残部 Fe および不可避的不純物からなる鋼素材とするのが好ましく、また、本発明では、前記冷延板焼鈍後に、さらに好ましくは圧下率30%以下の調質圧延を施すのが好ましい。
【0014】
【発明の実施の形態】
まず、鋼素材の化学成分の限定理由について説明する。
C:0.05〜0.15%、N:0.05〜0.15%
CおよびNは、いずれも侵入型固溶元素であり、固溶強化により鋼の強度を上昇させるために有効である。極低温での所望の降伏応力を得るために、0.05%以上のCおよびNの含有を必要とする。一方、Cが0.15%を超えると、オーステナイト相が不安定となり、炭化物が析出し、極低温での透磁率を低く維持することができなくなるとともに、溶接性・加工性が劣化する。このため、Cは0.05〜0.15%の範囲に限定した。なお、Cの好ましい範囲は0.07〜0.13%である。
【0015】
また、Nは、オーステナイト相の安定化と低温強度の上昇のためには有益な添加元素であるが、0.15%を超える含有は、溶接性を損ない、打抜き加工時の工具摩耗を加速させるとともに、窒化物や炭窒化物の析出により透磁率を増加させる。このため、Nは0.05〜0.15%の範囲に限定した。なお、Nの好ましい範囲は0.07〜0.13%である。
【0016】
Mn:26.0〜30.0%
Mnは、本発明おいて重要な元素で、オーステナイト相を安定化させ、極低温でも極めて低い透磁率を実現するために有用である。このような効果を得るためには、Mnは26.0%以上の含有を必要とする。一方、30.0%を超えると、靱性や溶接性および製造性の低下を招くことから、Mnは26.0〜30.0%の範囲に限定した。
【0017】
Cr:5.0 〜10.0%
Crは、固溶強化によって強度の上昇に寄与するほか、耐食性の向上に有効に作用する。このような効果は5.0 %以上の含有で認められるが、10.0%を超えると、オーステナイト相の安定化を阻害し低温での透磁率の上昇を招く。このため、Crは5.0 〜10.0%の範囲に限定した。なお、本発明で対象とする材料を使用する環境は、基本的には化学反応の進行が極めて緩慢な極低温・高真空中であり、腐食性の観点からは劣悪でなく、この程度のCr含有量で十分な耐食性を確保できる。なお、Crの好ましい範囲は、6〜8%である。
【0018】
Ni:0.50〜5.0 %
Niは、オーステナイト相の安定化と極低温での靱性向上に寄与するとともに、耐食性をも向上させる。本発明では必要に応じ含有できる。このような効果は少なくとも0.50%以上の含有で認められるが、Niが高価であることから、多量の含有は工業的には好ましいことではない。このため、Niは0.50〜5.0 %の範囲とするのが好ましい。これにより、本発明の鋼材は、SUS 316LN などの高Ni系オーステナイトステンレス鋼に比較し、熱膨張係数のみでなく、価格的にも大きな利点を有することになる。
【0019】
Ca:0.02%以下
Caは、不可避的不純物として混入するSの害を抑制し、熱間加工性を改善する目的で必要に応じ添加できる。なお、Caの好ましい添加量は、0.004 〜0.01%の範囲内で、かつCa、S、O各元素の含有量をwtppm で表示し、次(1)式
0.8 ×Ca+30>S+O ……(1)
を満たすことが熱間加工性の確保のためには有効である。より簡便な判断基準としてCa/S≧2、好ましくはCa/S≧3を用いることもできる。
【0020】
なお、上記した成分以外の残部は Feおよび不可避的不純物である。不可避的不純物としては、S:0.005 %以下、P:0.05%以下、O:0.005 %以下が工業的経済性の観点から許容できる。また、炭化物、窒化物、炭窒化物などの析出物、殊に強磁性析出物の生成やオーステナイト相の安定性を損なうような、Fe3C、Fe4N、等の含有は、極力少ないことが望ましい。
【0021】
本発明の高Mn非磁性鋼板の製造方法では、まず、上記した化学組成の鋼素材を、加熱し熱間圧延を施し熱延板とする。
本発明に好適な鋼素材は、Mnを多量に含有していることもあり、高温ではMnが酸化されやすいので、スラブ加熱温度を過度に高めることは焼き減りを増やすだけでなく、Mnヒュームの過剰な発生につながるので好ましくない。また、上記した化学組成の鋼素材の熱間加工性は、必ずしも優れていない。
【0022】
そこで、まず、高温引張試験により、本発明に好適な鋼素材(C:0.12%、Si:0.05%、Mn:27.9%、P:0.029 %、S:0.002 %、Cr:7.0 %、N:0.10%、Ni:0.15%、Ca:0.006 %)の熱間加工性について、評価した。その結果を、図1に示す。図1から、断面収縮率は、1200℃を超えると減少し、熱間脆性の兆候が現れることがわかる。
【0023】
このため、耳割れなどの発生を抑えるためには、熱間圧延の圧延開始温度の上限を1200℃とするのが好ましい。また、熱間圧延の圧延開始温度が1050℃未満となると、炭化物の溶解が不十分であり、また、変形抵抗の増大という不具合が生じる。このため、熱間圧延の圧延開始温度は1050〜1200℃の範囲とした。なお、好ましくは、1100〜1180℃である。
【0024】
また、図1から、引張(加熱)温度が700 ℃以下となると、断面収縮率が60%以下となり、熱間加工性が劣化することがわかる。
このため、本発明では、熱間圧延の圧延終了温度を700 ℃以上に限定した。また、熱間圧延の圧延終了温度が1000℃を超えると、再結晶による結晶粒の粗大化という不具合が生じる。このため、熱間圧延の圧延終了温度は700 〜1000℃の範囲に限定した。なお、好ましくは、耳割れ防止の観点から、800 〜950 ℃である。
【0025】
熱延板は、そのまま、あるいは熱延板焼鈍を施されたのち、製品板として使用することもできるのはいうまでもない。
熱延板は、ついで熱延板焼鈍を施される。熱延板焼鈍は、組織の均一化のために実施する。熱延板焼鈍は950 〜1200℃の温度範囲で行うのが望ましい。焼鈍温度が 950℃未満では、断面収縮率が減少し、1200℃を超えると脆化とともにスケール生成が過大となる。
【0026】
ついで熱延板は、冷間圧延を施され冷延板とされる。本発明では、冷間圧延は、所定の板厚とすることができればよく、圧延条件をとくに限定する必要はない。
所定の板厚とされた冷延板は、ついで冷延板焼鈍を施される。
冷延板焼鈍は、冷間圧延による内部歪の解放、再結晶、析出物の固溶を主目的として行う。とくに、炭化物、窒化物、炭窒化物をオーステナイトマトリックス相中に完全に固溶させ、低透磁率の確保に不利な析出相を消失させるために不可欠のプロセスである。焼鈍温度は1050〜1200℃とする。焼鈍温度が、1050℃未満では、析出物の固溶が不十分であり、一方、1200℃を超えると、連続焼鈍を工業的に安定して実施できなくなる。なお、好ましい焼鈍温度は、1050〜1180℃である。また、この焼鈍の保持時間は、板温が上記した温度に10〜120sec保持される時間とするのが望ましい。
【0027】
さらに、本発明では、冷延板は、上記した範囲の焼鈍温度に保持されたのち、冷却する。冷却は、炭化物や炭窒化物の析出を防止する目的で行うものであり、冷却速度が5〜30℃/s、を有する冷却であれば、その冷却手段はとくに限定されない。
本発明では、冷延板焼鈍後に、さらに調質圧延を施してもよい。冷延板焼鈍とその後の調質圧延とを組み合わすことにより、超電導磁石導線の固定部材であるカラー等で要望される機械的強度に容易に調整することができる。調質圧延は、冷間、好ましくは室温〜150 ℃で行い、所望の強度に応じて圧下率を調整するのが好ましい。なお、圧下率は30%以下とするのが望ましい。調質圧延の圧下率が30%を超えると、内部歪が過大となり、スリット・打抜き後の平坦度が劣化する。
【0028】
調質圧延の圧下率と調質圧延後の硬さの関係を図2に示す。図2から、圧下率を0.5 〜15%まで変更することによって、硬度Hvは170 〜270 に、0.2 %耐力は約300MPaから約700MPaまで上昇する。この程度の圧下率の調質圧延を施しても、本発明の高Mn非磁性鋼板ではオーステナイト相が極めて安定なため、透磁率は1.001 前後の低透磁率を維持し、しかも4Kのような極低温になってもこの低透磁率がほとんど変化しない。
【0029】
【実施例】
表1に示す化学組成の鋼素材を転炉で溶製し、連続鋳造法でスラブとした。これらスラブに表2に示す条件で熱間圧延を施し5.0 mm厚の熱延板とした。ついで、これら熱延板に表2に示す条件の熱延板焼鈍を施し、酸洗処理を施したのち、冷間圧延で1〜3mm厚の冷延板とした。これら冷延板に、表2に示す条件で冷延板焼鈍を施し、焼鈍後急冷処理を施した。冷延板焼鈍の焼鈍雰囲気は、乾燥AXガスとした。また、冷延板焼鈍後冷却速度は約15℃/sとした。
【0030】
ついで、焼鈍済の冷延板に、酸洗処理を施したのち、さらに表2に示す条件で調質圧延を施した。
得られた鋼板について、▲1▼目視による熱延板の外観観察、▲2▼室温および4Kでの引張試験、▲3▼振動試料型磁気測定装置を用いた室温および4Kでの透磁率の測定試験、▲4▼室温〜液体窒素温度間の平均熱膨張係数の測定試験、▲5▼ファインブランキングでの精密打抜き試験を実施した。平坦度は、200 ×200mm の鋼板の全個所について、反りが0.2mm 以下の場合は○、0.2mm 超0.5mm の場合は△、0.5mm 超の場合は×として、評価した。なお、精密打抜き試験は、50mmφの円形試験片を打ち抜き、打ち抜かれた試験片の打抜き精度を測定した。打抜き精度はバリの高さにより測定し、20μm 以下の場合は○、20μm 超50μm 以下の場合は△、50μm 超の場合は×として、評価した。
【0031】
従来例として、2.5 mm厚のTi合金(5%Al−2.5 %Sn−Ti)薄板、Al合金(5%Mg−0.6 %Mn−Al)薄板、SUS 304 冷延薄板について、▲2▼〜▲5▼の試験を実施した。
これらの試験結果を表3に示す。
【0032】
【表1】

Figure 0003864600
【0033】
【表2】
Figure 0003864600
【0034】
【表3】
Figure 0003864600
【0035】
本発明例では、熱延板の表面に耳割れ、微細割れ等の割れ発生はほとんど観察できず、熱延板の外観良好であった。本発明例では、極低温(4K)における引張特性は高く、大型粒子加速器用の構造材料として十分な強度を有している。また、本発明例の平均熱膨張係数は、オーステナイト系ステンレス鋼(約11×10-6)に比べ小さく、超電導磁石のヨーク材として一般的に用いられる純鉄に極めて近い値を有している。
【0036】
本発明例の透磁率は、室温、極低温においても低く、温度による変化も少ない。さらに、本発明例は、精密打抜きを行っても、反り、バリ等の欠陥の発生はなく、さらに平坦度、打ち抜き精度も良好(○)であった。
これに対し、本発明の範囲を外れる比較例は、鋼板表面に割れが発生し外観不良となるもの、極低温での透磁率が高いもの、精密打抜き試験での平坦度、打抜き精度が劣っていた。
【0037】
また、本発明例は、従来例に比べても、低透磁率、低熱膨張係数を示し、極低温用として十分な性能を有している。
【0038】
【発明の効果】
本発明によれば、極低温での降伏応力(耐力)が高く、極低温での透磁率が低く、平均熱膨張係数も低い高Mn非磁性鋼板を工業的に安定して生産性高く製造でき、産業上格段の効果を奏する。また、本発明による高Mn非磁性鋼板は、大型粒子加速器用として十分な特性を有しており、産業上有用である。
【図面の簡単な説明】
【図1】熱間引張の断面収縮率と加熱温度との関係を示すグラフである。
【図2】硬さ(Hv )と調質圧延圧下率との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cryogenic structural material, and more particularly to a non-magnetic structural material used at a cryogenic temperature necessary for constructing a superconducting magnet or the like. The steel sheet referred to in the present invention includes a steel sheet and a steel strip.
[0002]
[Prior art]
In various superconducting utilization technologies such as fusion power generation, elementary particle accelerator, and superconducting power storage, superconducting magnets are used because a large amount of current needs to flow to generate a strong magnetic field. In such a superconducting magnet, a strong electromagnetic force is induced, and it is usually cooled to a cryogenic temperature of 2 to 4 K by liquid helium. Therefore, a structural material that supports the superconducting magnet has a strong electromagnetic force at a very low temperature. Strength that can withstand force is required. Moreover, since the basic purpose is to generate a uniform and stable strong magnetic field distribution as widely as possible, it is important to minimize the influence of the structural material on the magnetic field. Therefore, it is an essential condition that the material is a nonmagnetic material that does not cause an interaction with a magnetic field.
[0003]
From the above viewpoints, structural materials used in and around superconducting magnets are required to have high mechanical properties at extremely low temperatures and extremely low magnetic permeability, and to strengthen superconducting magnets that are composite structures. In order to hold it, it is necessary to consider thermal deformation. Also, when manufacturing superconducting magnets, structural materials have excellent machinability and weldability, such as punchability and punchability, and also have excellent surface flatness and fitability required for stacking multiple sheets. It is also required to be.
[0004]
Conventionally, materials that have been studied as support structure materials for superconducting magnets include austenitic stainless steel, high Mn steel, aluminum alloys, titanium alloys, and fiber reinforced plastics. The strength, permeability, and coefficient of thermal expansion required for the superconducting magnet support structure material vary depending on the strength of the design magnetic field of the superconducting magnet to be manufactured and the uniformity of the desired magnetic field distribution. It is important in selecting the material that the strength is high and the magnetic permeability and the coefficient of thermal expansion are small.
[0005]
Fiber reinforced plastic is non-magnetic, has a small specific gravity, is easy to handle, has a low thermal expansion coefficient compared to austenitic stainless steel, but has a low strength per unit cross-sectional area. Titanium alloys have low specific gravity, high strength, and high specific strength, but have the problems of low toughness at low temperatures and high costs.
Aluminum alloys are lightweight, have high specific strength, and extremely low permeability, so they are used in many applications at cryogenic temperatures. However, when the design magnetic field is increased as in large particle accelerators, the strength is insufficient. However, there is a problem in weldability.
[0006]
Since general austenitic stainless steel has insufficient strength and toughness at low temperatures, a stainless steel having a low carbon content by adding nitrogen has been developed. However, since this stainless steel has insufficient stability of the austenite phase, a part of the austenite phase is transformed into a martensitic phase of a ferromagnetic substance by deformation at a low temperature. For this reason, there is a problem that the toughness is lowered and the magnetic permeability at an extremely low temperature is not sufficiently lowered.
[0007]
After that, austenitic stainless steel with a further increased Ni content was developed, but there were problems with its high cost and high thermal expansion coefficient as a structural material for cryogenic temperatures.
To deal with such problems, Japanese Patent Publication No. 59-11661 and Japanese Patent Publication No. 5-18887 propose a relatively inexpensive high-Mn nonmagnetic steel and a method for producing the same. However, the high Mn nonmagnetic steel described in JP-B-59-11661 has a high magnetic permeability at a very low temperature and has a problem for a large particle accelerator. In addition, the technique described in Japanese Patent Publication No. 5-18887 has a problem that it requires a long-term aging treatment and the productivity is lowered.
[0008]
[Problems to be solved by the invention]
Furthermore, a superconducting magnet requires a nonmagnetic material called a collar as a fixing member for a superconducting wire, which is a conductor coil, and this collar is formed by laminating a large number of nonmagnetic steel plates. This collar is also cooled to a very low temperature, and must have an appropriate mechanical strength in order to withstand a strong electromagnetic force generated when a large current flows as a superconducting magnet. However, if the strength of the non-magnetic steel sheet is too high or the residual stress is excessive, when punching the non-magnetic steel sheet into a predetermined shape of the collar, Later warping occurs.
[0009]
Superconducting magnets often produce collars by fine punching as fine blanking. From such a viewpoint, the mechanical strength of the material used for the collar is determined in consideration of the strength and distribution of the design magnetic field. For this reason, the manufacturing method of the nonmagnetic steel plate which can adjust easily the intensity | strength of the nonmagnetic steel plate of a raw material to the desired intensity | strength requested | required by design was calculated | required.
[0010]
The present invention advantageously solves the problems of the prior art described above, is suitable for large particle accelerators, has a high yield stress (yield strength) at a cryogenic temperature, and a low magnetic permeability at a cryogenic temperature. An object of the present invention is to propose a method for producing a high-Mn non-magnetic steel sheet for cryogenic use which can be produced industrially stably with high productivity.
[0011]
[Means for Solving the Problems]
In order to achieve the above-mentioned problems, the present inventors investigated the characteristics required for a support structure member used for a superconducting magnet for a large particle accelerator, and also used magnetic permeability at a cryogenic temperature of high-Mn nonmagnetic steel, We have intensively studied the factors affecting the yield stress. As a result, it has been found that the magnetic permeability at a very low temperature of the high Mn nonmagnetic steel can be lowered by further stabilizing the austenite phase by increasing the amount of Mn. In addition, it was found that the yield stress at a very low temperature of high-Mn nonmagnetic steel can be easily adjusted to 900 MPa or more by temper rolling the steel sheet after intermediate annealing.
[0012]
The present invention is configured based on the above-described knowledge.
That is, the present invention is a mass%, C: 0.05~0.15%, Mn : 26.0~30.0%, Cr: 5.0 ~10.0%, N: 0.05~0.15%, or even Ca: contains 0.02% or less, When the steel material consisting of the remaining Fe and unavoidable impurities is heated to form a hot-rolled steel sheet by hot rolling, the rolling start temperature of the hot rolling is 1050 to 1200 ° C, and the rolling end temperature is 700 to 1000 ° C. the process for the manufacture of a cryogenic high Mn non-magnetic hot-rolled steel sheet, wherein, in the present invention, the steel material, in mass%, C: 0.05~0.15%, Mn : 26.0~30.0%, Cr : 5.0 to 10.0%, Ni: 0.50 to 5.0%, N: 0.05 to 0.15%, or further Ca: 0.02% or less, and a steel material composed of the balance Fe and inevitable impurities is preferable.
[0013]
Further, the present invention is a mass%, C: 0.05~0.15%, Mn : 26.0~30.0%, Cr: 5.0 ~10.0%, N: 0.05~0.15%, or even Ca: contains 0.02% or less, The steel material consisting of the remaining Fe and inevitable impurities is hot-rolled to form a hot-rolled sheet, the hot-rolled sheet is subjected to hot-rolled sheet annealing, and then cold-rolled to form a cold-rolled sheet, and then the cold-rolled sheet In the manufacturing method of a high Mn non-magnetic steel sheet that is subjected to cold rolling sheet annealing, the rolling start temperature of the hot rolling is set to 1050 to 1200 ° C., the rolling end temperature is set to 700 to 1000 ° C., and the cold rolling sheet annealing is performed by annealing. a method for producing cryogenic high Mn non-magnetic cold-rolled steel sheet, characterized in that the temperature 1050 to 1200 ° C., and in the present invention, the steel material, in mass%, C: 0.05 to 0.15% , Mn: 26.0~30.0%, Cr: 5.0 ~10.0%, Ni: 0.50~5.0%, N: 0.05~0.15%, or even Ca: contains 0.02% or less, and the balance Fe and unavoidable It is preferable to be a steel material consisting of impurities, Also, in the present invention, the following cold-rolled sheet annealing, and more preferably preferably subjected to temper rolling below 30% reduction ratio.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
First, the reason for limiting the chemical composition of the steel material will be described.
C: 0.05 to 0.15%, N: 0.05 to 0.15%
C and N are both interstitial solid solution elements and are effective for increasing the strength of steel by solid solution strengthening. In order to obtain the desired yield stress at cryogenic temperatures, it is necessary to contain 0.05% or more of C and N. On the other hand, if C exceeds 0.15%, the austenite phase becomes unstable, carbides are precipitated, the permeability at extremely low temperatures cannot be kept low, and weldability and workability deteriorate. For this reason, C was limited to the range of 0.05 to 0.15%. In addition, the preferable range of C is 0.07 to 0.13%.
[0015]
N is an additive element useful for stabilizing the austenite phase and increasing the low-temperature strength. However, the content exceeding 0.15% impairs weldability and accelerates tool wear during punching. Increase permeability by precipitation of nitrides and carbonitrides. For this reason, N was limited to the range of 0.05 to 0.15%. In addition, the preferable range of N is 0.07 to 0.13%.
[0016]
Mn: 26.0-30.0%
Mn is a Oite important elements in the present invention, to stabilize the austenite phase, it is useful in order to achieve a very low magnetic permeability at cryogenic temperatures. In order to acquire such an effect, Mn needs to contain 26.0% or more. On the other hand, if it exceeds 30.0%, the toughness, weldability and manufacturability are reduced, so Mn is limited to the range of 26.0 to 30.0%.
[0017]
Cr: 5.0 to 10.0%
Cr contributes to an increase in strength by solid solution strengthening, and also effectively acts to improve corrosion resistance. Such an effect is recognized at a content of 5.0% or more. However, if it exceeds 10.0%, stabilization of the austenite phase is inhibited and the permeability at low temperature is increased. For this reason, Cr was limited to the range of 5.0 to 10.0%. Note that the environment in which the material to be used in the present invention is used is basically in an extremely low temperature and high vacuum where the progress of the chemical reaction is extremely slow, and is not inferior from the viewpoint of corrosiveness. Sufficient corrosion resistance can be secured by the content. In addition, the preferable range of Cr is 6 to 8%.
[0018]
Ni: 0.50-5.0%
Ni contributes to stabilizing the austenite phase and improving toughness at extremely low temperatures, and also improves corrosion resistance. In this invention, it can contain as needed. Such an effect is recognized at a content of at least 0.50% or more. However, since Ni is expensive, a large content is not industrially preferable. For this reason, Ni is preferably in the range of 0.50 to 5.0%. As a result, the steel material of the present invention has significant advantages not only in terms of thermal expansion coefficient but also in price as compared to high Ni austenitic stainless steel such as SUS 316LN.
[0019]
Ca: 0.02% or less
Ca can be added as needed for the purpose of suppressing the harm of S mixed as an inevitable impurity and improving hot workability. The preferable addition amount of Ca is in the range of 0.004 to 0.01%, and the content of each element of Ca, S, and O is expressed in wtppm.
0.8 × Ca + 30> S + O (1)
Satisfying this is effective for ensuring hot workability. Ca / S ≧ 2, preferably Ca / S ≧ 3 can be used as a simpler criterion.
[0020]
Incidentally, the remainder other than the above components is Fe and unavoidable impurities. As unavoidable impurities, S: 0.005% or less, P: 0.05% or less, and O: 0.005% or less are acceptable from the viewpoint of industrial economy. Also, it should contain as little as possible Fe 3 C, Fe 4 N, etc., which may impair the formation of precipitates such as carbides, nitrides, carbonitrides, especially the formation of ferromagnetic precipitates and the stability of the austenite phase. Is desirable.
[0021]
In the method for producing a high Mn nonmagnetic steel sheet of the present invention, first, a steel material having the above-described chemical composition is heated and hot-rolled to obtain a hot-rolled sheet.
The steel material suitable for the present invention may contain a large amount of Mn, and Mn is likely to be oxidized at a high temperature, so excessively increasing the slab heating temperature not only increases the wear-out, but also the Mn fume. This is not preferable because it leads to excessive generation. Moreover, the hot workability of the steel material having the above-described chemical composition is not necessarily excellent.
[0022]
Therefore, first, by a high temperature tensile test, a steel material suitable for the present invention (C: 0.12%, Si: 0.05%, Mn: 27.9%, P: 0.029%, S: 0.002%, Cr: 7.0%, N: 0.10) %, Ni: 0.15%, Ca: 0.006%) was evaluated. The result is shown in FIG. From FIG. 1, it can be seen that the cross-sectional shrinkage ratio is decreased when the temperature exceeds 1200 ° C., and signs of hot brittleness appear.
[0023]
For this reason, in order to suppress generation | occurrence | production of an ear crack etc., it is preferable to make the upper limit of the rolling start temperature of hot rolling into 1200 degreeC. Moreover, when the rolling start temperature of hot rolling is less than 1050 ° C., the dissolution of carbides is insufficient, and the problem of increased deformation resistance occurs. For this reason, the rolling start temperature of the hot rolling is set to a range of 1050 to 1200 ° C. In addition, Preferably, it is 1100-1180 degreeC.
[0024]
Further, FIG. 1 shows that when the tensile (heating) temperature is 700 ° C. or less, the cross-sectional shrinkage ratio is 60% or less, and the hot workability deteriorates.
For this reason, in this invention, the rolling completion temperature of hot rolling was limited to 700 degreeC or more. Moreover, when the rolling end temperature of hot rolling exceeds 1000 ° C., there is a problem that the crystal grains become coarse due to recrystallization. For this reason, the rolling end temperature of hot rolling was limited to a range of 700 to 1000 ° C. In addition, Preferably, it is 800-950 degreeC from a viewpoint of ear crack prevention.
[0025]
Needless to say, the hot-rolled sheet can be used as it is or after being subjected to hot-rolled sheet annealing.
The hot rolled sheet is then subjected to hot rolled sheet annealing. Hot-rolled sheet annealing is performed to make the structure uniform. The hot-rolled sheet annealing is desirably performed in a temperature range of 950 to 1200 ° C. When the annealing temperature is less than 950 ° C, the cross-sectional shrinkage ratio decreases, and when it exceeds 1200 ° C, scale formation becomes excessive with embrittlement.
[0026]
Next, the hot-rolled sheet is cold-rolled to form a cold-rolled sheet. In the present invention, the cold rolling only needs to have a predetermined thickness, and there is no need to particularly limit the rolling conditions.
The cold-rolled sheet having a predetermined thickness is then subjected to cold-rolled sheet annealing.
Cold-rolled sheet annealing is performed mainly for release of internal strain by cold rolling, recrystallization, and solid solution of precipitates. In particular, this is an indispensable process for completely dissolving carbides, nitrides, and carbonitrides in the austenite matrix phase and eliminating the precipitated phase that is disadvantageous for ensuring low magnetic permeability. An annealing temperature shall be 1050-1200 degreeC. If the annealing temperature is less than 1050 ° C., the solid solution of the precipitate is insufficient. On the other hand, if it exceeds 1200 ° C., continuous annealing cannot be performed industrially stably. A preferable annealing temperature is 1050 to 1180 ° C. Further, it is desirable that the annealing holding time is a time during which the plate temperature is held at the above-described temperature for 10 to 120 seconds.
[0027]
Furthermore, in the present invention, the cold-rolled sheet is cooled after being held at the annealing temperature in the above-described range. The cooling is performed for the purpose of preventing precipitation of carbides and carbonitrides, and the cooling means is not particularly limited as long as the cooling has a cooling rate of 5 to 30 ° C./s.
In the present invention, temper rolling may be further performed after the cold-rolled sheet annealing. By combining cold-rolled sheet annealing and subsequent temper rolling, it is possible to easily adjust the mechanical strength required for a collar or the like that is a fixing member of a superconducting magnet conducting wire. The temper rolling is performed cold, preferably at room temperature to 150 ° C, and the rolling reduction is preferably adjusted according to the desired strength. Note that the rolling reduction is desirably 30% or less. When the rolling reduction of temper rolling exceeds 30%, the internal strain becomes excessive, and the flatness after slitting / punching deteriorates.
[0028]
FIG. 2 shows the relationship between the rolling reduction of temper rolling and the hardness after temper rolling. From FIG. 2, by changing the rolling reduction from 0.5 to 15%, the hardness Hv increases from 170 to 270, and the 0.2% yield strength increases from about 300 MPa to about 700 MPa. Even when temper rolling at such a reduction rate is applied, the austenite phase is extremely stable in the high Mn non-magnetic steel sheet of the present invention, so that the magnetic permeability is maintained at a low magnetic permeability of around 1.001, and a pole like 4K. Even at low temperatures, this low permeability hardly changes.
[0029]
【Example】
Steel materials having the chemical composition shown in Table 1 were melted in a converter and made into slabs by a continuous casting method. These slabs were hot-rolled under the conditions shown in Table 2 to obtain hot rolled sheets having a thickness of 5.0 mm. Next, these hot-rolled sheets were subjected to hot-rolled sheet annealing under the conditions shown in Table 2 and pickled, and then cold-rolled to 1 to 3 mm thick cold-rolled sheets. These cold-rolled sheets were subjected to cold-rolled sheet annealing under the conditions shown in Table 2, and subjected to a rapid cooling treatment after annealing. The annealing atmosphere for cold-rolled sheet annealing was dry AX gas. The cooling rate after cold-rolled sheet annealing was about 15 ° C./s.
[0030]
Next, the annealed cold-rolled sheet was subjected to pickling treatment, and further subjected to temper rolling under the conditions shown in Table 2.
(1) Visual observation of hot-rolled sheet appearance, (2) Tensile test at room temperature and 4K, and (3) Measurement of magnetic permeability at room temperature and 4K using a vibration sample type magnetometer. Test, (4) Measurement test of average thermal expansion coefficient between room temperature and liquid nitrogen temperature, (5) Precise punching test with fine blanking. The flatness was evaluated as “O” when the warpage was 0.2 mm or less, “Δ” when the warpage was 0.2 mm or less, “Δ” when the warpage was 0.2 mm or less, and “X” when the warpage was more than 0.5 mm. In the precision punching test, a 50 mmφ circular test piece was punched, and the punching accuracy of the punched test piece was measured. The punching accuracy was measured according to the height of the burr, and was evaluated as ◯ when it was 20 μm or less, Δ when it was more than 20 μm and 50 μm or less, and × when it was more than 50 μm.
[0031]
Conventional examples of 2.5 mm thick Ti alloy (5% Al-2.5% Sn-Ti) sheet, Al alloy (5% Mg-0.6% Mn-Al) sheet, SUS 304 cold rolled sheet The test of 5 ▼ was conducted.
These test results are shown in Table 3.
[0032]
[Table 1]
Figure 0003864600
[0033]
[Table 2]
Figure 0003864600
[0034]
[Table 3]
Figure 0003864600
[0035]
In the example of the present invention, cracks such as ear cracks and fine cracks were hardly observed on the surface of the hot-rolled sheet, and the appearance of the hot-rolled sheet was good. In the example of the present invention, the tensile property at extremely low temperature (4K) is high, and it has sufficient strength as a structural material for a large particle accelerator. In addition, the average thermal expansion coefficient of the present invention example is smaller than that of austenitic stainless steel (about 11 × 10 −6 ), and has a value very close to that of pure iron generally used as a yoke material for superconducting magnets. .
[0036]
The magnetic permeability of the example of the present invention is low even at room temperature and extremely low temperature, and changes with temperature are small. Furthermore, even when precision punching was performed in the inventive examples, defects such as warpage and burrs were not generated, and the flatness and punching accuracy were also good (◯).
On the other hand, the comparative examples that are out of the scope of the present invention have cracks on the steel sheet surface, resulting in poor appearance, high permeability at extremely low temperatures, flatness in precision punching tests, and punching accuracy is poor. It was.
[0037]
Moreover, the example of the present invention shows a low magnetic permeability and a low thermal expansion coefficient as compared with the conventional example, and has sufficient performance for cryogenic use.
[0038]
【The invention's effect】
According to the present invention, a high-Mn non-magnetic steel sheet having a high yield stress (yield strength) at a cryogenic temperature, a low permeability at a cryogenic temperature, and a low average thermal expansion coefficient can be produced industrially stably with high productivity. It has a remarkable industrial effect. Moreover, the high Mn nonmagnetic steel sheet according to the present invention has sufficient characteristics for use in a large particle accelerator and is industrially useful.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a cross-sectional shrinkage ratio of hot tension and a heating temperature.
FIG. 2 is a graph showing the relationship between hardness (Hv) and temper rolling reduction ratio.

Claims (5)

量%で、
C:0.05〜0.15%、 Mn:26.0〜30.0%、
Cr:5.0 〜10.0%、 N:0.05〜0.15%
あるいはさらに Ca 0.02 %以下
を含有し、残部 Fe および不可避的不純物からなる鋼素材を加熱し、熱間圧延により熱延鋼板とするに際し、前記熱間圧延の圧延開始温度を1050〜1200℃、圧延終了温度を700 〜1000℃とすることを特徴とする極低温用高Mn非磁性熱延鋼板の製造方法。
In mass%,
C: 0.05 to 0.15%, Mn: 26.0 to 30.0%,
Cr: 5.0 to 10.0%, N: 0.05 to 0.15% ,
Alternatively, when the steel material further containing Ca : 0.02 % or less , the balance Fe and unavoidable impurities is heated to form a hot-rolled steel sheet by hot rolling, the rolling start temperature of the hot rolling is set to 1050 A method for producing a high-Mn nonmagnetic hot-rolled steel sheet for cryogenic use, characterized in that the rolling end temperature is set to 700 to 1000 ° C.
前記鋼素材が、量%で、
C:0.05〜0.15%、 Mn:26.0〜30.0%、
Cr:5.0 〜10.0%、 Ni:0.50〜5.0 %、
N:0.05〜0.15%、 あるいはさらに Ca 0.02 %以下
を含有し、残部 Fe および不可避的不純物からなる鋼素材であることを特徴とする請求項1に記載の極低温用高Mn非磁性熱延鋼板の製造方法。
The steel material, in mass%,
C: 0.05 to 0.15%, Mn: 26.0 to 30.0%,
Cr: 5.0 to 10.0%, Ni: 0.50 to 5.0%,
The high Mn for cryogenic temperature according to claim 1, characterized in that it is a steel material containing N: 0.05 to 0.15% , or further Ca : 0.02 % or less , the balance being Fe and inevitable impurities. A method for producing a non-magnetic hot-rolled steel sheet.
量%で、
C:0.05〜0.15%、 Mn:26.0〜30.0%、
Cr:5.0 〜10.0%、 N:0.05〜0.15%
あるいはさらに Ca 0.02 %以下
を含有し、残部 Fe および不可避的不純物からなる鋼素材に、熱間圧延を施し熱延板とし、該熱延板に熱延板焼鈍を施したのち冷間圧延を施し冷延板とし、ついで該冷延板に冷延板焼鈍を施す高Mn非磁性鋼板の製造方法において、前記熱間圧延が、圧延開始温度を1050〜1200℃、圧延終了温度を700 〜1000℃とし、さらに前記冷延板焼鈍が、焼鈍温度を1050〜1200℃とすることを特徴とする極低温用高Mn非磁性冷延鋼板の製造方法。
In mass%,
C: 0.05 to 0.15%, Mn: 26.0 to 30.0%,
Cr: 5.0 to 10.0%, N: 0.05 to 0.15% ,
Alternatively, the steel material further containing Ca : 0.02 % or less , and the balance Fe and inevitable impurities is hot-rolled to form a hot-rolled sheet, and the hot-rolled sheet is subjected to hot-rolled sheet annealing. In the method for producing a high-Mn non-magnetic steel sheet, which is cold-rolled to form a cold-rolled sheet, and then cold-rolled sheet annealed to the cold-rolled sheet, the hot rolling has a rolling start temperature of 1050 to 1200 ° C. and a rolling end temperature. A method for producing a high-Mn nonmagnetic cold-rolled steel sheet for cryogenic use, wherein the cold-rolled sheet annealing is performed at an annealing temperature of 1050-1200 ° C.
前記鋼素材が、量%で、
C:0.05〜0.15%、 Mn:26.0〜30.0%、
Cr:5.0 〜10.0%、 Ni:0.50〜5.0 %、
N:0.05〜0.15%、 あるいはさらに Ca 0.02 %以下
を含有し、残部 Fe および不可避的不純物からなる鋼素材であることを特徴とする請求項3に記載の極低温用高Mn非磁性冷延鋼板の製造方法。
The steel material, in mass%,
C: 0.05 to 0.15%, Mn: 26.0 to 30.0%,
Cr: 5.0 to 10.0%, Ni: 0.50 to 5.0%,
The high Mn for cryogenic temperature according to claim 3, wherein the steel material contains N: 0.05 to 0.15% or Ca : 0.02 % or less , and the balance is Fe and inevitable impurities. A method for producing a non-magnetic cold-rolled steel sheet.
前記冷延板焼鈍後に、さらに調質圧延を施すことを特徴とする請求項3または4に記載の極低温用高Mn非磁性冷延鋼板の製造方法。  The method for producing a high Mn nonmagnetic cold-rolled steel sheet for cryogenic use according to claim 3 or 4, further comprising temper rolling after the cold-rolled sheet annealing.
JP01791299A 1999-01-27 1999-01-27 Method for producing high Mn non-magnetic steel sheet for cryogenic use Expired - Fee Related JP3864600B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP01791299A JP3864600B2 (en) 1999-01-27 1999-01-27 Method for producing high Mn non-magnetic steel sheet for cryogenic use
EP00101428A EP1024204A3 (en) 1999-01-27 2000-01-25 Method of manufacturing a high Mn non-magnetic steel sheet for cryogenic temperature use
US10/013,532 US6761780B2 (en) 1999-01-27 2001-12-13 Method of manufacturing a high Mn non-magnetic steel sheet for cryogenic temperature use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01791299A JP3864600B2 (en) 1999-01-27 1999-01-27 Method for producing high Mn non-magnetic steel sheet for cryogenic use

Publications (2)

Publication Number Publication Date
JP2000212646A JP2000212646A (en) 2000-08-02
JP3864600B2 true JP3864600B2 (en) 2007-01-10

Family

ID=11956975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01791299A Expired - Fee Related JP3864600B2 (en) 1999-01-27 1999-01-27 Method for producing high Mn non-magnetic steel sheet for cryogenic use

Country Status (2)

Country Link
EP (1) EP1024204A3 (en)
JP (1) JP3864600B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101798658B (en) * 2010-04-12 2011-06-22 中国石油天然气集团公司 24-30% Mn-containing alloy pipe material and manufacture method thereof
CN103834781B (en) * 2014-03-20 2015-05-27 何萌 Metal piece treatment method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204864A (en) * 1984-03-29 1985-10-16 Sanyo Tokushu Seikou Kk Nonmagnetic high-mn steel having superior toughness at ordinary and low temperatures
DE3577882D1 (en) * 1984-05-22 1990-06-28 Westinghouse Electric Corp Austenitic alloys based on iron manganese and iron manganese chromium.
US4875933A (en) * 1988-07-08 1989-10-24 Famcy Steel Corporation Melting method for producing low chromium corrosion resistant and high damping capacity Fe-Mn-Al-C based alloys
JPH06100941A (en) * 1991-10-30 1994-04-12 Kawasaki Steel Corp Production of high manganese non-magnetic steel strip
WO1993013233A1 (en) * 1991-12-30 1993-07-08 Pohang Iron & Steel Co., Ltd. Austenitic high manganese steel having superior formability, strength and weldability, and manufacturing process therefor
JPH0641685A (en) * 1992-07-28 1994-02-15 Kawasaki Steel Corp High mn non-magnetic cold-rolled steel sheet and its production
JPH0657379A (en) * 1992-08-12 1994-03-01 Nippon Steel Corp Non-magnetic steel excellent in hot workability and corrosion resistance
JPH0762432A (en) * 1993-08-27 1995-03-07 Kobe Steel Ltd Manufacture of high strength non-magnetic ring chain excellent in corrosion resistance and heat resistance
JP2978427B2 (en) * 1995-05-22 1999-11-15 株式会社神戸製鋼所 High Mn nonmagnetic steel for cryogenic use and manufacturing method
JP2000501778A (en) * 1995-07-11 2000-02-15 ウラコ,カリ,マーティ Nitrogen-containing iron-based shape memory and vibration damping alloy

Also Published As

Publication number Publication date
EP1024204A2 (en) 2000-08-02
JP2000212646A (en) 2000-08-02
EP1024204A3 (en) 2004-01-28

Similar Documents

Publication Publication Date Title
JP2807566B2 (en) Austenitic high manganese steel having excellent formability, strength and weldability, and method for producing the same
JP5185613B2 (en) Novel Fe-Al alloy and method for producing the same
JPWO2007144964A1 (en) High strength electrical steel sheet and manufacturing method thereof
US3634072A (en) Magnetic alloy
JP5907320B1 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
JP6480446B2 (en) Non-oriented electrical steel slab or electrical steel sheet, parts manufactured therefrom, and method for producing non-directional electrical steel slab or electrical steel sheet
JP2007186790A (en) High strength non-oriented electrical steel sheet and method for manufacture the same
JPS61270356A (en) Austenitic stainless steels plate having high strength and high toughness at very low temperature
JPH0536481B2 (en)
US20190360065A1 (en) METHOD FOR PRODUCING A STRIP FROM A CoFe ALLOY AND A SEMI-FINISHED PRODUCT CONTAINING THIS STRIP
JP2007302937A (en) Steel plate for hardened member, hardened member and manufacturing methods thereof
JP3864600B2 (en) Method for producing high Mn non-magnetic steel sheet for cryogenic use
JP2002194507A (en) Ferritic stainless steel superior in workability with less planar anisotropy and production method for the same
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
US6761780B2 (en) Method of manufacturing a high Mn non-magnetic steel sheet for cryogenic temperature use
JPS6054374B2 (en) Method for manufacturing austenitic steel plates and steel strips
JP4469269B2 (en) Electrical steel sheet with excellent high-frequency magnetic properties and manufacturing method thereof
JPWO2014157146A1 (en) Austenitic stainless steel sheet and method for producing high-strength steel using the same
JP2018111847A (en) Nonoriented electromagnetic steel sheet
JP2021161469A (en) Ferritic stainless steel
US20070125450A1 (en) High-silicon steel and method of making the same
JP2001240942A (en) Mn NONMAGNETIC SEAMLESS STEEL PIPE FOR CRYOGENIC USE
JPS61170545A (en) High manganese steel for very low temperature use having superior rust resistance
JPH07107187B2 (en) High Mn non-magnetic steel with low susceptibility to stress corrosion cracking
JPH0257668A (en) Extra low temperature use nonmagnetic austenitic stainless steel having excellent reheating resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees