WO2021153094A1 - Control device and coil system - Google Patents

Control device and coil system Download PDF

Info

Publication number
WO2021153094A1
WO2021153094A1 PCT/JP2020/047686 JP2020047686W WO2021153094A1 WO 2021153094 A1 WO2021153094 A1 WO 2021153094A1 JP 2020047686 W JP2020047686 W JP 2020047686W WO 2021153094 A1 WO2021153094 A1 WO 2021153094A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage value
coil
output voltage
value
output
Prior art date
Application number
PCT/JP2020/047686
Other languages
French (fr)
Japanese (ja)
Inventor
素直 新妻
栄一 漆畑
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2021153094A1 publication Critical patent/WO2021153094A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • This disclosure relates to a control device and a coil system.
  • the voltage applied to the coil is limited in order to prevent discharge between the conductors adjacent to each other in the coil.
  • the voltage value of the voltage applied to the coil is the most in the fluctuation range of the atmospheric pressure in order to prevent discharge from occurring between the conductors even if the atmospheric pressure fluctuates. May be set to a low voltage limit.
  • the atmospheric pressure changes due to changes in the usage environment (for example, the altitude and weather of the place where the coil is used in the coil mounted on the moving body)
  • a voltage with a voltage value higher than the voltage limit value is applied to the coil. Even so, there are cases where no discharge occurs between the conductors.
  • a voltage value equal to or less than the voltage limit value is used, it is not possible to reduce the power loss and increase the output.
  • the present disclosure describes a control device and a coil system capable of improving power efficiency or increasing output.
  • the control device is a device that controls a power source for supplying electric power to a coil.
  • This control device includes an acquisition unit that acquires measured values for estimating the state of the atmosphere around the coil, and a calculation unit that calculates an output voltage value that does not cause discharge between the conductors of the coil based on the measured values. It includes an output unit that outputs a command to output an output voltage of an output voltage value to the power supply.
  • FIG. 1 is a diagram showing a schematic configuration of a coil system including a control device according to an embodiment.
  • FIG. 2 is a diagram showing a configuration example of the power supply shown in FIG.
  • FIG. 3 is a diagram showing another configuration example of the power supply shown in FIG.
  • FIG. 4 is a diagram showing still another configuration example of the power supply shown in FIG.
  • FIG. 5 is a diagram showing a hardware configuration of the control device shown in FIG.
  • FIG. 6 is a diagram showing a functional configuration of the control device shown in FIG.
  • FIG. 7 is a diagram for explaining the relationship between the measured value and the target voltage value.
  • FIG. 8 is a flowchart showing an example of a table setting method.
  • FIG. 8 is a flowchart showing an example of a table setting method.
  • FIG. 9 is a diagram showing a configuration for obtaining the relationship between the input voltage and the output voltage of the inverter.
  • FIG. 10 is a diagram showing a configuration for acquiring a set of a measured value and a discharge start voltage value.
  • FIG. 11 is a flowchart showing a series of processes of the output voltage setting method performed by the control device shown in FIG.
  • FIG. 12 is a diagram showing an example of the relationship between the atmospheric pressure and the output voltage value.
  • the control device is a device that controls a power source for supplying electric power to a coil.
  • This control device includes an acquisition unit that acquires measured values for estimating the state of the atmosphere around the coil, and a calculation unit that calculates an output voltage value that does not cause discharge between the conductors of the coil based on the measured values. It includes an output unit that outputs a command to output an output voltage of an output voltage value to the power supply.
  • an output voltage value that does not cause discharge between the conductors of the coil is calculated based on the measured value for estimating the state of the atmosphere around the coil, and a command to output the output voltage of the output voltage value is issued. It is output to the power supply. Therefore, the output voltage of the output voltage value according to the atmospheric condition is output from the power supply. For example, when the atmospheric pressure is high, even if the output voltage value is raised to some extent, no discharge occurs between the conductors of the coil. By outputting the output voltage of the output voltage value according to the atmospheric condition in this way, it is possible to increase the output as compared with the case where the output voltage value is fixed. Alternatively, when the power supply outputs a constant power, the output current can be reduced, so that the loss in the coil can be reduced. As a result, it is possible to improve power efficiency.
  • the output voltage value may be smaller than the minimum output voltage value that causes a discharge between the conductors of the coil in the atmospheric condition around the coil estimated from the measured value.
  • an output voltage having an output voltage value smaller than the minimum output voltage value that causes discharge between the conductors of the coil is output from the power supply. Therefore, it is possible to at least either improve power efficiency or increase output without causing a discharge between the conductors of the coil.
  • the output voltage value may be a value obtained by multiplying the above minimum output voltage value by a magnification. In this case, an output voltage value smaller than the minimum output voltage value can be obtained by a simple calculation.
  • the output voltage value may be a value obtained by subtracting a positive value smaller than the minimum output voltage value from the minimum output voltage value. In this case, an output voltage value smaller than the minimum output voltage value can be obtained by a simple calculation.
  • the control device may further include a detection unit for detecting an abnormality.
  • the calculation unit may calculate as an output voltage value a voltage value that does not cause a discharge between the conductors of the coil within the range of the atmospheric condition around the coil in which the coil is used. If an abnormality is detected, the output voltage value according to the atmospheric condition may not be calculated accurately. On the other hand, when an abnormality is detected, a voltage value that does not cause a discharge between the conductors of the coil over the range of the atmospheric condition around the coil in which the coil is used is calculated as an output voltage value. Therefore, even if an abnormality is detected, the possibility of generating an electric discharge between the conductors of the coil can be reduced.
  • Atmospheric conditions may include atmospheric pressure.
  • the output voltage of the output voltage value corresponding to the atmospheric pressure is output from the power supply.
  • the output can be increased as compared with the case where the output voltage value is fixed.
  • the power supply outputs a constant power
  • the output current can be reduced, so that the loss in the coil can be reduced. As a result, it is possible to improve power efficiency.
  • a coil system includes the above control device, a power source controlled by the control device, and a coil device including a coil that receives power from the power source.
  • This coil system includes the above-mentioned control device. Therefore, in the coil system, it is possible to improve the power efficiency or increase the output.
  • the coil system may further include a sensor that outputs measured values.
  • the output voltage that does not cause discharge between the conductors of the coil is calculated based on the measured value output by the sensor.
  • Atmospheric conditions may include humidity.
  • the sensor may include a humidity sensor.
  • the minimum output voltage value that causes a discharge between the conductors of the coil can be affected by humidity.
  • the output voltage of the output voltage value corresponding to the humidity is output from the power supply.
  • the output can be increased as compared with the case where the output voltage value is fixed.
  • the power supply outputs a constant power
  • the output current can be reduced, so that the loss in the coil can be reduced. As a result, it is possible to improve power efficiency.
  • FIG. 1 is a diagram showing a schematic configuration of a coil system including a control device according to an embodiment.
  • FIG. 2 is a diagram showing a configuration example of the power supply shown in FIG.
  • FIG. 3 is a diagram showing another configuration example of the power supply shown in FIG.
  • FIG. 4 is a diagram showing still another configuration example of the power supply shown in FIG.
  • FIG. 5 is a diagram showing a hardware configuration of the control device shown in FIG.
  • FIG. 6 is a diagram showing a functional configuration of the control device shown in FIG.
  • FIG. 7 is a diagram for explaining the relationship between the measured value and the target voltage value.
  • the coil system 1 shown in FIG. 1 is a system that drives a coil with a drive voltage according to the atmospheric condition.
  • the coil system 1 includes a power supply 2, an inverter 3, a coil device 4, a sensor 5, and a control device 10.
  • the power supply 2 is a device for supplying electric power to the coil of the coil device 4.
  • the power supply 2 is controlled by the control device 10.
  • the power supply 2 is a variable voltage power supply that receives the output command C from the control device 10 and changes the output voltage value Vdc of the output voltage based on the output command C.
  • the output command C is a command for causing the power supply 2 to output an output voltage having an output voltage value of Vdc.
  • the power supply 2 is a DC output power supply, and the DC power Pdc is output to the inverter 3.
  • the power supply 2 may include, for example, a PFC (Power Factor Correction) circuit.
  • a PFC Power Factor Correction
  • As the PFC circuit a step-up type, step-down type, or buck-boost type PFC circuit can be used.
  • the power supply 2 receives AC power from, for example, a commercial power source, converts the AC power into power Pdc, and changes the output voltage value Vdc by the PFC circuit.
  • the power supply 2 may include, for example, a transformer and a rectifier.
  • the transformer includes a plurality of taps having different numbers of turns and a circuit switch for switching the tap to be connected among the plurality of taps.
  • circuit switches include contactors and electronic switches.
  • the power supply 2 generates electric power Pdc by receiving an alternating current from a commercial power source, transforming it with a transformer, and rectifying it with a rectifier, for example.
  • the output voltage value Vdc is changed by switching the taps by the circuit switch of the transformer.
  • the power supply 2 may include, for example, a battery and a DC (Direct Current) -DC converter.
  • the battery may be composed of one battery cell, or may be composed of a plurality of battery cells connected in series. In this case, the output voltage value Vdc is changed by the control of the DC-DC converter.
  • the power supply 2 includes a plurality of battery cells 21 and a plurality of circuit switches.
  • the battery cell 21 may be a primary battery or a secondary battery.
  • various batteries such as a lead storage battery, a lithium ion battery, and a solar cell can be used.
  • a plurality of types of batteries may be mixed in the plurality of battery cells 21.
  • Examples of circuit switches include contactors and electronic switches. In these configuration examples, the output voltage value Vdc is changed by switching the number of battery cells 21 in series by the circuit switch.
  • a plurality of (six in this case) battery cells 21 are connected in series, and the positive electrode terminal of the first stage battery cell 21 is a power supply via the circuit switch SW1. It is connected to the terminal 2a of the second stage, and the negative electrode terminal of the battery cell 21 in the sixth stage (final stage) is connected to the terminal 2b of the power supply 2.
  • the connection point between the negative electrode terminal of the first-stage battery cell 21 and the positive electrode terminal of the second-stage battery cell 21 is connected to the terminal 2a via the circuit switch SW2.
  • the connection point between the negative electrode terminal of the second-stage battery cell 21 and the positive electrode terminal of the third-stage battery cell 21 is connected to the terminal 2a via the circuit switch SW3.
  • the connection point between the negative electrode terminal of the third-stage battery cell 21 and the positive electrode terminal of the fourth-stage battery cell 21 is connected to the terminal 2a via the circuit switch SW4.
  • the output voltage value Vdc when the circuit switch SW1 is set to the closed state and the circuit switches SW2 to SW4 are set to the open state, the output voltage value Vdc of the voltage between the terminals 2a and 2b is in series. The voltage value Vs of the six connected battery cells 21 is obtained.
  • the output voltage value Vdc is the voltage value (5Vs) of the five battery cells 21 connected in series. / 6).
  • the output voltage value Vdc is the voltage of the four battery cells 21 connected in series.
  • the output voltage value Vdc is the voltage value (Vs / 2) of the three battery cells 21 connected in series. ). In this way, the output voltage value Vdc of the power supply 2 can be switched by switching the number of battery cells 21 connected in series with the circuit switches SW1 to SW4.
  • the configuration example of the power supply 2 shown in FIG. 3 is different from the configuration example of FIG. 2 in that the circuit switches SW5 and SW6 are further provided.
  • the circuit switch SW5 is provided between the negative electrode terminal of the third-stage battery cell 21 and the positive electrode terminal of the fourth-stage battery cell 21.
  • the circuit switch SW6 is provided between the negative electrode terminal and the terminal 2b of the third-stage battery cell 21. In this configuration example, the number of battery cells 21 connected in series is switched between 1 and 6.
  • the output voltage value Vdc is a voltage value of Vs / 2.
  • the configuration example of the power supply 2 shown in FIG. 4 includes a series circuit in which six battery cells 21 are connected in series, a series circuit in which five battery cells 21 are connected in series, and four battery cells 21. Is equipped with a series circuit connected in series. In a series circuit in which six battery cells 21 are connected in series, the positive electrode terminal of the first stage battery cell 21 is connected to the terminal 2a via the circuit switch SW1, and the negative electrode terminal of the sixth stage battery cell 21 is connected. Is connected to the terminal 2b. In a series circuit in which five battery cells 21 are connected in series, the positive electrode terminal of the first stage battery cell 21 is connected to the terminal 2a via the circuit switch SW2, and the negative electrode terminal of the fifth stage battery cell 21 is connected. Is connected to the terminal 2b.
  • the positive electrode terminal of the first stage battery cell 21 is connected to the terminal 2a via the circuit switch SW3, and the negative electrode terminal of the fourth stage battery cell 21 is connected. Is connected to the terminal 2b.
  • the number of battery cells 21 connected in series can be switched by switching the plurality of series circuits having different numbers of battery cells 21 in series by the circuit switches SW1 to SW3. As a result, the output voltage value Vdc of the power supply 2 is switched.
  • the inverter 3 is a device that converts the electric power Pdc supplied from the power supply 2 into the AC electric power Pac.
  • the inverter 3 supplies the electric power Pac to the coil device 4.
  • the inverter 3 generates electric power Pac by switching the electric power Pdc.
  • the inverter 3 includes, for example, a semiconductor element for performing switching. Examples of such semiconductor elements include MOS FETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) and IGBTs (Insulated Gate Bipolar Transistors).
  • the switching duty in the inverter 3 and the length of the conduction time of the semiconductor element are changed according to the operating state of the coil device 4.
  • the operating state of the coil device 4 includes the presence / absence of power supply and the power supply power.
  • the operating state of the coil device 4 includes the rotation speed of the motor and the torque.
  • the output voltage value Vdc of the power supply 2 is high, the voltage value (absolute value) of the output voltage of the inverter 3, that is, the voltage value (absolute value) of the drive voltage of the coil device 4 is high, and the output of the power supply 2 is high. If the voltage value Vdc is low, the voltage value (absolute value) of the output voltage of the inverter 3, that is, the voltage value (absolute value) of the drive voltage of the coil device 4 is low.
  • the coil device 4 includes a coil that receives power from the power source 2. Specifically, the coil receives electric power Pac from the inverter 3.
  • the coil device 4 may further include a passive electrical circuit electrically connected to the coil. Examples of the coil device 4 include a coil device for non-contact power feeding and a motor.
  • the coil device 4 When the coil device 4 is a coil device for non-contact power feeding, the coil device 4 may include a circuit for grounding, which is a passive electric circuit, and a matching circuit in addition to the coil.
  • the matching circuit may consist of an inductor, a capacitor, or a combination of an inductor and a capacitor.
  • the coil device 4 When the coil device 4 is a motor, the coil device 4 may include a circuit for grounding, which is a passive electric circuit, and a filter circuit in addition to the coil.
  • the filter circuit is provided, for example, as a measure against EMC (Electro Magnetic Compatibility), and may be composed of an inductor, a capacitor, or a combination of an inductor and a capacitor.
  • the sensor 5 outputs a measured value M for estimating the state of the atmosphere around the coil included in the coil device 4.
  • the atmosphere around the coil is the atmosphere to which the coil is exposed.
  • atmospheric conditions include atmospheric pressure and humidity.
  • the measured value for estimating the atmospheric condition may be a value obtained by directly measuring the atmospheric condition or a value capable of estimating the atmospheric condition. For example, since the atmospheric pressure changes depending on the altitude (altitude), the altitude may be used as the measured value.
  • Examples of the sensor 5 include a pressure sensor, a humidity sensor, and an altitude sensor.
  • An example of an altitude sensor is a sensor that uses GPS (Global Positioning System).
  • the sensor 5 outputs the measured value M to the control device 10.
  • the sensor 5 may be provided adjacent to the coil device 4 (coil).
  • the sensor 5 may be separated from the coil device 4 as long as the atmospheric conditions can be regarded as the same.
  • the coil device 4 may be installed on the floor surface of the parking lot, and the sensor 5 may be attached to a pole in the parking lot.
  • the control device 10 is a device that controls the power supply 2.
  • the control device 10 calculates the output voltage value Vdc according to the measured value M received from the sensor 5, and transmits an output command C for outputting the output voltage of the output voltage value Vdc to the power supply 2.
  • the control device 10 physically includes hardware such as one or more processors 101, a main storage device 102, an auxiliary storage device 103, an input device 104, an output device 105, and a communication device 106. It can be configured as a computer with hardware.
  • An example of the processor 101 is a CPU (Central Processing Unit).
  • the main storage device 102 is composed of, for example, a RAM (Random Access Memory) and a ROM (Read Only Memory).
  • the auxiliary storage device 103 is composed of, for example, a hard disk device or a flash memory, and is generally non-volatile and has a capacity capable of storing a larger amount of data than the main storage device 102.
  • the input device 104 includes, for example, a keyboard, a mouse, a touch panel, and operation buttons.
  • the output device 105 is composed of, for example, a display and a speaker.
  • the communication device 106 is composed of, for example, a network interface card (NIC) or a wireless communication module.
  • NIC network interface card
  • Each function shown in FIG. 6 of the control device 10 is performed under the control of one or a plurality of processors 101 by causing hardware such as the main storage device 102 to read one or a plurality of predetermined computer programs. This is realized by operating the hardware and reading and writing data in the main storage device 102 and the auxiliary storage device 103.
  • control device 10 functionally includes an acquisition unit 11, a detection unit 12, a storage unit 13, a calculation unit 14, and an output unit 15.
  • the acquisition unit 11 acquires the measured value M. Specifically, the acquisition unit 11 acquires the measured value M from the sensor 5 and outputs the measured value M to the calculation unit 14. For example, when the sensor 5 is an analog output sensor, the acquisition unit 11 is an A / D (Analog to Digital) conversion circuit. When the sensor 5 is a GPS receiver, the acquisition unit 11 is a communication interface with the GPS receiver. The acquisition unit 11 converts the measured value M acquired from the sensor 5 into digital data that can be processed by the calculation unit 14, and outputs the digital data to the calculation unit 14.
  • a / D Analog to Digital
  • the detection unit 12 detects an abnormality.
  • the detection unit 12 detects, for example, an abnormality of the sensor 5 and an abnormality of the control device 10.
  • the detection unit 12 outputs the abnormality information indicating the abnormality to the calculation unit 14.
  • the detection unit 12 may determine that the sensor 5 is abnormal when the sensor 5 and the acquisition unit 11 cannot communicate with each other for a certain period of time or longer.
  • the detection unit 12 may determine that the sensor 5 is abnormal when the difference between the measured values of the plurality of sensors exceeds the range of the measurement error.
  • the detection unit 12 determines that the control device 10 is abnormal when the watchdog timer is not reset. You may.
  • the storage unit 13 stores a table 13a that defines the relationship between the measured value M and the target voltage value Vt.
  • the target voltage value Vt is a value of the output voltage value Vdc to be output from the power supply 2, and is smaller than the voltage value Vdis.
  • the voltage value Vdis is the minimum output voltage value of the output voltage that causes a discharge between the conductors of the coil in the state of the atmosphere around the coil estimated from the measured value M.
  • a set of various measured values M and corresponding target voltage values Vt is set. The setting method of the table 13a will be described later.
  • the calculation unit 14 calculates the output voltage (output voltage value Vdc) that does not cause a discharge between the conductors of the coil based on the measured value M.
  • the calculation unit 14 receives the measurement value M from the acquisition unit 11, the calculation unit 14 refers to the table 13a stored in the storage unit 13 and acquires the target voltage value Vt corresponding to the measurement value M.
  • the calculation unit 14 corresponds to the measured value closest to the measured value M among the measured values smaller than the measured value M.
  • the smaller value of the target voltage value and the target voltage value corresponding to the measurement value closest to the measurement value M among the measurement values larger than the measurement value M is set as the target voltage value Vt.
  • the smaller target voltage value of the target voltage value Vt_0 and the target voltage value Vt_1 Vt_1 is used as the target voltage value Vt.
  • the smaller target voltage value Vt_1 of the target voltage value Vt_1 and the target voltage value Vt_1 is used as the target voltage value Vt. ..
  • the smaller target voltage value Vt_2 of the target voltage value Vt_2 and the target voltage value Vt_3 is used as the target voltage value Vt.
  • the smaller target of the target voltage value Vt_ (N-2) and the target voltage value Vt_ (N-1) is used as the target voltage value Vt.
  • the smaller target voltage value Vt_ (N-1) of the target voltage value Vt_ (N-1) and the target voltage value Vt_N ) Is used as the target voltage value Vt.
  • the measured value M is included in another range.
  • the calculation unit 14 calculates the target voltage value Vt as the output voltage value Vdc.
  • the calculation unit 14 calculates the maximum output voltage value that is equal to or less than the target voltage value Vt among the output voltage values that the power supply 2 can output as the output voltage value Vdc. do. That is, the output voltage value Vdc is smaller than the voltage value Vdis.
  • the calculation unit 14 calculates the voltage value Vlim1 (see FIG. 12) as the output voltage value Vdc.
  • the voltage value Vlim1 is a voltage value of an output voltage that does not cause a discharge between the conductors of the coil over the entire range of use of the coil device 4.
  • the range of use is the range of atmospheric conditions around the coil in which the coil may be used.
  • the voltage value Vlim1 is predetermined and stored in the storage unit 13.
  • the calculation unit 14 outputs the output voltage value Vdc to the output unit 15.
  • the output unit 15 outputs (transmits) the output command C to the power supply 2.
  • the output unit 15 receives the output voltage value Vdc from the calculation unit 14, it generates an output command C for causing the power supply 2 to output the output voltage of the output voltage value Vdc, and outputs the output command C to the power supply 2.
  • FIG. 8 is a flowchart showing an example of a table setting method.
  • FIG. 9 is a diagram showing a configuration for obtaining the relationship between the input voltage and the output voltage of the inverter.
  • FIG. 10 is a diagram showing a configuration for acquiring a set of a measured value and a discharge start voltage value. The following procedure is performed before the operation of the coil device 4 is started. The table 13a may be reset by performing the following procedure during the operation period of the coil device 4.
  • step S1 the relationship between the input voltage and the output voltage of the inverter 3 is obtained (step S1).
  • step S1 as shown in FIG. 9, the power supply 2 is connected to the coil device 4 via the inverter 3.
  • a voltage measuring instrument 51 is connected between the inputs of the coil device 4 (that is, between the outputs of the inverter 3) in order to measure the drive voltage of the coil device 4.
  • the output command C is transmitted to the power supply 2 so that the output voltage value of the power supply 2 (that is, the input voltage value of the inverter 3) becomes the voltage value Vtest.
  • the voltage value Vtest is a voltage value that does not cause a discharge between the conductors of the coil of the coil device 4.
  • the voltage value Vtest is estimated from the configuration and operation of the inverter 3, the shape and dimensions of the coil of the coil device 4, and the like. For example, the voltage value Vtest is set to the lowest voltage value that the power supply 2 can output.
  • the duty ratio of the inverter 3 is fixed at a constant value.
  • the inverter 3 can operate at a plurality of duty ratios, the duty ratio at which the output voltage of the inverter 3 is the highest with respect to the input voltage of the same inverter 3 is used. That is, the duty ratio with the longest duration of conduction of either the upper arm or the lower arm of the leg of the inverter 3 is used.
  • the voltage measuring instrument 51 measures the voltage value Vrms1.
  • the voltage value measured by the voltage measuring instrument 51 is, for example, an effective value.
  • the duty ratio of the inverter 3 is constant, the input voltage (output voltage value Vdc) of the inverter 3 and the output voltage (voltage value Vac) of the inverter 3 are proportional to each other, so that the relational expression (1) can be obtained.
  • a measured value M i and the discharge starting voltage value Vrms2_i is measured and recorded (step S2).
  • the variable i is an integer of 0 or more and N (N is an integer of 1 or more) or less.
  • the coil device 4 and the sensor 5 are housed in the chamber 52, as shown in FIG.
  • the pressure value is used as the measured value M.
  • the chamber 52 is configured so that the pressure in the chamber 52 can be changed by a pump or the like for intake and exhaust.
  • the chamber 52 can change the pressure in the chamber 52 in a range wider than the range of use of the coil device 4.
  • the range of use of the coil device 4 is the range from the lowest atmospheric pressure to the highest atmospheric pressure in which the coil device 4 is used.
  • the partial discharge tester 53 is connected to the coil device 4, and the recorder 54 is connected to the sensor 5 and the partial discharge tester 53.
  • the partial discharge tester 53 is a device that measures a voltage value (discharge start voltage value) that starts discharge by applying a voltage.
  • the partial discharge tester 53 outputs AC power having the same frequency as the inverter 3.
  • Recorder 54 has been measured value M i (here, the pressure value) measured by the sensor 5 is a recorder for recording the measured discharge start voltage value Vrms2_i and by the partial discharge tester 53. Human instead of the recorder 54 may record by hand measurements M i and the discharge starting voltage value Vrms2_i.
  • the discharge start voltage value measured by the partial discharge tester 53 is, for example, an effective value.
  • the measured value M i measured by the sensor 5 as the recorder, and human-recording, partial discharge tester 53 may be configured.
  • an A / D converter may be provided between the sensor 5 and the recorder, and the A / D converter may convert the measured value into a digital signal and output it to the recorder.
  • a human can read the measured value by providing a display for displaying the measured value.
  • a measured value M i and the discharge starting voltage value Vrms2_i is measured.
  • the initial value of the variable i is set to 0.
  • the pressure value is used as the measured value M i.
  • the pressure in the chamber 52 is set to a pressure value P i
  • sensor 5 measures the pressure values P i
  • recorder 54 the pressure value P i as a measurement value M i Send to.
  • the partial discharge tester 53 measures the discharge start voltage value Vrms2_i and transmits the discharge start voltage value Vrms2_i to the recorder 54.
  • the recorder 54 records in association with the the discharge starting voltage value Vrms2_i measured pressure value measured by the sensor 5 P i (measured value M i) and the partial discharge tester 53.
  • Variable i is increased by 1 from 0 to N, the measurement and recording of measured values M i and the discharge starting voltage value Vrms2_i are performed sequentially.
  • the discharge start voltage value Vrms2_i is converted into the voltage value Vdis_i at the input voltage of the inverter 3 (step S3).
  • the discharge start voltage value Vrms2_i is the voltage value of the AC voltage (output voltage of the inverter 3) applied to the coil device 4, and the relational expression (1) is established between the input voltage and the output voltage of the inverter 3. .. Therefore, in the relational expression (1), the discharge start voltage value Vrms2_i is substituted for the voltage value Vac, and the voltage value Vdis_i is substituted for the output voltage value Vdc. Is converted to the voltage value Vdis_i.
  • the target voltage value Vt_i to be output by the power supply 2 is calculated (step S4).
  • the target voltage value Vt_i is calculated by multiplying the voltage value Vdis_i by the magnification ⁇ .
  • the magnification ⁇ is a value greater than 0 and less than 1. That is, when the voltage value of the output voltage is the voltage value Vdis_i, the coil device 4 starts discharging, so that the target voltage value Vt_i needs to be set to a value smaller than the voltage value Vdis_i.
  • the magnification ⁇ is set so that the possibility of discharge in the coil device 4 can be sufficiently reduced when the output voltage value Vdc is set to the target voltage value Vt_i in consideration of the measurement error and the manufacturing variation of the coil device 4.
  • the magnification ⁇ may be constant regardless of the value of the variable i, or may be changed for each value of the variable i. For example, in order to secure a certain margin, the smaller the target voltage value Vt_i, the smaller the magnification ⁇ may be set.
  • the target voltage value Vt_i may be calculated by subtracting the value ⁇ from the voltage value Vdis_i instead of multiplying the voltage value Vdis_i by the magnification ⁇ .
  • the value ⁇ is a positive number smaller than the voltage value Vdis_i.
  • N pieces of the set of the measured values M i and the target voltage value Vt_i is set in the table 13a stored in the storage unit 13 (step S5). As described above, the table 13a is set.
  • the drive voltage of the coil device 4 (that is, the output voltage of the inverter 3) is represented by the equation (3) from the equation (1).
  • the target voltage value Vt_i is obtained by multiplying the voltage value Vdis_i by the magnification ⁇ , as shown in the equation (4).
  • the drive voltage of the coil device 4 is expressed by the equation (5).
  • the drive voltage of the coil device 4 is represented by the equation (6).
  • Discharge starting voltage value Vrms2_i is a driving voltage to start discharge when the coil unit 4 is used at atmospheric pressure of the pressure values P i, the magnification ⁇ is a positive value less than 1. Therefore, the drive voltage (voltage value Vac) of the coil device 4 represented by the equation (6) is a value smaller than the discharge start voltage value Vrms2_i, that is, a drive voltage that does not cause discharge. That is, when the coil unit 4 is used at atmospheric pressure of the pressure values P i, if the output voltage value Vdc is set to the target voltage value Vt_i, the drive voltage of the coil unit 4 is represented by the formula (6) .. Therefore, since the drive voltage of the coil device 4 is smaller than the discharge start voltage value Vrms2_i, no discharge occurs.
  • FIG. 11 is a flowchart showing a series of processes of the output voltage setting method performed by the control device shown in FIG.
  • the series of processes shown in FIG. 11 is started at predetermined time intervals.
  • the predetermined time is set to be sufficiently shorter than the time during which the atmospheric condition changes to the extent that it affects the discharge start voltage value.
  • the predetermined time may be set short.
  • the installation location of the coil system 1 is basically the same, so that the predetermined time may be set longer.
  • the predetermined time is set to, for example, about 30 minutes or 1 hour.
  • the acquisition unit 11 acquires the measured value M from the sensor 5 (step S11). Then, the acquisition unit 11 outputs the measured value M to the calculation unit 14.
  • step S12 when the calculation unit 14 receives the measured value M from the acquisition unit 11, it determines whether or not the detection unit 12 has detected an abnormality in the sensor 5 or the control device 10 (step S12). For example, when the calculation unit 14 receives the abnormality information from the detection unit 12, the calculation unit 14 detects that an abnormality has occurred in the sensor 5 or the control device 10. In step S12, when the calculation unit 14 determines that the detection unit 12 has not detected an abnormality (step S12; NO), the calculation unit 14 calculates the output voltage value Vdc according to the measured value M (step S13). Specifically, the calculation unit 14 refers to the table 13a stored in the storage unit 13 and acquires the target voltage value Vt corresponding to the measured value M.
  • the calculation unit 14 calculates the target voltage value Vt as the output voltage value Vdc.
  • the calculation unit 14 calculates the maximum output voltage value that is equal to or less than the target voltage value Vt among the output voltage values that the power supply 2 can output as the output voltage value Vdc. do. Then, the calculation unit 14 outputs the output voltage value Vdc to the output unit 15.
  • step S12 when the calculation unit 14 determines that the detection unit 12 has detected an abnormality (step S12; YES), the calculation unit 14 calculates the predetermined voltage value Vlim1 as the output voltage value Vdc (step S12). S14). Then, the calculation unit 14 outputs the output voltage value Vdc to the output unit 15.
  • Step S15 As described above, a series of processes of the output voltage setting method performed by the control device 10 is completed.
  • the power supply 2 receives the output command C from the control device 10, it outputs an output voltage having the output voltage value Vdc specified by the output command C.
  • the inverter 3 converts the output voltage output from the power supply 2 into a drive voltage, and supplies the drive voltage to the coil device 4.
  • the voltage value of the drive voltage thus obtained is a voltage value at which no discharge occurs between the coil conductors of the coil device 4 in the state of the atmosphere around the coil of the coil device 4. Therefore, the coil device 4 is driven so that no discharge occurs between adjacent conductors of the coil.
  • FIG. 12 is a diagram showing an example of the relationship between the atmospheric pressure and the output voltage value.
  • atmospheric pressure fluctuates with altitude and weather. Specifically, the higher the altitude, the lower the atmospheric pressure. The closer the cyclone is, the lower the atmospheric pressure is, and the closer the high pressure is, the higher the atmospheric pressure is.
  • a limit value is set for the voltage applied to the coil so that discharge does not occur between the conductors of the coil even if the altitude and the weather of the place where the coil device 4 is used changes. Therefore, in the comparative example, as shown by the thick broken line in FIG. 12, the output voltage is limited to a constant voltage value Vlim1 regardless of the atmospheric pressure.
  • the output voltage is changed according to the atmospheric pressure. For example, in section 2, an output voltage having a voltage value larger than the voltage value Vlim1 and having a voltage value equal to or lower than the voltage value Vlim2 is output.
  • an output voltage having a voltage value larger than the voltage value Vlim1 and having a voltage value equal to or lower than the voltage value Vlim3 is output. That is, the output voltage value Vdc is set higher than the voltage value Vlim1 according to the change in atmospheric pressure.
  • the output current value can be lowered, so that the power loss in the coil can be reduced.
  • the power Pdc output from the power supply 2 can be increased. The wider the range of use of the coil device 4, the more remarkable the above effect appears.
  • the output voltage value Vdc that does not cause a discharge between the conductors of the coil of the coil device 4 is based on the measured value M for estimating the state of the atmosphere around the coil. Is calculated, and an output command C for outputting the output voltage of the output voltage value Vdc is output to the power supply 2. Therefore, the output voltage of the output voltage value Vdc according to the atmospheric condition is output from the power supply 2. For example, when the atmospheric pressure is high, even if the output voltage value Vdc is increased to some extent, no discharge occurs between the conductors of the coil.
  • the output voltage value Vdc is smaller than the voltage value Vdis. Therefore, it is possible to improve the power efficiency or increase the output without causing a discharge between the conductors of the coil. In other words, even if the atmospheric condition changes, no discharge occurs between the adjacent conductors of the coil, and the output voltage value Vdc cannot be lowered unnecessarily. Therefore, it is possible to at least either improve power efficiency or increase output.
  • the output voltage value Vdc is, for example, a value obtained by multiplying the voltage value Vdis by the magnification ⁇ .
  • the output voltage value Vdc may be a value obtained by subtracting a positive value ⁇ smaller than the voltage value Vdis from the voltage value Vdis. In these cases, an output voltage value Vdc smaller than the voltage value Vdis can be obtained by a simple calculation.
  • the output voltage value Vdc according to the atmospheric condition may not be calculated accurately.
  • the voltage value Vlim1 that does not cause a discharge between the conductors over the range of the atmospheric condition around the coil in which the coil is used is calculated as the output voltage value Vdc. Therefore, even if an abnormality is detected, the possibility of generating an electric discharge between the conductors of the coil can be reduced.
  • atmospheric pressure is used as the atmospheric condition.
  • the output voltage of the output voltage value Vdc corresponding to the atmospheric pressure around the coil device 4 is output from the power supply 2. Therefore, it is possible to increase the power Pdc as compared with the case where the output voltage value Vdc is fixed.
  • the power supply 2 outputs a constant power Pdc, the output current can be reduced, so that the loss in the coil can be reduced.
  • the output voltage value Vdc is lower than the voltage value Vdis at which discharge occurs between adjacent conductors of the coil at atmospheric pressure around the coil of the coil device 4, the possibility of discharge occurring in the coil device 4 is reduced.
  • the output voltage value Vdc can be increased, so that at least one of improving the power efficiency and increasing the output becomes possible.
  • the state of the atmosphere (atmospheric pressure) around the coil of the coil device 4 is measured by the sensor 5, and the output voltage value Vdc that does not cause discharge between the conductors of the coil is calculated based on the measured value M. ..
  • a sensor that directly measures the atmospheric state (pressure) is used as the sensor 5, but a sensor that indirectly measures the atmospheric condition may be used.
  • an altitude sensor that measures the altitude of the coil device 4 may be used as the sensor 5.
  • the set of the altitude and the target voltage value Vt is stored in the table 13a. Since the relationship between the atmospheric pressure and the altitude varies, the target voltage value Vt may be calculated by multiplying the voltage value Vdis_i by the magnification ⁇ .
  • the magnification ⁇ is a value larger than 0 and less than 1, and a value smaller than the magnification ⁇ . In this case as well, the same effect as that of the above embodiment is achieved.
  • the voltage limit value at which no discharge occurs between the conductors of the coil may depend on the atmospheric conditions other than atmospheric pressure.
  • the voltage limit may depend on humidity. Therefore, a sensor (humidity sensor) that measures humidity may be used as the sensor 5.
  • a humidity sensor may be used in addition to the pressure sensor.
  • the control device 10 may receive the pressure value and the humidity as the measured values M, and may change the output voltage value Vdc according to the pressure value and the humidity of the atmosphere around the coil of the coil device 4.
  • the chamber 52 a chamber in which the pressure and humidity can be changed is used, and a set of various pressure values and humidity and a discharge start voltage value Vrms2 is recorded. A combination of pressure value, humidity, and target voltage value Vt is set in the table 13a.
  • the coil device 4 when the coil device 4 is used as a non-contact power transmission device, the coil device 4 may be installed on the ground outdoors. In such a case, the humidity around the coil may fluctuate. As mentioned above, the voltage value Vdis_i can be affected by humidity. On the other hand, the state of the atmosphere around the coil device 4 estimated by the measured value M may include humidity, and the sensor 5 may include a humidity sensor. According to this configuration, the output voltage of the output voltage value Vdc corresponding to the humidity around the coil device 4 is output from the power supply 2. Also in this case, it is possible to increase the power Pdc as compared with the case where the output voltage value Vdc is fixed. Alternatively, when the power supply 2 outputs a constant power Pdc, the output current can be reduced, so that the loss in the coil can be reduced. As a result, it is possible to improve power efficiency.
  • the calculation unit 14 may calculate the output voltage value Vdc without referring to the table 13a.
  • the threshold value Mth may be used instead of the table 13a.
  • the voltage value Vdca is larger than the voltage value Vdcb.
  • the threshold value Mth is a value that satisfies the following first condition and second condition.
  • the first condition is that when the value for estimating the atmospheric state is equal to or greater than the threshold value Mth, if the output voltage value Vdc is set to the voltage value Vdca, a discharge occurs between adjacent conductors of the coils of the coil device 4.
  • the condition is that there is no such thing.
  • the second condition is that when the value for estimating the atmospheric state is less than the threshold value Mth, if the output voltage value Vdc is set to the voltage value Vdcb, a discharge occurs between the adjacent conductors of the coils of the coil device 4.
  • the condition is that there is no such thing.
  • the calculation unit 14 calculates the voltage value Vdca as the output voltage value Vdc.
  • the calculation unit 14 calculates the voltage value Vdcb as the output voltage value Vdc.
  • the threshold value Mth is determined as follows and stored in the storage unit 13 before the operation of the coil device 4 is started. For example, among the pairs of the measured values M i and the target voltage value Vt_i set in the table 13a, the assembled including the target voltage value Vt_i is equal to or higher than the voltage value Vdca are extracted. Then, the minimum measured value M i of the measured values M i included in the extracted set is set to the threshold Mth. When atmospheric pressure is used as the measured value M, the target voltage value Vt_i is equal to or higher than the voltage value Vdca at atmospheric pressure equal to or higher than the threshold value Mth. Therefore, even if the output voltage value Vdc of the power supply 2 is set to the voltage value Vdca, no discharge occurs between the adjacent conductors of the coil.
  • the storage unit 13 does not have to store the table 13a because the table 13a is only used to determine the threshold Mth.
  • the table 13a is set by the test, but the setting method of the table 13a is not limited to this.
  • the table 13a may be set by a simulation using a circuit model and a model for predicting the discharge start voltage value.
  • the circuit model is a simulation model that predicts the voltage of each part of the coil device 4 when the inverter 3 operates at the output voltage of the power supply 2.
  • the model that predicts the discharge start voltage value predicts the discharge start voltage value according to the atmospheric conditions, the material and shape of the coil conductor, the material and shape of the insulator, and the positional relationship between the coil conductor and the insulator. It is a simulation model to be used.
  • the control device 10 does not have to include the detection unit 12 when the abnormality is not detected.
  • the control device 10 does not have to include the storage unit 13.
  • the calculation unit 14 may refer to the table 13a stored in the storage unit outside the control device 10.
  • the inverter 3 may be replaced with a commutator that mechanically inverts the voltage.
  • a DC motor may be adopted as the coil device 4.
  • the motor winding corresponds to the coil.
  • the coil system 1 does not have to include the inverter 3.
  • an AC output power supply with a variable voltage is used as the power supply 2, and the power supply 2 is directly connected to the coil device 4.
  • the coil system 1 does not have to include the sensor 5.
  • the control device 10 acquires the measured value M from the sensor outside the coil system 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

A control device that controls a power source for supplying electric power to a coil, the control device comprising: an acquisition unit that acquires a measurement value for estimating the state of the atmosphere around the coil; a calculation unit that calculates, on the basis of the measurement value, an output voltage value at which no discharge is generated between the conductors of the coil; and an output unit that outputs, to the power source, a command to output an output voltage at the output voltage value.

Description

制御装置、及びコイルシステムControl device and coil system
 本開示は、制御装置、及びコイルシステムに関する。 This disclosure relates to a control device and a coil system.
 コイルの互いに隣り合う導体間で放電が生じる電圧は、気体の圧力等の大気の状態に依存して変化することが知られている(例えば、特許文献1参照)。 It is known that the voltage at which a discharge occurs between conductors adjacent to each other in a coil changes depending on the atmospheric conditions such as gas pressure (see, for example, Patent Document 1).
特開2016-207742号公報Japanese Unexamined Patent Publication No. 2016-207742
 コイルの互いに隣り合う導体間における放電を防止するために、コイルに印加される電圧が制限される。例えば、大気圧は標高等によって変動するので、大気圧が変動した場合でも導体間で放電が生じないようにするために、コイルに印加される電圧の電圧値は、大気圧の変動範囲において最も低い電圧制限値に設定されることがある。使用環境(例えば、移動体に搭載されたコイルにおいて、コイルが使用される場所の標高及び天候)の変化に伴い大気圧が変わると、電圧制限値よりも高い電圧値の電圧がコイルに印加されたとしても、導体間において放電が生じない場合がある。しかしながら、上述の電圧値の設定方法では、電圧制限値以下の電圧値が用いられるので、電力損失を低減すること、及び出力を増加することができない。 The voltage applied to the coil is limited in order to prevent discharge between the conductors adjacent to each other in the coil. For example, since the atmospheric pressure fluctuates depending on the altitude, etc., the voltage value of the voltage applied to the coil is the most in the fluctuation range of the atmospheric pressure in order to prevent discharge from occurring between the conductors even if the atmospheric pressure fluctuates. May be set to a low voltage limit. When the atmospheric pressure changes due to changes in the usage environment (for example, the altitude and weather of the place where the coil is used in the coil mounted on the moving body), a voltage with a voltage value higher than the voltage limit value is applied to the coil. Even so, there are cases where no discharge occurs between the conductors. However, in the above-mentioned voltage value setting method, since a voltage value equal to or less than the voltage limit value is used, it is not possible to reduce the power loss and increase the output.
 本開示は、電力効率の向上又は出力の増大が可能な制御装置、及びコイルシステムを説明する。 The present disclosure describes a control device and a coil system capable of improving power efficiency or increasing output.
 本開示の一側面に係る制御装置は、コイルに電力を供給するための電源を制御する装置である。この制御装置は、コイル周囲の大気の状態を推定するための計測値を取得する取得部と、計測値に基づいて、コイルの導体間で放電を生じさせない出力電圧値を算出する算出部と、出力電圧値の出力電圧を出力する指令を前記電源に出力する出力部と、を備える。 The control device according to one aspect of the present disclosure is a device that controls a power source for supplying electric power to a coil. This control device includes an acquisition unit that acquires measured values for estimating the state of the atmosphere around the coil, and a calculation unit that calculates an output voltage value that does not cause discharge between the conductors of the coil based on the measured values. It includes an output unit that outputs a command to output an output voltage of an output voltage value to the power supply.
 本開示によれば、電力効率を向上すること、又は出力を増大することができる。 According to the present disclosure, it is possible to improve power efficiency or increase output.
図1は、一実施形態に係る制御装置を含むコイルシステムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a coil system including a control device according to an embodiment. 図2は、図1に示される電源の構成例を示す図である。FIG. 2 is a diagram showing a configuration example of the power supply shown in FIG. 図3は、図1に示される電源の別の構成例を示す図である。FIG. 3 is a diagram showing another configuration example of the power supply shown in FIG. 図4は、図1に示される電源のさらに別の構成例を示す図である。FIG. 4 is a diagram showing still another configuration example of the power supply shown in FIG. 図5は、図1に示される制御装置のハードウェア構成を示す図である。FIG. 5 is a diagram showing a hardware configuration of the control device shown in FIG. 図6は、図1に示される制御装置の機能構成を示す図である。FIG. 6 is a diagram showing a functional configuration of the control device shown in FIG. 図7は、計測値と目標電圧値との関係を説明するための図である。FIG. 7 is a diagram for explaining the relationship between the measured value and the target voltage value. 図8は、テーブルの設定方法の一例を示すフローチャートである。FIG. 8 is a flowchart showing an example of a table setting method. 図9は、インバータの入力電圧と出力電圧との関係を求めるための構成を示す図である。FIG. 9 is a diagram showing a configuration for obtaining the relationship between the input voltage and the output voltage of the inverter. 図10は、計測値と放電開始電圧値との組を取得するための構成を示す図である。FIG. 10 is a diagram showing a configuration for acquiring a set of a measured value and a discharge start voltage value. 図11は、図1に示される制御装置が行う出力電圧設定方法の一連の処理を示すフローチャートである。FIG. 11 is a flowchart showing a series of processes of the output voltage setting method performed by the control device shown in FIG. 図12は、大気圧と出力電圧値との関係の一例を示す図である。FIG. 12 is a diagram showing an example of the relationship between the atmospheric pressure and the output voltage value.
[1]実施形態の概要
 本開示の一側面に係る制御装置は、コイルに電力を供給するための電源を制御する装置である。この制御装置は、コイル周囲の大気の状態を推定するための計測値を取得する取得部と、計測値に基づいて、コイルの導体間で放電を生じさせない出力電圧値を算出する算出部と、出力電圧値の出力電圧を出力する指令を前記電源に出力する出力部と、を備える。
[1] Outline of Embodiment The control device according to one aspect of the present disclosure is a device that controls a power source for supplying electric power to a coil. This control device includes an acquisition unit that acquires measured values for estimating the state of the atmosphere around the coil, and a calculation unit that calculates an output voltage value that does not cause discharge between the conductors of the coil based on the measured values. It includes an output unit that outputs a command to output an output voltage of an output voltage value to the power supply.
 この制御装置では、コイル周囲の大気の状態を推定するための計測値に基づいて、コイルの導体間で放電を生じさせない出力電圧値が算出され、当該出力電圧値の出力電圧を出力する指令が電源に出力される。このため、大気の状態に応じた出力電圧値の出力電圧が電源から出力される。例えば、大気圧が高い場合には、出力電圧値をある程度高くしても、コイルの導体間で放電は生じない。このように、大気の状態に応じた出力電圧値の出力電圧を出力することにより、出力電圧値が固定されている場合と比較して、出力を増大することが可能となる。あるいは、電源が一定の電力を出力する場合には、出力電流を減らすことができるので、コイルにおける損失を低減することができる。その結果、電力効率を向上させることが可能となる。 In this control device, an output voltage value that does not cause discharge between the conductors of the coil is calculated based on the measured value for estimating the state of the atmosphere around the coil, and a command to output the output voltage of the output voltage value is issued. It is output to the power supply. Therefore, the output voltage of the output voltage value according to the atmospheric condition is output from the power supply. For example, when the atmospheric pressure is high, even if the output voltage value is raised to some extent, no discharge occurs between the conductors of the coil. By outputting the output voltage of the output voltage value according to the atmospheric condition in this way, it is possible to increase the output as compared with the case where the output voltage value is fixed. Alternatively, when the power supply outputs a constant power, the output current can be reduced, so that the loss in the coil can be reduced. As a result, it is possible to improve power efficiency.
 出力電圧値は、計測値から推定されるコイル周囲の大気の状態においてコイルの導体間で放電を生じさせる最小の出力電圧値よりも小さくてもよい。この場合、コイルの導体間で放電を生じさせる最小の出力電圧値よりも小さい出力電圧値の出力電圧が電源から出力される。したがって、コイルの導体間で放電を生じさせることなく、電力効率を向上すること、及び出力を増大することの少なくともいずれかが可能となる。 The output voltage value may be smaller than the minimum output voltage value that causes a discharge between the conductors of the coil in the atmospheric condition around the coil estimated from the measured value. In this case, an output voltage having an output voltage value smaller than the minimum output voltage value that causes discharge between the conductors of the coil is output from the power supply. Therefore, it is possible to at least either improve power efficiency or increase output without causing a discharge between the conductors of the coil.
 出力電圧値は、上記最小の出力電圧値に倍率を乗じることによって得られる値であってもよい。この場合、最小の出力電圧値よりも小さい出力電圧値を簡易な計算で得ることができる。 The output voltage value may be a value obtained by multiplying the above minimum output voltage value by a magnification. In this case, an output voltage value smaller than the minimum output voltage value can be obtained by a simple calculation.
 出力電圧値は、上記最小の出力電圧値から、上記最小の出力電圧値よりも小さい正の値を減算することによって得られる値であってもよい。この場合、最小の出力電圧値よりも小さい出力電圧値を簡易な計算で得ることができる。 The output voltage value may be a value obtained by subtracting a positive value smaller than the minimum output voltage value from the minimum output voltage value. In this case, an output voltage value smaller than the minimum output voltage value can be obtained by a simple calculation.
 上記制御装置は、異常を検出する検出部をさらに備えてもよい。算出部は、検出部によって異常が検出された場合、コイルが使用されるコイル周囲の大気の状態の範囲においてコイルの導体間で放電を生じさせない電圧値を出力電圧値として算出してもよい。異常が検出された場合には、大気の状態に応じた出力電圧値が正確に算出されないおそれがある。これに対し、異常が検出された場合に、コイルが使用されるコイル周囲の大気の状態の範囲にわたってコイルの導体間で放電を生じさせない電圧値が出力電圧値として算出される。したがって、異常が検出された場合でも、コイルの導体間で放電を生じる可能性を低減することができる。 The control device may further include a detection unit for detecting an abnormality. When an abnormality is detected by the detection unit, the calculation unit may calculate as an output voltage value a voltage value that does not cause a discharge between the conductors of the coil within the range of the atmospheric condition around the coil in which the coil is used. If an abnormality is detected, the output voltage value according to the atmospheric condition may not be calculated accurately. On the other hand, when an abnormality is detected, a voltage value that does not cause a discharge between the conductors of the coil over the range of the atmospheric condition around the coil in which the coil is used is calculated as an output voltage value. Therefore, even if an abnormality is detected, the possibility of generating an electric discharge between the conductors of the coil can be reduced.
 大気の状態は、大気圧を含んでもよい。この場合、大気圧に応じた出力電圧値の出力電圧が電源から出力される。この場合も、出力電圧値が固定されている場合と比較して、出力を増大することが可能となる。あるいは、電源が一定の電力を出力する場合には、出力電流を減らすことができるので、コイルにおける損失を低減することができる。その結果、電力効率を向上させることが可能となる。 Atmospheric conditions may include atmospheric pressure. In this case, the output voltage of the output voltage value corresponding to the atmospheric pressure is output from the power supply. In this case as well, the output can be increased as compared with the case where the output voltage value is fixed. Alternatively, when the power supply outputs a constant power, the output current can be reduced, so that the loss in the coil can be reduced. As a result, it is possible to improve power efficiency.
 本開示の別の側面に係るコイルシステムは、上記制御装置と、制御装置によって制御される電源と、電源から電力の供給を受けるコイルを含むコイル装置と、を備える。 A coil system according to another aspect of the present disclosure includes the above control device, a power source controlled by the control device, and a coil device including a coil that receives power from the power source.
 このコイルシステムは、上述の制御装置を含む。このため、コイルシステムでは、電力効率を向上すること、又は出力を増大することが可能となる。 This coil system includes the above-mentioned control device. Therefore, in the coil system, it is possible to improve the power efficiency or increase the output.
 上記コイルシステムは、計測値を出力するセンサをさらに備えてもよい。この場合、センサによって出力された計測値に基づいて、コイルの導体間で放電を生じさせない出力電圧が算出される。 The coil system may further include a sensor that outputs measured values. In this case, the output voltage that does not cause discharge between the conductors of the coil is calculated based on the measured value output by the sensor.
 大気の状態は、湿度を含んでもよい。センサは、湿度センサを含んでもよい。コイルの導体間で放電を生じさせる最小の出力電圧値は、湿度の影響を受け得る。上記構成によれば、湿度に応じた出力電圧値の出力電圧が電源から出力される。この場合も、出力電圧値が固定されている場合と比較して、出力を増大することが可能となる。あるいは、電源が一定の電力を出力する場合には、出力電流を減らすことができるので、コイルにおける損失を低減することができる。その結果、電力効率を向上させることが可能となる。 Atmospheric conditions may include humidity. The sensor may include a humidity sensor. The minimum output voltage value that causes a discharge between the conductors of the coil can be affected by humidity. According to the above configuration, the output voltage of the output voltage value corresponding to the humidity is output from the power supply. In this case as well, the output can be increased as compared with the case where the output voltage value is fixed. Alternatively, when the power supply outputs a constant power, the output current can be reduced, so that the loss in the coil can be reduced. As a result, it is possible to improve power efficiency.
[2]実施形態の例示
 以下、本開示の実施形態について、図面を参照しながら説明する。なお、図面の説明において同一要素には同一符号が付され、重複する説明は省略される。
[2] Examples of Embodiments Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the description of the drawings, the same elements are designated by the same reference numerals, and duplicate description is omitted.
 図1は、一実施形態に係る制御装置を含むコイルシステムの概略構成を示す図である。図2は、図1に示される電源の構成例を示す図である。図3は、図1に示される電源の別の構成例を示す図である。図4は、図1に示される電源のさらに別の構成例を示す図である。図5は、図1に示される制御装置のハードウェア構成を示す図である。図6は、図1に示される制御装置の機能構成を示す図である。図7は、計測値と目標電圧値との関係を説明するための図である。図1に示されるコイルシステム1は、大気の状態に応じた駆動電圧でコイルを駆動するシステムである。コイルシステム1は、電源2と、インバータ3と、コイル装置4と、センサ5と、制御装置10と、を備えている。 FIG. 1 is a diagram showing a schematic configuration of a coil system including a control device according to an embodiment. FIG. 2 is a diagram showing a configuration example of the power supply shown in FIG. FIG. 3 is a diagram showing another configuration example of the power supply shown in FIG. FIG. 4 is a diagram showing still another configuration example of the power supply shown in FIG. FIG. 5 is a diagram showing a hardware configuration of the control device shown in FIG. FIG. 6 is a diagram showing a functional configuration of the control device shown in FIG. FIG. 7 is a diagram for explaining the relationship between the measured value and the target voltage value. The coil system 1 shown in FIG. 1 is a system that drives a coil with a drive voltage according to the atmospheric condition. The coil system 1 includes a power supply 2, an inverter 3, a coil device 4, a sensor 5, and a control device 10.
 電源2は、コイル装置4のコイルに電力を供給するための装置である。電源2は、制御装置10によって制御される。具体的には、電源2は、制御装置10から出力指令Cを受信し、出力指令Cに基づいて出力電圧の出力電圧値Vdcを変更する可変電圧の電源である。出力指令Cは、電源2に出力電圧値Vdcの出力電圧を出力させるための指令である。本実施形態では、電源2は、直流出力電源であり、直流の電力Pdcをインバータ3に出力する。 The power supply 2 is a device for supplying electric power to the coil of the coil device 4. The power supply 2 is controlled by the control device 10. Specifically, the power supply 2 is a variable voltage power supply that receives the output command C from the control device 10 and changes the output voltage value Vdc of the output voltage based on the output command C. The output command C is a command for causing the power supply 2 to output an output voltage having an output voltage value of Vdc. In the present embodiment, the power supply 2 is a DC output power supply, and the DC power Pdc is output to the inverter 3.
 電源2は、例えば、PFC(Power Factor Correction)回路を備えていてもよい。PFC回路としては、昇圧型、降圧型、又は昇降圧型のPFC回路が用いられ得る。電源2は、例えば、商用電源から交流電力を受け、交流電力を電力Pdcに変換するとともに、PFC回路によって出力電圧値Vdcを変更する。 The power supply 2 may include, for example, a PFC (Power Factor Correction) circuit. As the PFC circuit, a step-up type, step-down type, or buck-boost type PFC circuit can be used. The power supply 2 receives AC power from, for example, a commercial power source, converts the AC power into power Pdc, and changes the output voltage value Vdc by the PFC circuit.
 電源2は、例えば、トランス、及び整流器を備えていてもよい。この場合、トランスは、巻き数が互いに異なる複数のタップと、複数のタップのうち接続するタップを切り替える回路開閉器と、を含む。回路開閉器の例としては、コンタクタ及び電子スイッチが挙げられる。電源2は、例えば、商用電源から交流電流を受け、トランスで変圧し、整流器で整流することによって、電力Pdcを生成する。トランスの回路開閉器によって、タップを切り替えることにより、出力電圧値Vdcが変更される。 The power supply 2 may include, for example, a transformer and a rectifier. In this case, the transformer includes a plurality of taps having different numbers of turns and a circuit switch for switching the tap to be connected among the plurality of taps. Examples of circuit switches include contactors and electronic switches. The power supply 2 generates electric power Pdc by receiving an alternating current from a commercial power source, transforming it with a transformer, and rectifying it with a rectifier, for example. The output voltage value Vdc is changed by switching the taps by the circuit switch of the transformer.
 電源2は、例えば、電池と、DC(Direct Current)-DCコンバータと、を備えていてもよい。電池は、1個の電池セルから構成されてもよく、直列接続された複数個の電池セルから構成されてもよい。この場合、DC-DCコンバータの制御によって、出力電圧値Vdcが変更される。 The power supply 2 may include, for example, a battery and a DC (Direct Current) -DC converter. The battery may be composed of one battery cell, or may be composed of a plurality of battery cells connected in series. In this case, the output voltage value Vdc is changed by the control of the DC-DC converter.
 図2~図4に示される構成例では、電源2は、複数の電池セル21と、複数の回路開閉器と、を備えている。電池セル21は、一次電池でもよく、二次電池でもよい。電池セル21としては、鉛蓄電池、リチウムイオン電池、及び太陽電池等の種々の電池が用いられ得る。複数の電池セル21には、複数種類の電池が混在してもよい。回路開閉器の例としては、コンタクタ及び電子スイッチが挙げられる。これらの構成例では、回路開閉器によって電池セル21の直列数を切り替えることによって、出力電圧値Vdcが変更される。 In the configuration example shown in FIGS. 2 to 4, the power supply 2 includes a plurality of battery cells 21 and a plurality of circuit switches. The battery cell 21 may be a primary battery or a secondary battery. As the battery cell 21, various batteries such as a lead storage battery, a lithium ion battery, and a solar cell can be used. A plurality of types of batteries may be mixed in the plurality of battery cells 21. Examples of circuit switches include contactors and electronic switches. In these configuration examples, the output voltage value Vdc is changed by switching the number of battery cells 21 in series by the circuit switch.
 図2に示される電源2の構成例では、複数(ここでは6個)の電池セル21が直列に接続されており、1段目の電池セル21の正極端子が回路開閉器SW1を介して電源2の端子2aに接続され、6段目(最終段)の電池セル21の負極端子が電源2の端子2bに接続されている。1段目の電池セル21の負極端子と2段目の電池セル21の正極端子との接続点は、回路開閉器SW2を介して端子2aに接続されている。2段目の電池セル21の負極端子と3段目の電池セル21の正極端子との接続点は、回路開閉器SW3を介して端子2aに接続されている。3段目の電池セル21の負極端子と4段目の電池セル21の正極端子との接続点は、回路開閉器SW4を介して端子2aに接続されている。 In the configuration example of the power supply 2 shown in FIG. 2, a plurality of (six in this case) battery cells 21 are connected in series, and the positive electrode terminal of the first stage battery cell 21 is a power supply via the circuit switch SW1. It is connected to the terminal 2a of the second stage, and the negative electrode terminal of the battery cell 21 in the sixth stage (final stage) is connected to the terminal 2b of the power supply 2. The connection point between the negative electrode terminal of the first-stage battery cell 21 and the positive electrode terminal of the second-stage battery cell 21 is connected to the terminal 2a via the circuit switch SW2. The connection point between the negative electrode terminal of the second-stage battery cell 21 and the positive electrode terminal of the third-stage battery cell 21 is connected to the terminal 2a via the circuit switch SW3. The connection point between the negative electrode terminal of the third-stage battery cell 21 and the positive electrode terminal of the fourth-stage battery cell 21 is connected to the terminal 2a via the circuit switch SW4.
 この構成例では、回路開閉器SW1が閉状態に設定され、回路開閉器SW2~SW4が開状態に設定された場合、端子2aと端子2bとの間の電圧の出力電圧値Vdcは、直列に接続された6個の電池セル21の電圧値Vsとなる。回路開閉器SW2が閉状態に設定され、回路開閉器SW1,SW3,SW4が開状態に設定された場合、出力電圧値Vdcは、直列に接続された5個の電池セル21の電圧値(5Vs/6)となる。同様に、回路開閉器SW3が閉状態に設定され、回路開閉器SW1,SW2,SW4が開状態に設定された場合、出力電圧値Vdcは、直列に接続された4個の電池セル21の電圧値(2Vs/3)となる。回路開閉器SW4が閉状態に設定され、回路開閉器SW1~SW3が開状態に設定された場合、出力電圧値Vdcは、直列に接続された3個の電池セル21の電圧値(Vs/2)となる。このように、直列に接続されている電池セル21の数を回路開閉器SW1~SW4で切り替えることにより、電源2の出力電圧値Vdcが切り替えられる。 In this configuration example, when the circuit switch SW1 is set to the closed state and the circuit switches SW2 to SW4 are set to the open state, the output voltage value Vdc of the voltage between the terminals 2a and 2b is in series. The voltage value Vs of the six connected battery cells 21 is obtained. When the circuit switch SW2 is set to the closed state and the circuit switches SW1, SW3, SW4 are set to the open state, the output voltage value Vdc is the voltage value (5Vs) of the five battery cells 21 connected in series. / 6). Similarly, when the circuit switch SW3 is set to the closed state and the circuit switches SW1, SW2, SW4 are set to the open state, the output voltage value Vdc is the voltage of the four battery cells 21 connected in series. It becomes a value (2Vs / 3). When the circuit switch SW4 is set to the closed state and the circuit switches SW1 to SW3 are set to the open state, the output voltage value Vdc is the voltage value (Vs / 2) of the three battery cells 21 connected in series. ). In this way, the output voltage value Vdc of the power supply 2 can be switched by switching the number of battery cells 21 connected in series with the circuit switches SW1 to SW4.
 図3に示される電源2の構成例は、回路開閉器SW5,SW6をさらに備える点において図2の構成例と相違する。回路開閉器SW5は、3段目の電池セル21の負極端子と4段目の電池セル21の正極端子との間に設けられている。回路開閉器SW6は、3段目の電池セル21の負極端子と端子2bとの間に設けられている。この構成例では、直列に接続されている電池セル21の数が、1~6個の間で切り替えられる。回路開閉器SW1,SW4,SW6が閉状態に設定され、回路開閉器SW2,SW3,SW5が開状態に設定された場合、1~3段目の電池セル21が直列に接続された直列回路と、4~6段目の電池セル21が直列に接続された直列回路とが、並列に接続される。この場合も、出力電圧値Vdcは、Vs/2の電圧値となる。 The configuration example of the power supply 2 shown in FIG. 3 is different from the configuration example of FIG. 2 in that the circuit switches SW5 and SW6 are further provided. The circuit switch SW5 is provided between the negative electrode terminal of the third-stage battery cell 21 and the positive electrode terminal of the fourth-stage battery cell 21. The circuit switch SW6 is provided between the negative electrode terminal and the terminal 2b of the third-stage battery cell 21. In this configuration example, the number of battery cells 21 connected in series is switched between 1 and 6. When the circuit switches SW1, SW4, SW6 are set to the closed state and the circuit switches SW2, SW3, SW5 are set to the open state, the series circuit in which the battery cells 21 of the first to third stages are connected in series A series circuit in which the battery cells 21 of the 4th to 6th stages are connected in series is connected in parallel. Also in this case, the output voltage value Vdc is a voltage value of Vs / 2.
 図4に示される電源2の構成例は、6個の電池セル21が直列に接続された直列回路と、5個の電池セル21が直列に接続された直列回路と、4個の電池セル21が直列に接続された直列回路と、を備えている。6個の電池セル21が直列に接続された直列回路では、1段目の電池セル21の正極端子が回路開閉器SW1を介して端子2aに接続され、6段目の電池セル21の負極端子が端子2bに接続されている。5個の電池セル21が直列に接続された直列回路では、1段目の電池セル21の正極端子が回路開閉器SW2を介して端子2aに接続され、5段目の電池セル21の負極端子が端子2bに接続されている。4個の電池セル21が直列に接続された直列回路では、1段目の電池セル21の正極端子が回路開閉器SW3を介して端子2aに接続され、4段目の電池セル21の負極端子が端子2bに接続されている。このように、互いに電池セル21の直列数が異なる複数の直列回路が、回路開閉器SW1~SW3によって切り替えられることにより、直列に接続されている電池セル21の数が切り替えられる。これにより、電源2の出力電圧値Vdcが切り替えられる。 The configuration example of the power supply 2 shown in FIG. 4 includes a series circuit in which six battery cells 21 are connected in series, a series circuit in which five battery cells 21 are connected in series, and four battery cells 21. Is equipped with a series circuit connected in series. In a series circuit in which six battery cells 21 are connected in series, the positive electrode terminal of the first stage battery cell 21 is connected to the terminal 2a via the circuit switch SW1, and the negative electrode terminal of the sixth stage battery cell 21 is connected. Is connected to the terminal 2b. In a series circuit in which five battery cells 21 are connected in series, the positive electrode terminal of the first stage battery cell 21 is connected to the terminal 2a via the circuit switch SW2, and the negative electrode terminal of the fifth stage battery cell 21 is connected. Is connected to the terminal 2b. In a series circuit in which four battery cells 21 are connected in series, the positive electrode terminal of the first stage battery cell 21 is connected to the terminal 2a via the circuit switch SW3, and the negative electrode terminal of the fourth stage battery cell 21 is connected. Is connected to the terminal 2b. In this way, the number of battery cells 21 connected in series can be switched by switching the plurality of series circuits having different numbers of battery cells 21 in series by the circuit switches SW1 to SW3. As a result, the output voltage value Vdc of the power supply 2 is switched.
 インバータ3は、電源2から供給される電力Pdcを交流の電力Pacに変換する装置である。インバータ3は、電力Pacをコイル装置4に供給する。インバータ3は、電力Pdcをスイッチングすることによって電力Pacを生成する。インバータ3は、例えば、スイッチングを行うための半導体素子を含む。このような半導体素子の例としては、MOS FET(Metal-Oxide-Semiconductor Field-Effect-Transistor)及びIGBT(Insulated Gate Bipolar Transistor)が挙げられる。 The inverter 3 is a device that converts the electric power Pdc supplied from the power supply 2 into the AC electric power Pac. The inverter 3 supplies the electric power Pac to the coil device 4. The inverter 3 generates electric power Pac by switching the electric power Pdc. The inverter 3 includes, for example, a semiconductor element for performing switching. Examples of such semiconductor elements include MOS FETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) and IGBTs (Insulated Gate Bipolar Transistors).
 コイル装置4の運転状態に応じて、インバータ3におけるスイッチングのデューティ及び半導体素子の導通時間の長さが変更される。コイル装置4が非接触給電用のコイル装置である場合、コイル装置4の運転状態は、給電の有無、及び給電電力を含む。コイル装置4がモータである場合、コイル装置4の運転状態は、モータの回転数、及びトルクを含む。なお、スイッチングにより正負の極性が変わるものの、スイッチングによりインバータ3の入力と出力とが導通するので、インバータ3の入力電圧がインバータ3の出力電圧に表れる。このため、電源2の出力電圧値Vdcが高ければ、インバータ3の出力電圧の電圧値(の絶対値)、つまりコイル装置4の駆動電圧の電圧値(の絶対値)は高く、電源2の出力電圧値Vdcが低ければ、インバータ3の出力電圧の電圧値(の絶対値)、つまりコイル装置4の駆動電圧の電圧値(の絶対値)は低い。 The switching duty in the inverter 3 and the length of the conduction time of the semiconductor element are changed according to the operating state of the coil device 4. When the coil device 4 is a coil device for non-contact power supply, the operating state of the coil device 4 includes the presence / absence of power supply and the power supply power. When the coil device 4 is a motor, the operating state of the coil device 4 includes the rotation speed of the motor and the torque. Although the positive and negative polarities change due to switching, the input and output of the inverter 3 are conducted by switching, so that the input voltage of the inverter 3 appears in the output voltage of the inverter 3. Therefore, if the output voltage value Vdc of the power supply 2 is high, the voltage value (absolute value) of the output voltage of the inverter 3, that is, the voltage value (absolute value) of the drive voltage of the coil device 4 is high, and the output of the power supply 2 is high. If the voltage value Vdc is low, the voltage value (absolute value) of the output voltage of the inverter 3, that is, the voltage value (absolute value) of the drive voltage of the coil device 4 is low.
 コイル装置4は、電源2から電力の供給を受けるコイルを含む。具体的には、コイルは、インバータ3から電力Pacを受ける。コイル装置4は、コイルに電気的に接続された受動的な電気回路をさらに含んでいてもよい。コイル装置4の例としては、非接触給電用のコイル装置、及びモータが挙げられる。 The coil device 4 includes a coil that receives power from the power source 2. Specifically, the coil receives electric power Pac from the inverter 3. The coil device 4 may further include a passive electrical circuit electrically connected to the coil. Examples of the coil device 4 include a coil device for non-contact power feeding and a motor.
 コイル装置4が非接触給電用のコイル装置である場合、コイル装置4は、コイルに加えて、受動的な電気回路である接地のための回路、及び整合回路を含んでいてもよい。整合回路は、インダクタ、キャパシタ、又はインダクタ及びキャパシタの組み合わせで構成され得る。コイル装置4がモータである場合、コイル装置4は、コイルに加えて、受動的な電気回路である接地のための回路、及びフィルタ回路を含んでいてもよい。フィルタ回路は、例えば、EMC(Electro Magnetic Compatibility)対策のために設けられ、インダクタ、キャパシタ、又はインダクタ及びキャパシタの組み合わせで構成され得る。 When the coil device 4 is a coil device for non-contact power feeding, the coil device 4 may include a circuit for grounding, which is a passive electric circuit, and a matching circuit in addition to the coil. The matching circuit may consist of an inductor, a capacitor, or a combination of an inductor and a capacitor. When the coil device 4 is a motor, the coil device 4 may include a circuit for grounding, which is a passive electric circuit, and a filter circuit in addition to the coil. The filter circuit is provided, for example, as a measure against EMC (Electro Magnetic Compatibility), and may be composed of an inductor, a capacitor, or a combination of an inductor and a capacitor.
 センサ5は、コイル装置4に含まれるコイル周囲の大気の状態を推定するための計測値Mを出力する。コイル周囲の大気とは、コイルが晒される大気である。大気の状態の例としては、大気圧及び湿度が挙げられる。大気の状態を推定するための計測値は、大気の状態を直接計測した値でもよく、大気の状態を推定可能な値でもよい。例えば、大気圧は、標高(高度)によって変化するので、計測値として標高が用いられてもよい。センサ5の例としては、圧力センサ、湿度センサ、及び高度センサが挙げられる。高度センサの例としては、GPS(Global Positioning System)を用いるセンサが挙げられる。センサ5は、計測値Mを制御装置10に出力する。センサ5は、コイル装置4(コイル)に隣接するように設けられてもよい。コイル装置4が大気の流通が良い場所に配置されている場合には、大気の状態が同一と見なせる範囲であれば、センサ5は、コイル装置4から離れていてもよい。例えば、コイル装置4が駐車場の床面に設置され、センサ5が駐車場内のポールに取りつけられていてもよい。 The sensor 5 outputs a measured value M for estimating the state of the atmosphere around the coil included in the coil device 4. The atmosphere around the coil is the atmosphere to which the coil is exposed. Examples of atmospheric conditions include atmospheric pressure and humidity. The measured value for estimating the atmospheric condition may be a value obtained by directly measuring the atmospheric condition or a value capable of estimating the atmospheric condition. For example, since the atmospheric pressure changes depending on the altitude (altitude), the altitude may be used as the measured value. Examples of the sensor 5 include a pressure sensor, a humidity sensor, and an altitude sensor. An example of an altitude sensor is a sensor that uses GPS (Global Positioning System). The sensor 5 outputs the measured value M to the control device 10. The sensor 5 may be provided adjacent to the coil device 4 (coil). When the coil device 4 is arranged in a place where the air flow is good, the sensor 5 may be separated from the coil device 4 as long as the atmospheric conditions can be regarded as the same. For example, the coil device 4 may be installed on the floor surface of the parking lot, and the sensor 5 may be attached to a pole in the parking lot.
 制御装置10は、電源2を制御する装置である。制御装置10は、センサ5から受信した計測値Mに応じた出力電圧値Vdcを算出し、出力電圧値Vdcの出力電圧を出力させるための出力指令Cを電源2に送信する。 The control device 10 is a device that controls the power supply 2. The control device 10 calculates the output voltage value Vdc according to the measured value M received from the sensor 5, and transmits an output command C for outputting the output voltage of the output voltage value Vdc to the power supply 2.
 図5に示されるように、制御装置10は、物理的には、1又は複数のプロセッサ101、主記憶装置102、補助記憶装置103、入力装置104、出力装置105、及び通信装置106等のハードウェアを備えるコンピュータとして構成され得る。プロセッサ101の例としては、CPU(Central Processing Unit)が挙げられる。主記憶装置102は、例えば、RAM(Random Access Memory)及びROM(Read Only Memory)で構成される。補助記憶装置103は、例えば、ハードディスク装置又はフラッシュメモリで構成され、一般に不揮発性で主記憶装置102よりも大量のデータを記憶可能な容量を有する。入力装置104は、例えば、キーボード、マウス、タッチパネル、及び操作ボタンで構成される。出力装置105は、例えば、ディスプレイ、及びスピーカで構成される。通信装置106は、例えば、ネットワークインタフェースカード(NIC)又は無線通信モジュールで構成される。 As shown in FIG. 5, the control device 10 physically includes hardware such as one or more processors 101, a main storage device 102, an auxiliary storage device 103, an input device 104, an output device 105, and a communication device 106. It can be configured as a computer with hardware. An example of the processor 101 is a CPU (Central Processing Unit). The main storage device 102 is composed of, for example, a RAM (Random Access Memory) and a ROM (Read Only Memory). The auxiliary storage device 103 is composed of, for example, a hard disk device or a flash memory, and is generally non-volatile and has a capacity capable of storing a larger amount of data than the main storage device 102. The input device 104 includes, for example, a keyboard, a mouse, a touch panel, and operation buttons. The output device 105 is composed of, for example, a display and a speaker. The communication device 106 is composed of, for example, a network interface card (NIC) or a wireless communication module.
 制御装置10の図6に示される各機能は、主記憶装置102等のハードウェアに1又は複数の所定のコンピュータプログラムを読み込ませることにより、1又は複数のプロセッサ101の制御のもとで各ハードウェアを動作させるとともに、主記憶装置102及び補助記憶装置103におけるデータの読み出し及び書き込みを行うことで実現される。 Each function shown in FIG. 6 of the control device 10 is performed under the control of one or a plurality of processors 101 by causing hardware such as the main storage device 102 to read one or a plurality of predetermined computer programs. This is realized by operating the hardware and reading and writing data in the main storage device 102 and the auxiliary storage device 103.
 図6に示されるように、制御装置10は、機能的には、取得部11と、検出部12と、記憶部13と、算出部14と、出力部15と、を備えている。 As shown in FIG. 6, the control device 10 functionally includes an acquisition unit 11, a detection unit 12, a storage unit 13, a calculation unit 14, and an output unit 15.
 取得部11は、計測値Mを取得する。具体的には、取得部11は、センサ5から計測値Mを取得し、計測値Mを算出部14に出力する。例えば、センサ5がアナログ出力のセンサである場合、取得部11はA/D(Analog to Digital)変換回路である。センサ5がGPS受信機である場合、取得部11はGPS受信機との通信インタフェースである。取得部11は、センサ5から取得した計測値Mを算出部14が処理可能なデジタルデータに変換し、当該デジタルデータを算出部14に出力する。 The acquisition unit 11 acquires the measured value M. Specifically, the acquisition unit 11 acquires the measured value M from the sensor 5 and outputs the measured value M to the calculation unit 14. For example, when the sensor 5 is an analog output sensor, the acquisition unit 11 is an A / D (Analog to Digital) conversion circuit. When the sensor 5 is a GPS receiver, the acquisition unit 11 is a communication interface with the GPS receiver. The acquisition unit 11 converts the measured value M acquired from the sensor 5 into digital data that can be processed by the calculation unit 14, and outputs the digital data to the calculation unit 14.
 検出部12は、異常を検出する。検出部12は、例えば、センサ5の異常及び制御装置10の異常を検出する。検出部12は、異常を検出した場合、異常を示す異常情報を算出部14に出力する。例えば、センサ5がGPS受信機であれば、検出部12は、センサ5と取得部11とが一定時間以上通信できない場合、センサ5の異常と判断してもよい。センサ5として複数のセンサが用いられる構成では、検出部12は、複数のセンサの測定値の差が、測定誤差の範囲を超えている場合、センサ5の異常と判断してもよい。例えば、ウォッチドッグタイマーが設けられており、プロセッサ101が一定周期ごとにウォッチドッグタイマーをリセットする構成において、検出部12は、ウォッチドッグタイマーがリセットされなくなった場合、制御装置10の異常と判断してもよい。 The detection unit 12 detects an abnormality. The detection unit 12 detects, for example, an abnormality of the sensor 5 and an abnormality of the control device 10. When the detection unit 12 detects an abnormality, the detection unit 12 outputs the abnormality information indicating the abnormality to the calculation unit 14. For example, if the sensor 5 is a GPS receiver, the detection unit 12 may determine that the sensor 5 is abnormal when the sensor 5 and the acquisition unit 11 cannot communicate with each other for a certain period of time or longer. In a configuration in which a plurality of sensors are used as the sensor 5, the detection unit 12 may determine that the sensor 5 is abnormal when the difference between the measured values of the plurality of sensors exceeds the range of the measurement error. For example, in a configuration in which a watchdog timer is provided and the processor 101 resets the watchdog timer at regular intervals, the detection unit 12 determines that the control device 10 is abnormal when the watchdog timer is not reset. You may.
 記憶部13は、計測値Mと目標電圧値Vtとの関係を規定するテーブル13aを格納している。目標電圧値Vtは、電源2から出力されるべき出力電圧値Vdcの値であり、電圧値Vdisよりも小さい。電圧値Vdisは、計測値Mから推定されるコイル周囲の大気の状態においてコイルの導体間で放電を生じさせる出力電圧の最小の出力電圧値である。テーブル13aには、様々な計測値Mとそれに対応する目標電圧値Vtとの組が設定されている。テーブル13aの設定方法は後述する。 The storage unit 13 stores a table 13a that defines the relationship between the measured value M and the target voltage value Vt. The target voltage value Vt is a value of the output voltage value Vdc to be output from the power supply 2, and is smaller than the voltage value Vdis. The voltage value Vdis is the minimum output voltage value of the output voltage that causes a discharge between the conductors of the coil in the state of the atmosphere around the coil estimated from the measured value M. In the table 13a, a set of various measured values M and corresponding target voltage values Vt is set. The setting method of the table 13a will be described later.
 算出部14は、計測値Mに基づいて、コイルの導体間で放電を生じさせない出力電圧(出力電圧値Vdc)を算出する。算出部14は、取得部11から計測値Mを受け取ると、記憶部13に格納されているテーブル13aを参照し、計測値Mに対応する目標電圧値Vtを取得する。なお、取得部11が取得した計測値Mと対応する計測値がテーブル13aに存在しない場合、算出部14は、計測値Mよりも小さい計測値のうち計測値Mに最も近い計測値に対応する目標電圧値と、計測値Mよりも大きい計測値のうち計測値Mに最も近い計測値に対応する目標電圧値とのうち、小さい方の値を目標電圧値Vtとする。計測値Mに最も近い2つの計測値に対応する目標電圧値のうち小さい方の値を目標電圧値Vtとして用いることにより、コイルの導体間で放電を生じさせない出力電圧が得られる。 The calculation unit 14 calculates the output voltage (output voltage value Vdc) that does not cause a discharge between the conductors of the coil based on the measured value M. When the calculation unit 14 receives the measurement value M from the acquisition unit 11, the calculation unit 14 refers to the table 13a stored in the storage unit 13 and acquires the target voltage value Vt corresponding to the measurement value M. When the measured value M corresponding to the measured value M acquired by the acquisition unit 11 does not exist in the table 13a, the calculation unit 14 corresponds to the measured value closest to the measured value M among the measured values smaller than the measured value M. The smaller value of the target voltage value and the target voltage value corresponding to the measurement value closest to the measurement value M among the measurement values larger than the measurement value M is set as the target voltage value Vt. By using the smaller of the target voltage values corresponding to the two measured values closest to the measured value M as the target voltage value Vt, an output voltage that does not cause discharge between the conductors of the coil can be obtained.
 図7を参照して具体的に説明すると、計測値Mが計測値M以上で計測値Mよりも小さい場合、目標電圧値Vt_0と目標電圧値Vt_1とのうち、小さい方の目標電圧値Vt_1が目標電圧値Vtとして用いられる。同様に、計測値Mが計測値M以上で計測値Mよりも小さい場合、目標電圧値Vt_1と目標電圧値Vt_2とのうち、小さい方の目標電圧値Vt_1が目標電圧値Vtとして用いられる。計測値Mが計測値M以上で計測値Mよりも小さい場合、目標電圧値Vt_2と目標電圧値Vt_3とのうち、小さい方の目標電圧値Vt_2が目標電圧値Vtとして用いられる。計測値Mが計測値MN-2以上で計測値MN-1よりも小さい場合、目標電圧値Vt_(N-2)と目標電圧値Vt_(N-1)とのうち、小さい方の目標電圧値Vt_(N-2)が目標電圧値Vtとして用いられる。計測値Mが計測値MN-1以上で計測値M以下である場合、目標電圧値Vt_(N-1)と目標電圧値Vt_Nとのうち、小さい方の目標電圧値Vt_(N-1)が目標電圧値Vtとして用いられる。計測値Mが他の範囲に含まれる場合も同様である。 More specifically with reference to FIG. 7, when the measured value M is the measured value M 0 or more and smaller than the measured value M 1 , the smaller target voltage value of the target voltage value Vt_0 and the target voltage value Vt_1 Vt_1 is used as the target voltage value Vt. Similarly, when the measured value M is the measured value M 1 or more and smaller than the measured value M 2 , the smaller target voltage value Vt_1 of the target voltage value Vt_1 and the target voltage value Vt_1 is used as the target voltage value Vt. .. When the measured value M is the measured value M 2 or more and smaller than the measured value M 3 , the smaller target voltage value Vt_2 of the target voltage value Vt_2 and the target voltage value Vt_3 is used as the target voltage value Vt. When the measured value M is the measured value MN-2 or more and smaller than the measured value MN-1 , the smaller target of the target voltage value Vt_ (N-2) and the target voltage value Vt_ (N-1) The voltage value Vt_ (N-2) is used as the target voltage value Vt. When the measured value M is the measured value MN-1 or more and the measured value MN or less, the smaller target voltage value Vt_ (N-1) of the target voltage value Vt_ (N-1) and the target voltage value Vt_N ) Is used as the target voltage value Vt. The same applies when the measured value M is included in another range.
 上述のように、電源2が出力電力値を連続的に変更可能な場合、算出部14は、目標電圧値Vtを出力電圧値Vdcとして算出する。電源2が出力電力値を離散的に変更可能な場合、算出部14は、電源2が出力可能な出力電圧値のうち、目標電圧値Vt以下で最大の出力電圧値を出力電圧値Vdcとして算出する。つまり、出力電圧値Vdcは、電圧値Vdisよりも小さい。 As described above, when the power supply 2 can continuously change the output power value, the calculation unit 14 calculates the target voltage value Vt as the output voltage value Vdc. When the power supply 2 can change the output power value discretely, the calculation unit 14 calculates the maximum output voltage value that is equal to or less than the target voltage value Vt among the output voltage values that the power supply 2 can output as the output voltage value Vdc. do. That is, the output voltage value Vdc is smaller than the voltage value Vdis.
 算出部14は、検出部12によって異常が検出された場合、電圧値Vlim1(図12参照)を出力電圧値Vdcとして算出する。電圧値Vlim1は、コイル装置4の使用範囲全体にわたってコイルの導体間で放電を生じさせない出力電圧の電圧値である。使用範囲は、コイルが使用される可能性があるコイル周囲の大気の状態の範囲である。電圧値Vlim1は、予め決定され、記憶部13に格納されている。算出部14は、出力電圧値Vdcを出力部15に出力する。 When an abnormality is detected by the detection unit 12, the calculation unit 14 calculates the voltage value Vlim1 (see FIG. 12) as the output voltage value Vdc. The voltage value Vlim1 is a voltage value of an output voltage that does not cause a discharge between the conductors of the coil over the entire range of use of the coil device 4. The range of use is the range of atmospheric conditions around the coil in which the coil may be used. The voltage value Vlim1 is predetermined and stored in the storage unit 13. The calculation unit 14 outputs the output voltage value Vdc to the output unit 15.
 出力部15は、出力指令Cを電源2に出力(送信)する。出力部15は、算出部14から出力電圧値Vdcを受け取ると、電源2に出力電圧値Vdcの出力電圧を出力させるための出力指令Cを生成し、出力指令Cを電源2に出力する。 The output unit 15 outputs (transmits) the output command C to the power supply 2. When the output unit 15 receives the output voltage value Vdc from the calculation unit 14, it generates an output command C for causing the power supply 2 to output the output voltage of the output voltage value Vdc, and outputs the output command C to the power supply 2.
 次に、テーブル13aの設定方法について詳細に説明する。図8は、テーブルの設定方法の一例を示すフローチャートである。図9は、インバータの入力電圧と出力電圧との関係を求めるための構成を示す図である。図10は、計測値と放電開始電圧値との組を取得するための構成を示す図である。以下の手順は、コイル装置4の運用が開始される前に行われる。コイル装置4の運用期間中に以下の手順が行われることによって、テーブル13aが再設定されてもよい。 Next, the setting method of the table 13a will be described in detail. FIG. 8 is a flowchart showing an example of a table setting method. FIG. 9 is a diagram showing a configuration for obtaining the relationship between the input voltage and the output voltage of the inverter. FIG. 10 is a diagram showing a configuration for acquiring a set of a measured value and a discharge start voltage value. The following procedure is performed before the operation of the coil device 4 is started. The table 13a may be reset by performing the following procedure during the operation period of the coil device 4.
 図8に示されるように、まず、インバータ3の入力電圧と出力電圧との関係が求められる(ステップS1)。ステップS1では、図9に示されるように、電源2がインバータ3を介してコイル装置4に接続される。コイル装置4の駆動電圧を計測するために電圧計測器51がコイル装置4の入力間(つまり、インバータ3の出力間)に接続される。そして、電源2の出力電圧値(つまり、インバータ3の入力電圧値)が電圧値Vtestとなるように、電源2に出力指令Cが送信される。電圧値Vtestは、コイル装置4のコイルの導体間において放電を生じさせない電圧値である。電圧値Vtestは、インバータ3の構成及び動作、並びにコイル装置4のコイルの形状及び寸法等から推定される。例えば、電圧値Vtestは、電源2が出力可能な最も低い電圧値に設定される。 As shown in FIG. 8, first, the relationship between the input voltage and the output voltage of the inverter 3 is obtained (step S1). In step S1, as shown in FIG. 9, the power supply 2 is connected to the coil device 4 via the inverter 3. A voltage measuring instrument 51 is connected between the inputs of the coil device 4 (that is, between the outputs of the inverter 3) in order to measure the drive voltage of the coil device 4. Then, the output command C is transmitted to the power supply 2 so that the output voltage value of the power supply 2 (that is, the input voltage value of the inverter 3) becomes the voltage value Vtest. The voltage value Vtest is a voltage value that does not cause a discharge between the conductors of the coil of the coil device 4. The voltage value Vtest is estimated from the configuration and operation of the inverter 3, the shape and dimensions of the coil of the coil device 4, and the like. For example, the voltage value Vtest is set to the lowest voltage value that the power supply 2 can output.
 このとき、インバータ3のデューティ比は、一定値に固定される。インバータ3が複数のデューティ比で動作し得る場合には、同じインバータ3の入力電圧に対してインバータ3の出力電圧が最も高くなるデューティ比が用いられる。つまり、インバータ3のレッグの上アーム及び下アームのいずれかが導通している時間が最も長いデューティ比が用いられる。この状態で、電圧計測器51は、電圧値Vrms1を計測する。電圧計測器51によって計測される電圧値は、例えば実効値である。 At this time, the duty ratio of the inverter 3 is fixed at a constant value. When the inverter 3 can operate at a plurality of duty ratios, the duty ratio at which the output voltage of the inverter 3 is the highest with respect to the input voltage of the same inverter 3 is used. That is, the duty ratio with the longest duration of conduction of either the upper arm or the lower arm of the leg of the inverter 3 is used. In this state, the voltage measuring instrument 51 measures the voltage value Vrms1. The voltage value measured by the voltage measuring instrument 51 is, for example, an effective value.
 インバータ3のデューティ比が一定であれば、インバータ3の入力電圧(出力電圧値Vdc)とインバータ3の出力電圧(電圧値Vac)とは比例するので、関係式(1)が得られる。
Figure JPOXMLDOC01-appb-M000001
If the duty ratio of the inverter 3 is constant, the input voltage (output voltage value Vdc) of the inverter 3 and the output voltage (voltage value Vac) of the inverter 3 are proportional to each other, so that the relational expression (1) can be obtained.
Figure JPOXMLDOC01-appb-M000001
 続いて、計測値Mと放電開始電圧値Vrms2_iとが計測され、記録される(ステップS2)。なお、変数iは、0以上N(Nは1以上の整数)以下の整数である。ステップS2では、図10に示されるように、コイル装置4及びセンサ5がチャンバー52に収容される。本実施形態では、計測値Mとして圧力値が用いられている。チャンバー52は、吸気及び排気を行うためのポンプ等によって、チャンバー52内の圧力を変更することが可能に構成されている。チャンバー52は、コイル装置4の使用範囲よりも広い範囲でチャンバー52内の圧力を変更することが可能である。コイル装置4の使用範囲は、コイル装置4が使用される最低の大気圧から最高の大気圧までの範囲である。 Subsequently, a measured value M i and the discharge starting voltage value Vrms2_i is measured and recorded (step S2). The variable i is an integer of 0 or more and N (N is an integer of 1 or more) or less. In step S2, the coil device 4 and the sensor 5 are housed in the chamber 52, as shown in FIG. In this embodiment, the pressure value is used as the measured value M. The chamber 52 is configured so that the pressure in the chamber 52 can be changed by a pump or the like for intake and exhaust. The chamber 52 can change the pressure in the chamber 52 in a range wider than the range of use of the coil device 4. The range of use of the coil device 4 is the range from the lowest atmospheric pressure to the highest atmospheric pressure in which the coil device 4 is used.
 さらに、部分放電試験器53がコイル装置4に接続され、記録器54がセンサ5及び部分放電試験器53に接続される。部分放電試験器53は、電圧を印加することによって放電を開始する電圧値(放電開始電圧値)を計測する装置である。部分放電試験器53は、インバータ3と同じ周波数の交流電力を出力する。記録器54は、センサ5によって計測された計測値M(ここでは、圧力値)及び部分放電試験器53によって計測された放電開始電圧値Vrms2_iを記録するレコーダである。記録器54に代えて人間が計測値M及び放電開始電圧値Vrms2_iを手書きで記録してもよい。部分放電試験器53によって計測される放電開始電圧値は、例えば実効値である。必要に応じ、センサ5によって計測された計測値Mをレコーダ及び人間が記録できるように、部分放電試験器53は構成されてもよい。例えば、センサ5とレコーダとの間にA/D変換器が設けられ、A/D変換器が計測値をデジタル信号に変換してレコーダに出力してもよい。計測値を表示する表示器が設けられることによって、人間が計測値を読めるようにしてもよい。 Further, the partial discharge tester 53 is connected to the coil device 4, and the recorder 54 is connected to the sensor 5 and the partial discharge tester 53. The partial discharge tester 53 is a device that measures a voltage value (discharge start voltage value) that starts discharge by applying a voltage. The partial discharge tester 53 outputs AC power having the same frequency as the inverter 3. Recorder 54 has been measured value M i (here, the pressure value) measured by the sensor 5 is a recorder for recording the measured discharge start voltage value Vrms2_i and by the partial discharge tester 53. Human instead of the recorder 54 may record by hand measurements M i and the discharge starting voltage value Vrms2_i. The discharge start voltage value measured by the partial discharge tester 53 is, for example, an effective value. If necessary, the measured value M i measured by the sensor 5 as the recorder, and human-recording, partial discharge tester 53 may be configured. For example, an A / D converter may be provided between the sensor 5 and the recorder, and the A / D converter may convert the measured value into a digital signal and output it to the recorder. A human can read the measured value by providing a display for displaying the measured value.
 そして、計測値Mと放電開始電圧値Vrms2_iとが計測される。なお、変数iの初期値は、0に設定されている。ここでは、計測値Mとして圧力値が用いられる。具体的には、ポンプを動作させることによって、チャンバー52内の圧力が圧力値Pに設定され、センサ5は圧力値Pを計測し、圧力値Pを計測値Mとして記録器54に送信する。続いて、部分放電試験器53は、放電開始電圧値Vrms2_iを計測し、放電開始電圧値Vrms2_iを記録器54に送信する。そして、記録器54は、センサ5によって計測された圧力値P(計測値M)と部分放電試験器53によって計測された放電開始電圧値Vrms2_iとを対応付けて記録する。変数iが0からNまで1ずつ増加され、計測値M及び放電開始電圧値Vrms2_iの計測及び記録が順に行われる。 Then, a measured value M i and the discharge starting voltage value Vrms2_i is measured. The initial value of the variable i is set to 0. Here, the pressure value is used as the measured value M i. Specifically, by operating the pump, the pressure in the chamber 52 is set to a pressure value P i, sensor 5 measures the pressure values P i, recorder 54 the pressure value P i as a measurement value M i Send to. Subsequently, the partial discharge tester 53 measures the discharge start voltage value Vrms2_i and transmits the discharge start voltage value Vrms2_i to the recorder 54. The recorder 54 records in association with the the discharge starting voltage value Vrms2_i measured pressure value measured by the sensor 5 P i (measured value M i) and the partial discharge tester 53. Variable i is increased by 1 from 0 to N, the measurement and recording of measured values M i and the discharge starting voltage value Vrms2_i are performed sequentially.
 なお、圧力値P(i=0~N)には、コイル装置4が使用される環境(使用環境)において想定される最低の大気圧と最高の大気圧とが含まれる。例えば、変数iが増加するにつれ、圧力値Pが大きくなるとすると、圧力値Pは、使用環境において想定される最低の大気圧以下であり、圧力値Pは、コイル装置4の使用環境において想定される最高の大気圧以上である。圧力値P(i=0~N)は、例えば、コイル装置4の使用環境において想定される最低の大気圧と最高の大気圧との間をNで均等に分割することによって設定されてもよい。 The pressure value Pi (i = 0 to N) includes the lowest atmospheric pressure and the highest atmospheric pressure assumed in the environment (use environment) in which the coil device 4 is used. For example, as the variable i is increased, the pressure value P i is to increase, the pressure value P 0 is less than the lowest atmospheric pressure envisioned in the environment of use, the pressure value P N, the coil unit 4 use environment It is above the highest atmospheric pressure assumed in. Even if the pressure value Pi (i = 0 to N) is set, for example, by evenly dividing the minimum atmospheric pressure and the maximum atmospheric pressure assumed in the usage environment of the coil device 4 by N. good.
 続いて、放電開始電圧値Vrms2_iがインバータ3の入力電圧における電圧値Vdis_iに変換される(ステップS3)。放電開始電圧値Vrms2_iは、コイル装置4に印加される交流電圧(インバータ3の出力電圧)の電圧値であり、インバータ3の入力電圧と出力電圧との間には関係式(1)が成立する。したがって、関係式(1)において、電圧値Vacに放電開始電圧値Vrms2_iを代入し、出力電圧値Vdcに電圧値Vdis_iを代入することにより得られる以下の式(2)によって、放電開始電圧値Vrms2_iは電圧値Vdis_iに変換される。
Figure JPOXMLDOC01-appb-M000002
Subsequently, the discharge start voltage value Vrms2_i is converted into the voltage value Vdis_i at the input voltage of the inverter 3 (step S3). The discharge start voltage value Vrms2_i is the voltage value of the AC voltage (output voltage of the inverter 3) applied to the coil device 4, and the relational expression (1) is established between the input voltage and the output voltage of the inverter 3. .. Therefore, in the relational expression (1), the discharge start voltage value Vrms2_i is substituted for the voltage value Vac, and the voltage value Vdis_i is substituted for the output voltage value Vdc. Is converted to the voltage value Vdis_i.
Figure JPOXMLDOC01-appb-M000002
 続いて、電源2が出力すべき目標電圧値Vt_iが算出される(ステップS4)。目標電圧値Vt_iは、電圧値Vdis_iに倍率αを乗算することによって、算出される。倍率αは、0より大きく、1未満の値である。つまり、出力電圧の電圧値が電圧値Vdis_iの場合に、コイル装置4において放電が開始するので、目標電圧値Vt_iは、電圧値Vdis_iよりも小さい値に設定される必要がある。計測誤差及びコイル装置4の製造ばらつきを考慮して、出力電圧値Vdcが目標電圧値Vt_iに設定されたときに、コイル装置4において放電が生じる可能性を十分低くできるように、倍率αは設定される。倍率αは、変数iの値によらずに一定であってもよく、変数iの値ごとに変更されてもよい。例えば、一定のマージンを確保するために、目標電圧値Vt_iが小さいほど、倍率αは小さく設定されてもよい。 Subsequently, the target voltage value Vt_i to be output by the power supply 2 is calculated (step S4). The target voltage value Vt_i is calculated by multiplying the voltage value Vdis_i by the magnification α. The magnification α is a value greater than 0 and less than 1. That is, when the voltage value of the output voltage is the voltage value Vdis_i, the coil device 4 starts discharging, so that the target voltage value Vt_i needs to be set to a value smaller than the voltage value Vdis_i. The magnification α is set so that the possibility of discharge in the coil device 4 can be sufficiently reduced when the output voltage value Vdc is set to the target voltage value Vt_i in consideration of the measurement error and the manufacturing variation of the coil device 4. Will be done. The magnification α may be constant regardless of the value of the variable i, or may be changed for each value of the variable i. For example, in order to secure a certain margin, the smaller the target voltage value Vt_i, the smaller the magnification α may be set.
 なお、電圧値Vdis_iに倍率αを乗じることに代えて、電圧値Vdis_iから値βを減算することによって、目標電圧値Vt_iが算出されてもよい。値βは、電圧値Vdis_iよりも小さい正の数である。 The target voltage value Vt_i may be calculated by subtracting the value β from the voltage value Vdis_i instead of multiplying the voltage value Vdis_i by the magnification α. The value β is a positive number smaller than the voltage value Vdis_i.
 そして、計測値Mと目標電圧値Vt_iとのN個の組が、記憶部13に格納されているテーブル13aに設定される(ステップS5)。以上により、テーブル13aが設定される。 Then, N pieces of the set of the measured values M i and the target voltage value Vt_i is set in the table 13a stored in the storage unit 13 (step S5). As described above, the table 13a is set.
 複数のコイル装置4が互いに同一に設計されている場合、1つのコイル装置4に対して上記手順が実施されてテーブル13aが設定され、他のコイル装置4には同じテーブル13aが設定されてもよい。各コイル装置4に対して上記手順が実施され、複数のコイル装置4に対してそれぞれ別のテーブル13aが設定されてもよい。 When a plurality of coil devices 4 are designed to be the same as each other, even if the above procedure is performed for one coil device 4 to set the table 13a and the other coil devices 4 are set to the same table 13a. good. The above procedure may be performed for each coil device 4, and different tables 13a may be set for each of the plurality of coil devices 4.
 出力電圧値Vdcが目標電圧値Vt_iに設定されたとき、式(1)から、コイル装置4の駆動電圧(すなわち、インバータ3の出力電圧)は、式(3)で示される。
Figure JPOXMLDOC01-appb-M000003
When the output voltage value Vdc is set to the target voltage value Vt_i, the drive voltage of the coil device 4 (that is, the output voltage of the inverter 3) is represented by the equation (3) from the equation (1).
Figure JPOXMLDOC01-appb-M000003
 目標電圧値Vt_iは、式(4)に示されるように、電圧値Vdis_iに倍率αを乗じることによって得られる。
Figure JPOXMLDOC01-appb-M000004
The target voltage value Vt_i is obtained by multiplying the voltage value Vdis_i by the magnification α, as shown in the equation (4).
Figure JPOXMLDOC01-appb-M000004
 式(4)を式(3)に代入することによって、コイル装置4の駆動電圧は、式(5)によって表される。
Figure JPOXMLDOC01-appb-M000005
By substituting the equation (4) into the equation (3), the drive voltage of the coil device 4 is expressed by the equation (5).
Figure JPOXMLDOC01-appb-M000005
 さらに、式(5)に式(2)を代入することによって、コイル装置4の駆動電圧は、式(6)によって表される。
Figure JPOXMLDOC01-appb-M000006
Further, by substituting the equation (2) into the equation (5), the drive voltage of the coil device 4 is represented by the equation (6).
Figure JPOXMLDOC01-appb-M000006
 放電開始電圧値Vrms2_iは、コイル装置4が圧力値Pの大気圧において使用されたときに放電を開始する駆動電圧であり、倍率αは1未満の正の値である。したがって、式(6)に示されるコイル装置4の駆動電圧(電圧値Vac)は放電開始電圧値Vrms2_iより小さい値、すなわち放電を生じない駆動電圧である。つまり、コイル装置4が圧力値Pの大気圧において使用されるとき、出力電圧値Vdcが目標電圧値Vt_iに設定されれば、コイル装置4の駆動電圧は、式(6)で表される。したがって、コイル装置4の駆動電圧は、放電開始電圧値Vrms2_iより小さい値なので放電が生じない。 Discharge starting voltage value Vrms2_i is a driving voltage to start discharge when the coil unit 4 is used at atmospheric pressure of the pressure values P i, the magnification α is a positive value less than 1. Therefore, the drive voltage (voltage value Vac) of the coil device 4 represented by the equation (6) is a value smaller than the discharge start voltage value Vrms2_i, that is, a drive voltage that does not cause discharge. That is, when the coil unit 4 is used at atmospheric pressure of the pressure values P i, if the output voltage value Vdc is set to the target voltage value Vt_i, the drive voltage of the coil unit 4 is represented by the formula (6) .. Therefore, since the drive voltage of the coil device 4 is smaller than the discharge start voltage value Vrms2_i, no discharge occurs.
 次に、制御装置10が行う出力電圧設定方法について説明する。図11は、図1に示される制御装置が行う出力電圧設定方法の一連の処理を示すフローチャートである。図11に示される一連の処理は、所定時間毎に開始される。所定時間は、放電開始電圧値に影響を及ぼす程度に大気の状態が変化する時間よりも十分短い時間に設定される。例えば、コイル装置4がモータで、コイル装置4が車両に搭載されており、車両が山を登ったり下ったりする場合には、所定時間は短く設定されてもよい。コイルシステム1が非接触給電装置である場合、コイルシステム1の設置場所は基本的には変わらないので、所定時間は長く設定されてもよい。所定時間は、例えば、30分又は1時間程度に設定される。 Next, the output voltage setting method performed by the control device 10 will be described. FIG. 11 is a flowchart showing a series of processes of the output voltage setting method performed by the control device shown in FIG. The series of processes shown in FIG. 11 is started at predetermined time intervals. The predetermined time is set to be sufficiently shorter than the time during which the atmospheric condition changes to the extent that it affects the discharge start voltage value. For example, when the coil device 4 is a motor and the coil device 4 is mounted on a vehicle and the vehicle climbs or descends a mountain, the predetermined time may be set short. When the coil system 1 is a non-contact power feeding device, the installation location of the coil system 1 is basically the same, so that the predetermined time may be set longer. The predetermined time is set to, for example, about 30 minutes or 1 hour.
 まず、取得部11がセンサ5から計測値Mを取得する(ステップS11)。そして、取得部11は、計測値Mを算出部14に出力する。 First, the acquisition unit 11 acquires the measured value M from the sensor 5 (step S11). Then, the acquisition unit 11 outputs the measured value M to the calculation unit 14.
 続いて、算出部14は、取得部11から計測値Mを受け取ると、検出部12がセンサ5又は制御装置10の異常を検出しているか否かを判定する(ステップS12)。算出部14は、例えば、検出部12から異常情報を受け取った場合、センサ5又は制御装置10に異常が発生したことを検出する。ステップS12において、算出部14は、検出部12が異常を検出していないと判定した場合(ステップS12;NO)、計測値Mに応じて出力電圧値Vdcを算出する(ステップS13)。具体的には、算出部14は、記憶部13に格納されているテーブル13aを参照し、計測値Mに対応する目標電圧値Vtを取得する。そして、電源2が出力電力値を連続的に変更可能な場合、算出部14は、目標電圧値Vtを出力電圧値Vdcとして算出する。電源2が出力電力値を離散的に変更可能な場合、算出部14は、電源2が出力可能な出力電圧値のうち、目標電圧値Vt以下で最大の出力電圧値を出力電圧値Vdcとして算出する。そして、算出部14は、出力電圧値Vdcを出力部15に出力する。 Subsequently, when the calculation unit 14 receives the measured value M from the acquisition unit 11, it determines whether or not the detection unit 12 has detected an abnormality in the sensor 5 or the control device 10 (step S12). For example, when the calculation unit 14 receives the abnormality information from the detection unit 12, the calculation unit 14 detects that an abnormality has occurred in the sensor 5 or the control device 10. In step S12, when the calculation unit 14 determines that the detection unit 12 has not detected an abnormality (step S12; NO), the calculation unit 14 calculates the output voltage value Vdc according to the measured value M (step S13). Specifically, the calculation unit 14 refers to the table 13a stored in the storage unit 13 and acquires the target voltage value Vt corresponding to the measured value M. Then, when the power supply 2 can continuously change the output power value, the calculation unit 14 calculates the target voltage value Vt as the output voltage value Vdc. When the power supply 2 can change the output power value discretely, the calculation unit 14 calculates the maximum output voltage value that is equal to or less than the target voltage value Vt among the output voltage values that the power supply 2 can output as the output voltage value Vdc. do. Then, the calculation unit 14 outputs the output voltage value Vdc to the output unit 15.
 一方、ステップS12において、算出部14は、検出部12が異常を検出していると判定した場合(ステップS12;YES)、予め定められている電圧値Vlim1を出力電圧値Vdcとして算出する(ステップS14)。そして、算出部14は、出力電圧値Vdcを出力部15に出力する。 On the other hand, in step S12, when the calculation unit 14 determines that the detection unit 12 has detected an abnormality (step S12; YES), the calculation unit 14 calculates the predetermined voltage value Vlim1 as the output voltage value Vdc (step S12). S14). Then, the calculation unit 14 outputs the output voltage value Vdc to the output unit 15.
 続いて、出力部15は、算出部14から出力電圧値Vdcを受け取ると、電源2に出力電圧値Vdcの出力電圧を出力させるための出力指令Cを生成し、出力指令Cを電源2に出力する(ステップS15)。以上により、制御装置10が行う出力電圧設定方法の一連の処理が終了する。 Subsequently, when the output unit 15 receives the output voltage value Vdc from the calculation unit 14, it generates an output command C for causing the power supply 2 to output the output voltage of the output voltage value Vdc, and outputs the output command C to the power supply 2. (Step S15). As described above, a series of processes of the output voltage setting method performed by the control device 10 is completed.
 そして、電源2は、制御装置10から出力指令Cを受け取ると、出力指令Cによって指定された出力電圧値Vdcを有する出力電圧を出力する。インバータ3は、電源2から出力された出力電圧を駆動電圧に変換し、コイル装置4に駆動電圧を供給する。このようにして得られた駆動電圧の電圧値は、コイル装置4のコイル周囲の大気の状態において、コイル装置4のコイル導体間で放電が生じない電圧値である。したがって、コイルの隣り合う導体間で放電が生じないように、コイル装置4が駆動される。 Then, when the power supply 2 receives the output command C from the control device 10, it outputs an output voltage having the output voltage value Vdc specified by the output command C. The inverter 3 converts the output voltage output from the power supply 2 into a drive voltage, and supplies the drive voltage to the coil device 4. The voltage value of the drive voltage thus obtained is a voltage value at which no discharge occurs between the coil conductors of the coil device 4 in the state of the atmosphere around the coil of the coil device 4. Therefore, the coil device 4 is driven so that no discharge occurs between adjacent conductors of the coil.
 次に、図12を参照して、コイルシステム1及び制御装置10の作用効果を説明する。図12は、大気圧と出力電圧値との関係の一例を示す図である。例えば、大気圧は標高及び天候によって変動する。具体的には、高度が高くなるにつれて大気圧は低くなる。低気圧が接近すれば大気圧は低くなり、高気圧が接近すれば大気圧は高くなる。比較例では、コイル装置4が使用される場所の標高及び天候が変化したとしても、コイルの導体間で放電が生じないように、コイルに印加される電圧には制限値が設定されている。したがって、比較例では、図12中に太破線で示されるように、大気圧によらずに、出力電圧は一定の電圧値Vlim1に制限される。 Next, the operation and effect of the coil system 1 and the control device 10 will be described with reference to FIG. FIG. 12 is a diagram showing an example of the relationship between the atmospheric pressure and the output voltage value. For example, atmospheric pressure fluctuates with altitude and weather. Specifically, the higher the altitude, the lower the atmospheric pressure. The closer the cyclone is, the lower the atmospheric pressure is, and the closer the high pressure is, the higher the atmospheric pressure is. In the comparative example, a limit value is set for the voltage applied to the coil so that discharge does not occur between the conductors of the coil even if the altitude and the weather of the place where the coil device 4 is used changes. Therefore, in the comparative example, as shown by the thick broken line in FIG. 12, the output voltage is limited to a constant voltage value Vlim1 regardless of the atmospheric pressure.
 しかしながら、標高及び天候が変わることによって、電圧値Vlim1よりも高い電圧値Vlim2までの出力電圧が電源2から出力されたとしても、コイルの導体間で放電が生じない場合がある(図12の区間2)。同様に、電圧値Vlim2よりも高い電圧値Vlim3までの出力電圧が電源2から出力されたとしても、コイルの導体間で放電が生じない場合がある(図12の区間3)。コイルシステム1及び制御装置10では、大気圧に応じて、出力電圧が変更される。例えば、区間2では、電圧値Vlim1よりも大きく、電圧値Vlim2以下の電圧値を有する出力電圧が出力される。区間3では、電圧値Vlim1よりも大きく、電圧値Vlim3以下の電圧値を有する出力電圧が出力される。つまり、出力電圧値Vdcは、大気圧の変化に応じて電圧値Vlim1よりも高く設定される。 However, due to changes in altitude and weather, even if the output voltage up to the voltage value Vlim2, which is higher than the voltage value Vlim1, is output from the power supply 2, discharge may not occur between the conductors of the coil (section of FIG. 12). 2). Similarly, even if an output voltage up to a voltage value of Vlim3, which is higher than the voltage value of Vlim2, is output from the power supply 2, discharge may not occur between the conductors of the coil (section 3 in FIG. 12). In the coil system 1 and the control device 10, the output voltage is changed according to the atmospheric pressure. For example, in section 2, an output voltage having a voltage value larger than the voltage value Vlim1 and having a voltage value equal to or lower than the voltage value Vlim2 is output. In the section 3, an output voltage having a voltage value larger than the voltage value Vlim1 and having a voltage value equal to or lower than the voltage value Vlim3 is output. That is, the output voltage value Vdc is set higher than the voltage value Vlim1 according to the change in atmospheric pressure.
 このため、電源2が一定の電力Pdcを供給する場合には、出力電流値を下げることができるので、コイルにおける電力損失を低減することが可能となる。電源2が一定の出力電流を出力する場合には、電源2から出力される電力Pdcを増大することができる。コイル装置4の使用範囲が広いほど、上記効果は顕著に現れる。 Therefore, when the power supply 2 supplies a constant power Pdc, the output current value can be lowered, so that the power loss in the coil can be reduced. When the power supply 2 outputs a constant output current, the power Pdc output from the power supply 2 can be increased. The wider the range of use of the coil device 4, the more remarkable the above effect appears.
 以上説明したように、コイルシステム1及び制御装置10では、コイル周囲の大気の状態を推定するための計測値Mに基づいて、コイル装置4のコイルの導体間で放電を生じさせない出力電圧値Vdcが算出され、当該出力電圧値Vdcの出力電圧を出力する出力指令Cが電源2に出力される。このため、大気の状態に応じた出力電圧値Vdcの出力電圧が電源2から出力される。例えば、大気圧が高い場合には、出力電圧値Vdcをある程度高くしても、コイルの導体間で放電は生じない。このように、大気の状態に応じた出力電圧値Vdcの出力電圧を出力することにより、出力電圧値Vdcが固定されている場合と比較して、電力Pdcを増大することが可能となる。あるいは、電源2が一定の電力Pdcを出力する場合には、出力電流を減らすことができるので、コイルにおける損失を低減することができる。その結果、電力効率を向上させることが可能となる。 As described above, in the coil system 1 and the control device 10, the output voltage value Vdc that does not cause a discharge between the conductors of the coil of the coil device 4 is based on the measured value M for estimating the state of the atmosphere around the coil. Is calculated, and an output command C for outputting the output voltage of the output voltage value Vdc is output to the power supply 2. Therefore, the output voltage of the output voltage value Vdc according to the atmospheric condition is output from the power supply 2. For example, when the atmospheric pressure is high, even if the output voltage value Vdc is increased to some extent, no discharge occurs between the conductors of the coil. By outputting the output voltage of the output voltage value Vdc according to the atmospheric condition in this way, it is possible to increase the power Pdc as compared with the case where the output voltage value Vdc is fixed. Alternatively, when the power supply 2 outputs a constant power Pdc, the output current can be reduced, so that the loss in the coil can be reduced. As a result, it is possible to improve power efficiency.
 出力電圧値Vdcは、電圧値Vdisよりも小さい。したがって、コイルの導体間で放電を生じさせることなく、電力効率を向上すること、又は出力を増大することが可能となる。言い換えると、大気の状態が変化しても、コイルの隣り合う導体間で放電が生じず、かつ、不必要に出力電圧値Vdcが下げられない。したがって、電力効率を向上させること、及び出力を増大することの少なくともいずれかが可能となる。 The output voltage value Vdc is smaller than the voltage value Vdis. Therefore, it is possible to improve the power efficiency or increase the output without causing a discharge between the conductors of the coil. In other words, even if the atmospheric condition changes, no discharge occurs between the adjacent conductors of the coil, and the output voltage value Vdc cannot be lowered unnecessarily. Therefore, it is possible to at least either improve power efficiency or increase output.
 出力電圧値Vdcは、例えば、電圧値Vdisに倍率αを乗じることによって得られる値である。出力電圧値Vdcは、電圧値Vdisから、電圧値Vdisよりも小さい正の値βを減算することによって得られる値であってもよい。これらの場合、電圧値Vdisよりも小さい出力電圧値Vdcを簡易な計算で得ることができる。 The output voltage value Vdc is, for example, a value obtained by multiplying the voltage value Vdis by the magnification α. The output voltage value Vdc may be a value obtained by subtracting a positive value β smaller than the voltage value Vdis from the voltage value Vdis. In these cases, an output voltage value Vdc smaller than the voltage value Vdis can be obtained by a simple calculation.
 センサ5又は制御装置10に異常が検出された場合には、大気の状態に応じた出力電圧値Vdcが正確に算出されないおそれがある。これに対し、異常が検出された場合に、コイルが使用されるコイル周囲の大気の状態の範囲にわたって導体間で放電を生じさせない電圧値Vlim1が出力電圧値Vdcとして算出される。したがって、異常が検出された場合でも、コイルの導体間で放電を生じる可能性を低減することができる。 If an abnormality is detected in the sensor 5 or the control device 10, the output voltage value Vdc according to the atmospheric condition may not be calculated accurately. On the other hand, when an abnormality is detected, the voltage value Vlim1 that does not cause a discharge between the conductors over the range of the atmospheric condition around the coil in which the coil is used is calculated as the output voltage value Vdc. Therefore, even if an abnormality is detected, the possibility of generating an electric discharge between the conductors of the coil can be reduced.
 上記実施形態では、大気の状態として、大気圧が用いられる。この場合、コイル装置4の周囲の大気圧に応じた出力電圧値Vdcの出力電圧が電源2から出力される。したがって、出力電圧値Vdcが固定されている場合と比較して、電力Pdcを増大することが可能となる。あるいは、電源2が一定の電力Pdcを出力する場合には、出力電流を減らすことができるので、コイルにおける損失を低減することができる。その結果、電力効率を向上させることが可能となる。出力電圧値Vdcは、コイル装置4のコイルの周囲の大気圧においてコイルの隣り合う導体間で放電が生じる電圧値Vdisより低いので、コイル装置4において放電が生じる可能性が低減される。大気圧が変化してより高い電圧でも放電しない場合には、出力電圧値Vdcを高くすることができるので、電力効率を向上させること、及び出力を増大することの少なくともいずれかが可能となる。 In the above embodiment, atmospheric pressure is used as the atmospheric condition. In this case, the output voltage of the output voltage value Vdc corresponding to the atmospheric pressure around the coil device 4 is output from the power supply 2. Therefore, it is possible to increase the power Pdc as compared with the case where the output voltage value Vdc is fixed. Alternatively, when the power supply 2 outputs a constant power Pdc, the output current can be reduced, so that the loss in the coil can be reduced. As a result, it is possible to improve power efficiency. Since the output voltage value Vdc is lower than the voltage value Vdis at which discharge occurs between adjacent conductors of the coil at atmospheric pressure around the coil of the coil device 4, the possibility of discharge occurring in the coil device 4 is reduced. When the atmospheric pressure changes and the discharge does not occur even at a higher voltage, the output voltage value Vdc can be increased, so that at least one of improving the power efficiency and increasing the output becomes possible.
 コイルシステム1では、センサ5によってコイル装置4のコイル周囲の大気の状態(大気圧)が計測され、計測値Mに基づいて、コイルの導体間で放電を生じさせない出力電圧値Vdcが算出される。 In the coil system 1, the state of the atmosphere (atmospheric pressure) around the coil of the coil device 4 is measured by the sensor 5, and the output voltage value Vdc that does not cause discharge between the conductors of the coil is calculated based on the measured value M. ..
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されない。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments.
 例えば、上記実施形態では、センサ5として、大気の状態(圧力)を直接測定するセンサが用いられているが、大気の状態を間接的に測定するセンサが用いられてもよい。例えば、大気圧と標高とには相関関係があることが知られているので、センサ5として、コイル装置4の標高を測定する高度センサが用いられてもよい。この場合、計測値Mとして標高が用いられるので、テーブル13aには、標高と目標電圧値Vtとの組が格納される。なお、大気圧と標高との関係にはばらつきがあるので、目標電圧値Vtは、電圧値Vdis_iに倍率γを乗算することによって、算出されてもよい。倍率γは、0より大きく、かつ、1未満の値であり、倍率αよりも小さい値である。この場合も、上記実施形態と同様の効果が奏される。 For example, in the above embodiment, a sensor that directly measures the atmospheric state (pressure) is used as the sensor 5, but a sensor that indirectly measures the atmospheric condition may be used. For example, since it is known that there is a correlation between atmospheric pressure and altitude, an altitude sensor that measures the altitude of the coil device 4 may be used as the sensor 5. In this case, since the altitude is used as the measured value M, the set of the altitude and the target voltage value Vt is stored in the table 13a. Since the relationship between the atmospheric pressure and the altitude varies, the target voltage value Vt may be calculated by multiplying the voltage value Vdis_i by the magnification γ. The magnification γ is a value larger than 0 and less than 1, and a value smaller than the magnification α. In this case as well, the same effect as that of the above embodiment is achieved.
 コイルの導体間で放電が生じない電圧制限値は、大気圧以外の大気の状態に依存することもある。例えば、電圧制限値は、湿度に依存し得る。このため、センサ5として湿度を測定するセンサ(湿度センサ)が用いられてもよい。あるいは、センサ5として、圧力センサに加えて、湿度センサが用いられてもよい。この場合、制御装置10は、計測値Mとして圧力値及び湿度を受け取り、コイル装置4のコイル周囲の大気の圧力値及び湿度に応じて、出力電圧値Vdcを変更してもよい。チャンバー52として、圧力及び湿度を変更可能なチャンバーが用いられ、様々な圧力値及び湿度と放電開始電圧値Vrms2との組が記録される。テーブル13aには、圧力値、湿度、及び目標電圧値Vtの組み合わせが設定される。 The voltage limit value at which no discharge occurs between the conductors of the coil may depend on the atmospheric conditions other than atmospheric pressure. For example, the voltage limit may depend on humidity. Therefore, a sensor (humidity sensor) that measures humidity may be used as the sensor 5. Alternatively, as the sensor 5, a humidity sensor may be used in addition to the pressure sensor. In this case, the control device 10 may receive the pressure value and the humidity as the measured values M, and may change the output voltage value Vdc according to the pressure value and the humidity of the atmosphere around the coil of the coil device 4. As the chamber 52, a chamber in which the pressure and humidity can be changed is used, and a set of various pressure values and humidity and a discharge start voltage value Vrms2 is recorded. A combination of pressure value, humidity, and target voltage value Vt is set in the table 13a.
 例えば、コイル装置4が非接触給電の送電装置に用いられる場合、コイル装置4は屋外の地面に設置される可能性がある。このような場合、コイル周囲の湿度が変動し得る。上述のように、電圧値Vdis_iは、湿度の影響を受け得る。これに対して、計測値Mによって推定されるコイル装置4の周囲の大気の状態は湿度を含んでもよく、センサ5は、湿度センサを含んでもよい。この構成によれば、コイル装置4の周囲の湿度に応じた出力電圧値Vdcの出力電圧が電源2から出力される。この場合も、出力電圧値Vdcが固定されている場合と比較して、電力Pdcを増大することが可能となる。あるいは、電源2が一定の電力Pdcを出力する場合には、出力電流を減らすことができるので、コイルにおける損失を低減することができる。その結果、電力効率を向上させることが可能となる。 For example, when the coil device 4 is used as a non-contact power transmission device, the coil device 4 may be installed on the ground outdoors. In such a case, the humidity around the coil may fluctuate. As mentioned above, the voltage value Vdis_i can be affected by humidity. On the other hand, the state of the atmosphere around the coil device 4 estimated by the measured value M may include humidity, and the sensor 5 may include a humidity sensor. According to this configuration, the output voltage of the output voltage value Vdc corresponding to the humidity around the coil device 4 is output from the power supply 2. Also in this case, it is possible to increase the power Pdc as compared with the case where the output voltage value Vdc is fixed. Alternatively, when the power supply 2 outputs a constant power Pdc, the output current can be reduced, so that the loss in the coil can be reduced. As a result, it is possible to improve power efficiency.
 算出部14は、テーブル13aを参照することなく、出力電圧値Vdcを算出してもよい。例えば、電源2が電圧値Vdcaと電圧値Vdcbとの2つの電圧値の出力電圧のみを出力可能である場合、テーブル13aに代えて閾値Mthが用いられてもよい。電圧値Vdcaは、電圧値Vdcbよりも大きい。閾値Mthは、以下の第1条件及び第2条件を満たす値である。第1条件は、大気の状態を推定するための値が閾値Mth以上である場合、出力電圧値Vdcが電圧値Vdcaに設定されれば、コイル装置4のコイルの隣り合う導体間で放電が生じないという条件である。第2条件は、大気の状態を推定するための値が閾値Mth未満である場合、出力電圧値Vdcが電圧値Vdcbに設定されれば、コイル装置4のコイルの隣り合う導体間で放電が生じないという条件である。この場合、算出部14は、計測値Mが閾値Mth以上である場合、電圧値Vdcaを出力電圧値Vdcとして算出する。算出部14は、計測値Mが閾値Mth未満である場合、電圧値Vdcbを出力電圧値Vdcとして算出する。 The calculation unit 14 may calculate the output voltage value Vdc without referring to the table 13a. For example, when the power supply 2 can output only the output voltages of two voltage values, the voltage value Vdca and the voltage value Vdcb, the threshold value Mth may be used instead of the table 13a. The voltage value Vdca is larger than the voltage value Vdcb. The threshold value Mth is a value that satisfies the following first condition and second condition. The first condition is that when the value for estimating the atmospheric state is equal to or greater than the threshold value Mth, if the output voltage value Vdc is set to the voltage value Vdca, a discharge occurs between adjacent conductors of the coils of the coil device 4. The condition is that there is no such thing. The second condition is that when the value for estimating the atmospheric state is less than the threshold value Mth, if the output voltage value Vdc is set to the voltage value Vdcb, a discharge occurs between the adjacent conductors of the coils of the coil device 4. The condition is that there is no such thing. In this case, when the measured value M is equal to or greater than the threshold value Mth, the calculation unit 14 calculates the voltage value Vdca as the output voltage value Vdc. When the measured value M is less than the threshold value Mth, the calculation unit 14 calculates the voltage value Vdcb as the output voltage value Vdc.
 閾値Mthは、コイル装置4の運用が開始される前に、以下のように決定され、記憶部13に格納される。例えば、テーブル13aに設定されている計測値Mと目標電圧値Vt_iとの組のうち、電圧値Vdca以上である目標電圧値Vt_iを含む組が抽出される。そして、抽出された組に含まれる計測値Mのうち最小の計測値Mが閾値Mthに設定される。計測値Mとして大気圧が用いられる場合、閾値Mth以上の大気圧では、目標電圧値Vt_iは電圧値Vdca以上である。このため、電源2の出力電圧値Vdcが電圧値Vdcaに設定されたとしても、コイルの隣り合う導体間で放電が生じない。 The threshold value Mth is determined as follows and stored in the storage unit 13 before the operation of the coil device 4 is started. For example, among the pairs of the measured values M i and the target voltage value Vt_i set in the table 13a, the assembled including the target voltage value Vt_i is equal to or higher than the voltage value Vdca are extracted. Then, the minimum measured value M i of the measured values M i included in the extracted set is set to the threshold Mth. When atmospheric pressure is used as the measured value M, the target voltage value Vt_i is equal to or higher than the voltage value Vdca at atmospheric pressure equal to or higher than the threshold value Mth. Therefore, even if the output voltage value Vdc of the power supply 2 is set to the voltage value Vdca, no discharge occurs between the adjacent conductors of the coil.
 電圧値Vdcb未満の目標電圧値Vt_iを含む組が存在する場合、その組に含まれる計測値M未満の大気圧では、電源2の出力電圧値Vdcが電圧値Vdcbに設定されたとしても、コイルの隣り合う導体間で放電が生じる可能性がある。このような場合には、電源2を改造又は交換することによって、電圧値Vdcb未満の目標電圧値Vt_iを含む組が存在しなくなるように、電圧値Vdcbがさらに低くされる。これにより、大気圧が閾値Mth未満である場合に、目標電圧値Vt_iは電圧値Vdcb以上となるので、コイルの隣り合う導体間で放電が生じない。この実施形態においては、テーブル13aは閾値Mthを決定するために使用されるだけなので、記憶部13はテーブル13aを格納しなくてもよい。 If the set including the target voltage value Vt_i below the voltage value Vdcb present, at atmospheric pressure of less than the measured value M i included in the set, even if the output voltage value Vdc of the power supply 2 is set to a voltage value Vdcb, Discharge can occur between adjacent conductors of the coil. In such a case, by modifying or replacing the power supply 2, the voltage value Vdcb is further lowered so that the set including the target voltage value Vt_i less than the voltage value Vdcb does not exist. As a result, when the atmospheric pressure is less than the threshold value Mth, the target voltage value Vt_i becomes the voltage value Vdcb or more, so that no discharge occurs between the adjacent conductors of the coil. In this embodiment, the storage unit 13 does not have to store the table 13a because the table 13a is only used to determine the threshold Mth.
 上記実施形態では、試験によりテーブル13aが設定されているが、テーブル13aの設定方法はこれに限られない。例えば、回路モデルと、放電開始電圧値を予測するモデルと、を用いたシミュレーションによってテーブル13aが設定されてもよい。回路モデルは、電源2の出力電圧においてインバータ3が動作したときのコイル装置4の各部の電圧を予測するシミュレーションモデルである。放電開始電圧値を予測するモデルは、大気の状態と、コイルの導体の材質及び形状、絶縁物の材質及び形状、並びにコイル導体と絶縁物との位置関係とに応じて放電開始電圧値を予測するシミュレーションモデルである。 In the above embodiment, the table 13a is set by the test, but the setting method of the table 13a is not limited to this. For example, the table 13a may be set by a simulation using a circuit model and a model for predicting the discharge start voltage value. The circuit model is a simulation model that predicts the voltage of each part of the coil device 4 when the inverter 3 operates at the output voltage of the power supply 2. The model that predicts the discharge start voltage value predicts the discharge start voltage value according to the atmospheric conditions, the material and shape of the coil conductor, the material and shape of the insulator, and the positional relationship between the coil conductor and the insulator. It is a simulation model to be used.
 制御装置10は、異常検出を行わない場合、検出部12を備えていなくてもよい。制御装置10は、記憶部13を備えていなくてもよい。この場合、算出部14は、制御装置10の外部の記憶部に格納されているテーブル13aを参照してもよい。 The control device 10 does not have to include the detection unit 12 when the abnormality is not detected. The control device 10 does not have to include the storage unit 13. In this case, the calculation unit 14 may refer to the table 13a stored in the storage unit outside the control device 10.
 インバータ3は、機械的に電圧を反転させる整流子に置き換えられてもよい。この場合、コイル装置4として直流モータが採用され得る。モータ巻線がコイルに相当する。 The inverter 3 may be replaced with a commutator that mechanically inverts the voltage. In this case, a DC motor may be adopted as the coil device 4. The motor winding corresponds to the coil.
 コイルシステム1は、インバータ3を備えていなくてもよい。この場合、電源2として、電圧可変の交流出力電源が用いられ、電源2はコイル装置4に直接接続される。 The coil system 1 does not have to include the inverter 3. In this case, an AC output power supply with a variable voltage is used as the power supply 2, and the power supply 2 is directly connected to the coil device 4.
 コイルシステム1は、センサ5を備えていなくてもよい。この場合、制御装置10は、コイルシステム1の外部のセンサから計測値Mを取得する。 The coil system 1 does not have to include the sensor 5. In this case, the control device 10 acquires the measured value M from the sensor outside the coil system 1.
1 コイルシステム
2 電源
3 インバータ
4 コイル装置
5 センサ
10 制御装置
11 取得部
12 検出部
13 記憶部
13a テーブル
14 算出部
15 出力部
1 Coil system 2 Power supply 3 Inverter 4 Coil device 5 Sensor 10 Control device 11 Acquisition unit 12 Detection unit 13 Storage unit 13a Table 14 Calculation unit 15 Output unit

Claims (9)

  1.  コイルに電力を供給するための電源を制御する制御装置であって、
     前記コイル周囲の大気の状態を推定するための計測値を取得する取得部と、
     前記計測値に基づいて、前記コイルの導体間で放電を生じさせない出力電圧値を算出する算出部と、
     前記出力電圧値の出力電圧を出力する指令を前記電源に出力する出力部と、
    を備える制御装置。
    A control device that controls the power supply for supplying electric power to the coil.
    An acquisition unit that acquires measured values for estimating the state of the atmosphere around the coil, and
    Based on the measured value, a calculation unit that calculates an output voltage value that does not cause a discharge between the conductors of the coil, and a calculation unit.
    An output unit that outputs a command to output the output voltage of the output voltage value to the power supply, and
    A control device comprising.
  2.  前記出力電圧値は、前記計測値から推定される前記コイル周囲の大気の状態において前記導体間で放電を生じさせる最小の出力電圧値よりも小さい、請求項1に記載の制御装置。 The control device according to claim 1, wherein the output voltage value is smaller than the minimum output voltage value that causes a discharge between the conductors in the atmospheric condition around the coil estimated from the measured value.
  3.  前記出力電圧値は、前記最小の出力電圧値に倍率を乗じることによって得られる値である、請求項2に記載の制御装置。 The control device according to claim 2, wherein the output voltage value is a value obtained by multiplying the minimum output voltage value by a magnification.
  4.  前記出力電圧値は、前記最小の出力電圧値から、前記最小の出力電圧値よりも小さい正の値を減算することによって得られる値である、請求項2に記載の制御装置。 The control device according to claim 2, wherein the output voltage value is a value obtained by subtracting a positive value smaller than the minimum output voltage value from the minimum output voltage value.
  5.  異常を検出する検出部をさらに備え、
     前記算出部は、前記検出部によって異常が検出された場合、前記コイルが使用される前記コイル周囲の大気の状態の範囲において前記導体間で放電を生じさせない電圧値を前記出力電圧値として算出する、請求項1~請求項4のいずれか一項に記載の制御装置。
    It also has a detector to detect abnormalities.
    When an abnormality is detected by the detection unit, the calculation unit calculates a voltage value that does not cause a discharge between the conductors in the range of the atmospheric condition around the coil in which the coil is used as the output voltage value. , The control device according to any one of claims 1 to 4.
  6.  前記大気の状態は、大気圧を含む、請求項1~請求項5のいずれか一項に記載の制御装置。 The control device according to any one of claims 1 to 5, wherein the atmospheric state includes atmospheric pressure.
  7.  請求項1~請求項6のいずれか一項に記載の制御装置と、
     前記制御装置によって制御される電源と、
     前記電源から電力の供給を受けるコイルを含むコイル装置と、
    を備えるコイルシステム。
    The control device according to any one of claims 1 to 6.
    The power supply controlled by the control device and
    A coil device including a coil that receives power from the power source, and
    Coil system with.
  8.  前記計測値を出力するセンサをさらに備える、請求項7に記載のコイルシステム。 The coil system according to claim 7, further comprising a sensor that outputs the measured value.
  9.  前記大気の状態は、湿度を含み、
     前記センサは、湿度センサを含む、請求項8に記載のコイルシステム。
    The atmospheric conditions include humidity and
    The coil system according to claim 8, wherein the sensor includes a humidity sensor.
PCT/JP2020/047686 2020-01-31 2020-12-21 Control device and coil system WO2021153094A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020015034A JP2023022341A (en) 2020-01-31 2020-01-31 Control device and coil system
JP2020-015034 2020-01-31

Publications (1)

Publication Number Publication Date
WO2021153094A1 true WO2021153094A1 (en) 2021-08-05

Family

ID=77078976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047686 WO2021153094A1 (en) 2020-01-31 2020-12-21 Control device and coil system

Country Status (2)

Country Link
JP (1) JP2023022341A (en)
WO (1) WO2021153094A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014050174A (en) * 2012-08-30 2014-03-17 Toyota Motor Corp Electric vehicle
JP2018043534A (en) * 2016-09-12 2018-03-22 トヨタ自動車株式会社 Hybrid vehicle control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014050174A (en) * 2012-08-30 2014-03-17 Toyota Motor Corp Electric vehicle
JP2018043534A (en) * 2016-09-12 2018-03-22 トヨタ自動車株式会社 Hybrid vehicle control device

Also Published As

Publication number Publication date
JP2023022341A (en) 2023-02-15

Similar Documents

Publication Publication Date Title
US10408887B2 (en) Method for estimating degradation of rechargeable battery, degradation estimation circuit, electronic apparatus and vehicle including same
EP1873541A1 (en) Enhanced-accuracy battery capacity prediction
JP6755126B2 (en) Deterioration judgment device for secondary batteries
WO2018056309A1 (en) Deterioration determination device for secondary battery
US8971073B2 (en) System and method for providing a high efficiency bypass circuit for multi-stage DC-DC converters used in battery powered systems
CN1236894A (en) Battery tester
US20120294046A1 (en) Power supply apparatus
JP2009247184A (en) Photovoltaic power system and method of starting the same
US11258113B2 (en) Management device, and electricity storage system
WO2018056308A1 (en) Deterioration determination device for secondary battery
KR20120034451A (en) A simple capacitance estimation system for failure diagnosis of dc link electrolytic capacitor in power converters
WO2019203080A1 (en) Charger having failure detection function and failure detection method
JP4847434B2 (en) Battery life deterioration judging device and method
CN111077464A (en) Direct current converter capable of monitoring battery condition and battery condition monitoring method thereof
WO2021153094A1 (en) Control device and coil system
US9410995B2 (en) Measurement devices and measurement methods for power consumption
JP2009195044A (en) Power supply apparatus and method of notifying remaining life of electrolytic capacitor
CN116324449A (en) Battery diagnosis apparatus, battery pack, electric vehicle, and battery diagnosis method
JP4300581B2 (en) Capacitor life prediction device and power supply device using the same
JP4627489B2 (en) Uninterruptible power supply system and battery charging method
JP2002323526A (en) Insulation resistance deterioration detecting method and apparatus
US20120126819A1 (en) Detecting device and method for detecting battery storage capacity
JP4195458B2 (en) Inverter circuit diagnostic device
US11275120B2 (en) Battery monitoring device
KR102382988B1 (en) Coulomb counter based battery state of charge estimation apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 20916936

Country of ref document: EP

Kind code of ref document: A1