JP4627489B2 - Uninterruptible power supply system and battery charging method - Google Patents

Uninterruptible power supply system and battery charging method Download PDF

Info

Publication number
JP4627489B2
JP4627489B2 JP2005343710A JP2005343710A JP4627489B2 JP 4627489 B2 JP4627489 B2 JP 4627489B2 JP 2005343710 A JP2005343710 A JP 2005343710A JP 2005343710 A JP2005343710 A JP 2005343710A JP 4627489 B2 JP4627489 B2 JP 4627489B2
Authority
JP
Japan
Prior art keywords
charging
circuit
battery
battery unit
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005343710A
Other languages
Japanese (ja)
Other versions
JP2007151329A (en
Inventor
芳秀 高橋
昌弘 浜荻
隆雄 後藤
玲彦 叶田
史一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Information and Telecommunication Engineering Ltd
Original Assignee
Hitachi Computer Peripherals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Computer Peripherals Co Ltd filed Critical Hitachi Computer Peripherals Co Ltd
Priority to JP2005343710A priority Critical patent/JP4627489B2/en
Publication of JP2007151329A publication Critical patent/JP2007151329A/en
Priority to JP2009287100A priority patent/JP5332062B2/en
Application granted granted Critical
Publication of JP4627489B2 publication Critical patent/JP4627489B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、バッテリ部を内蔵して電力を無停電に電子機器に供給する無停電電源システム及びバッテリの充電方法に係り、特にバッテリ容量を容易に増設・変更することができる無停電電源システム及びバッテリの充電方法に関する。   The present invention relates to an uninterruptible power supply system that incorporates a battery unit and supplies electric power to an electronic device uninterruptibly, and a battery charging method, and in particular, an uninterruptible power supply system that can easily add or change battery capacity and The present invention relates to a battery charging method.

一般に無停電電源システムは、例えばコンピュータ等の電子機器に接続され、通常時は商用電源からの電力を電子機器に供給しつつバッテリ部に充電を行い、電源が停電した場合、そのバッテリから電力を供給することによって、無停電を実現するためのものである。   In general, an uninterruptible power supply system is connected to an electronic device such as a computer, and normally charges the battery unit while supplying electric power from a commercial power supply to the electronic device. By supplying, it is for realizing uninterruptible power.

従来技術による無停電電源システムは、商用電源に接続される充電回路と、該充電回路から供給される電力を蓄電するバッテリ部と、停電が発生した場合、前記バッテリ部に蓄電した電力を電子機器に供給する放電回路と、後述する周辺回路とを1筐体に内蔵し、前記充電回路と放電回路間にバッテリ部を並列接続する様に構成されている。   An uninterruptible power supply system according to the prior art includes a charging circuit connected to a commercial power supply, a battery unit that stores electric power supplied from the charging circuit, and an electric device that stores electric power stored in the battery unit when a power failure occurs A discharge circuit to be supplied to the battery and a peripheral circuit to be described later are built in one housing, and a battery unit is connected in parallel between the charging circuit and the discharging circuit.

また前記バッテリ部は、(瞬)停電が頻繁に発生する環境や電源のオンオフにより充放電が頻繁に繰り返される環境において長寿命化を図るためにニッケル水素バッテリが使用されているが、このニッケル水素バッテリは鉛バッテリ等に比して電圧監視回路/温度監視回路/該監視回路を制御するための制御回路(マイコン)が必要となるため、周辺回路が複雑となるものであった。   The battery unit uses a nickel-metal hydride battery in order to extend the life in an environment where frequent (instantaneous) blackouts occur or an environment where charging / discharging is frequently repeated by turning on / off the power source. Since the battery requires a voltage monitoring circuit / temperature monitoring circuit / control circuit (microcomputer) for controlling the monitoring circuit as compared with a lead battery or the like, the peripheral circuit becomes complicated.

尚、前記無停電電源システムに関する技術が記載された文献としては、下記特許文献が挙げられる。
特開平8−33218号公報 特開2002−216782号公報 特開2002−216782号公報
In addition, the following patent document is mentioned as a literature in which the technique regarding the said uninterruptible power supply system was described.
Japanese Patent Laid-Open No. 8-33218 JP 2002-216882 A JP 2002-216882 A

前述の従来技術による無停電電源システムは、バッテリ部を増設して複数のバッテリに充電を行う場合、バッテリ部を充電回路及び放電回路間に並列接続しているため、充電方式としては、(1)複数のバッテリ部に同時に充電を行うために充電回路から供給すべき電流量を増加するか、又は(2)各バッテリ部に分配される電流量が少ない状態で充電を行う必要があり、前者は、大容量電源を用意しなければならないために設備のコストアップを招く不具合があり、後者は満充電検出が困難になると共に充電効率が低下すると言う不具合があった。   In the uninterruptible power supply system according to the above-described prior art, when charging a plurality of batteries by adding a battery unit, the battery unit is connected in parallel between the charging circuit and the discharging circuit. ) Increase the amount of current to be supplied from the charging circuit to charge a plurality of battery units at the same time, or (2) Charge the battery with a small amount of current distributed to each battery unit. Has a problem of increasing the cost of the equipment because a large-capacity power supply must be prepared, and the latter has a problem that full charge detection becomes difficult and charging efficiency is lowered.

また従来技術による無停電電源システムは、バッテリ部を増設する場合、この増設するバッテリ部用の充電回路/周辺回路も増設しなければならず、装置のコストアップを招くと共に、筐体も増設しなければならないために余分なスペースも要すると言う不具合があった。   In addition, when an uninterruptible power supply system according to the prior art is added, the charging circuit / peripheral circuit for the additional battery part must be added, resulting in an increase in the cost of the apparatus and an increase in the case. There was a problem that extra space was required because it was necessary.

本発明の目的は、前述の従来技術による不具合を解決することであり、大容量電源を用意することなく複数のバッテリ部に対してバランスをとった充電及び放電を行うことができる無停電電源システム及び該無停電電源システムの充電方法を提供することである。   An object of the present invention is to solve the above-described problems caused by the prior art, and an uninterruptible power supply system capable of performing charging and discharging in a balanced manner for a plurality of battery units without preparing a large capacity power supply. And a method of charging the uninterruptible power supply system.

前記目的を達成するために請求項1記載の発明は、電力を蓄電する複数のバッテリ部と、外部電源からの電力を前記複数のバッテリ部へ充電する充電回路と、当該バッテリ部に蓄電した電力を外部へ出力する放電回路と、当該充電回路および放電回路を制御し、前記複数のバッテリ部に対する充電を規定時間毎に切り替えて行う制御回路とを備える無停電電源システムであって、前記制御回路が、バッテリ部容量をα〔Ah〕、充電電流をβ〔A〕、満充電検出に要する最低時間をt 〔h〕、並列バッテリ部から放電する際に電流アンバランスを許容できる容量比をγ〔%〕とし、前記規定時間がtx〔h〕、tx>t としたとき、前記規定時間tx〔h〕を、数式1[tx<α×γ/(100×β)]で得られる範囲に設定することを特徴とする。 Power invention of claim 1, wherein in order to achieve the object, a plurality of battery unit for storing electric power, which is storing power from the external power supply and charging circuit for charging the plurality of battery unit, to the battery unit An uninterruptible power supply system, comprising: a discharge circuit that outputs to the outside; and a control circuit that controls the charging circuit and the discharging circuit and switches the charging of the plurality of battery units at a specified time. However, the battery unit capacity is α [Ah], the charging current is β [A], the minimum time required for full charge detection is t 0 [h], and the capacity ratio that allows current imbalance when discharging from the parallel battery unit is When γ [%] is set and the specified time is tx [h] and tx> t 0 , the specified time tx [h] is obtained by Equation 1 [tx <α × γ / (100 × β)]. Features set to range And

請求項2記載の発明は、電力を蓄電する複数のバッテリ部と、外部電源からの電力を前記複数のバッテリ部へ充電する充電回路と、当該バッテリ部に蓄電した電力を外部へ出力する放電回路と、当該充電回路および放電回路を制御し、前記複数のバッテリ部に対する充電を規定時間毎に切り替えて行う制御回路とを備える無停電電源システムのバッテリ充電方法であって、前記制御回路が、バッテリ部容量をα〔Ah〕、充電電流をβ〔A〕、満充電検出に要する最低時間をt 〔h〕、並列バッテリ部から放電する際に電流アンバランスを許容できる容量比をγ〔%〕とし、前記規定時間がtx〔h〕、tx>t としたとき、前記規定時間tx〔h〕を、数式1[tx<α×γ/(100×β)]で得られる範囲に設定することを特徴とする。 The invention according to claim 2 is a plurality of battery units for storing electric power, a charging circuit for charging electric power from an external power source to the plurality of battery units, and a discharging circuit for outputting electric power stored in the battery unit to the outside. And a battery charging method for an uninterruptible power supply system comprising: a control circuit that controls the charging circuit and the discharging circuit and switches the charging to the plurality of battery units at specified time intervals, wherein the control circuit includes a battery the part volume α [Ah], the charging current β [a], satisfy the minimum time required for charge detection t 0 [h], the volume ratio can tolerate a current imbalance when the discharge from the parallel battery unit γ [% When the specified time is tx [h] and tx> t 0 , the specified time tx [h] is set to a range obtained by Formula 1 [tx <α × γ / (100 × β)]. characterized in that it .

本発明の請求項1〜4記載の無停電電源システムによれば、複数のバッテリ部に対する充電を規定時間毎に切り替えて行うことによって、大容量電源を用意することなく複数のバッテリ部に対してバランスをとった充電及び放電を行うことができる。   According to the uninterruptible power supply system according to claims 1 to 4 of the present invention, the charging to the plurality of battery units is performed by switching the charging unit at a predetermined time, thereby providing a plurality of battery units without preparing a large-capacity power source. Balanced charging and discharging can be performed.

以下、本発明による無停電電源システム及び該無停電電源システムの充電方法の一実施形態を図面を参照して詳細に説明する。図1は本実施形態による無停電電源システム及び該無停電電源システムの充電方法の詳細構成を示す図、図2は、本無停電電源ユニットの動作を説明するためのフロー図、図3は実施形態による分割充電時の充電量及び充電電流との関係を示す図、図4は本実施形態による充電開始及びバッテリ切り替えシーケンスを示す図、図5は本発明の他の実施形態による無停電電源システムの構成を示す図である。
<構成の説明>
Hereinafter, an embodiment of an uninterruptible power supply system and a charging method of the uninterruptible power supply system according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing a detailed configuration of an uninterruptible power supply system and a charging method for the uninterruptible power supply system according to the present embodiment, FIG. 2 is a flowchart for explaining the operation of the uninterruptible power supply unit, and FIG. The figure which shows the relationship between the charge amount at the time of the division | segmentation charge by a form, and a charging current, FIG. 4 is a figure which shows the charge start and battery switching sequence by this embodiment, FIG. 5 is an uninterruptible power supply system by other embodiment of this invention FIG.
<Description of configuration>

本実施形態による無停電電源システムの基本構成は、図1に示す如く、商用電源に接続された入力回路10と、該入力回路10から入力された電力を充電及び放電を行う基本バッテリ部30と、停電時等に該基本バッテリ部30の電力を接続された電子機器に供給する放電回路60と、前記各回路に接続され、各回路の制御を行う制御回路40と、前記バッテリ部の電池群に流れる電流値を測定する電流検出回路70から構成され、増設時には増設バッテリ部50が前記基本バッテリ部30と並列に増設される様に構成されている。尚、前記入力回路10は、電源からの突入電流を防止するための突入電流防止回路11を含み、充電回路20は昇圧制御回路21及び定電流制御回路22を含み、放電回路60は出力制御回路61を含むものであるが、これら詳細回路構成は公知な回路のため説明を省略する。   As shown in FIG. 1, the basic configuration of the uninterruptible power supply system according to the present embodiment includes an input circuit 10 connected to a commercial power supply, and a basic battery unit 30 that charges and discharges power input from the input circuit 10. A discharge circuit 60 for supplying electric power of the basic battery unit 30 to a connected electronic device in the event of a power failure, a control circuit 40 connected to each circuit and controlling each circuit, and a battery group of the battery unit The additional battery unit 50 is configured to be added in parallel with the basic battery unit 30 when the battery is added. The input circuit 10 includes an inrush current prevention circuit 11 for preventing an inrush current from a power source, the charging circuit 20 includes a boost control circuit 21 and a constant current control circuit 22, and the discharge circuit 60 includes an output control circuit. 61. However, since these detailed circuit configurations are known circuits, description thereof is omitted.

前記制御回路40は、入力回路10からPS(電源)41を介して電力が供給される制御司令部42と、充電回路20の昇圧制御回路21及び定電流制御回路22を用いて充電を制御する充電指令回路43と、後述する充電の切り替えを制御する充電切り替え回路45と、放電回路60からの出力を制御する出力指令回路47と、外部の電子機器等と接続されるインタフェース回路48と、バッテリ部30内3c及び50内5cの抵抗値を測定する為にパルス電流を発生させる回路に契機を指令する抵抗測定指令回路46とを備える。   The control circuit 40 controls charging using a control command unit 42 to which power is supplied from the input circuit 10 via a PS (power supply) 41, and the boost control circuit 21 and the constant current control circuit 22 of the charging circuit 20. A charge command circuit 43, a charge switching circuit 45 that controls switching of charging, which will be described later, an output command circuit 47 that controls output from the discharge circuit 60, an interface circuit 48 connected to an external electronic device, etc., a battery A resistance measurement command circuit 46 is provided for instructing a circuit that generates a pulse current to measure the resistance values of the part 30 in the unit 30 and the part 50 in the unit 5c.

また、前記基本バッテリ部30は、充電のオンオフを行うスイッチ素子(MOS)を制御するドライブ回路3aと、電力の充電及び放電を行う電池群3cと、該電池群3cの電圧及び温度を検出する電圧/温度検出回路3bと、前記抵抗測定指令回路46からの指令により電池群3cにパルス電流を流すように動作するドライブ回路3dとを備え、前記増設バッテリ部50も同様に、充電のオンオフを行うスイッチ素子(MOS)を制御するドライブ回路5aと、電力の充電及び放電を行う電池群5cと、該電池群5cの電圧及び温度を検出する電圧/温度検出回路5bと、前記抵抗測定指令回路46からの指令により電池群5cにパルス電流を流すように動作するドライブ回路5dとを備える。
<動作の説明>
The basic battery unit 30 detects a drive circuit 3a that controls a switching element (MOS) that performs charging on / off, a battery group 3c that charges and discharges power, and a voltage and temperature of the battery group 3c. A voltage / temperature detection circuit 3b and a drive circuit 3d that operates to flow a pulse current to the battery group 3c in response to a command from the resistance measurement command circuit 46. Similarly, the additional battery unit 50 turns on / off charging. Drive circuit 5a for controlling a switching element (MOS) to be performed, battery group 5c for charging and discharging power, voltage / temperature detection circuit 5b for detecting voltage and temperature of the battery group 5c, and the resistance measurement command circuit And a drive circuit 5d that operates to cause a pulse current to flow through the battery group 5c in response to a command from 46.
<Description of operation>

本実施形態による無停電電源システム及びバッテリの充電方法は、制御回路40の充電切替え回路45が、各バッテリ部30及び50のドライブ回路3a及び5aに接続され、基本バッテリ部30又は増設バッテリ部50に対する充電を時分割で行う様に制御するものである。尚、充電切替え回路45は、更に増設バッテリ部が接続された場合も個々の充電が時間的に重複しないように時分割で充電を行う制御を行う機能を有する。   In the uninterruptible power supply system and the battery charging method according to the present embodiment, the charge switching circuit 45 of the control circuit 40 is connected to the drive circuits 3a and 5a of the battery units 30 and 50, and the basic battery unit 30 or the additional battery unit 50 is connected. Is controlled so as to be charged in a time-sharing manner. The charge switching circuit 45 has a function of performing charging in a time-sharing manner so that individual charging does not overlap in time even when an additional battery unit is connected.

この時分割充電は、図3に示す、基本バッテリ部30の充電電流と充電量との関係を示す符号aと、増設バッテリ部50の充電電流と充電量との関係を示す符号bと、両バッテリ部の充電電流と充電量との関係を示す符号cを参照すれば明らかな如く、基本バッテリ部30と増設バッテリ部50との所定時間充電を繰り返すことによって、一定量バッテリ部の充電量を段階的に増加させる様に動作する。   This time-division charging includes a symbol a indicating the relationship between the charging current and the charging amount of the basic battery unit 30, a symbol b indicating the relationship between the charging current and the charging amount of the additional battery unit 50, as shown in FIG. As is apparent from the reference c indicating the relationship between the charging current and the charging amount of the battery unit, by charging the basic battery unit 30 and the additional battery unit 50 for a predetermined time, It works to increase in steps.

この時分割充電の制御は、図2に示す如く、充電の開始(ステップ101)により0系(基本バッテリ部30)の電圧の測定(ステップ102)及び1系(増設バッテリ部50)の電圧の測定(ステップ103)を順次行い、1系に比して0系の電圧が低いか否かの判定(ステップ104)を行い、0系の電圧が低い場合、1系の充電を休止すると共に0系の充電を行い(ステップ105)、0系が満充電か否かを規定時間に至る迄、常時監視(ステップ106、110)し、満充電となったときには0系の充電を休止すると共に1系の充電を開始(ステップ107)し、この1系の満充電を検出(ステップ108)したときに充電を完了する様に動作する。前記ステップ106において0系が満充電に至る前に規定時間が経過(ステップ110)したとき、0系充電を休止(ステップ111)すると共に1系の充電を開始(ステップ111)する。1系が満充電か否かを規定時間に至る迄、常時監視(ステップ112、115)し、満充電となったときには1系の充電を休止すると共に0系の充電を再開(ステップ113)し、0系の満充電を検出(ステップ114)したときに充電を完了するように動作する。前記ステップ112において1系が満充電に至る前に規定時間が経過(ステップ115)したとき、1系の充電を休止すると共に0系の充電を再開し、前記ステップ106に戻る様に動作する。   As shown in FIG. 2, the time division charging control is performed by measuring the voltage of the 0 system (basic battery unit 30) (step 102) and the voltage of the 1 system (additional battery unit 50) by starting charging (step 101). Measurements (step 103) are sequentially performed to determine whether or not the 0 system voltage is lower than the 1 system (step 104). If the 0 system voltage is low, charging of the 1 system is suspended and 0 is output. The system is charged (step 105), and whether or not the 0 system is fully charged is constantly monitored (steps 106 and 110) until the specified time is reached. Charging of the system is started (step 107), and operation is performed so as to complete the charging when the full charge of this system 1 is detected (step 108). When the specified time elapses before the 0 system reaches full charge in the step 106 (step 110), the 0 system charge is suspended (step 111) and the 1 system charge is started (step 111). Whether the 1 system is fully charged is constantly monitored (steps 112 and 115) until the specified time is reached. When the 1 system is fully charged, charging of the 1 system is suspended and charging of the 0 system is resumed (step 113). , It operates so as to complete the charging when the 0 system full charge is detected (step 114). When the specified time elapses before the first system reaches full charge in step 112 (step 115), the first system is stopped and the zero system charge is resumed, and the operation returns to step 106.

また本システムは、前記ステップ104による0系と1系の電圧比較の結果、1系の電圧が低いと判定された場合、前記ステップ110において0系の充電が規定時間経過したと判定したときと同様に、前記ステップ111とし、0系の充電を休止すると共に1系の充電を開始(ステップ111)する。1系が満充電か否かを規定時間に至る迄、常時監視(ステップ112、115)し、満充電となったときには1系の充電を休止すると共に0系の充電を再開(ステップ113)し、0系の満充電を検出(ステップ114)したときに充電を完了するように動作する。前記ステップ112において1系が満充電に至る前に規定時間が経過(ステップ115)したとき、1系の充電を休止すると共に0系の充電を再開し、前記ステップ106に戻る様に動作する。   Further, in the system, when it is determined that the voltage of the 1 system is low as a result of the voltage comparison between the 0 system and the 1 system in the step 104, the charging of the 0 system is determined to have elapsed in the step 110, and Similarly, in step 111, charging of system 0 is suspended and charging of system 1 is started (step 111). Whether the 1 system is fully charged is constantly monitored (steps 112 and 115) until the specified time is reached. When the 1 system is fully charged, charging of the 1 system is suspended and charging of the 0 system is resumed (step 113). , It operates so as to complete the charging when the 0 system full charge is detected (step 114). When the specified time elapses before the first system reaches full charge in step 112 (step 115), the first system is stopped and the zero system charge is resumed, and the operation returns to step 106.

この様に本実施形態による無停電電源システム及びバッテリの充電方法は、複数のバッテリ部が接続された場合、個々のバッテリ部に規定時間毎に時分割で電力を供給して充電を行うことによって、個々のバッテリ毎に充電を行うために大容量電源を用意する必要がなく、満充電検出も従来の個々のバッテリ部に対する検出技術を使用するために容易であると言う効果を奏する。   As described above, the uninterruptible power supply system and the battery charging method according to the present embodiment are configured such that when a plurality of battery units are connected, power is supplied to each battery unit in a time-sharing manner for every specified time to perform charging. There is no need to prepare a large-capacity power source for charging each individual battery, and the effect that the full charge detection is easy because the conventional detection technology for each battery unit is used.

前記バッテリ部の時分割充電を切り替える規定時間は、バッテリ部のバッテリ部容量等の複数のパラメータによって制限される場合がある。   The specified time for switching the time division charging of the battery unit may be limited by a plurality of parameters such as the battery unit capacity of the battery unit.

これを具体的に説明すると、(1)バッテリ部に使用する電池により決まるパラメータであるバッテリ部容量をα〔Ah〕、(2)回路(充電回路)の設定により求めたパラメータである充電電流をβ〔A〕、(3)規定時間(切替え時間)をtx〔h〕、(4)バッテリ部の特性や充電制御方法にて決まるパラメータである満充電検出に要する最低時間をt〔h〕、(5)バッテリ部の特性や回路/使用方法により推定可能なパラメータである並列バッテリから放電する際に電流アンバランスを許容できる容量比をγ〔%〕としたとき、規定時間txは下記数式2及び数式3を用いて算出することができる。
txの最大値を決める条件より
Specifically, (1) the battery unit capacity, which is a parameter determined by the battery used in the battery unit, is α [Ah], and (2) the charging current, which is a parameter obtained by setting the circuit (charging circuit). β [A], (3) The specified time (switching time) is tx [h], (4) The minimum time required for full charge detection, which is a parameter determined by the characteristics of the battery unit and the charge control method, is t 0 [h] (5) When the capacity ratio that can allow current imbalance when discharging from a parallel battery, which is a parameter that can be estimated by the characteristics of the battery unit and the circuit / use method, is γ [%], the specified time tx is expressed by the following equation: 2 and Equation 3 can be used for calculation.
From the conditions that determine the maximum value of tx

γ>β×tx/α×100 ・・数式1     γ> β × tx / α × 100 Formula 1

∴tx<α×γ/(100×β) ・・数式2   ∴tx <α × γ / (100 × β) ·· Formula 2

txの最低値を決める条件より     From the conditions that determine the minimum value of tx

tx>t ・・数式3 tx> t 0 .. Formula 3

これを具体的に説明すると、例えば、α=6.4〔Ah〕のバッテリを使用し、β=0.5〔Ah〕、γ=30〔%〕、t=2〔Ah〕として設定した場合、数式2よりtx<3.84〔h〕、数式3よりtx>2.0〔h〕が得られ、従ってtx=3〔h〕として設定、即ち、切替え時間を3時間として設定する。 Specifically, for example, a battery with α = 6.4 [Ah] is used, and β = 0.5 [Ah], γ = 30 [%], and t 0 = 2 [Ah] are set. In this case, tx <3.84 [h] is obtained from Equation 2, and tx> 2.0 [h] is obtained from Equation 3, and therefore tx = 3 [h] is set, that is, the switching time is set to 3 hours.

前記バッテリ部30及び50に対する充電を開始するシーケンスは、図4(a)に示す如く、(1)制御回路部が基本バッテリ部の電圧を検出する工程と、(2)制御回路部が増設バッテリ部の電圧を検出する工程と、(3)制御回路部が充電指令を発する工程と、(4)制御回路部が充電動作信号を確認する工程と、(5)基本バッテリ部が充電対象としたときに制御回路が基本バッテリ部のドライブ回路3aのMOSをオンする指令を発する工程とを順次実行することによって行われ、このとき増設バッテリ部は充電休止中とする。   As shown in FIG. 4A, the sequence for starting the charging of the battery units 30 and 50 includes (1) a step in which the control circuit unit detects the voltage of the basic battery unit, and (2) the control circuit unit in the additional battery. The step of detecting the voltage of the part, (3) the step of issuing a charging command by the control circuit part, (4) the step of checking the charging operation signal by the control circuit part, and (5) the basic battery part to be charged. In some cases, the control circuit sequentially performs a process of issuing a command to turn on the MOS of the drive circuit 3a of the basic battery unit, and at this time, the additional battery unit is in a charging suspension state.

前記バッテリ部30の充電を休止し、前記バッテリ部50の充電を開始するシーケンスは、図4(b)に示す如く、前述した規定時間経過又は満充電の検出により制御回路が、(1)基本バッテリ部のドライブ回路3aのMOSオン指令を解除する工程と、(2)増設バッテリ部のドライブ回路5aのMOSをオンする指令を発する工程とを同時にオンしない分の十分な間隔を空けて順次実行することによって行われる。   As shown in FIG. 4 (b), the sequence for stopping charging of the battery unit 30 and starting charging of the battery unit 50 is as follows. The step of canceling the MOS on command of the drive circuit 3a in the battery unit and the step (2) of issuing the command to turn on the MOS of the drive circuit 5a of the additional battery unit are sequentially executed with sufficient intervals not to be turned on at the same time. Is done by doing.

この様に本実施形態による無停電電源システムは、複数のバッテリ部に対する充電を規定時間毎に切り替えて行うことによって、複数のバッテリ部に対して電源設備を増加させることなく容易に増設することができ、更に前記切り替えを行う規定時間を、容量α〔Ah〕/充電電流β〔A〕/満充電検出に要する最低時間をt〔h〕/放電時の電流アンバランスを許容できる容量比をγ〔%〕をファクターとして決定することによって、複数のバッテリ部に対してバランスをとった充電及び放電を行うことができる。
<他の実施形態>
As described above, the uninterruptible power supply system according to the present embodiment can be easily expanded without increasing the power supply facilities for the plurality of battery units by switching the charging for the plurality of battery units at predetermined time intervals. Further, the specified time for switching can be set as follows: capacity α [Ah] / charging current β [A] / minimum time required for full charge detection t 0 [h] / capacitance ratio that allows current imbalance during discharge By determining γ [%] as a factor, a plurality of battery units can be charged and discharged in a balanced manner.
<Other embodiments>

図5は、本発明の他の実施形態による無停電電源システム及びバッテリの充電方法を説明するための図である。この実施形態による無停電電源システムは、図5に示す如く、電源に接続される突入電流防止回路71と、充電回路72と、該充電回路72にスイッチを介して接続される容量が異なる電池群76a及び76bと、前記電池群76aからの電力をCH(チャネル)1から放電するための放電回路77aと、前記電池群76bからの電力をCH(チャネル)2から出力するための放電回路77bと、図示しない制御回路とから構成され、該制御回路による制御により充電回路72並びに各放電回路77a及び77bは接続された電子機器に応じた充電並びに放電を行う様に構成されている。   FIG. 5 is a diagram for explaining an uninterruptible power supply system and a battery charging method according to another embodiment of the present invention. As shown in FIG. 5, the uninterruptible power supply system according to this embodiment includes an inrush current prevention circuit 71 connected to a power supply, a charging circuit 72, and a battery group having different capacities connected to the charging circuit 72 via a switch. 76a and 76b, a discharge circuit 77a for discharging power from the battery group 76a from CH (channel) 1, and a discharge circuit 77b for outputting power from the battery group 76b from CH (channel) 2. The charging circuit 72 and the discharging circuits 77a and 77b are configured to perform charging and discharging according to the connected electronic device under the control of the control circuit.

本実施形態による前記充電回路72は、前記電池群76a及び76bの容量比/充電電流値/満充電検出に要する最低時間/各CH(チャネル)に対するバックアップ義務の重要度及び必要なバックアップ容量に応じて、各電池群76a及び76bへの充電電流及び規定時間を決定した充電を行うことができる。例えば、各電池群76a及び76bの容量比が1:2の場合で、CH(チャネル)1のバックアップ義務が優先される場合には、まずはCH(チャネル)1の充電を満充電迄完了し、その後CH(チャネル)2の充電をすれば良い。また、バックアップ義務が各CH(チャネル)共に同等に重要な場合には、切替え規定時間の設定は、満充電検出に要する最低時間以上で容量比1:2に応じた時間で設定することができる。また、放電回路77a及び77bは、チャネルに接続された電子機器の特性、例えばメモリ等用の電子機器に応じた瞬時電流は小さいが長時間のバックアップが必要とされる特性/ファンやHDD等電子機器に応じたの長時間バックアップは必要しないが瞬時的なパワーを要する特性に応じて放電を行う様に構成されている。   The charging circuit 72 according to the present embodiment depends on the capacity ratio of the battery groups 76a and 76b / charge current value / minimum time required for full charge detection / importance of backup duty for each CH (channel) and required backup capacity. Thus, it is possible to perform charging in which the charging current and the specified time for each of the battery groups 76a and 76b are determined. For example, in the case where the capacity ratio of each battery group 76a and 76b is 1: 2, and when the backup duty of CH (channel) 1 is given priority, first, charging of CH (channel) 1 is completed until full charge, Thereafter, CH (channel) 2 may be charged. In addition, when the backup duty is equally important for each CH (channel), the specified switching time can be set at a time corresponding to the capacity ratio 1: 2 over the minimum time required for full charge detection. . In addition, the discharge circuits 77a and 77b have characteristics of an electronic device connected to the channel, for example, a characteristic that requires a long-time backup although the instantaneous current is small according to the electronic device for a memory or the like. Long-term backup according to the device is not required, but the discharge is performed according to the characteristics that require instantaneous power.

本実施形態による無停電電源システムは、前述の実施形態と同様に電池群76a及び76bへの充電を図示しない制御回路が充電を切り替えることによって、電源容量を増加することなく、両電池群76a及び76bの充電を行うことができ、且つ各放電回路7a及び7bが各CH(チャネル)から接続された電子機器に応じた電力を放電することができる。   In the uninterruptible power supply system according to the present embodiment, the battery groups 76a and 76b are switched by the control circuit (not shown) to charge the battery groups 76a and 76b as in the above-described embodiment, so that both the battery groups 76a and 76a 76b can be charged, and each discharge circuit 7a and 7b can discharge electric power according to an electronic device connected from each CH (channel).

尚、前記実施形態においては、基本バッテリ部に対して増設バッテリ部が1セットの例を説明したが、本発明はこれに限られるものではなく、更に複数の増設バッテリ部を必要に応じて増設することもできる。   In the above-described embodiment, an example in which the additional battery unit is one set with respect to the basic battery unit has been described. However, the present invention is not limited to this, and a plurality of additional battery units can be added as necessary. You can also

本発明の一実施形態による無停電電源システムの構成を示す図。The figure which shows the structure of the uninterruptible power supply system by one Embodiment of this invention. 本無停電電源ユニットの動作を説明するためのフロー図。The flowchart for demonstrating operation | movement of this uninterruptible power supply unit. 本実施形態による充電量及び充電電流との関係を示す図。The figure which shows the relationship between the charge amount and charging current by this embodiment. 本実施形態による充電開始及びバッテリ切替シーケンスを示す図。The figure which shows the charge start and battery switching sequence by this embodiment. 本発明の他の実施形態による無停電電源システムの構成を示す図。The figure which shows the structure of the uninterruptible power supply system by other embodiment of this invention.

符号の説明Explanation of symbols

3a:ドライブ回路、3b:温度検出回路、3c:電池群、3d:ドライブ回路、5a:ドライブ回路、5b:温度検出回路、5c:電池群、5d:ドライブ回路、7a:放電回路、10:入力回路、11:突入電流防止回路、20:充電回路、21:昇圧制御回路、22:定電流制御回路、30:基本バッテリ部、40:制御回路、42:制御指令部、43:充電指令回路、45:充電切替回路、46:抵抗測定指令回路、47:出力指令回路、48:インタフェース回路、50:増設バッテリ部、60:放電回路、61:出力制御回路、70:電流検出回路、71:突入電流防止回路、72:充電回路、76a:電池群、76b:電池群、77a:放電回路、77b:放電回路。   3a: drive circuit, 3b: temperature detection circuit, 3c: battery group, 3d: drive circuit, 5a: drive circuit, 5b: temperature detection circuit, 5c: battery group, 5d: drive circuit, 7a: discharge circuit, 10: input Circuit: 11: inrush current prevention circuit, 20: charging circuit, 21: boosting control circuit, 22: constant current control circuit, 30: basic battery unit, 40: control circuit, 42: control command unit, 43: charge command circuit, 45: charge switching circuit, 46: resistance measurement command circuit, 47: output command circuit, 48: interface circuit, 50: additional battery unit, 60: discharge circuit, 61: output control circuit, 70: current detection circuit, 71: inrush Current prevention circuit, 72: charging circuit, 76a: battery group, 76b: battery group, 77a: discharging circuit, 77b: discharging circuit.

Claims (2)

電力を蓄電する複数のバッテリ部と、外部電源からの電力を前記複数のバッテリ部へ充電する充電回路と、当該バッテリ部に蓄電した電力を外部へ出力する放電回路と、当該充電回路および放電回路を制御し、前記複数のバッテリ部に対する充電を規定時間毎に切り替えて行う制御回路とを備える無停電電源システムであって、前記制御回路が、バッテリ部容量をα〔Ah〕、充電電流をβ〔A〕、満充電検出に要する最低時間をt 〔h〕、並列バッテリ部から放電する際に電流アンバランスを許容できる容量比をγ〔%〕とし、前記規定時間がtx〔h〕、tx>t としたとき、前記規定時間tx〔h〕を、数式1[tx<α×γ/(100×β)]で得られる範囲に設定することを特徴とする無停電電源システム。 A plurality of the battery unit, and a charging circuit for charging the power from an external power source to the plurality of battery unit, a discharge circuit for outputting electric power accumulated in the battery unit to the outside, the charging circuit and the discharging circuit for storing power And an uninterruptible power supply system comprising a control circuit that switches the charging of the plurality of battery units at specified time intervals, wherein the control circuit has a battery unit capacity α [Ah] and a charging current β [A], the minimum time required for full charge detection is t 0 [h], the capacity ratio that can allow current imbalance when discharging from the parallel battery unit is γ [%], and the specified time is tx [h], when the tx> t 0, uninterruptible power supply system and sets the prescribed time tx [h], the range obtained by equation 1 [tx <α × γ / (100 × β)]. 電力を蓄電する複数のバッテリ部と、外部電源からの電力を前記複数のバッテリ部へ充電する充電回路と、当該バッテリ部に蓄電した電力を外部へ出力する放電回路と、当該充電回路および放電回路を制御し、前記複数のバッテリ部に対する充電を規定時間毎に切り替えて行う制御回路とを備える無停電電源システムのバッテリ充電方法であって、前記制御回路が、バッテリ部容量をα〔Ah〕、充電電流をβ〔A〕、満充電検出に要する最低時間をt 〔h〕、並列バッテリ部から放電する際に電流アンバランスを許容できる容量比をγ〔%〕とし、前記規定時間がtx〔h〕、tx>t としたとき、前記規定時間tx〔h〕を、数式1[tx<α×γ/(100×β)]で得られる範囲に設定することを特徴とするバッテリの充電方法。 A plurality of battery units for storing electric power, a charging circuit for charging electric power from an external power source to the plurality of battery units, a discharging circuit for outputting electric power stored in the battery unit to the outside, the charging circuit and the discharging circuit And a battery charging method for an uninterruptible power supply system comprising a control circuit that switches the charging of the plurality of battery units at specified time intervals, wherein the control circuit has a capacity of the battery unit α [Ah], The charging current is β [A], the minimum time required for full charge detection is t 0 [h], the capacity ratio that can allow current imbalance when discharging from the parallel battery unit is γ [%], and the specified time is tx [h], when the tx> t 0, the tx [h] the prescribed time, equation 1 [tx <α × γ / (100 × β)] of the battery and setting the range obtained by Charging method.
JP2005343710A 2005-11-29 2005-11-29 Uninterruptible power supply system and battery charging method Expired - Fee Related JP4627489B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005343710A JP4627489B2 (en) 2005-11-29 2005-11-29 Uninterruptible power supply system and battery charging method
JP2009287100A JP5332062B2 (en) 2005-11-29 2009-12-18 Uninterruptible power supply system and battery charging method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005343710A JP4627489B2 (en) 2005-11-29 2005-11-29 Uninterruptible power supply system and battery charging method
JP2009287100A JP5332062B2 (en) 2005-11-29 2009-12-18 Uninterruptible power supply system and battery charging method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009287100A Division JP5332062B2 (en) 2005-11-29 2009-12-18 Uninterruptible power supply system and battery charging method

Publications (2)

Publication Number Publication Date
JP2007151329A JP2007151329A (en) 2007-06-14
JP4627489B2 true JP4627489B2 (en) 2011-02-09

Family

ID=48083764

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2005343710A Expired - Fee Related JP4627489B2 (en) 2005-11-29 2005-11-29 Uninterruptible power supply system and battery charging method
JP2009287100A Expired - Fee Related JP5332062B2 (en) 2005-11-29 2009-12-18 Uninterruptible power supply system and battery charging method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009287100A Expired - Fee Related JP5332062B2 (en) 2005-11-29 2009-12-18 Uninterruptible power supply system and battery charging method

Country Status (1)

Country Link
JP (2) JP4627489B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5330355B2 (en) * 2010-11-09 2013-10-30 Necフィールディング株式会社 Uninterruptible power supply, power processing method and power processing program
US9397509B2 (en) 2011-01-22 2016-07-19 Alpha Technologies Inc. Charge equalization systems and methods for battery systems and uninterruptible power supplies
JP2014220973A (en) * 2013-05-10 2014-11-20 船井電機株式会社 Charger and charging method
KR101457142B1 (en) * 2014-04-09 2014-11-06 삼형전자(주) Charge control apparatus of backup battery
KR101875536B1 (en) 2015-09-01 2018-07-06 주식회사 엘지화학 Method of UPS battery charge
KR20170120000A (en) * 2016-04-20 2017-10-30 엘에스산전 주식회사 Apparatus for controlling electric vehicle charging system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045674A (en) * 1999-08-02 2001-02-16 Nippon Telegr & Teleph Corp <Ntt> Charging of secondary battery pack for backup, charging system, and control thereof
JP2001157380A (en) * 1999-11-26 2001-06-08 Densei Lambda Kk Expansion battery box with communicating function provided on ups
JP2002313439A (en) * 2001-04-16 2002-10-25 Matsushita Electric Ind Co Ltd Battery pack
JP2004120857A (en) * 2002-09-25 2004-04-15 Matsushita Electric Ind Co Ltd Power supply
JP2004364446A (en) * 2003-06-06 2004-12-24 Matsushita Electric Ind Co Ltd Charge/discharge control device of backup battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833218A (en) * 1994-07-13 1996-02-02 Tohoku Oki Denki Kk Charging control circuit system
JP2002216782A (en) * 2001-01-18 2002-08-02 Yamaha Motor Co Ltd Fuel cell hybrid system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045674A (en) * 1999-08-02 2001-02-16 Nippon Telegr & Teleph Corp <Ntt> Charging of secondary battery pack for backup, charging system, and control thereof
JP2001157380A (en) * 1999-11-26 2001-06-08 Densei Lambda Kk Expansion battery box with communicating function provided on ups
JP2002313439A (en) * 2001-04-16 2002-10-25 Matsushita Electric Ind Co Ltd Battery pack
JP2004120857A (en) * 2002-09-25 2004-04-15 Matsushita Electric Ind Co Ltd Power supply
JP2004364446A (en) * 2003-06-06 2004-12-24 Matsushita Electric Ind Co Ltd Charge/discharge control device of backup battery

Also Published As

Publication number Publication date
JP2007151329A (en) 2007-06-14
JP5332062B2 (en) 2013-11-06
JP2010104230A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
US9590451B2 (en) Autonomous power supply system
CN101595620B (en) Power source system, power supply control method for the power source system
JP4967162B2 (en) Secondary battery pack
KR101149186B1 (en) Charging and discharging control circuit and charging type power supply device
JP5980943B2 (en) Battery monitoring device
JP5332062B2 (en) Uninterruptible power supply system and battery charging method
JP4691140B2 (en) Charge / discharge system and portable computer
JP2006208377A (en) Apparatus and method for monitoring battery pack
JP4845613B2 (en) Battery charger with power capacitor life diagnosis function
WO2008075586A1 (en) Power supply system, power supply control method of power supply system, power supply control program of power supply system, and computer readable recording medium having power supply control program of power supply system recorded thereon
JP4855871B2 (en) Charger
KR20190092089A (en) Apparatus for diagnosing pre-charge circuit unit
EP3576250B1 (en) Vehicle-mounted emergency power supply device
JP6041040B2 (en) Storage battery, storage battery control method, control device, and control method
JPWO2011001649A1 (en) Power supply
JP2020526153A (en) Multi-cell battery power management system
JP3907065B1 (en) Storage element charge / discharge system
JP4812368B2 (en) Charger with life diagnosis function for power capacitors
JP5521795B2 (en) Battery control device
US11110817B2 (en) Equalization control device and in-vehicle power supply device
JP2011010448A (en) Control unit
JP4440717B2 (en) DC voltage supply device
JP2007322353A (en) Battery capacity determining device, method, and battery pack using the same
EP4053966A1 (en) Electric storage system and management method
JP2017195717A (en) Control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees