JP2008157837A - Battery residual capacity detector and portable terminal device - Google Patents

Battery residual capacity detector and portable terminal device Download PDF

Info

Publication number
JP2008157837A
JP2008157837A JP2006348906A JP2006348906A JP2008157837A JP 2008157837 A JP2008157837 A JP 2008157837A JP 2006348906 A JP2006348906 A JP 2006348906A JP 2006348906 A JP2006348906 A JP 2006348906A JP 2008157837 A JP2008157837 A JP 2008157837A
Authority
JP
Japan
Prior art keywords
voltage
battery
circuit
current
current measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006348906A
Other languages
Japanese (ja)
Inventor
Katsuya Suzuki
克哉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Ericsson Mobile Communications Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Ericsson Mobile Communications Japan Inc filed Critical Sony Ericsson Mobile Communications Japan Inc
Priority to JP2006348906A priority Critical patent/JP2008157837A/en
Publication of JP2008157837A publication Critical patent/JP2008157837A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery residual capacity detector not increasing a reference table even when using a step-up/down type switching power supply, and a portable terminal device using it. <P>SOLUTION: A voltage of a secondary battery 101 is measured by a voltage measuring circuit 102 in order to detect a battery residual capacity of the secondary battery 101, and each current consumed in a circuit group 108, 111, 114 is measured by a current measuring circuit 103. A current measuring resistance 105 is connected selectively in parallel with a current measuring resistance 104 by a switch 106 corresponding to an operation state of the step-up/down type switching power supply (DCDC) 112. A CPU 115 converts measurement results of the voltage measuring circuit 102 and the current measuring circuit 103 into the battery residual capacity value on reference to the reference table 116b. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、二次電池の電池残量を検出する電池残量検出装置およびこれを用いた携帯端末装置に関する。   The present invention relates to a battery remaining amount detection device that detects a remaining battery amount of a secondary battery, and a portable terminal device using the same.

携帯電話端末などの携帯機器では、充電可能な電池として二次電池が用いられている。携帯電話端末では、逐次、電池電圧を測定し、その測定値に基づいて電池残量テーブルを参照し、電池残量を推定して表示している。   In mobile devices such as mobile phone terminals, secondary batteries are used as rechargeable batteries. In the cellular phone terminal, the battery voltage is sequentially measured, and the remaining battery level table is referred to based on the measured value, and the remaining battery level is estimated and displayed.

なお、動作電源として電池を使用する機器において電池電圧の変動を検出する際の分解能を向上させた電池残量検出装置が提案されている(特許文献1参照)。
特開2006−153740号公報
In addition, a battery remaining amount detection device has been proposed that improves the resolution when a battery voltage change is detected in a device that uses a battery as an operating power supply (see Patent Document 1).
JP 2006-153740 A

近年、携帯電話端末の使用可能時間を増やすために、二次電池に終止電圧の低いものを用いる機種が出現している。このような端末においては、二次電池から効率よく電力を引き出すためにスイッチング電源が用いられる。特に、二次電池の低い電圧出力に対応して、スイッチング電源は昇降圧型のものを用い、二次電池の電圧が低くなった場合は昇圧して使用する。   In recent years, in order to increase the usable time of a mobile phone terminal, a model using a secondary battery having a low end voltage has appeared. In such a terminal, a switching power supply is used to efficiently draw power from the secondary battery. In particular, the switching power supply is a step-up / step-down type corresponding to the low voltage output of the secondary battery, and when the voltage of the secondary battery becomes low, it is boosted and used.

従来の携帯電話端末では、二次電池の電圧および消費電流を測定し、この測定結果に基づいて電池の残量表示を行なっている。しかし、昇降圧型のスイッチング電源を使用した場合、同じアプリケーションを動作させていても降圧から昇圧に切り替わると二次電池からの消費電流が増えてしまうので、スイッチング電源の動作モードに応じて電池残量表示の参照テーブルを変える必要が生じ、複雑になる。また、二次電池からの消費電流が増えると、電流測定用抵抗の両端電圧の範囲が拡大してしまう。これは、測定用のAD変換器の要求される精度の不足や装置コストの増大を招来する。   In the conventional mobile phone terminal, the voltage and current consumption of the secondary battery are measured, and the remaining amount of the battery is displayed based on the measurement result. However, when using a buck-boost type switching power supply, the current consumption from the secondary battery increases when switching from step-down to step-up even if the same application is operating. It becomes necessary to change the reference table of the display, which is complicated. Further, when the current consumption from the secondary battery increases, the range of the voltage across the current measurement resistor is expanded. This leads to a lack of accuracy required for the AD converter for measurement and an increase in apparatus cost.

本発明はこのような背景においてなされたものであり、昇降圧型のスイッチング電源を使用した場合にも、比較的簡単な装置構成で測定精度不足や装置コスト増を招来することなく電池残量の検出が行える電池残量検出装置およびこれを用いた携帯端末装置を提供しようとするものである。   The present invention has been made in this background. Even when a buck-boost type switching power supply is used, the remaining battery level can be detected with a relatively simple device configuration without incurring insufficient measurement accuracy or increasing device cost. It is an object of the present invention to provide a remaining battery level detection device and a portable terminal device using the same.

本発明による電池残量検出装置は、二次電池の電池残量を検出する電池残量検出装置であって、二次電池の電圧を測定する電圧測定回路と、電流測定用抵抗を用いて電流測定を行う電流測定回路と、二次電池から前記電流測定用抵抗を介して電源の供給を受ける昇降圧型のスイッチング電源と、昇圧動作および降圧動作の動作状態を確認する手段と、前記動作状態に応じて前記電流測定用抵抗の抵抗値を切り替えるスイッチ手段と、前記電圧測定回路および前記電流測定回路の測定結果を電池残量値に変換する変換手段とを備えたことを特徴とする。   A battery remaining amount detecting device according to the present invention is a battery remaining amount detecting device that detects a remaining battery amount of a secondary battery, and uses a voltage measuring circuit that measures the voltage of the secondary battery and a current measuring resistor to measure current. A current measurement circuit for performing measurement, a step-up / step-down switching power supply that receives power supply from the secondary battery via the current measurement resistor, means for confirming the operation state of the step-up operation and the step-down operation, and the operation state In response to this, it comprises switch means for switching the resistance value of the current measurement resistor, and conversion means for converting the measurement result of the voltage measurement circuit and the current measurement circuit into a remaining battery value.

この構成により、昇降圧型のスイッチング電源が昇圧動作を行っているか、降圧動作を行っているかによって電流測定用抵抗の抵抗値が切り替えられる。これにより、電流測定用抵抗の両端電圧の範囲の拡大を抑制することができる。   With this configuration, the resistance value of the current measurement resistor is switched depending on whether the step-up / step-down switching power supply is performing a step-up operation or a step-down operation. Thereby, expansion of the range of the both-ends voltage of the resistance for current measurement can be suppressed.

本発明によれば次のような効果が得られる。   According to the present invention, the following effects can be obtained.

昇降圧型スイッチング電源の動作モードにあわせて電流測定用抵抗値を切り換えることにより、降圧動作時と昇圧動作時で電流測定用抵抗の両端電圧の変動を抑制することができる。その結果、終止電圧の低い二次電池を用いる場合でも、電池残量表示用のテーブルを複雑化する必要がなくなる。電流測定回路にAD変換器を用いる場合、AD変換器の精度を上げたり個数を増加させたりする必要がなく、それによる装置コスト増を回避することができる。また、そのリニアリティ特性が良いところでAD変換を行うことができる。   By switching the current measurement resistance value according to the operation mode of the step-up / step-down switching power supply, it is possible to suppress fluctuations in the voltage across the current measurement resistance during the step-down operation and the step-up operation. As a result, even when a secondary battery with a low end voltage is used, it is not necessary to complicate the battery remaining amount display table. When an AD converter is used for the current measuring circuit, it is not necessary to increase the accuracy or increase the number of AD converters, thereby avoiding an increase in device cost. Also, AD conversion can be performed where the linearity characteristic is good.

以下、本発明の好適な実施の形態について図面を参照しながら詳細に説明する。以下では携帯電話端末を例として説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings. Hereinafter, a mobile phone terminal will be described as an example.

まず、本実施の形態における携帯電話端末の構成について説明する。図1は携帯端末の電源に関連した主要部のブロック図を示している。   First, the configuration of the mobile phone terminal in the present embodiment will be described. FIG. 1 shows a block diagram of main parts related to the power source of the portable terminal.

この携帯電話端末は、終止電圧が従来よりも低いところまで使用できる二次電池101を用いる。電圧測定回路102は、この二次電池101の電圧を測定する。電流測定回路103は、電流測定用抵抗A104の両端の電圧を測定する。この測定値は抵抗値に基づいて電流値に換算される。このように、電圧測定回路102および電流測定回路103は、本質的には、いずれもAD(アナログデジタル)変換器を用いて電圧値を測定するものであり、同一のAD変換器を切り替えて用いることも可能である。   This mobile phone terminal uses a secondary battery 101 that can be used up to a place where the end voltage is lower than before. The voltage measurement circuit 102 measures the voltage of the secondary battery 101. The current measurement circuit 103 measures the voltage across the current measurement resistor A104. This measured value is converted into a current value based on the resistance value. As described above, the voltage measurement circuit 102 and the current measurement circuit 103 essentially measure a voltage value using an AD (analog-digital) converter, and the same AD converter is switched and used. It is also possible.

CPU115は、電圧測定回路102および電流測定回路103を制御したり、データの演算(電流測定回路103の測定電圧の電流値への変換を含む)を行ったりするためのプロセッサ(中央処理装置)である。メモリ116は、CPU115が処理するための処理プログラム116aや、後述する参照テーブル116bを含む各種データを記憶したり、CPU115の作業用領域や一時記憶領域を提供する。表示部117は、CPU115によって制御され、電池残量表示を含む携帯電話端末の各種の情報を表示画面上に表示する。   The CPU 115 is a processor (central processing unit) for controlling the voltage measurement circuit 102 and the current measurement circuit 103 and performing data calculation (including conversion of the measurement voltage of the current measurement circuit 103 into a current value). is there. The memory 116 stores various data including a processing program 116a to be processed by the CPU 115 and a reference table 116b to be described later, and provides a work area and a temporary storage area for the CPU 115. The display unit 117 is controlled by the CPU 115 and displays various types of information of the mobile phone terminal including the battery remaining amount display on the display screen.

この端末は、異なる電圧値で動作する複数の回路群を備えている。本実施の形態では、2.8V系電源で動作する回路群108と、1.5V系電源で動作する回路群111と、3.3V系電源で動作する回路群114を有する。回路群108は、2.8V系電圧出力のLDO群107から電源の供給を受ける。LDOはLow Drop Outの略であり、直流の入力電圧を安定化して出力するシリーズレギュレータ(またはリニア電圧レギュレータ)である。回路群111は、1.5V系電圧出力のLDO群110から電源の供給を受ける。二次電池101の消費効率を上げるためLDO群110の前段には降圧型DCDC109を配置している。   This terminal includes a plurality of circuit groups that operate at different voltage values. The present embodiment includes a circuit group 108 that operates with a 2.8V power supply, a circuit group 111 that operates with a 1.5V power supply, and a circuit group 114 that operates with a 3.3V power supply. The circuit group 108 is supplied with power from the LDO group 107 having a 2.8V system voltage output. LDO is an abbreviation for Low Drop Out, and is a series regulator (or linear voltage regulator) that stabilizes and outputs a DC input voltage. The circuit group 111 is supplied with power from the LDO group 110 having a 1.5 V system voltage output. In order to increase the consumption efficiency of the secondary battery 101, a step-down DCDC 109 is disposed in front of the LDO group 110.

回路群114は3.3V系電圧出力のLDO群113から電源の供給を受ける。二次電池101からの消費効率を上げ、二次電池出力が低い電圧になるまで動作させるため、LDO群113の前段に昇降圧型DCDC112を配置している。   The circuit group 114 is supplied with power from the LDO group 113 having 3.3V system voltage output. In order to increase the efficiency of consumption from the secondary battery 101 and operate until the output of the secondary battery becomes a low voltage, a step-up / step-down DCDC 112 is arranged in front of the LDO group 113.

本実施の形態では、電流測定用抵抗A104に対して並列接続される電流測定用抵抗B105を設けている。この電流測定用抵抗B105にはスイッチ(SW)106を直列接続している。このスイッチ106は、昇降圧型DCDC112の動作状態を表すDCDC−MODE信号118に応じてON/OFFが制御される。すなわち、スイッチ106は、昇降圧型DCDC112が降圧動作ならOFFし、昇圧動作ならONする。スイッチ106がONしたとき電流測定用抵抗A104に対して電流測定用抵抗B105が並列接続された状態となる。すなわち、電流測定回路103が測定する電流測定用抵抗の抵抗が2本の抵抗の並列合成抵抗となり、スイッチ106のON時には抵抗値が低下するように機能する。   In the present embodiment, a current measuring resistor B105 connected in parallel to the current measuring resistor A104 is provided. A switch (SW) 106 is connected in series to the current measuring resistor B105. The switch 106 is controlled to be turned on / off in accordance with a DCDC-MODE signal 118 representing the operating state of the step-up / step-down DCDC 112. That is, the switch 106 is turned off if the step-up / step-down DCDC 112 is a step-down operation, and is turned on if the step-up / step-down DCDC 112 is a step-up operation. When the switch 106 is turned on, the current measuring resistor B105 is connected in parallel to the current measuring resistor A104. That is, the resistance of the current measurement resistor measured by the current measurement circuit 103 becomes a parallel combined resistance of two resistors, and functions so that the resistance value decreases when the switch 106 is turned on.

次に、図1の携帯電話端末の動作について脱明する。まず、電池残量表示の動作について説明する。   Next, the operation of the mobile phone terminal of FIG. First, the operation of the battery remaining amount display will be described.

回路群108、回路群111、回路群114が動作すると、二次電池101から電流測定用抵抗A104を通って電流が消費される。CPU115、メモリ116、表示部117は、図上、これらの回路群とは別個に示しているが、実際にはこれらの回路群の一部である。   When the circuit group 108, the circuit group 111, and the circuit group 114 operate, current is consumed from the secondary battery 101 through the current measurement resistor A104. Although the CPU 115, the memory 116, and the display unit 117 are shown separately from these circuit groups in the figure, they are actually a part of these circuit groups.

CPU115は、電圧測定回路102のAD変換により二次電池101の電圧をデジタル値で測定し、その結果をメモリ116に格納する。また、CPU115は電流測定回路103のAD変換により、二次電池101から消費される電流を電流測定用抵抗A104の両端に発生する電位差より測定し、その測定結果(デジタル値)をメモリ116に格納する。このとき、昇圧の有無にかかわらず電圧値を電流値に変換するために用いる抵抗値は電流測定用抵抗A104の抵抗値である。CPU115は得られた二次電池101の電圧と消費電流のデータとを、メモリ116に予め格納して用意されていた参照テーブル(データテーブル)と照らし合わせて電池残量を予測して、表示部117へ電池残量表示を行なう。   The CPU 115 measures the voltage of the secondary battery 101 as a digital value by AD conversion of the voltage measurement circuit 102 and stores the result in the memory 116. Further, the CPU 115 measures the current consumed from the secondary battery 101 by the AD conversion of the current measuring circuit 103 from the potential difference generated at both ends of the current measuring resistor A104, and stores the measurement result (digital value) in the memory 116. To do. At this time, the resistance value used for converting the voltage value into the current value regardless of the presence or absence of boosting is the resistance value of the current measuring resistor A104. The CPU 115 predicts the remaining battery level by comparing the obtained voltage and current consumption data of the secondary battery 101 with a reference table (data table) prepared by storing in the memory 116 in advance, and displays the display unit. The remaining battery power is displayed to 117.

なお、二次電池101に充電を行うための充電回路は図示省略している。   Note that a charging circuit for charging the secondary battery 101 is not shown.

ここで、本発明をより良く理解するために抵抗B105およびスイッチ106がない場合の動作について簡単に説明する。   Here, in order to better understand the present invention, the operation without the resistor B 105 and the switch 106 will be briefly described.

図2に示すように、電池電圧が高いところでは昇降圧型DCDC112は、降圧DCDCとして動作し、3.3V系LDO群113に電源供給を行なう。このとき、昇降圧型DCDC112は、Vin × Iin=η(Vout × Iout)となり、降圧すなわちVin>Voutであるので、Iin<Ioutとなる。   As shown in FIG. 2, when the battery voltage is high, the step-up / step-down DCDC 112 operates as a step-down DCDC and supplies power to the 3.3 V LDO group 113. At this time, the step-up / step-down DCDC 112 has Vin × Iin = η (Vout × Iout) and is stepped down, that is, Vin> Vout, and therefore, Iin <Iout.

ここでηはDCDCの効率で、η≦1である。Iinが小さいということは、電池の消費が少ないことを意味するので、二次電池101の電圧の減少は緩やかである。CPU115は、電圧測定回路102および電流測定回路103より得られたデータを、電池電圧の緩やかな減少に従った参照テーブルに照らし合わせて表示部117に電池の残量表示を行なう。   Here, η is the efficiency of DCDC, and η ≦ 1. When Iin is small, it means that the battery consumption is low, so the voltage decrease of the secondary battery 101 is gradual. The CPU 115 displays the remaining amount of the battery on the display unit 117 by comparing the data obtained from the voltage measurement circuit 102 and the current measurement circuit 103 with a reference table according to a gradual decrease in the battery voltage.

次に電池電圧が下がってきて、3.3V系LDO群113が安定した出力電圧を出せる境界付近では、昇降圧型DCDC112は昇圧と降圧を行ったり来たりする動作となる。   Next, when the battery voltage drops and the boundary where the 3.3 V LDO group 113 can output a stable output voltage, the step-up / step-down DCDC 112 performs an operation of stepping up and down.

さらに電池電圧が下がった場合、昇降圧型DCDC112は昇圧動作のみとなる。昇圧動作の時、昇降圧型DCDC112では、Vin<Voutであるため、Iin>Ioutとなる。同じ回路が動作していても(すなわち昇降圧型DCDC112の負荷の消費電力が変化していなくても)、昇降圧型DCDC112が降圧型で動作しているのか昇圧型で動作しているのかで、二次電池101からの消費電流は異なる。昇圧型で動作する場合、電池の消費電流が増えるので、二次電池101の電圧の減少は降圧型のときより急激になる。CPU115は電圧測定回路102および電流測定回路103より得られたデータを、電池電圧の急激な減少に従った参照テーブルに照らし合わせて表示部117に電池の残量表示を行なう必要がある。   When the battery voltage further decreases, the step-up / step-down DCDC 112 performs only the boosting operation. In the step-up operation, in the step-up / step-down DCDC 112, since Vin <Vout, Iin> Iout. Even if the same circuit is operating (that is, even if the power consumption of the load of the step-up / step-down DCDC 112 is not changed), whether the step-up / step-down type DCDC 112 is operating in a step-down type or a step-up type, The current consumption from the secondary battery 101 is different. When operating in the step-up type, the current consumption of the battery increases, so the voltage of the secondary battery 101 decreases more rapidly than in the step-down type. The CPU 115 needs to display the remaining amount of the battery on the display unit 117 by comparing the data obtained from the voltage measurement circuit 102 and the current measurement circuit 103 with a reference table according to a rapid decrease in the battery voltage.

そのため、従来の動作では、昇降圧型DCDC112の動作モードに応じた参照テーブルを参照するには、CPU115は昇降圧型DCDC112がどのモードで動作しているかを知っている必要があり、また回路群108、111、114の動作パターンが多くなると、CPU115が参照する電池残量表示用の参照テーブルの数も増えるため場合分けも複雑になる。さらに昇降圧型DCDC112が昇圧型で動作していると二次電池101からの消費電流が増えるため、電流測定用抵抗A104の両端の電圧降下も大きくなり、電流測定回路103の必要なAD変換範囲の増加に対応してAD変換の精度を上げる等の工夫が必要となり、装置のコストアップにつながる。   Therefore, in the conventional operation, in order to refer to the reference table corresponding to the operation mode of the step-up / step-down DCDC 112, the CPU 115 needs to know which mode the step-up / step-down DCDC 112 is operating, and the circuit group 108, When the operation patterns 111 and 114 increase, the number of reference tables for displaying the remaining battery level referred to by the CPU 115 increases, so that the case division becomes complicated. Further, when the step-up / step-down DCDC 112 is operating in a step-up type, the current consumption from the secondary battery 101 increases, so the voltage drop across the current measurement resistor A104 also increases, and the current conversion circuit 103 has a necessary AD conversion range. It is necessary to devise measures such as increasing the accuracy of AD conversion corresponding to the increase, leading to an increase in the cost of the apparatus.

本実施の形態では、電流測定用抵抗B105を追加して、昇降圧型DCDC112が昇圧型で動作している時にSW106がONすることにより、昇圧動作の有無にかかわらず電流測定回路103で測定される電圧値が変わらないように、昇圧動作時に電流測定用抵抗A104に電流測定用抵抗B105を並列接続して抵抗値を小さくし、この並列抵抗の両端の電位差を電流測定回路103にて測定するようにした。電流が増える分、並列抵抗値を小さくするので、電流測定回路103のデータは、昇降圧型DCDC112の動作モードに依存しなくなり、電池残量表示用の参照テーブルを昇圧動作時用に増やす必要がなくなる。また並列抵抗の電位差は変わらないため、電流測定回路103のAD変換の測定可能範囲を拡大したり、その精度を上げたりする必要がなくなる。   In the present embodiment, the current measurement resistor B105 is added, and the SW 106 is turned on when the step-up / step-down DCDC 112 is operating in the step-up type, whereby the current measurement circuit 103 measures whether or not the step-up operation is performed. In order to prevent the voltage value from changing, the current measurement resistor A105 is connected in parallel to the current measurement resistor A104 during the boosting operation to reduce the resistance value, and the current measurement circuit 103 measures the potential difference between both ends of the parallel resistor. I made it. Since the parallel resistance value is decreased as the current increases, the data of the current measurement circuit 103 does not depend on the operation mode of the step-up / step-down DCDC 112, and it is not necessary to increase the reference table for displaying the remaining battery level for the boost operation. . In addition, since the potential difference of the parallel resistance does not change, it is not necessary to expand the AD measurement measurable range of the current measurement circuit 103 or increase its accuracy.

図3は、図1内に示した昇降圧型DCDC112の内部構成をその周辺部とともに示した図である。電圧測定回路102、電流測定回路103等は図示省略してある。   FIG. 3 is a view showing the internal configuration of the step-up / step-down DCDC 112 shown in FIG. 1 together with its peripheral portion. The voltage measuring circuit 102, the current measuring circuit 103, etc. are not shown.

昇降圧型DCDC112は集積回路により構成され、モード信号出力端子DCDC−MODE、電源入力端子、コイル35の接続端子、出力電圧端子を有する。   The step-up / step-down DCDC 112 is constituted by an integrated circuit, and has a mode signal output terminal DCDC-MODE, a power input terminal, a connection terminal of the coil 35, and an output voltage terminal.

出力電圧端子の出力電圧Voutは、ドライバ制御部10がFET(電圧効果トランジスタ)31〜34(Tr1〜Tr4)およびコイル35からなる出力回路を制御することにより得られる。Tr1のドレインは電流測定用抵抗A,Bを介して二次電池101の電源入力端子に接続され、そのソースはコイル35の一端に接続される。Tr2のドレインはTr1のソースに接続され、ソースは接地される。Tr4のドレインはコイル35の他端に接続され、ソースは出力電圧端子に接続される。Tr3のドレインはTr3のドレインに接続され、ソースは接地される。Tr1〜Tr4のゲートは、後述するような態様によりドライバ制御部10により制御される。   The output voltage Vout at the output voltage terminal is obtained when the driver control unit 10 controls an output circuit including FETs (voltage effect transistors) 31 to 34 (Tr1 to Tr4) and a coil 35. The drain of Tr1 is connected to the power input terminal of the secondary battery 101 via current measuring resistors A and B, and the source thereof is connected to one end of the coil 35. The drain of Tr2 is connected to the source of Tr1, and the source is grounded. The drain of Tr4 is connected to the other end of the coil 35, and the source is connected to the output voltage terminal. The drain of Tr3 is connected to the drain of Tr3, and the source is grounded. The gates of Tr1 to Tr4 are controlled by the driver control unit 10 in the manner described later.

ドライバ制御部10は、発振器(OSC)11の発振出力と、出力電圧制御信号16と、動作状態信号20とを受けて動作する。具体的には、次のような動作となる。
(1)降圧時(VBAT>Vout):Tr1とTr2がスイッチング動作、Tr3はOFF、Tr4はONとなる。
(2)昇圧時(VBAT<Vout):Tr1はON、Tr2はOFF、Tr3とTr4がスイッチング動作となる。
(3)昇降圧時(VBAT≒Vout):Voutが一定になるように降圧動作および昇圧動作が反復する。
The driver control unit 10 operates by receiving the oscillation output of the oscillator (OSC) 11, the output voltage control signal 16, and the operation state signal 20. Specifically, the operation is as follows.
(1) During step-down (VBAT> Vout): Tr1 and Tr2 are switched, Tr3 is OFF, and Tr4 is ON.
(2) During boosting (VBAT <Vout): Tr1 is ON, Tr2 is OFF, and Tr3 and Tr4 are switched.
(3) During step-up / step-down (VBAT≈Vout): The step-down operation and the step-up operation are repeated so that Vout becomes constant.

出力電圧制御信号16は、出力電圧Voutを直列抵抗14,15で分圧して得られる電圧を基準電圧Refと比較する比較器12により生成される。動作状態信号20は、直列抵抗14,15で分圧して得られる電圧と、入力電圧VBATを直列抵抗18,19で分圧して得られる電圧とを比較する比較器17により生成される。すなわち、昇降圧型DCDC112の現在の動作状態は、実質的にVBATとVoutの電位差に基づいて判断される。   The output voltage control signal 16 is generated by the comparator 12 that compares the voltage obtained by dividing the output voltage Vout with the series resistors 14 and 15 with the reference voltage Ref. The operating state signal 20 is generated by a comparator 17 that compares a voltage obtained by dividing the series resistors 14 and 15 with a voltage obtained by dividing the input voltage VBAT by the series resistors 18 and 19. That is, the current operating state of the step-up / step-down DCDC 112 is determined substantially based on the potential difference between VBAT and Vout.

動作状態信号20は、この例では、降圧時に低レベル、昇圧時に高レベルとなり、昇降圧時には低レベルと高レベルで変化する。フィルタ21は昇降圧動作時の動作状態信号20の変化を取り除くよう機能する。   In this example, the operating state signal 20 is at a low level during step-down and is at a high level during step-up, and changes between a low level and a high level during step-up / step-down. The filter 21 functions to remove a change in the operation state signal 20 during the step-up / step-down operation.

フィルタ21の出力22はレベル変換用の出力バッファ23(ここではFET)を介して、ドレイン出力24により昇降圧型DCDC112の動作モードを表すDCDC−MODE信号118として出力される。このDCDC−MODE信号118によりスイッチ106がON/OFF制御される。   An output 22 of the filter 21 is output as a DCDC-MODE signal 118 representing an operation mode of the step-up / step-down DCDC 112 by a drain output 24 via an output buffer 23 (here, FET) for level conversion. The switch 106 is ON / OFF controlled by the DCDC-MODE signal 118.

図3の構成では、電流測定用抵抗の切り替え用のスイッチの制御をハードウエアで行なうので、ソフトウエアの負担が少なくすることができる。   In the configuration of FIG. 3, since the switch for switching the current measuring resistor is controlled by hardware, the burden on software can be reduced.

図4に、フィルタ21の内部構成例を示す。このフィルタ21は、多段接続された複数のDフリップフロップ(DFF)41〜44、AND回路45、NOR回路46、およびJKフリップフロップ47により構成されている。このフィルタ21は、図5のタイミング図に示すように、降圧時および低圧時には動作状態信号20をそのまま出力し、昇降圧動作時には、昇降圧動作の前の状態を(電池が消費されている方向なら降圧を、充電されている方向なら昇圧を)保持するよう、動作する。   FIG. 4 shows an internal configuration example of the filter 21. The filter 21 includes a plurality of D flip-flops (DFF) 41 to 44 connected in multiple stages, an AND circuit 45, a NOR circuit 46, and a JK flip-flop 47. As shown in the timing chart of FIG. 5, the filter 21 outputs the operation state signal 20 as it is at the time of step-down and low pressure, and the state before the step-up / step-down operation (in the direction in which the battery is consumed) at the time of step-up / step-down operation. If so, it operates to hold the step-down and the step-up if it is charged.

図6(a)は本発明を適用しない場合の電流測定回路103に接続された抵抗に流れる電流および両端電圧を表したグラフを示す。このグラフの縦軸は抵抗の両端電圧、横軸は電流を示している。V0/I0=抵抗Aの抵抗値の関係がある。図6(b)は、本実施の形態においてスイッチ106がOFFのときとONのときの電流測定回路103に接続された抵抗に流れる電流および両端電圧を表したグラフG1,G2である。図6(a)のグラフは図6(b)のスイッチ106がOFFの場合のグラフG1に相当する。図6(b)のグラフG2はスイッチ106のON時に対応し、2本の並列抵抗の合成値が元の抵抗値より低下するため、電流がI1(>I0)に達するまで両端電圧は電圧値Voを超えない。したがって、電流値がI1を超えてもAD変換器の測定可能範囲を拡大する必要はない。   FIG. 6A is a graph showing the current flowing through the resistor connected to the current measuring circuit 103 and the voltage at both ends when the present invention is not applied. In this graph, the vertical axis represents the voltage across the resistor, and the horizontal axis represents the current. There is a relationship of V0 / I0 = resistance value of the resistor A. FIG. 6B is graphs G1 and G2 showing the current flowing through the resistor connected to the current measuring circuit 103 and the voltage at both ends when the switch 106 is OFF and ON in the present embodiment. The graph in FIG. 6A corresponds to the graph G1 when the switch 106 in FIG. 6B is OFF. The graph G2 in FIG. 6B corresponds to the time when the switch 106 is turned on, and the combined value of the two parallel resistors is lower than the original resistance value. Therefore, the voltage at both ends is a voltage value until the current reaches I1 (> I0). Do not exceed Vo. Therefore, even if the current value exceeds I1, it is not necessary to expand the measurable range of the AD converter.

図7に本実施の形態において用いる参照テーブル116b(図1)の構成例を示す。この参照テーブル116bは、測定された電圧値および電流値の組み合わせに対して、対応する電池残量値を対応づけたデータテーブルである。この参照テーブル116bは、DCDC−MODEの値(LかH)に関わらず、1つのテーブルで足りる。   FIG. 7 shows a configuration example of the reference table 116b (FIG. 1) used in the present embodiment. This reference table 116b is a data table in which the corresponding battery remaining value is associated with the combination of the measured voltage value and current value. This reference table 116b suffices as a single table regardless of the DCDC-MODE value (L or H).

図8に、図3の構成の変形例に係る、携帯端末の電源に関連した主要部のブロック図を示す。図3の構成では、DCDC−MODE信号118で直接的にスイッチ106を制御したが、図8の構成ではCPU115を介してスイッチ106の制御が行われる。この例では、CPU115のポート115aを用いて制御を行っている。他の構成は図3の構成と同じなので、重複した説明は省略する。LDO群107へはポートの電源電圧と同じものから供給する。図8の携帯端末の動作は図3の動作と実質的には同じである。なお、図8では、ポート115aがSW116(FET1個)のみを制御する例を示したが、並列抵抗とSWの組をさらに追加して、複数のSWを個別に制御するようにしてもよい。どのSWをONさせるかは、CPU115が把握できる現在の動作モードとDCDC−MODEの値とに応じて決定することができる。例えば抵抗Aに対して並列抵抗B,C,Dを個別のSWで選択的に接続する場合、昇圧時かつ通話時に抵抗BをON、昇圧時かつTV動作時に抵抗CをON、昇圧時かつゲーム動作時に抵抗DをON、とするような制御が可能となる。   FIG. 8 shows a block diagram of a main part related to the power source of the mobile terminal according to a modification of the configuration of FIG. In the configuration of FIG. 3, the switch 106 is directly controlled by the DCDC-MODE signal 118, but in the configuration of FIG. 8, the switch 106 is controlled via the CPU 115. In this example, control is performed using the port 115a of the CPU 115. Since the other configuration is the same as the configuration of FIG. The LDO group 107 is supplied from the same power supply voltage as the port. The operation of the mobile terminal in FIG. 8 is substantially the same as the operation in FIG. Although FIG. 8 shows an example in which the port 115a controls only the SW 116 (one FET), a combination of a parallel resistor and SW may be added to individually control a plurality of SWs. Which SW is turned on can be determined according to the current operation mode that the CPU 115 can grasp and the value of DCDC-MODE. For example, when the parallel resistors B, C, and D are selectively connected to the resistor A by individual SWs, the resistor B is turned on at the time of boosting and talking, the resistor C is turned on at the time of boosting and TV operation, and the game is boosted It is possible to control so that the resistor D is turned ON during operation.

以上、本発明の好適な実施の形態について説明したが、上記で言及した以外にも種々の変形、変更を行うことが可能である。   The preferred embodiments of the present invention have been described above, but various modifications and changes other than those mentioned above can be made.

本発明の実施の形態に係る携帯端末の電源に関連した主要部のブロック図である。It is a block diagram of the principal part relevant to the power supply of the portable terminal which concerns on embodiment of this invention. 図1内に示した昇降圧型DCDCの動作の説明図である。It is explanatory drawing of operation | movement of the buck-boost type DCDC shown in FIG. 昇降圧型DCDCの内部構成をその周辺部とともに示した図である。It is the figure which showed the internal structure of buck-boost type DCDC with the periphery part. 図1内に示したフィルタの内部構成例を示す図である。It is a figure which shows the internal structural example of the filter shown in FIG. 図4に示したフィルタの動作を説明するためのタイミング図である。FIG. 5 is a timing chart for explaining the operation of the filter shown in FIG. 4. 図1内の電流測定回路に接続された抵抗に流れる電流および両端電圧を表したグラフである。It is the graph showing the electric current which flows into the resistance connected to the electric current measurement circuit in FIG. 1, and both-ends voltage. 本発明の実施の形態において用いる参照テーブルの構成例を示す図である。It is a figure which shows the structural example of the reference table used in embodiment of this invention. 図1の実施の形態の変形例に係る、携帯端末の電源に関連した主要部のブロック図である。It is a block diagram of the principal part relevant to the power supply of a portable terminal based on the modification of embodiment of FIG.

符号の説明Explanation of symbols

10…ドライバ制御部、12…比較器、14,15…直列抵抗、16…出力電圧制御信号、17…比較器、18,19…直列抵抗、20…動作状態信号、21…フィルタ、22…出力、23…出力バッファ、35…コイル、45AND回路、46…NOR回路、47…フリップフロップ、101…二次電池、102…電圧測定回路、103…電流測定回路、104…電流測定用抵抗A、105…電流測定用抵抗B、106…スイッチ、107…LDO群、108…回路群、109…降圧型DCDC、110…LDO群、111…回路群、112…昇降圧型DCDC、113…LDO群、114…回路群、115a…ポート、116…メモリ、116a…処理プログラム、116b…参照テーブル、117…表示部、118…DCDC−MODE信号 DESCRIPTION OF SYMBOLS 10 ... Driver control part, 12 ... Comparator, 14, 15 ... Series resistance, 16 ... Output voltage control signal, 17 ... Comparator, 18, 19 ... Series resistance, 20 ... Operation state signal, 21 ... Filter, 22 ... Output , 23 ... Output buffer, 35 ... Coil, 45 AND circuit, 46 ... NOR circuit, 47 ... Flip-flop, 101 ... Secondary battery, 102 ... Voltage measurement circuit, 103 ... Current measurement circuit, 104 ... Current measurement resistor A, 105 ... Current measuring resistor B, 106 ... Switch, 107 ... LDO group, 108 ... Circuit group, 109 ... Step-down DCDC, 110 ... LDO group, 111 ... Circuit group, 112 ... Buck-boost DCDC, 113 ... LDO group, 114 ... Circuit group, 115a ... port, 116 ... memory, 116a ... processing program, 116b ... reference table, 117 ... display unit, 118 ... DCDC-MOD Signal

Claims (4)

二次電池の電池残量を検出する電池残量検出装置であって、
二次電池の電圧を測定する電圧測定回路と、
電流測定用抵抗を用いて電流測定を行う電流測定回路と、
二次電池から前記電流測定用抵抗を介して電源の供給を受ける昇降圧型のスイッチング電源と、
昇圧動作および降圧動作の動作状態を確認する手段と、
前記動作状態に応じて前記電流測定用抵抗の抵抗値を切り替えるスイッチ手段と、
前記電圧測定回路および前記電流測定回路の測定結果を電池残量値に変換する変換手段と
を備えたことを特徴とする電池残量検出装置。
A battery level detection device for detecting the remaining battery level of a secondary battery,
A voltage measuring circuit for measuring the voltage of the secondary battery;
A current measurement circuit that performs current measurement using a current measurement resistor;
A step-up / step-down switching power supply that receives power supply from the secondary battery via the current measurement resistor;
Means for confirming the operating state of the step-up operation and step-down operation;
Switch means for switching a resistance value of the current measuring resistor according to the operating state;
A battery remaining amount detecting device comprising: a conversion unit that converts measurement results of the voltage measuring circuit and the current measuring circuit into a battery remaining value.
前記変換手段は、昇圧動作および降圧動作の動作状態毎に、前記電圧測定回路および前記電流測定回路の測定結果と電池残量値とを対応づけたデータテーブルを含む請求項1記載の電池残量検出装置。   2. The remaining battery level according to claim 1, wherein the conversion unit includes a data table in which the measurement results of the voltage measurement circuit and the current measurement circuit are associated with the remaining battery level value for each operation state of the step-up operation and the step-down operation. Detection device. 前記スイッチ手段は、前記電流測定用抵抗に対して、前記動作状態に応じて他の電流測定用抵抗を選択的に並列接続するスイッチ素子を含む請求項1または2記載の電池残量検出装置。   The battery remaining amount detection device according to claim 1, wherein the switch unit includes a switch element that selectively connects another current measurement resistor in parallel to the current measurement resistor according to the operation state. 電池残量検出装置と、前記変換手段により得られた電池残量を表示する表示手段とを備え、
前記電池残量検出装置は、
二次電池の電池残量を検出する電池残量検出装置であって、
二次電池の電圧を測定する電圧測定回路と、
電流測定用抵抗を用いて電流測定を行う電流測定回路と、
二次電池から前記電流測定用抵抗を介して電源の供給を受ける昇降圧型のスイッチング電源と、
昇圧動作および降圧動作の動作状態を確認する手段と、
前記動作状態に応じて前記電流測定用抵抗の抵抗値を切り替えるスイッチ手段と、
前記電圧測定回路および前記電流測定回路の測定結果を電池残量値に変換する変換手段と
を備えたことを特徴とする携帯端末装置。
A battery remaining amount detection device, and a display unit for displaying the battery remaining amount obtained by the conversion unit,
The battery remaining amount detecting device is
A battery level detection device for detecting the remaining battery level of a secondary battery,
A voltage measuring circuit for measuring the voltage of the secondary battery;
A current measurement circuit that performs current measurement using a current measurement resistor;
A step-up / step-down switching power supply that receives power supply from the secondary battery via the current measurement resistor;
Means for confirming the operating state of the step-up operation and step-down operation;
Switch means for switching a resistance value of the current measuring resistor according to the operating state;
A portable terminal device comprising: conversion means for converting the measurement results of the voltage measurement circuit and the current measurement circuit into a battery remaining value.
JP2006348906A 2006-12-26 2006-12-26 Battery residual capacity detector and portable terminal device Withdrawn JP2008157837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006348906A JP2008157837A (en) 2006-12-26 2006-12-26 Battery residual capacity detector and portable terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006348906A JP2008157837A (en) 2006-12-26 2006-12-26 Battery residual capacity detector and portable terminal device

Publications (1)

Publication Number Publication Date
JP2008157837A true JP2008157837A (en) 2008-07-10

Family

ID=39658894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006348906A Withdrawn JP2008157837A (en) 2006-12-26 2006-12-26 Battery residual capacity detector and portable terminal device

Country Status (1)

Country Link
JP (1) JP2008157837A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103513185A (en) * 2012-06-22 2014-01-15 通用汽车环球科技运作有限责任公司 Modular system and method for simulating performance of electrical device
EP2685635A1 (en) * 2012-07-11 2014-01-15 Samsung Electronics Co., Ltd Apparatus and method for supplying power in a mobile terminal using buck-boost converters
JP2017505898A (en) * 2013-11-19 2017-02-23 クアルコム,インコーポレイテッド Battery fuel gauge with FET segment control for high small current measurement accuracy
US9812959B2 (en) 2013-08-23 2017-11-07 Ricoh Electronic Devices Co., Ltd. Step up/down switching regulator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103513185A (en) * 2012-06-22 2014-01-15 通用汽车环球科技运作有限责任公司 Modular system and method for simulating performance of electrical device
US9298867B2 (en) 2012-06-22 2016-03-29 GM Global Technology Operations LLC Modular system and method for simulating performance of an electrical device
CN103513185B (en) * 2012-06-22 2016-09-28 通用汽车环球科技运作有限责任公司 For simulating the system and method for electric device operation
EP2685635A1 (en) * 2012-07-11 2014-01-15 Samsung Electronics Co., Ltd Apparatus and method for supplying power in a mobile terminal using buck-boost converters
CN103545865A (en) * 2012-07-11 2014-01-29 三星电子株式会社 Apparatus and method for supplying power in a mobile terminal
US9651956B2 (en) 2012-07-11 2017-05-16 Samsung Electronics Co., Ltd. Apparatus and method for supplying power in mobile terminal
US9812959B2 (en) 2013-08-23 2017-11-07 Ricoh Electronic Devices Co., Ltd. Step up/down switching regulator
JP2017505898A (en) * 2013-11-19 2017-02-23 クアルコム,インコーポレイテッド Battery fuel gauge with FET segment control for high small current measurement accuracy

Similar Documents

Publication Publication Date Title
US7936158B2 (en) Switching regulator configured to detect and shutdown reverse current
JP6007804B2 (en) Power supply control circuit, power supply device, electronic device, and power supply control method
JP4837408B2 (en) DC-DC converter, control circuit for DC-DC converter, and control method for DC-DC converter
US7609042B2 (en) Controller for DC-DC converter and method for controlling DC-DC converter
JP5287030B2 (en) DC-DC converter and control method
JP4910575B2 (en) Switching power supply
US7576530B2 (en) Switching regulator capable of efficient control at control mode change
JP4473669B2 (en) Constant voltage circuit, constant current source, amplifier and power supply circuit using the constant voltage circuit
US8829878B2 (en) Switching regulator and electronic device incorporating same
US20080218136A1 (en) Power supply circuit
JP2007202273A (en) Switching regulator
US20060273767A1 (en) Method and apparatus for high-efficiency DC stabilized power supply capable of effectively reducing noises and ripples
US20140191741A1 (en) Low current dc-dc converter with integrated low current coulomb counter
US20190305683A1 (en) Boost and ldo hybrid converter with dual-loop control
JP2008157837A (en) Battery residual capacity detector and portable terminal device
US9553461B2 (en) Charge control circuit, charge circuit, and mobile device
US20150015229A1 (en) Semiconductor integrated circuit
JP2008178257A (en) Control circuit for switching regulator, switching regulator utilizing the same, and electronic equipment
US20230266781A1 (en) Reference voltage auto-switching mechanism used in regulator for saving more power in low-power mode
US10404172B1 (en) Transient booster for zero static loadline switching regulator
US20120032659A1 (en) Power supply device
JP4337060B2 (en) Switching power supply device and its control device
US10348283B1 (en) Low power switched-capacitor comparator
JP2008086173A (en) Semiconductor integrated circuit and multiple-output power supply unit using the same
JP2006271175A (en) Power unit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302