JP3861645B2 - Production method of hydrogen separation membrane - Google Patents

Production method of hydrogen separation membrane Download PDF

Info

Publication number
JP3861645B2
JP3861645B2 JP2001308954A JP2001308954A JP3861645B2 JP 3861645 B2 JP3861645 B2 JP 3861645B2 JP 2001308954 A JP2001308954 A JP 2001308954A JP 2001308954 A JP2001308954 A JP 2001308954A JP 3861645 B2 JP3861645 B2 JP 3861645B2
Authority
JP
Japan
Prior art keywords
source material
porous
membrane
support
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001308954A
Other languages
Japanese (ja)
Other versions
JP2003062438A (en
Inventor
竹巳 難波
裕賢 水田
知成 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2001308954A priority Critical patent/JP3861645B2/en
Publication of JP2003062438A publication Critical patent/JP2003062438A/en
Application granted granted Critical
Publication of JP3861645B2 publication Critical patent/JP3861645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、水素分離膜の製造法に関する。更に詳しくは、多孔質支持体にPdまたはPd系合金を薄膜状に形成させた水素分離膜の製造法に関する。
【0002】
【従来の技術】
水素の高純度精製用の膜としては、Pd-Ag合金膜が知られており(Sep. Sci.
Technol. 第22巻第873〜887頁、1987)、既に実用化もされている。このような水素分離用Pd系合金膜は、従来合金単体で中空状に作られており、従ってその加工性や強度上の制約から、外径が1.6mmのもので、膜厚が80μm程度が薄膜化の限界であった。しかるに、水素透過速度は膜厚に反比例するため、水素透過速度が遅いという欠点を有している。
【0003】
その対策として、多孔質アルミナチューブ表面に化学メッキ法によりPd系合金膜を形成させる方法が提案されている(J. Memb. Sci. 第56巻第303〜315頁、1991)。この方法では、膜厚は5μm程度(4.5〜6.4μm)に迄改善はされているものの、未だ十分な薄さとはいえない。また、膜形成プロセスが複雑で工程が多いという難点がみられるばかりではなく、分離性能も十分であるとはいえない。
【0004】
本出願人は先に、低温金属有機物化学的気相成長法(MOCVD法)を用い、Pd系薄膜を多孔質体の細孔内に形成させる製膜方法を提案している(特開平7-136477号公報)。このMOCVD法は、支持体として用いられる多孔質セラミックス膜の両側に圧力差を設け、昇華・拡散させたPd源またはPd系合金源を多孔質セラミックス膜の細孔内に吸引しながら、細孔内でPd膜化またはPd合金膜化させることにより、水素分離膜を形成させている。この場合には、Pd源物質と支持体とを同一加熱手段を用いて加熱しているため、最適製膜温度の制御が困難であってPd系薄膜が不均一になり易く、しかも製膜長さも10mm程度と十分ではなかった。
【0005】
そこで、本出願人はさらに、隣接して配置されたPd源物質またはPd系合金源物質と支持体製膜部との温度を別個に制御し、これにキャリヤーガスを流すことによって昇華したPd源物質またはPd系合金源物質を支持体製膜範囲へ供給し、支持体表面でこれらの物質の熱分解を行うことで、製膜範囲を100mm程度迄飛躍的に向上させることに成功した(特開平11-300182号公報)。
【0006】
しかしながら、隣接した領域にPd源物質またはPd系合金源物質と支持体製膜部とを配置しているため、支持体長手方向へ製膜範囲を拡大するためには、昇華したこれらの物質の移動距離が長くなり、支持体製膜範囲端部に到達する前に分解し、十分なる膜性能が得られないという問題がみられた。さらに、この場合の製膜操作では、キャリヤーガスによる昇華した物質の輸送状態が膜性能に大きく影響するため、複数の支持体を配置した場合には、各操作条件の最適化を図る必要があり、単純な寸法変更によるスケールアップでは、十分な膜性能を有する水素分離膜を得ることはできなかった。また、水素分離膜の性能としては、水素透過速度の点は10-6モル/m2・秒・Paのオーダーが確保されるものの、水素の選択性の点で満足できない場合がみられた。
【0007】
【発明が解決しようとする課題】
本発明の目的は、多孔質支持体にPdまたはPd系合金を薄膜状に形成させた水素分離膜であって、水素透過速度および水素選択性の点で満足されるものの製造法を提供することにある。
【0008】
【課題を解決するための手段】
かかる本発明の目的は、反応器内のPd源物質またはPd系合金源物質設置面の真上にそれと平行になるように多孔質支持体を反応器内に配置し、Pd源物質またはPd系合金源物質と多孔質支持体とがそれぞれ独立した加熱手段によって加熱され、その際支持体温度は 200 270 ℃に設定され、多孔質支持体の一定の製膜範囲にPdまたはPd系合金を薄膜状に形成させる水素分離膜の製造法によって達成される。
【0009】
【発明の実施の形態】
多孔質支持体として多孔質セラミックス中空糸膜を用いた態様の水素分離膜の製造方法を、図1の図面を参照しながら説明する。
【0010】
反応器1の内部に多孔質支持体2をOリング等で気密固定し、この多孔質支持体2の内部を真空ポンプ8で連続的に排気する。ここで、多孔質支持体2の製膜範囲3以外の中空糸膜表面はガラス(例えばNa2O-B2O3-SiO2系ガラス)等で気密封止されている。また、反応器1の内部も、真空ポンプ8で排気され、これら反応器1および多孔質支持体2の内部圧力は真空計6によってそれぞれ計測され、圧力調整弁7によって制御されている。
【0011】
反応器1の内部には、ガス供給器10から流量制御器9を通じてガスが供給される。反応器1および多孔質支持体2の内部圧力は、供給ガス量や真空ポンプの排気能力などによって異なるため、一概に特定することができないが、一般的には反応器1の内部圧力は約1〜1500Pa、また多孔質支持体2の内部圧力は約1〜800Paに保たれる。
【0012】
反応器1には、Pd源物質またはPd系合金源物質(以下Pd源物質等という)4および多孔質支持体2を加熱するためのヒータが少くとも2個(多孔質支持体加熱用ヒータ12およびPd源物質等の加熱用ヒータ13)が設置されており、これらのヒータは独立した温度制御器5,5′によって個別に温度制御される。多孔質支持体2は、Pd源物質等4の設置面に対して真上にかつ平行になるように配置され、その製膜範囲3はPd源物質等の設置範囲の上方になるように位置が調整される。
【0013】
製膜時には、多孔質支持体2はPd源物質等4の分解温度になるように多孔質支持体加熱用ヒータ12によって加熱され、その温度に保持される。また、Pd源物質等4の設置部は、昇華温度になるようにPd源物質等加熱ヒータ13によって加熱され、その温度に保持される。このような状態で約10分間乃至約2時間保持すると、熱分解で生じたPdまたはPd合金が多孔質支持体2の外表面および細孔内に担持され、Pd膜またはPd合金膜を形成させる。
【0014】
多孔質支持体へのPdまたはPd系合金の薄膜の形成は、Pd源物質等設置面での昇華と多孔質支持体の製膜範囲における熱分解とが同時に行われることによって達成される。この場合において、多孔質支持体の製膜範囲は、製膜範囲以外の支持体表面をガラス、耐熱性ロウ材等で気密封止するか焼結などにより緻密化することにより設定される。
【0015】
多孔質支持体として多孔質膜状体を用い、多孔質膜状体のPd源物質またはPd系合金源物質の設置面側の圧力よりも、それと対面していない面側を低圧に保つことにより、膜状体の両側に圧力差を設け、昇華させたPd源物質等を多孔質支持体細孔内に吸引しながら、多孔質支持体表面および細孔内にPd膜またはPd系合金膜を薄膜状で形成させることもできる。膜状体両側の圧力差は、Pd源物質等の昇華による自生圧が好んで用いられるが、より積極的に圧力差を設けたい場合には、製膜温度においてPd源物質等と反応せず、しかも酸化力のないガスを導入することもできる。あるいは、排気能力の異なる2台の真空ポンプを利用したり、圧力調整弁などにより反応器内圧力を調節することも好ましい。
【0016】
多孔質支持体が平板状の場合には、Pd源物質またはPd系合金源物質と対向しない面側から真空排気することにより昇華させたPd源物質等を多孔質支持体表面または多孔質体の孔に導くことができる。
【0017】
真空排気装置としては。ガスを流さない状態で反応器内部が1000Pa以下、好ましくは100Pa以下にできればよく、その方法は特に限定されない。また、圧力調整弁などを用いて反応器の内部圧力を制御することもできる。また、反応器にガス供給手段を接続することもできる。
【0018】
多孔質支持体の反応器への取り付けは、支持体がPd源物質等の設置面の真上に平行になるように設置され、しかもこれらの加熱手段を独立して設けることができる任意形状の反応器に、Oリング等の固定手段を用いて行なうことができ、多孔質支持体を複数用いることもできる。
【0019】
多孔質支持体として好んで用いられる多孔質セラミックス膜としては、一般に平均気孔率が約15〜65%、好ましくは約30〜50%であって、平均細孔径が約5〜10000nm、好ましくは約50〜5000nmの精密ロ過性能を有する、α-アルミナ、シリカ、ジルコニア等のセラミックスあるいはこれらの複合物または混合物、あるいはまた、ステンレスやインコネルなど種々の金属から形成された多孔質膜などが用いられる。この場合、製膜される部分以外は多孔質である必要はなく、多孔質体と緻密質体との接合体であってもよい。膜の形状は、一般に中空糸膜であることが好ましいが、この他にフィルム状乃至シート状のものなども用いられる。
【0020】
また、多孔質セラミックス膜は、その表面にゾル・ゲル法によるγ-アルミナ薄膜を形成させて用いることができる。ゾル・ゲル法によるγ-アルミナ薄膜の形成は、アルミナゾルを用い、これを多孔質セラミックス膜に引上げ速度0.1〜2.0mm/秒でディップコーティングし、これを室温下で一夜乾燥することによりアルミナゲル膜を形成させた後、約400〜800℃で約5〜10時間焼成する操作を、1回以上、一般には複数回くり返すことにより行われる。
【0021】
Pd源物質としては、一般に酢酸パラジウム、パラジウムアセチルアセトネート、塩化パラジウム、硝酸パラジウム等の金属塩が用いられ、これを熱分解させてPd薄膜を形成させるCVD法(化学蒸着法)が適用される。Pd膜源としては熱分解によりPdを生成するものであれば、金属塩以外のものも用いることができる。更に、Ag、Au、Pt、Rh、Ru、Ir、Ta、Nb、V、Zr等と合金化してもよく、その場合にはそれらの金属源として、金属塩等の内熱分解でそれぞれの金属を生成するものが使用される。その際、Pd源物質と熱分解温度の近いものを用いることが好ましい。
【0022】
これらのPd源物質等は、多孔質支持体の真下にそれと平行になるように、Pd源物質等用加熱手段上に設置される。この加熱手段と多孔質支持体とを加熱する手段とは、独立して温度制御が可能であれば形状、形態にも制限はないが、両者を独立に設置する分離型であることが好ましい。具体的な加熱手段としては、電気的な抵抗加熱、ランプ加熱、誘導加熱等を単独であるいは組合せて用いることができ、これらの加熱手段は反応器の内部または外部に設置される。
【0023】
このような加熱手段を用いることにより、昇華したPd源物質等はその真上に配置された多孔質支持体表面上で熱分解し、多孔質支持体の表面および細孔内にPd膜またはPd系合金膜を薄膜状で形成させる。
【0024】
Pd源物質として酢酸パラジウムが用いられた場合には、多孔質支持体の加熱が200〜270 、好ましくは220〜270℃で行われることが望ましい。すなわち、このような昇華Pd源成分の分解温度を選択することにより、水素選択透過性の高い水素分離膜を得ることができる。
【0025】
多孔質支持体の加熱温度がこれよりも低いと、昇華成分の分解が進まず、支持体に担持されたPd薄膜層は不均一となり、水素選択透過性が損われるようになる。一方、支持体加熱温度がこれ以上になると、昇華成分の分解が支持体表面上またはその近傍で生じ、Pdは粗大粒子を形成してPd薄膜層は疎となり、やはり水素の選択透過性が損われることになる。なお、酢酸パラジウムのPd薄膜の担持工程中の加熱温度は、支持体の加熱温度によらず、160〜180℃の範囲内の温度に制御される。
【0026】
【発明の効果】
本発明方法によれば、Pd源物質等とその真上に平行に配置された多孔質支持体との間の距離をほぼ一定に保つことができるため、多孔質支持体の製膜範囲を拡大するためには、Pd源物質等の設置範囲を拡げるだけでよい。さらに、多孔質支持体が中空糸膜状である場合には、Pd源物質等の設置範囲に見合うだけの本数を設置することができる。このとき、昇華したPd源物質等の殆んどが多孔質支持体と接触するようになるため、キャリヤーガスを用いて強制的に輸送する方式に比べ、多孔質支持体上へのPdまたはPd系合金の担持効率を高めることもできる。また、平板状の多孔質支持体に対しても、Pd膜またはPd系合金膜の製膜を可能とさせる。
【0027】
Pd源物質として酢酸パラジウムを用いた場合には、多孔質支持体の加熱温度を200〜270 に設定すると、水素選択透過性にすぐれた水素分離膜を得ることができる。
【0028】
【実施例】
次に、実施例について本発明を説明する。
【0029】
実施例1
図1に示された態様に従って、水素分離膜の製造が行われた。多孔質支持体2としては多孔質セラミックス中空糸膜(長さ350mm、外径2.0mm、内径1.7mm、平均細孔径150nm、平均気孔率43%)が用いられ、製膜範囲3はその中央部100mm長とし、それ以外の表面部分はガラスで気密封止した。このような多孔質支持体2は、反応器1内に12mm間隔で横方向に平行して5本設置した。また、Pd源物質4としては酢酸パラジウムを使用し、多孔質支持体群の真下50mmの位置に幅50mm、長さ100mmの広さで設置した。酢酸パラジウムは、製膜1回当り約1gを使用した。
【0030】
これらの多孔質支持体群およびPd源物質を収容する反応器1としては、内径寸法が長さ300mm、幅100mm、高さ70mmのSUS製の箱形のものが用いられた。その外部上面と下面には、それぞれ多孔質支持体加熱用とPd源物質加熱用のヒータ12,13として、長さ280mm、幅90mmの抵抗発熱式プレートヒータが取り付けられており、温度制御器5,5′を用いて個別に温度制御した。
【0031】
このような反応器1と多孔質支持体2の内部を真空ポンプ8で排気し、反応器1内の圧力を約5〜15Paに、また多孔質支持体2内の圧力を約1〜10Paにそれぞれ制御した。多孔質支持体2の温度を約200〜250℃に、またPd源物質4設置部の温度を約160〜180℃になるようにそれぞれの加熱用ヒータで温度制御し、その温度に2時間保持した。このような製膜操作を3回くり返し、Pd膜被覆多孔質セラミックス中空糸膜を得た。
【0032】
Pd膜の性能は、水素の透過速度および水素選択性(窒素に対する水素の透過速度の比)で評価し、この際ガス透過量の定量にはガスクロマトグラフィーを用いた。得られたPd膜被覆多孔質セラミックス中空糸膜5本の300℃における透過性能は、水素透過速度が4.0〜5.0×10-6モル/m2・秒・Paであり、また水素選択性は1.0〜5.0×104であった。
【0033】
実施例2
実施例1において、反応器1と多孔質支持体2の内部を真空ポンプ8で排気した後、キャリアガスとしてバルブ11を介して、アルゴンガスを20ml/分の流量で反応器1内に供給した。その後、反応器の支持体加熱用ヒータ12で支持体を、またPd源物質加熱用ヒータ13で酢酸パラジウムをそれぞれ所定温度で60分間加熱し、酢酸パラジウムの昇華、拡散および分解を行ない、支持体上へのPd薄膜の担持を行った。
【0034】
支持体の加熱温度は、設定温度±5℃の範囲内で制御した。なお、酢酸パラジウムのPd薄膜担持工程中の加熱温度は、支持体の加熱温度によらず160〜180℃の範囲内で制御した。以上の支持体上へのPd薄膜の担持操作は、Pd薄膜の性能を確認しながら、必要に応じて3〜6回くり返した。
【0035】
製膜時の支持体加熱温度、Pd担持回数とそのとき得られたPd膜の性能(水素透過速度、窒素に対する水素の透過速度の比である水素選択透過性)を、次の表に示した。なお、Pd薄膜の調製と評価は、形成された水素分離膜5本について行われ、その平均値を示した。

Figure 0003861645
【0036】
支持体温度を200℃よりも低く設定した場合には、Pdの担持が不均一となり、膜性能の評価を行わなかった。支持体温度を200〜270 の間に設定した場合には、Pd膜の水素透過速度が大きく、水素選択透過性も10000以上という高い値を示し、特に支持体温度が220〜270℃の間において、すぐれた性能を有する水素分離膜が得られた。これに対し、支持体温度を330℃とした場合には、担持されたPd薄膜層は疎な状態となり、水素透過性は有するものの、その選択性は著しく低下した。
【0037】
実施例3
実施例1において、製膜範囲を中央部150mmとし、酢酸パラジウムの設置範囲を幅50mm、長さ150mmに変更した。得られたPd膜被覆多孔質セラミックス中空糸膜5本の300℃における透過性能は、水素透過速度が3.5〜4.5×10-6モル/m2・秒・Paであり、また水素選択性は1.0〜5.0×104であった。
【0038】
比較例1
図6に示されるように、特開平11-300182号公報に図示された態様に従って、水素分離膜の調製を行った。多孔質支持体およびPd源物質としては、いずれも実施例1と同じものを使用し、反応器14の中央に1本の多孔質支持体を設置した。反応器は、長さ400mm、内径85mmのSUS管を使用し、加熱器は長さ350mmの抵抗加熱式電気炉をPd源物質設置部15と支持体製膜部16の2つに分割し、それぞれ独立に温度制御を行った。
【0039】
まず、反応器内を排気しながら、キャリヤーガスとしてアルゴンガスを100cm3/分の流量で流し、支持体内も同時に排気することにより、反応器内を約300〜500Paの圧力に、また支持体内を約10〜200Paの圧力にそれぞれ制御した。Pd源物質設置部を200℃、支持体製膜部を205℃迄ゆっくり昇温して保持しておき、反応器内の圧力増加が観察され始めたら、支持体製膜部を製膜温度300℃迄10℃/分以上の昇温速度で急速に昇温し、そのまま製膜温度で2時間保持した。
【0040】
製膜は、実施例1と同様に3回行ない、酢酸パラジウムは1回当り約0.5g使用した。300℃における水素透過速度が4.0×10-6モル/m2・秒・Paで、水素選択性が1×104の水素分離膜が得られた。
【0041】
比較例2
比較例1において、支持体製膜範囲を150mmとし、製膜1回当りのPd源物質使用量を1gに変更し、300℃における水素透過速度が5.5×10-6モル/m2・秒・Paで、水素選択性が500の水素分離膜を得た。
【0042】
比較例3
比較例1において、支持体を4本使用し、一辺の長さが10mmの正方形配列とし、製膜1回当りのPd源物質使用量を2gに変更し、300℃における水素透過速度が5.0〜5.5×10-6モル/m2・秒・Paで、水素選択性が280〜650の水素分離膜を得た。
【0043】
以上の実施例および比較例の対比から、次のようなことがいえる。
(1)比較例1では、製膜範囲の長さが100mmで、製膜1回当りの酢酸パラジウムの使用量が0.5gで、水素選択性1×104が達成されている。そこで、比較例2では、製膜範囲の長さを1.5倍の150mmにし、酢酸パラジウム使用量を2倍(製膜1回当り1g)としたが、十分な膜性能を有する水素分離膜を得ることができなかった。また、比較例3では、製膜長さは100mmのままで、本数を4倍の4本とし、酢酸パラジウム使用量も4倍(製膜1回当り2g)としたが、この場合にも十分な膜性能を有する水素分離膜を得ることができなかった。
(2)これに対し、本発明の実施例では、5本同時に製膜が可能であり、また製膜長さ150mmでも、水素選択性が1×104以上を達成することができ、比較例の場合と比べ製膜可能範囲が拡大している。
(3)また、高い水素選択性を有する水素分離膜を得るために、比較例では製膜長さ100mm、1本当り累積酢酸パラジウム使用量が1.5g(0.5g×3回)必要であるのに対し、実施例1では1g×3回製膜÷5本=0.6g、実施例2では1g×3回製膜÷5本×(100mm÷150mm)=0.4gと少量しか必要とせず、酢酸パラジウム使用量の削減が可能である。
(4)このように、本発明では製膜範囲の拡大およびPd源物質使用量の削減による製造コストの低減が可能である。
(5)また、Pd源物質として酢酸パラジウムを用いた場合には、多孔質支持体の加熱温度を200〜300℃に設定すると、水素選択透過性にすぐれた水素分離膜を得ることができる。
(6)比較例の水素分離膜の製造方式では、Pd源物質設置部には支持体製膜範囲を設定できないため、無駄になる部分が多いが、本発明の水素分離膜の製造方式では支持体製膜範囲とPd源物質設置部とが同一領域となるため、そのような制約がなく、このことも水素分離膜製造コストの低減につながる。
【0044】
実施例4
他の態様の製造装置の概略構成図を図2に示す。図1の図面と同じ構成部分は同じ指示記号を付した。反応器1は平板状支持体20を固定する上蓋18とPd源物質を設置する容器19、およびこれらを加熱するヒーター(支持体加熱用ヒーター12、Pd源物質加熱用ヒーター13)からなり、平板状支持体20は上蓋18と金属リング23によってOリング22などのシール材で両面から挟んで気密固定されている。Pd源物質4は、その設置位置真上に平板状支持体20の製膜部分3が位置するように、容器1内の底部に設置され、上蓋18と容器19とはOリングなどのシール材で密封される。
【0045】
上蓋18と平板状支持体20で囲まれる部分および容器19内部は真空ポンプ8によって連続的に排気され、その内部圧力は、真空計6によって測定され、圧力調整弁7によってそれぞれ制御される。
【0046】
上蓋18と平板状支持体20で囲まれる部分および容器19の内部圧力は、真空ポンプ8の排気能力や、平板状支持体20の気孔率や細孔径などにより異なるため、一概に特定することはできないが、通常、容器19の内部圧力は1〜1500Pa、上蓋18と平板状支持体20とで囲まれる部分の内部圧力は0.1〜800Paであり、上蓋18と平板状支持体20で囲まれる部分の内部圧力は容器19の内部圧力よりも圧力が低く保たれる。
【0047】
上蓋18および容器19の外部には、平板状支持体20およびPd源物質4を加熱するためのヒーター12、13が設置される。これらのヒーターは独立した温度制御器5、5′により個別に温度制御される。
【0048】
製膜時には、平板状支持体20はPd源物質4の分解温度になるように支持体加熱用ヒーター12で加熱され、その温度に保たれる。また、Pd源物質4はその昇華温度になるようにPd源物質加熱用ヒーター13で加熱され、所定温度に保持される。この状態で10分から2時間保持すると、熱分解で生じたPdまたはPd合金が平板状支持体20の外表面およびその近傍の細孔内に担持され、Pd膜またはPd合金膜が形成される。
【0049】
平板状支持体として、図3に示すように、多孔質アルミナ円板20(外径50mm、厚さ1.5mm、平均細孔径150nm、気孔率38%)の内径30mm以外の外周部分をガラス材17で被覆したものを用いた。このガラス被覆した部分を上蓋18と金属板リング23(外径90mm、内径36mm、厚さ4mm)でOリング22を用いて挟みこみ、ネジで固定した。
【0050】
Pd源物質としては、酢酸パラジウムを1gを使用し、平板状支持体20の真下に設置した。反応器には、内径120mm、高さ110mmのステンレス製容器と、内径36mm、高さ30mmの空間を有するステンレス製上蓋を用いた。反応器の上部と下部にそれぞれ抵抗式加熱ヒーターを設置し、それぞれ温度制御器を用い、個別に温度制御した。
【0051】
まず、容器内部と、上蓋と平板状支持体で囲まれる内部とを真空ポンプで排気し、容器内部を5〜15Paの圧力に、また、容器と上蓋で囲まれる内部を1〜10Paの圧力に制御した。
【0052】
Pd源物質の設置位置温度を約170℃、平板状支持体の温度を200℃以上になるように、それぞれ温度制御し、その温度で2時間保持した。この操作を3回繰り返しPd膜被覆多孔質セラミックス円板を得た。
【0053】
得られた膜の性能は、水素の透過速度、および窒素に対する水素の透過速度の比を測定した。Pd膜の300℃での透過性能は、水素透過速度6×10-3モル/m2・秒・Pa 、水素選択性1×104であった。
【0054】
実施例5
平板状支持体として、図4に示すように、多孔質アルミナ円板20(外径32mm、厚さ1.5mm、平均細孔径150mm、気孔率38%)と緻密質のアルミナ板リング21(外径55mm、内径30mm、厚さ3mm)とを、その重複部分をガラス材17で気密結合されたものを用いた。その他は実施例3と同様に行った。得られたPd膜の300℃での水素透過速度は7×10-3モル/m2・秒・Pa で、水素選択性は2×104であった。
【0055】
図5にOリングを用いて平板状支持体を支持する場合の各部品の構成を斜視図で示した。
【図面の簡単な説明】
【図1】本発明方法に用いられる水素分離膜製造装置の概要構成図である。
【図2】本発明の他の方法に用いられる水素分離膜製造装置の他の概要構成図である。
【図3】本発明の他の方法に用いられる平板状支持体の断面図である。
【図4】本発明のさらに他の方法に用いられる平板状支持体をアルミナ板リングに載置した断面図である。
【図5】本発明の平板状支持体をOリングを介して上蓋に固定する場合の概略斜視図である。
【図6】従来方法に用いられる水素分離膜製造装置の概要構成図である。
【符号の説明】
1 反応器
2 多孔質支持体
3 製膜範囲
4 Pd源物質
5,5′ 温度制御器
6 真空計
7 圧力調整弁
8 真空ポンプ
9 流量制御器
10 ガス供給器
11 調整バルブ
12 多孔質支持体加熱用ヒータ
13 Pd源物質加熱用ヒータ
18 上蓋
19 容器
20 平板状支持体
21 アルミナ板リング
22 Oリング
23 金属板リング[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a hydrogen separation membrane. More specifically, the present invention relates to a method for producing a hydrogen separation membrane in which Pd or a Pd-based alloy is formed into a thin film on a porous support.
[0002]
[Prior art]
Pd-Ag alloy membranes are known as membranes for high-purity hydrogen purification (Sep. Sci.
Technol. Vol. 22, pp. 873-887, 1987) has already been put to practical use. Such a Pd-based alloy membrane for hydrogen separation has been conventionally made hollow in a single alloy, and due to its workability and strength limitations, it has an outer diameter of 1.6 mm and a film thickness of about 80 μm. It was the limit of thinning. However, since the hydrogen permeation rate is inversely proportional to the film thickness, the hydrogen permeation rate is low.
[0003]
As a countermeasure, a method of forming a Pd-based alloy film on the surface of a porous alumina tube by a chemical plating method has been proposed (J. Memb. Sci. 56: 303-315, 1991). In this method, although the film thickness has been improved to about 5 μm (4.5 to 6.4 μm), it cannot be said to be sufficiently thin. In addition, the film formation process is complicated and there are many problems, and it cannot be said that the separation performance is sufficient.
[0004]
The present applicant has previously proposed a film-forming method in which a Pd-based thin film is formed in the pores of a porous body using a low-temperature metal organic chemical vapor deposition method (MOCVD method) (Japanese Patent Laid-Open No. Hei 7- 136477). In this MOCVD method, a pressure difference is provided on both sides of a porous ceramic film used as a support, and a Pd source or Pd-based alloy source that has been sublimated and diffused is sucked into the pores of the porous ceramic film. A hydrogen separation membrane is formed by forming a Pd film or a Pd alloy film. In this case, since the Pd source material and the support are heated using the same heating means, it is difficult to control the optimum film-forming temperature, the Pd-based thin film is likely to be non-uniform, and the film-forming length It was not enough with 10mm.
[0005]
Therefore, the present applicant further controls the temperatures of the Pd source material or Pd alloy source material and the support film-forming part arranged adjacent to each other, and sublimates the Pd source by flowing a carrier gas therethrough. By supplying substances or Pd-based alloy source materials to the support film-forming range, and by thermally decomposing these substances on the surface of the support, we succeeded in dramatically improving the film-forming range to about 100 mm. (Kaihei 11-300182).
[0006]
However, since the Pd source material or Pd-based alloy source material and the support film forming part are arranged in the adjacent region, in order to expand the film forming range in the longitudinal direction of the support, these sublimated substances There was a problem that the moving distance was long and the film was decomposed before reaching the end of the support film forming range, and sufficient film performance could not be obtained. Furthermore, in the film forming operation in this case, since the transport state of the sublimated substance by the carrier gas greatly affects the film performance, it is necessary to optimize each operation condition when a plurality of supports are arranged. However, it was not possible to obtain a hydrogen separation membrane having sufficient membrane performance by a simple scale-up. As for the performance of the hydrogen separation membrane, the hydrogen permeation rate was in the order of 10 −6 mol / m 2 · sec · Pa, but it was not satisfactory in terms of hydrogen selectivity.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a hydrogen separation membrane in which Pd or a Pd-based alloy is formed into a thin film on a porous support, which is satisfactory in terms of hydrogen permeation rate and hydrogen selectivity. It is in.
[0008]
[Means for Solving the Problems]
The object of the present invention is to arrange a porous support in the reactor so as to be parallel to and directly above the Pd source material or Pd-based alloy source material installation surface in the reactor. The alloy source material and the porous support are heated by independent heating means. At this time, the support temperature is set to 200 to 270 ° C., and Pd or a Pd-based alloy is placed in a certain film forming range of the porous support. This is achieved by a method for producing a hydrogen separation membrane formed into a thin film.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
A method for producing a hydrogen separation membrane using a porous ceramic hollow fiber membrane as the porous support will be described with reference to the drawing of FIG.
[0010]
A porous support 2 is hermetically fixed inside the reactor 1 with an O-ring or the like, and the inside of the porous support 2 is continuously evacuated by a vacuum pump 8. Here, the surface of the hollow fiber membrane other than the film production range 3 of the porous support 2 is hermetically sealed with glass (for example, Na 2 OB 2 O 3 —SiO 2 glass) or the like. The inside of the reactor 1 is also evacuated by a vacuum pump 8, and the internal pressures of the reactor 1 and the porous support 2 are measured by a vacuum gauge 6 and controlled by a pressure regulating valve 7.
[0011]
Gas is supplied into the reactor 1 from the gas supply device 10 through the flow rate controller 9. The internal pressure of the reactor 1 and the porous support 2 varies depending on the amount of gas supplied, the exhaust capacity of the vacuum pump, etc., and thus cannot be generally specified, but generally the internal pressure of the reactor 1 is about 1 The internal pressure of the porous support 2 is maintained at about 1 to 800 Pa.
[0012]
The reactor 1 includes at least two heaters for heating the Pd source material or the Pd-based alloy source material (hereinafter referred to as Pd source material) 4 and the porous support 2 (the heater 12 for heating the porous support). Further, heaters 13) for heating Pd source materials and the like are installed, and these heaters are individually temperature controlled by independent temperature controllers 5, 5 '. The porous support 2 is arranged so as to be directly above and parallel to the installation surface of the Pd source material 4 and so on, and the film formation range 3 is positioned above the installation range of the Pd source material etc. Is adjusted.
[0013]
At the time of film formation, the porous support 2 is heated by the porous support heating heater 12 so as to reach the decomposition temperature of the Pd source material 4 and the like, and is maintained at that temperature. Further, the installation part of the Pd source material 4 is heated by the Pd source material heater 13 so as to reach the sublimation temperature, and is maintained at that temperature. When kept in this state for about 10 minutes to about 2 hours, Pd or Pd alloy generated by thermal decomposition is supported on the outer surface and pores of the porous support 2 to form a Pd film or Pd alloy film. .
[0014]
Formation of a thin film of Pd or Pd-based alloy on the porous support is achieved by simultaneously performing sublimation on the Pd source material installation surface and thermal decomposition in the film forming range of the porous support. In this case, the film forming range of the porous support is set by hermetically sealing the surface of the support outside the film forming range with glass, a heat-resistant brazing material or the like, or densifying it by sintering or the like.
[0015]
By using a porous membrane as the porous support and keeping the pressure on the surface that does not face the pressure lower than the pressure on the Pd source material or Pd-based alloy source material on the porous membrane A Pd film or Pd alloy film is formed on the surface of the porous support and in the pores while sucking the sublimated Pd source material into the pores of the porous support by providing a pressure difference on both sides of the membrane. It can also be formed as a thin film. The pressure difference between the two sides of the membranous body is favored by the self-generated pressure due to sublimation of the Pd source material, etc., but if it is desired to provide a more positive pressure difference, it does not react with the Pd source material at the film forming temperature. In addition, a gas having no oxidizing power can be introduced. Alternatively, it is also preferable to use two vacuum pumps having different exhaust capacities, or to adjust the pressure in the reactor by a pressure control valve or the like.
[0016]
In the case where the porous support has a flat plate shape, the Pd source material or the like sublimated by evacuation from the surface side not facing the Pd source material or the Pd-based alloy source material is used. Can lead to a hole.
[0017]
As a vacuum exhaust device. The method is not particularly limited as long as the inside of the reactor can be set to 1000 Pa or less, preferably 100 Pa or less without flowing gas. Further, the internal pressure of the reactor can be controlled using a pressure regulating valve or the like. In addition, a gas supply means can be connected to the reactor.
[0018]
The porous support is attached to the reactor in any shape that allows the support to be installed in parallel with the Pd source material, etc., directly above the installation surface, and these heating means can be provided independently. The reaction can be carried out using a fixing means such as an O-ring, and a plurality of porous supports can be used .
[0019]
As the porous ceramic film preferably used as the porous support, the average porosity is generally about 15 to 65%, preferably about 30 to 50%, and the average pore diameter is about 5 to 10,000 nm, preferably about Ceramics such as α-alumina, silica, zirconia, etc., or composites or mixtures thereof, or porous films formed from various metals such as stainless steel and inconel, etc., having precision filtration performance of 50 to 5000 nm are used. . In this case, it is not necessary to be porous except for the part to be formed, and it may be a joined body of a porous body and a dense body. In general, the membrane is preferably a hollow fiber membrane, but a film or sheet may also be used.
[0020]
The porous ceramic film can be used by forming a γ-alumina thin film on its surface by a sol-gel method. The formation of a γ-alumina thin film by the sol-gel method uses an alumina sol, which is dip-coated on a porous ceramic film at a pulling speed of 0.1 to 2.0 mm / sec and dried overnight at room temperature to form an alumina gel film. After forming, the operation of baking at about 400 to 800 ° C. for about 5 to 10 hours is carried out by repeating the operation one or more times, generally a plurality of times.
[0021]
As the Pd source material, metal salts such as palladium acetate, palladium acetylacetonate, palladium chloride, and palladium nitrate are generally used, and a CVD method (chemical vapor deposition method) in which this is thermally decomposed to form a Pd thin film is applied. . As the Pd film source, a substance other than a metal salt can be used as long as it generates Pd by thermal decomposition. Further, it may be alloyed with Ag, Au, Pt, Rh, Ru, Ir, Ta, Nb, V, Zr, etc. In that case, as a metal source thereof, each metal is obtained by internal pyrolysis of a metal salt or the like. The one that produces is used. At that time, it is preferable to use a material having a thermal decomposition temperature close to that of the Pd source material.
[0022]
These Pd source materials and the like are placed on the heating means for the Pd source material and the like so as to be parallel to and directly below the porous support. The heating means and the means for heating the porous support are not limited in shape and form as long as the temperature can be controlled independently. As specific heating means, electrical resistance heating, lamp heating, induction heating and the like can be used alone or in combination, and these heating means are installed inside or outside the reactor.
[0023]
By using such a heating means, the sublimated Pd source material and the like are thermally decomposed on the surface of the porous support disposed immediately above the Pd film or Pd. A system alloy film is formed in a thin film.
[0024]
When palladium acetate is used as the Pd source material, it is desirable that the porous support is heated at 200 to 270 ° C , preferably 220 to 270 ° C. That is, by selecting the decomposition temperature of such a sublimation Pd source component, a hydrogen separation membrane with high hydrogen selective permeability can be obtained.
[0025]
When the heating temperature of the porous support is lower than this, the decomposition of the sublimation component does not proceed, the Pd thin film layer supported on the support becomes non-uniform, and the hydrogen selective permeability is impaired. On the other hand, when the support heating temperature is higher than this, the decomposition of the sublimation component occurs on or near the support surface, Pd forms coarse particles, the Pd thin film layer becomes sparse, and the hydrogen selective permeability is also impaired. It will be. The heating temperature during the Pd thin film supporting process of palladium acetate is controlled to a temperature in the range of 160 to 180 ° C., regardless of the heating temperature of the support.
[0026]
【The invention's effect】
According to the method of the present invention, the distance between the Pd source material and the like and the porous support arranged in parallel directly above can be kept substantially constant, so the film forming range of the porous support is expanded. To do so, it is only necessary to expand the installation range of Pd source materials. Further, when the porous support is in the form of a hollow fiber membrane, it is possible to install as many as the Pd source material or the like according to the installation range. At this time, since most of the sublimated Pd source material comes into contact with the porous support, Pd or Pd on the porous support is compared to the method of forcibly transporting using a carrier gas. The supporting efficiency of the system alloy can also be increased. In addition, a Pd film or a Pd-based alloy film can be formed on a flat porous support.
[0027]
When palladium acetate is used as the Pd source material, a hydrogen separation membrane having excellent hydrogen selective permeability can be obtained by setting the heating temperature of the porous support to 200 to 270 ° C.
[0028]
【Example】
Next, the present invention will be described with reference to examples.
[0029]
Example 1
A hydrogen separation membrane was produced according to the embodiment shown in FIG. As the porous support 2, a porous ceramic hollow fiber membrane (length 350 mm, outer diameter 2.0 mm, inner diameter 1.7 mm, average pore diameter 150 nm, average porosity 43%) is used. The other surface portion was hermetically sealed with glass. Five such porous supports 2 were installed in the reactor 1 in parallel in the horizontal direction at 12 mm intervals. In addition, palladium acetate was used as the Pd source material 4, and was placed 50 mm wide and 100 mm long at a position 50 mm directly below the porous support group. About 1 g of palladium acetate was used per film formation.
[0030]
As the reactor 1 containing the porous support group and the Pd source material, a SUS box shape having an inner diameter of 300 mm in length, 100 mm in width, and 70 mm in height was used. A resistance heating plate heater with a length of 280 mm and a width of 90 mm is attached to the outer upper surface and the lower surface as heaters 12 and 13 for heating the porous support and the Pd source material, respectively. , 5 ′ was used to control the temperature individually.
[0031]
The inside of the reactor 1 and the porous support 2 is evacuated by the vacuum pump 8, the pressure in the reactor 1 is about 5 to 15 Pa, and the pressure in the porous support 2 is about 1 to 10 Pa. Each was controlled. The temperature of the porous support 2 is controlled to about 200 to 250 ° C, and the temperature of the Pd source material 4 installation part is set to about 160 to 180 ° C. did. Such a film forming operation was repeated three times to obtain a Pd film-coated porous ceramic hollow fiber membrane.
[0032]
The performance of the Pd membrane was evaluated by hydrogen permeation rate and hydrogen selectivity (ratio of hydrogen permeation rate to nitrogen), and gas chromatography was used for quantification of the gas permeation amount. The permeation performance at 300 ° C. of the five Pd membrane-covered porous ceramic hollow fiber membranes was a hydrogen permeation rate of 4.0 to 5.0 × 10 −6 mol / m 2 · sec · Pa, and the hydrogen selectivity was 1.0. It was ˜5.0 × 10 4 .
[0033]
Example 2
In Example 1, the inside of the reactor 1 and the porous support 2 was evacuated by the vacuum pump 8, and then argon gas was supplied into the reactor 1 as a carrier gas through the valve 11 at a flow rate of 20 ml / min. . Thereafter, the support is heated with the heater 12 for heating the support of the reactor, and the palladium acetate is heated with the heater 13 for heating the Pd source material at a predetermined temperature for 60 minutes to sublimate, diffuse and decompose the palladium acetate. The Pd thin film was supported on the top.
[0034]
The heating temperature of the support was controlled within a set temperature range of ± 5 ° C. The heating temperature during the Pd thin film supporting step of palladium acetate was controlled within the range of 160 to 180 ° C. regardless of the heating temperature of the support. The above operation of supporting the Pd thin film on the support was repeated 3 to 6 times as necessary while confirming the performance of the Pd thin film.
[0035]
The following table shows the heating temperature of the support during film formation, the number of times Pd was supported, and the performance of the Pd membrane obtained at that time (hydrogen permeation rate, hydrogen selective permeability, which is the ratio of the hydrogen permeation rate to nitrogen). . The Pd thin film was prepared and evaluated for five formed hydrogen separation membranes, and the average value was shown.
Figure 0003861645
[0036]
When the support temperature was set lower than 200 ° C., the loading of Pd became nonuniform, and the membrane performance was not evaluated. When the support temperature is set between 200 and 270 ° C , the hydrogen permeation rate of the Pd membrane is large and the hydrogen permselectivity is as high as 10,000 or more, especially when the support temperature is between 220 and 270 ° C. The hydrogen separation membrane having excellent performance was obtained. In contrast, when the support temperature was 330 ° C., the supported Pd thin film layer was in a sparse state and had hydrogen permeability, but its selectivity was significantly reduced.
[0037]
Example 3
In Example 1, the film forming range was changed to a central portion of 150 mm, and the installation range of palladium acetate was changed to a width of 50 mm and a length of 150 mm. The permeation performance at 300 ° C. of the five Pd membrane-coated porous ceramic hollow fiber membranes was a hydrogen permeation rate of 3.5 to 4.5 × 10 −6 mol / m 2 · sec · Pa, and the hydrogen selectivity was 1.0. It was ˜5.0 × 10 4 .
[0038]
Comparative Example 1
As shown in FIG. 6, a hydrogen separation membrane was prepared according to the embodiment shown in JP-A-11-300182. As the porous support and the Pd source material, the same materials as in Example 1 were used, and one porous support was installed in the center of the reactor 14. The reactor uses a SUS tube with a length of 400 mm and an inner diameter of 85 mm, and the heater divides the resistance heating electric furnace with a length of 350 mm into two parts, a Pd source material installation part 15 and a support film-forming part 16. Temperature control was performed independently.
[0039]
First, while evacuating the inside of the reactor, argon gas is flowed at a flow rate of 100 cm 3 / min as a carrier gas, and the inside of the support is also exhausted at the same time, so that the pressure in the reactor is about 300 to 500 Pa and the inside of the support is The pressure was controlled to about 10 to 200 Pa, respectively. Keep the Pd source material installation part at 200 ° C and the support film forming part at 205 ° C with slowly rising temperature, and start to observe the increase in pressure in the reactor. The temperature was rapidly raised to 10 ° C. at a temperature rising rate of 10 ° C./min or more, and kept at the film forming temperature for 2 hours.
[0040]
Film formation was performed three times in the same manner as in Example 1, and about 0.5 g of palladium acetate was used per time. A hydrogen separation membrane with a hydrogen permeation rate at 300 ° C. of 4.0 × 10 −6 mol / m 2 · sec · Pa and a hydrogen selectivity of 1 × 10 4 was obtained.
[0041]
Comparative Example 2
In Comparative Example 1, the support film-forming range was 150 mm, the amount of Pd source material used per film-forming was changed to 1 g, and the hydrogen permeation rate at 300 ° C. was 5.5 × 10 −6 mol / m 2 · sec. A hydrogen separation membrane with hydrogen selectivity of 500 was obtained at Pa.
[0042]
Comparative Example 3
In Comparative Example 1, four supports were used, each side was 10 mm in square array, the amount of Pd source material used per film formation was changed to 2 g, and the hydrogen permeation rate at 300 ° C. was 5.0 to A hydrogen separation membrane having a hydrogen selectivity of 280 to 650 at 5.5 × 10 −6 mol / m 2 · sec · Pa was obtained.
[0043]
From the comparison of the above examples and comparative examples, the following can be said.
(1) In Comparative Example 1, the length of the film forming range is 100 mm, the amount of palladium acetate used per film forming is 0.5 g, and hydrogen selectivity of 1 × 10 4 is achieved. Therefore, in Comparative Example 2, the length of the membrane formation range was 1.5 times 150 mm and the amount of palladium acetate used was doubled (1 g per membrane production), but a hydrogen separation membrane having sufficient membrane performance was obtained. I couldn't. In Comparative Example 3, the film-forming length remains 100 mm, the number is four times four, and the amount of palladium acetate used is four times (2 g per film production). A hydrogen separation membrane having excellent membrane performance could not be obtained.
(2) On the other hand, in the example of the present invention, five films can be formed simultaneously, and even with a film forming length of 150 mm, hydrogen selectivity can achieve 1 × 10 4 or more. Compared to the case, the film forming range is expanded.
(3) In addition, in order to obtain a hydrogen separation membrane having high hydrogen selectivity, the comparative example requires a membrane length of 100 mm and a cumulative amount of palladium acetate used per bottle of 1.5 g (0.5 g × 3 times). On the other hand, in Example 1, 1 g × 3 times of film formation / 5 pieces = 0.6 g, and in Example 2, 1 g × 3 times of film formation ÷ 5 pieces × (100 mm ÷ 150 mm) = 0.4 g, which requires only a small amount of acetic acid. It is possible to reduce the amount of palladium used.
(4) As described above, in the present invention, the production cost can be reduced by extending the film forming range and reducing the amount of Pd source material used.
(5) When palladium acetate is used as the Pd source material, a hydrogen separation membrane having excellent hydrogen selective permeability can be obtained by setting the heating temperature of the porous support to 200 to 300 ° C.
(6) In the hydrogen separation membrane production method of the comparative example, since the support membrane formation range cannot be set in the Pd source material installation part, there are many wasted parts, but the hydrogen separation membrane production method of the present invention supports it. Since the body membrane-forming range and the Pd source material installation part are in the same region, there is no such limitation, which also leads to a reduction in hydrogen separation membrane manufacturing costs.
[0044]
Example 4
The schematic block diagram of the manufacturing apparatus of another aspect is shown in FIG. The same components as those in the drawing of FIG. The reactor 1 includes a top cover 18 for fixing a flat support 20, a container 19 for installing a Pd source material, and heaters for heating them (support heater 12, Pd source material heater 13). The support 20 is hermetically fixed by being sandwiched from both sides by a sealing material such as an O-ring 22 by an upper lid 18 and a metal ring 23. The Pd source material 4 is installed at the bottom of the container 1 so that the film-forming part 3 of the plate-like support 20 is located directly above the installation position. The upper lid 18 and the container 19 are sealed with an O-ring or the like. Sealed with.
[0045]
The portion surrounded by the upper lid 18 and the flat support 20 and the inside of the container 19 are continuously evacuated by the vacuum pump 8, and the internal pressure is measured by the vacuum gauge 6 and controlled by the pressure regulating valve 7.
[0046]
The internal pressure of the portion surrounded by the upper lid 18 and the flat support 20 and the internal pressure of the container 19 varies depending on the exhaust capacity of the vacuum pump 8, the porosity and the pore diameter of the flat support 20, etc. In general, the internal pressure of the container 19 is 1 to 1500 Pa, the internal pressure of the portion surrounded by the upper lid 18 and the flat support 20 is 0.1 to 800 Pa, and the portion surrounded by the upper lid 18 and the flat support 20 The internal pressure is kept lower than the internal pressure of the container 19.
[0047]
Heaters 12 and 13 for heating the flat support 20 and the Pd source material 4 are installed outside the upper lid 18 and the container 19. These heaters are individually temperature controlled by independent temperature controllers 5, 5 '.
[0048]
At the time of film formation, the flat support 20 is heated by the support heating heater 12 so as to reach the decomposition temperature of the Pd source material 4, and is maintained at that temperature. Further, the Pd source material 4 is heated by the Pd source material heating heater 13 so as to reach the sublimation temperature, and is maintained at a predetermined temperature. When this state is maintained for 10 minutes to 2 hours, Pd or Pd alloy generated by thermal decomposition is supported on the outer surface of the plate-like support 20 and pores in the vicinity thereof, and a Pd film or Pd alloy film is formed.
[0049]
As shown in FIG. 3, the outer peripheral portion of the porous alumina disk 20 (outer diameter 50 mm, thickness 1.5 mm, average pore diameter 150 nm, porosity 38%) other than the inner diameter 30 mm is used as a flat support as shown in FIG. The one coated with is used. This glass-coated portion was sandwiched between the upper lid 18 and a metal plate ring 23 (outer diameter 90 mm, inner diameter 36 mm, thickness 4 mm) using an O-ring 22 and fixed with screws.
[0050]
As the Pd source material, 1 g of palladium acetate was used, and it was placed directly under the flat support 20. As the reactor, a stainless steel container having an inner diameter of 120 mm and a height of 110 mm and a stainless steel upper lid having a space of an inner diameter of 36 mm and a height of 30 mm were used. Resistance heaters were installed at the top and bottom of the reactor, respectively, and each temperature was controlled individually using a temperature controller.
[0051]
First, the inside of the container and the inside surrounded by the upper lid and the flat support are evacuated by a vacuum pump, the inside of the container is set to a pressure of 5 to 15 Pa, and the inside surrounded by the container and the top cover is set to a pressure of 1 to 10 Pa. Controlled.
[0052]
The temperature was controlled so that the installation position temperature of the Pd source material was about 170 ° C., and the temperature of the plate-like support was 200 ° C. or higher, and the temperature was maintained for 2 hours. This operation was repeated three times to obtain a Pd film-coated porous ceramic disk.
[0053]
The performance of the membrane obtained was measured by the hydrogen permeation rate and the ratio of the hydrogen permeation rate to nitrogen. The permeation performance of the Pd membrane at 300 ° C. was a hydrogen permeation rate of 6 × 10 −3 mol / m 2 · sec · Pa and a hydrogen selectivity of 1 × 10 4 .
[0054]
Example 5
As shown in FIG. 4, as a flat plate support, porous alumina disk 20 (outer diameter 32 mm, thickness 1.5 mm, average pore diameter 150 mm, porosity 38%) and dense alumina plate ring 21 (outer diameter) 55 mm, an inner diameter of 30 mm, and a thickness of 3 mm) were used in which the overlapping portion was hermetically bonded with a glass material 17. Others were the same as in Example 3. The obtained Pd membrane had a hydrogen permeation rate at 300 ° C. of 7 × 10 −3 mol / m 2 · sec · Pa and a hydrogen selectivity of 2 × 10 4 .
[0055]
FIG. 5 is a perspective view showing the configuration of each component when a flat support is supported using an O-ring.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a hydrogen separation membrane manufacturing apparatus used in a method of the present invention.
FIG. 2 is another schematic configuration diagram of an apparatus for producing a hydrogen separation membrane used in another method of the present invention.
FIG. 3 is a cross-sectional view of a flat support used in another method of the present invention.
FIG. 4 is a cross-sectional view of a flat plate support used in still another method of the present invention placed on an alumina plate ring.
FIG. 5 is a schematic perspective view when the flat support of the present invention is fixed to the upper lid via an O-ring.
FIG. 6 is a schematic configuration diagram of a hydrogen separation membrane manufacturing apparatus used in a conventional method.
[Explanation of symbols]
1 Reactor 2 Porous Support 3 Film Formation Range 4 Pd Source Material
5,5 'Temperature controller 6 Vacuum gauge 7 Pressure adjustment valve 8 Vacuum pump 9 Flow controller
10 Gas supply
11 Adjustment valve
12 Heater for heating porous support
13 Pd source material heater
18 Top lid
19 containers
20 Flat support
21 Alumina plate ring
22 O-ring
23 Metal plate ring

Claims (7)

反応器内のPd源物質またはPd系合金源物質設置面の真上にそれと平行になるように多孔質支持体を反応器内に配置し、Pd源物質またはPd系合金源物質と多孔質支持体とがそれぞれ独立した加熱手段によって加熱され、その際支持体温度は 200 270 ℃に設定され、多孔質支持体の一定の製膜範囲にPdまたはPd系合金を薄膜状に形成させることを特徴とする水素分離膜の製造法。Place a porous support in the reactor so that it is parallel to and directly above the Pd source material or Pd alloy source material installation surface in the reactor, and Pd source material or Pd alloy source material and porous support The body is heated by independent heating means, and the support temperature is set to 200 to 270 ° C., and Pd or a Pd-based alloy is formed in a thin film form within a certain film forming range of the porous support. A method for producing a hydrogen separation membrane. Pd源物質またはPd系合金源物質設置面での昇華と多孔質支持体の製膜範囲における熱分解が同時に行われる請求項1記載の水素分離膜の製造法。  The method for producing a hydrogen separation membrane according to claim 1, wherein sublimation on the Pd source material or Pd-based alloy source material installation surface and thermal decomposition in the membrane forming range of the porous support are simultaneously performed. 酢酸パラジウムの加熱がHeating of palladium acetate 160160 ~ 180180 ℃で行われる請求項1記載の水素分離膜の製造法。The method for producing a hydrogen separation membrane according to claim 1, which is carried out at a temperature of C. 多孔質支持体として多孔質膜状体を用い、多孔質膜状体のUsing a porous membrane as the porous support, the porous membrane PdPd 源物質またはSource material or PdPd 系合金源物質の設置面側の圧力よりも、それと対面していない面側を低圧に保つことにより、膜状体の両側に圧力差を設け、昇華させたBy maintaining the pressure on the surface that does not face the surface of the system alloy source material at a lower pressure than the pressure on the installation surface side, a pressure difference was provided on both sides of the membrane to sublimate it. PdPd 源物質またはSource material or PdPd 系合金膜源物質を多孔質支持体細孔内に吸引しながら、多孔質支持体表面および細孔内にWhile sucking the alloy material source material into the pores of the porous support, the surface of the porous support and the pores PdPd 膜またはMembrane or PdPd 系合金膜を薄膜状で形成させる請求項1記載の水素分離膜の製造法。The method for producing a hydrogen separation membrane according to claim 1, wherein the alloy film is formed in a thin film shape. 多孔質膜状体が多孔質セラミックス中空糸膜である請求項4記載の水素分離膜の製造法。The method for producing a hydrogen separation membrane according to claim 4, wherein the porous membrane is a porous ceramic hollow fiber membrane. 多孔質膜状体が平板状多孔質セラミックス膜である請求項4記載の水素分離膜の製造法。The method for producing a hydrogen separation membrane according to claim 4, wherein the porous membrane is a flat porous ceramic membrane. 表面にγΓ on the surface -- アルミナ薄膜を形成させた多孔質セラミックス膜が用いられる請求項5または6記載の水素分離膜の製造法。The method for producing a hydrogen separation membrane according to claim 5 or 6, wherein a porous ceramic membrane formed with an alumina thin film is used.
JP2001308954A 2000-10-20 2001-10-04 Production method of hydrogen separation membrane Expired - Fee Related JP3861645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001308954A JP3861645B2 (en) 2000-10-20 2001-10-04 Production method of hydrogen separation membrane

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000-320209 2000-10-20
JP2000320209 2000-10-20
JP2001175083 2001-06-11
JP2001-175083 2001-06-11
JP2001308954A JP3861645B2 (en) 2000-10-20 2001-10-04 Production method of hydrogen separation membrane

Publications (2)

Publication Number Publication Date
JP2003062438A JP2003062438A (en) 2003-03-04
JP3861645B2 true JP3861645B2 (en) 2006-12-20

Family

ID=27344981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001308954A Expired - Fee Related JP3861645B2 (en) 2000-10-20 2001-10-04 Production method of hydrogen separation membrane

Country Status (1)

Country Link
JP (1) JP3861645B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297183B2 (en) * 2004-09-20 2007-11-20 Idatech, Llc Hydrogen purification devices, components, and fuel processing systems containing the same
JP5294229B2 (en) * 2007-02-16 2013-09-18 独立行政法人産業技術総合研究所 Hydrogen permeable membrane manufacturing equipment using chemical vapor deposition
KR101498092B1 (en) * 2013-08-21 2015-03-03 한국에너지기술연구원 Method for Manufacturing Hydrogen Separation Membrane
US9616379B2 (en) 2013-07-25 2017-04-11 Korea Institute Of Energy Research Method for preparing hydrogen separation membrane and device for preparing hydrogen separation membrane
KR101515508B1 (en) * 2013-09-03 2015-04-29 한국에너지기술연구원 Method for Manufacturing Hydrogen Separation Membrane

Also Published As

Publication number Publication date
JP2003062438A (en) 2003-03-04

Similar Documents

Publication Publication Date Title
Xomeritakis et al. CVD synthesis and gas permeation properties of thin palladium/alumina membranes
US6854602B2 (en) Hydrogen-selective silica-based membrane
JP3373057B2 (en) Manufacturing method of hydrogen separation membrane
Morooka et al. Formation of hydrogen-permselective SiO2 membrane in macropores of α-alumina support tube by thermal decomposition of TEOS
EP2061597B1 (en) Method and apparatus for membrane deposition
Xomeritakis et al. Fabrication of a thin palladium membrane supported in a porous ceramic substrate by chemical vapor deposition
US5782959A (en) Process for preparing a composite inorganic membrane for hydrogen separation
EP1982955B1 (en) Method for producing hydrogen gas separation material
Zhao et al. Preparation and characterization of palladium-based composite membranes by electroless plating and magnetron sputtering
JP3861645B2 (en) Production method of hydrogen separation membrane
JP2006204990A (en) Hydrogen separation membrane and its manufacturing method
JP2631244B2 (en) Method and apparatus for producing hydrogen for fuel cells
JP3117276B2 (en) Hydrogen separation membrane
JP3567253B2 (en) Method for producing porous body coated with palladium or palladium alloy
JP4112856B2 (en) Method for producing gas separator
JP3841165B2 (en) Hydrogen selective permeable membrane
JP2003135943A (en) Hydrogen separating membrane and method for manufacturing the same
JP3755056B2 (en) Hydrogen separation membrane, method for producing the same, and method for separating hydrogen
JP3373006B2 (en) Manufacturing method of hydrogen separation membrane
JP2001219042A (en) Producing method of hydrogen separation membrane and hydrogen separation membrane
JPH11300182A (en) Production of hydrogen separation membrane and its producing equipment
JP2000189772A (en) Separation filter of hydrogen gas and its production
JPH0582B2 (en)
JP2008246295A (en) Manufacturing method of hydrogen separation membrane
JP3620279B2 (en) Hydrogen separation membrane and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees