JP3862264B2 - Multi-stage voltage doubler rectifier - Google Patents

Multi-stage voltage doubler rectifier Download PDF

Info

Publication number
JP3862264B2
JP3862264B2 JP2002257614A JP2002257614A JP3862264B2 JP 3862264 B2 JP3862264 B2 JP 3862264B2 JP 2002257614 A JP2002257614 A JP 2002257614A JP 2002257614 A JP2002257614 A JP 2002257614A JP 3862264 B2 JP3862264 B2 JP 3862264B2
Authority
JP
Japan
Prior art keywords
voltage
capacitor
output
stage
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002257614A
Other languages
Japanese (ja)
Other versions
JP2004096946A (en
Inventor
和明 橋本
隆之 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP2002257614A priority Critical patent/JP3862264B2/en
Publication of JP2004096946A publication Critical patent/JP2004096946A/en
Application granted granted Critical
Publication of JP3862264B2 publication Critical patent/JP3862264B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、コッククロフトウォルトン回路のような多段倍電圧整流装置、特に歯科用X線装置に用いられる電源に適した多段倍電圧整流装置に関する。
【0002】
一般に、低電圧電源、高電圧電源にかかわらず出力の安定化が求められる。特に、X線装置などにあっては、図3に示すように、よく知られているコッククロフトウォルトン回路のような多段倍電圧整流回路1の出力端子2に接続されるX線管(図示せず)の陽極電圧を高電圧分割抵抗R1と電圧検出抵抗R2とで検出し、この検出電圧をインバータ回路又はチョッパ回路のような1次側の電力制御装置3に帰還される。なお、電力制御装置3はインバータ回路又はチョッパ回路などの主回路部3Aと制御部3Bとからなり、制御部3Bは制御駆動回路3a、誤差増幅器3b、基準電源3cで示されている。また、4は高電圧トランスである。この従来回路では、高電圧の出力電圧を高電圧分割抵抗R1と電圧検出抵抗R2とで直接検出しているので、出力検出電圧は高電圧の出力電圧に比例しており、したがって、基準電源3cは出力電圧の定格値に応じた固定値に選定されており、結局、電力制御装置3はその基準値に出力検出電圧がなるように動作する。
【0003】
このような通常の回路の場合には、高電圧分割抵抗R1を含む高電圧の電圧検出回路が必要となり、電源の筐体が接地電位にある場合には、電気絶縁上問題の無い距離を保って配置する必要があるので、直流高電圧発生装置自体の筐体が大型化し、コストもアップするという問題がある。この問題を解決する従来例として、下記公開公報に記載された直流高電圧発生装置がある。この中の一つの具体例は、入力電流を測定する入力電流測定装置、コッククロフトウォルトン回路のn段目の直流電圧を検出する電圧測定装置、及び演算処理装置を備え、演算処理装置にて入力電流とn段目の直流電圧とをある所定の計算式によって演算処理して、出力電圧を算出するものである。この例では、コッククロフトウォルトン回路のn段目の直流電圧を検出するので、出力電圧よりも低い電圧測定になるというメリットがある。
【特許文献1】
特開平9−182437号公報(明細書の(0032)〜(0037)、図2、図3、図5)
【0004】
【発明が解決しようとする課題】
しかしながら、このような従来装置にあっては、出力電圧よりも低い電圧の検出で出力電圧の検出ができるが、入力電流も検出して、検出電圧と検出電流を演算しなければ正確に出力電圧の検出を行うことができないという問題があった。また、計算式を求めなければならず、条件によって計算式が違ってくるので、正しい計算式を求めるのは困難な場合があり、このような場合には正確な出力電圧検出値が求まらないという問題がある。入力電流がノイズなどにより大きく急変した場合には、その影響を受けて正確な出力電圧検出信号が得られないという蹴ってもある。
したがって、本発明はあらかじめ出力電圧値と出力電流値の出力条件に対する基準電圧値を求めてCPUのような基準電圧付与手段に格納しておき、設定した出力条件に対応する基準電圧値を基準電圧付与手段から自動的に取り出して出力電圧検出信号と比較するようにしたことが特徴である。
【0005】
【課題を解決するための手段及び作用】
請求項1に記載の発明は、初段のコンデンサから最終段のコンデンサまで直列接続してなる第1のコンデンサコラムと、初段のコンデンサから最終段のコンデンサまで直列接続してなる第2のコンデンサコラムと、前記第1のコンデンサコラムと前記第2のコンデンサコラムのコンデンサを順次接続する複数の整流用ダイオードと、負荷電力を制御する主回路部と、該主回路部に接続された1次巻線と、前記第1のコンデンサコラムの初段のコンデンサと前記第2のコンデンサコラムの初段コンデンサとの間に接続された2次巻線とを有するトランスと、直流出力電圧に対応する電圧を検出する電圧検出手段と、基準電圧付与手段と、前記電圧検出手段からの検出電圧と前記基準電圧付与手段からの基準電圧との差電圧を前記主回路部の制御駆動部に与える誤差増幅器と、を備えた多段倍電圧整流装置において、前記電圧検出手段は、前記第1のコンデンサコラムの初段から最終段前の途中のコンデンサと固定電圧点との間に接続され、前記基準電圧付与手段は、負荷電力の上限値と下限値との間で複数の前記直流高電圧出力電圧を直接検出したときの出力検出信号に対応した値をあらかじめ負荷の設定出力電圧と設定電流との値によって決められる基準値として格納しておき、直流高電圧出力電圧を検出するとき、設定された出力条件に応じて前記格納された基準値を取り出して基準電圧として前記誤差増幅器に与えることを特徴とする多段倍電圧整流装置を提供するものである。
【0008】
【発明の実施の形態】
図1により本発明に係る多段倍電圧整流装置の一実施例について説明する。図3で示した記号と同一の記号は、相当する部材を示すものとする。この実施例では、後で詳述する基準電圧付与手段として機能するCPU3dから基準電圧を誤差増幅器3bに供給し、また電圧分割抵抗R1と電圧検出抵抗R2とを直列接続して出力電圧検出回路として、これを平滑コラム側の初段のコンデンサC1と2段目のコンデンサC2との接続点J1と、接地電位のような固定電位との間に接続しているところに特徴がある。例えば、出力電圧が80kVで、多段倍電圧整流回路1が4段の場合、従来例ではほぼ80kVの耐圧の抵抗が必要であったが、この実施例では20kVの耐圧をもつ電圧分割抵抗R1と、従来と同じ低電圧の電圧検出抵抗R2を備えれば良い。図面では1個の電圧分割抵抗R1で示しているが、実際には電圧分割抵抗R1は複数個の抵抗器を直列接続したものからなり、互いの電気絶縁距離を考慮して配置しなければならないので、それらの占有空間は大きくなり、コストも高くなるが、この実施例では単純に比較しても抵抗器の個数も占有空間も1/4で済む。なお、コンデンサC1〜C4は第1のコンデンサコラムを構成し、平滑作用を行う。
【0009】
しかしながら、平滑コラム側の初段のコンデンサC1と2段目のコンデンサC2との接続点J1で出力電圧を検出しているので、高電圧出力電圧そのものを直接検出するのに比べて電圧検出精度が低下する。したがって、この発明では予め出力条件を変えて高電圧出力電圧そのものを直接検出し、そのときの好ましい基準電圧を求めてCPUに基準電圧データとして入力する。この点について具体的に説明する。歯科用のX線用電源などの場合には負荷条件は限られた範囲にあるため、本発明を容易に適用できる。
【0010】
例えば、先ず、負荷範囲の下限値を50kVとすると、50kVに出力電圧を設定し、出力電流の範囲、先ず2mAで運転する。50kVの出力電圧を直接検出し、その電圧検出信号と基準電圧とを比較して運転し、出力電圧を設定された50kVに維持しながら運転できる基準電圧Va1を求めてその基準電圧Va1をCPUに基準電圧データとして入力する。次に、50kVに出力電圧を設定し、出力電流を5mAにして運転して、出力電圧を50kVに維持しながら運転できる基準電圧Va2を求めてその基準電圧Va1をCPUに基準データとして入力する。このように順次、出力電流を負荷範囲の最大の電流値まで変えてそのときどきの好ましい基準電圧を求めてCPUに基準電圧データとしてそれぞれ入力する。さらに、出力電圧を60kVに上げて設定し、前述のように出力電流を変えて運転し、出力電圧を60kVに維持して運転できる基準電圧Vb1、Vb2、・・Vbnを求め、CPUに基準データとして入力する。このようにして、負荷範囲の上限値を100kVとすると、100kVまで出力電圧を上昇させて行って前述のような動作を繰り返し、そのときどきの好ましい基準電圧Vm1、Vm2、・・Vmnを求め、CPUに基準電圧データとして入力する。
【0011】
図1のCPU3cにはこのようにして求めた基準値(Va1、Va2、・・Van)、(Vb1、Vb2、・・Vbn)、・・・(Vm1、Vm2、・・Vmn)が基準電圧データとして入力されている。あるいは、このような基準値をグラフ化した図2に示すような基準電圧データが入力されている。例えば、X線撮影時に撮影条件によって出力電圧と出力電流の値がそれぞれ80kV、10mAに設定されると、その設定出力条件がCPU3cに送られ、CPU3cはその出力条件のとき、つまり80kV、10mAに対応する基準値を取り出して、誤差増幅器3bに基準信号として与える。図2の場合には、出力電圧と出力電流の値がそれぞれV3、I4に設定されるとき、V3とI4の交点である5.3Vが基準電圧として取り出され、誤差増幅器3bに基準信号として与えられる。誤差増幅器3bは、反転端子に与えられる出力電圧検出信号と、非反転端子にCPU3cから与えられる基準信号とを比較してその差に比例する誤差信号を制御駆動回路3aに与える。制御駆動回路3aは、出力電圧検出信号が基準信号に等しくなるようなパルス幅の駆動信号をインバータ回路又はチョッパ回路などの主回路部3Aの不図示のスイッチング半導体素子に与えて駆動する。なお、主回路部3Aの不図示のスイッチング半導体素子の制御・駆動については従来と同じであるので、説明を省略する。
【0012】
以上の実施例では、出力電圧検出回路を最も電圧の低い平滑コラム側の初段のコンデンサC1と2段目のコンデンサC2との接続点J1と、接地電位のような固定電位との間に接続したが、2段目のコンデンサC2と3段目のコンデンサC3との接続点J2、又は3段目のコンデンサC3と4段目のコンデンサC4との接続点J3と、接地電位のような固定電位との間に接続しても、従来よりは測定電圧を低くすることができる良い。出力電圧や出力電流の設定範囲は前述範囲に限られることなく、任意である。
【0013】
【発明の効果】
以上述べたように、本発明によれば、多段倍電圧整流回路の直流高電圧出力電圧を直接検出したときの出力検出信号に対応する基準値を基準電圧付与手段にあらかじめ格納しておき、多段倍電圧整流回路の途中で直流高電圧出力電圧を検出するとき、設定された出力条件に応じて前記格納された基準値を取り出して基準信号としているので、直流高電圧出力電圧の途中の電圧を検出しても直流高電圧出力電圧を設定値に安定に維持することができ、出力電圧検出回路を耐圧の低いものにすることができ、全体的に装置の小型化と低価格化を実現することができる。
【図面の簡単な説明】
【図1】 本発明の一実施例を説明するための図面である。
【図2】 本発明の他の一実施例を説明するための図面である。
【図3】 従来の多段倍電圧整流回路の一例を説明するための図面である。
【符号の説明】
1−多段倍電圧整流回路 2−直流高電圧出力端子
3−電力制御装置 3A−主回路部
3B−制御部 3a−制御駆動回路
3b−誤差増幅器 3c−CPU(基準電圧付与手段)
[0001]
[Industrial application fields]
The present invention relates to a multistage voltage doubler rectifier such as a Cockcroft-Walton circuit, and more particularly to a multistage voltage doubler rectifier suitable for a power source used in a dental X-ray apparatus.
[0002]
In general, output stabilization is required regardless of whether the power source is a low-voltage power supply or a high-voltage power supply. In particular, in an X-ray apparatus or the like, as shown in FIG. 3, an X-ray tube (not shown) connected to an output terminal 2 of a multistage voltage doubler rectifier circuit 1 such as a well-known Cockcroft-Walton circuit. ) Is detected by the high voltage dividing resistor R1 and the voltage detecting resistor R2, and the detected voltage is fed back to the primary power control device 3 such as an inverter circuit or a chopper circuit. The power control device 3 includes a main circuit unit 3A such as an inverter circuit or a chopper circuit, and a control unit 3B. The control unit 3B is represented by a control drive circuit 3a, an error amplifier 3b, and a reference power source 3c. Reference numeral 4 denotes a high voltage transformer. In this conventional circuit, since the high voltage output voltage is directly detected by the high voltage dividing resistor R1 and the voltage detection resistor R2, the output detection voltage is proportional to the high voltage output voltage, and therefore the reference power supply 3c. Is selected to be a fixed value according to the rated value of the output voltage, and eventually the power control device 3 operates so that the output detection voltage becomes the reference value.
[0003]
In the case of such a normal circuit, a high-voltage voltage detection circuit including the high-voltage dividing resistor R1 is necessary. When the power supply housing is at the ground potential, a distance that does not cause a problem in electrical insulation is maintained. Therefore, there is a problem that the casing of the DC high-voltage generator itself is enlarged and the cost is increased. As a conventional example for solving this problem, there is a DC high voltage generator described in the following publication. One specific example includes an input current measuring device that measures an input current, a voltage measuring device that detects a DC voltage at the nth stage of the Cockcroft-Walton circuit, and an arithmetic processing device. And the n-th stage DC voltage are processed by a predetermined calculation formula to calculate the output voltage. In this example, since the DC voltage at the nth stage of the Cockcroft Walton circuit is detected, there is an advantage that the voltage measurement is lower than the output voltage.
[Patent Document 1]
Japanese Patent Laid-Open No. 9-182437 ((0032) to (0037) of the specification, FIG. 2, FIG. 3, FIG. 5)
[0004]
[Problems to be solved by the invention]
However, in such a conventional device, the output voltage can be detected by detecting a voltage lower than the output voltage. However, if the input current is also detected and the detected voltage and the detected current are not calculated, the output voltage can be accurately detected. There was a problem that it was not possible to detect. Also, the calculation formula must be obtained, and the calculation formula varies depending on the conditions. Therefore, it may be difficult to obtain the correct calculation formula. In such a case, an accurate output voltage detection value cannot be obtained. There is no problem. When the input current changes drastically due to noise or the like, it may be kicked that an accurate output voltage detection signal cannot be obtained due to the influence.
Therefore, in the present invention, the reference voltage value for the output condition of the output voltage value and the output current value is obtained in advance and stored in the reference voltage applying means such as CPU, and the reference voltage value corresponding to the set output condition is set as the reference voltage. It is characterized in that it is automatically taken out from the applying means and compared with the output voltage detection signal.
[0005]
[Means and Actions for Solving the Problems]
The invention according to claim 1 includes a first capacitor column connected in series from the initial stage capacitor to the final stage capacitor, and a second capacitor column connected in series from the initial stage capacitor to the final stage capacitor. A plurality of rectifying diodes for sequentially connecting the capacitors of the first capacitor column and the second capacitor column, a main circuit unit for controlling load power, and a primary winding connected to the main circuit unit; , A transformer having a secondary winding connected between the first stage capacitor of the first capacitor column and the first stage capacitor of the second capacitor column, and voltage detection for detecting a voltage corresponding to a DC output voltage Means, a reference voltage applying means, and controlling a difference voltage between a detected voltage from the voltage detecting means and a reference voltage from the reference voltage applying means to control the main circuit unit. In the multistage voltage doubler rectifier having an error amplifier applied to the moving part, the voltage detecting means is connected between a capacitor in the middle of the first capacitor column before the final stage and a fixed voltage point. The reference voltage applying means sets a value corresponding to an output detection signal when a plurality of the DC high voltage output voltages are directly detected between an upper limit value and a lower limit value of the load power as a set output voltage of the load in advance. When the DC high voltage output voltage is detected, the stored reference value is taken out according to the set output condition and given to the error amplifier as a reference voltage. A multi-stage voltage doubler rectifier characterized by the above is provided.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a multistage voltage doubler rectifier according to the present invention will be described with reference to FIG. The same symbols as those shown in FIG. 3 indicate corresponding members. In this embodiment, a reference voltage is supplied to the error amplifier 3b from a CPU 3d functioning as a reference voltage applying means, which will be described in detail later, and a voltage dividing resistor R1 and a voltage detection resistor R2 are connected in series as an output voltage detection circuit. This is characterized in that this is connected between a connection point J1 between the first-stage capacitor C1 and the second-stage capacitor C2 on the smoothing column side and a fixed potential such as a ground potential. For example, when the output voltage is 80 kV and the multistage voltage doubler rectifier circuit 1 has four stages, the conventional example requires a resistor having a withstand voltage of approximately 80 kV. In this embodiment, the voltage dividing resistor R1 having a withstand voltage of 20 kV The voltage detection resistor R2 having the same low voltage as the conventional one may be provided. In the drawing, one voltage dividing resistor R1 is shown, but in actuality, the voltage dividing resistor R1 is composed of a plurality of resistors connected in series and must be arranged in consideration of the electrical insulation distance between them. Therefore, the occupied space becomes larger and the cost becomes higher. However, in this embodiment, the number of resistors and the occupied space are only ¼ even if they are simply compared. The capacitors C1 to C4 constitute a first capacitor column and perform a smoothing action.
[0009]
However, since the output voltage is detected at the connection point J1 between the first-stage capacitor C1 and the second-stage capacitor C2 on the smoothing column side, the voltage detection accuracy is lower than when the high-voltage output voltage itself is directly detected. To do. Therefore, in the present invention, the output condition is changed in advance and the high voltage output voltage itself is directly detected, and a preferred reference voltage at that time is obtained and input to the CPU as reference voltage data. This point will be specifically described. In the case of a dental X-ray power source or the like, since the load condition is in a limited range, the present invention can be easily applied.
[0010]
For example, first, assuming that the lower limit value of the load range is 50 kV, the output voltage is set to 50 kV, and the operation is performed in the output current range, first 2 mA. The output voltage of 50 kV is directly detected, the voltage detection signal is compared with the reference voltage, the operation is performed, the reference voltage Va1 that can be operated while the output voltage is maintained at the set 50 kV is obtained, and the reference voltage Va1 is supplied to the CPU. Input as reference voltage data. Next, the output voltage is set to 50 kV, the output current is set to 5 mA, the reference voltage Va2 that can be operated while the output voltage is maintained at 50 kV is obtained, and the reference voltage Va1 is input to the CPU as reference data. In this way, the output current is sequentially changed to the maximum current value in the load range to obtain a preferred reference voltage at that time and input to the CPU as reference voltage data. Furthermore, the output voltage is set to 60 kV, the operation is performed with the output current changed as described above, the reference voltages Vb1, Vb2,... Vbn that can be operated with the output voltage maintained at 60 kV are obtained, and the reference data is obtained from the CPU. Enter as. In this way, assuming that the upper limit value of the load range is 100 kV, the output voltage is increased to 100 kV and the above operation is repeated, and the preferred reference voltages Vm1, Vm2,. As reference voltage data.
[0011]
The reference values (Va1, Va2,... Van), (Vb1, Vb2,... Vbn),... (Vm1, Vm2,. Is entered as Alternatively, reference voltage data as shown in FIG. 2 in which such a reference value is graphed is input. For example, if the values of the output voltage and output current are set to 80 kV and 10 mA, respectively, depending on the imaging conditions during X-ray imaging, the set output conditions are sent to the CPU 3c. A corresponding reference value is taken out and given to the error amplifier 3b as a reference signal. In the case of FIG. 2, when the values of the output voltage and the output current are set to V3 and I4, respectively, 5.3V that is the intersection of V3 and I4 is taken out as a reference voltage and given to the error amplifier 3b as a reference signal. It is done. The error amplifier 3b compares the output voltage detection signal given to the inverting terminal with the reference signal given from the CPU 3c to the non-inverting terminal, and gives an error signal proportional to the difference to the control drive circuit 3a. The control drive circuit 3a is driven by applying a drive signal having a pulse width such that the output voltage detection signal becomes equal to the reference signal to a switching semiconductor element (not shown) of the main circuit unit 3A such as an inverter circuit or a chopper circuit. Note that the control and driving of the switching semiconductor element (not shown) of the main circuit unit 3A is the same as the conventional one, and the description thereof is omitted.
[0012]
In the above embodiment, the output voltage detection circuit is connected between the connection point J1 between the first-stage capacitor C1 and the second-stage capacitor C2 on the smoothing column side having the lowest voltage, and a fixed potential such as the ground potential. The connection point J2 between the second-stage capacitor C2 and the third-stage capacitor C3, or the connection point J3 between the third-stage capacitor C3 and the fourth-stage capacitor C4, and a fixed potential such as a ground potential, Even if it connects between these, it is good that a measurement voltage can be made lower than before. The setting range of the output voltage and the output current is not limited to the above-described range, and is arbitrary.
[0013]
【The invention's effect】
As described above, according to the present invention, the reference value corresponding to the output detection signal when the DC high voltage output voltage of the multistage voltage doubler rectifier circuit is directly detected is stored in the reference voltage applying means in advance, When detecting the DC high voltage output voltage in the middle of the voltage doubler rectifier circuit, the stored reference value is taken out as the reference signal according to the set output condition, so the voltage in the middle of the DC high voltage output voltage is Even if it is detected, the DC high-voltage output voltage can be stably maintained at the set value, the output voltage detection circuit can be made with a low withstand voltage, and the overall size and price of the device can be reduced. be able to.
[Brief description of the drawings]
FIG. 1 is a drawing for explaining an embodiment of the present invention.
FIG. 2 is a drawing for explaining another embodiment of the present invention.
FIG. 3 is a drawing for explaining an example of a conventional multi-stage voltage doubler rectifier circuit;
[Explanation of symbols]
1-multi-stage voltage doubler rectifier circuit 2-DC high voltage output terminal 3-power control device 3A-main circuit unit 3B-control unit 3a-control drive circuit 3b-error amplifier 3c-CPU (reference voltage applying means)

Claims (1)

初段のコンデンサから最終段のコンデンサまで直列接続してなる第1のコンデンサコラムと、
初段のコンデンサから最終段のコンデンサまで直列接続してなる第2のコンデンサコラムと、
前記第1のコンデンサコラムと前記第2のコンデンサコラムのコンデンサを順次接続する複数の整流用ダイオードと、
負荷電力を制御する主回路部と、
該主回路部に接続された1次巻線と、前記第1のコンデンサコラムの初段のコンデンサと前記第2のコンデンサコラムの初段コンデンサとの間に接続された2次巻線とを有するトランスと、
直流出力電圧に対応する電圧を検出する電圧検出手段と、
基準電圧付与手段と、
前記電圧検出手段からの検出電圧と前記基準電圧付与手段からの基準電圧との差電圧を前記主回路部の制御駆動部に与える誤差増幅器と、
を備えた多段倍電圧整流装置において、
前記電圧検出手段は、前記第1のコンデンサコラムの初段から最終段前の途中のコンデンサと固定電圧点との間に接続され、
前記基準電圧付与手段は、負荷電力の上限値と下限値との間で複数の前記直流高電圧出力電圧を直接検出したときの出力検出信号に対応した値をあらかじめ負荷の設定出力電圧と設定電流との値によって決められる基準値として格納しておき、
直流高電圧出力電圧を検出するとき、設定された出力条件に応じて前記格納された基準値を取り出して基準電圧として前記誤差増幅器に与えることを特徴とする多段倍電圧整流装置。
A first capacitor column connected in series from the first capacitor to the last capacitor;
A second capacitor column connected in series from the first capacitor to the last capacitor;
A plurality of rectifying diodes for sequentially connecting capacitors of the first capacitor column and the second capacitor column;
A main circuit section for controlling load power;
A transformer having a primary winding connected to the main circuit section, and a secondary winding connected between the first stage capacitor of the first capacitor column and the first stage capacitor of the second capacitor column; ,
Voltage detecting means for detecting a voltage corresponding to the DC output voltage;
A reference voltage applying means;
An error amplifier that provides a difference voltage between a detection voltage from the voltage detection unit and a reference voltage from the reference voltage application unit to the control drive unit of the main circuit unit;
In the multistage voltage doubler rectifier with
The voltage detection means is connected between a capacitor on the way from the first stage to the last stage of the first capacitor column and a fixed voltage point,
The reference voltage applying means sets a value corresponding to an output detection signal when directly detecting a plurality of the DC high voltage output voltages between an upper limit value and a lower limit value of the load power in advance as a set output voltage and a set current of the load. Stored as a reference value determined by the value of
When detecting a DC high voltage output voltage, the stored reference value is taken out according to a set output condition and given to the error amplifier as a reference voltage.
JP2002257614A 2002-09-03 2002-09-03 Multi-stage voltage doubler rectifier Expired - Lifetime JP3862264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002257614A JP3862264B2 (en) 2002-09-03 2002-09-03 Multi-stage voltage doubler rectifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002257614A JP3862264B2 (en) 2002-09-03 2002-09-03 Multi-stage voltage doubler rectifier

Publications (2)

Publication Number Publication Date
JP2004096946A JP2004096946A (en) 2004-03-25
JP3862264B2 true JP3862264B2 (en) 2006-12-27

Family

ID=32062471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002257614A Expired - Lifetime JP3862264B2 (en) 2002-09-03 2002-09-03 Multi-stage voltage doubler rectifier

Country Status (1)

Country Link
JP (1) JP3862264B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5133722B2 (en) * 2008-01-31 2013-01-30 株式会社日立ハイテクノロジーズ Voltage source circuit
JP5493300B2 (en) * 2008-06-26 2014-05-14 独立行政法人国立高等専門学校機構 DC-DC conversion power supply

Also Published As

Publication number Publication date
JP2004096946A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
TWI332741B (en) Apparatus, method and system for detecting battery pack voltage
US6930474B2 (en) Current sense apparatus and method using a combination of a simulation and a real sense for a switching mode power converter
JPH07153591A (en) High-pressure power supply for x-ray tube
TW412859B (en) DC-DC converter control circuit
JP2000324715A (en) Charging controller
WO2018056309A1 (en) Deterioration determination device for secondary battery
US20120194149A1 (en) Power supply circuit, control method for controlling power supply circuit, and electronic device incorporating power supply circuit
US10305382B2 (en) Multiphase converter
JP6656186B2 (en) Regenerative current detection circuit, charge current detection circuit, motor current detection system
US7208925B2 (en) Voltage regulator controller power good indicator circuitry
JP3862264B2 (en) Multi-stage voltage doubler rectifier
US11946957B2 (en) Self-calibration method for self-powered single CT current sensor
CN113189389A (en) Current sensor unit and current detection circuit
JP5057950B2 (en) Insulation resistance tester
JP3260053B2 (en) Battery voltage detection circuit for electrical equipment
JP2008157837A (en) Battery residual capacity detector and portable terminal device
JP7055030B2 (en) Current detector and switching power supply
JP5463215B2 (en) Control device for motor for electric power steering
JP2007295743A (en) Smoothing circuit for power supply, power supply, and switching power supply
CN105548680B (en) Ethernet consumer power level detection circuit
JP3470481B2 (en) Power circuit
WO2021153094A1 (en) Control device and coil system
JP3232596B2 (en) Battery level display
JP2000353019A (en) Power source device
JP6789828B2 (en) Switching power supply

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R150 Certificate of patent or registration of utility model

Ref document number: 3862264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term